Modern tornado design of nuclear and other potentially hazardous facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, J.D.; Zhao, Y.
Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.
Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein; Casey Durst
2012-11-01
Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA)more » time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.« less
Influence of gamma-ray skyshine on nuclear facilities design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, M.; Tsuji, M.; Kimura, Y.
1986-01-01
In safety analysis of nuclear facilities, skyshine dose rate at site boundary is one of the most important shielding design problems. For nuclear power stations in Japan, the skyshine dose rate at the site boundary has been specified not to exceed 5 mR/yr by the authorities, including total dose contribution from all structures on site, and this guide is commonly applied to other nuclear fuel cycle facilities. Therefore the design criterion dose of each structure on site is, considering plot planning, shielding condition, and so on, defined as a value <5 mR/yr. The purpose of this study is to investigatemore » how skyshine dose standards or other factors have an influence on the design of nuclear facilities, in a parametric survey of gamma-ray skyshine.« less
Space Nuclear Thermal Propulsion (SNTP) Air Force facility
NASA Technical Reports Server (NTRS)
Beck, David F.
1993-01-01
The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
Confinement of Radioactive Materials at Defense Nuclear Facilities
2004-10-01
The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement
Providing security assurance in line with national DBT assumptions
NASA Astrophysics Data System (ADS)
Bajramovic, Edita; Gupta, Deeksha
2017-01-01
As worldwide energy requirements are increasing simultaneously with climate change and energy security considerations, States are thinking about building nuclear power to fulfill their electricity requirements and decrease their dependence on carbon fuels. New nuclear power plants (NPPs) must have comprehensive cybersecurity measures integrated into their design, structure, and processes. In the absence of effective cybersecurity measures, the impact of nuclear security incidents can be severe. Some of the current nuclear facilities were not specifically designed and constructed to deal with the new threats, including targeted cyberattacks. Thus, newcomer countries must consider the Design Basis Threat (DBT) as one of the security fundamentals during design of physical and cyber protection systems of nuclear facilities. IAEA NSS 10 describes the DBT as "comprehensive description of the motivation, intentions and capabilities of potential adversaries against which protection systems are designed and evaluated". Nowadays, many threat actors, including hacktivists, insider threat, cyber criminals, state and non-state groups (terrorists) pose security risks to nuclear facilities. Threat assumptions are made on a national level. Consequently, threat assessment closely affects the design structures of nuclear facilities. Some of the recent security incidents e.g. Stuxnet worm (Advanced Persistent Threat) and theft of sensitive information in South Korea Nuclear Power Plant (Insider Threat) have shown that these attacks should be considered as the top threat to nuclear facilities. Therefore, the cybersecurity context is essential for secure and safe use of nuclear power. In addition, States should include multiple DBT scenarios in order to protect various target materials, types of facilities, and adversary objectives. Development of a comprehensive DBT is a precondition for the establishment and further improvement of domestic state nuclear-related regulations in the field of physical and cyber protection. These national regulations have to be met later on by I&C platform suppliers, electrical systems suppliers, system integrators and turn-key providers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Bean; Casey Durst
2009-10-01
This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichmentmore » plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.« less
75 FR 43495 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities..., structures, and components, and (5) safety-related design aspects of new facilities or modifications of existing facilities needed to deliver high-level waste feed. The Board will be prepared to accept any other...
Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy
2013-07-01
Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)
Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trond Bjornard; Philip C. Durst
2012-05-01
This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott F
Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindell, M.A.; Grape, S.; Haekansson, A.
The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less
Wing, Steve; Richardson, David B; Hoffmann, Wolfgang
2011-04-01
In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. We review epidemiologic principles used in studies of generic exposure-response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Safeguards by Design Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise
The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always bemore » as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).« less
Wing, Steve; Richardson, David B.; Hoffmann, Wolfgang
2011-01-01
Background In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. Objectives We review epidemiologic principles used in studies of generic exposure–response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Discussion Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Conclusions Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes. PMID:21147606
Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.
2004-02-01
The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.
NASA Astrophysics Data System (ADS)
Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor
2017-10-01
The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified... reaction (e.g., uranium-233, uranium-235, plutonium-238, plutonium-239, plutonium-241, neptunium-237...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, P.B.
1979-05-01
The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less
NASA Astrophysics Data System (ADS)
Fortkamp, Jonathan C.
Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.
Space exploration initiative candidate nuclear propulsion test facilities
NASA Technical Reports Server (NTRS)
Baldwin, Darrell; Clark, John S.
1993-01-01
One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.
Proposed BISOL Facility - a Conceptual Design
NASA Astrophysics Data System (ADS)
Ye, Yanlin
2018-05-01
In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... understand VY's design, layout, and construction. This failure to comprehend and understand the layout... Facilities,'' and General Design Criteria 60, ``Control of Releases of Radioactive Materials to the Environment,'' and 64, ``Monitoring Radioactivity Releases,'' of Appendix A, ``General Design Criteria for...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
Socket welds in nuclear facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, P.A.; Torres, L.L.
1995-12-31
Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
None
2018-01-16
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.
10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...
10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...
10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...
10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...
10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schanfein, Mark J.; Mladineo, Stephen V.
2015-07-07
Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less
Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nero, A.V.; Quinby-Hunt, M.S.
1977-01-01
This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinke, R.G.; Mueller, C.; Knight, T.D.
1998-03-01
The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-09-04
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun,more » the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. N Appendix N to Par...
Content of system design descriptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all themore » attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.B.; Srivastava, P.; Mishra, S.K.
2013-07-01
Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less
10 CFR 60.133 - Additional design criteria for the underground facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Additional design criteria for the underground facility. 60.133 Section 60.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository...
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
Control console replacement at the WPI Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...
Simulation Enabled Safeguards Assessment Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Bean; Trond Bjornard; Thomas Larson
2007-09-01
It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less
Nuclear Safety Information Center, Its Products and Services
ERIC Educational Resources Information Center
Buchanan, J. R.
1970-01-01
The Nuclear Safety Information Center (NSIC) serves as a focal point for the collection, analysis and dissemination of information related to safety problems encountered in the design, analysis, and operation of nuclear facilities. (Author/AB)
10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants
Code of Federal Regulations, 2010 CFR
2010-01-01
... under part 50, or a design certification, combined license, design approval, or manufacturing license... license, design approval, or manufacturing license is required by §§ 50.34(a)(12), 50.34(b)(10), or 10 CFR... design for a nuclear power facility. Manufacturing license means a license, issued under subpart F of...
A performance goal-based seismic design philosophy for waste repository facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Q.A.
1994-12-31
A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and {open_quotes}graded approach{close_quotes} philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.
Design philosophy and operating experience with the WNRE Hot Cell Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, R.G.; Seymour, C.G.; Ryz, M.A.
1969-10-15
The objective of radiation safety and operating efficiency often conflict. The key to preventing this conflict is proper design. In this paper we discuss how both objectives have been met in the Whiteshell Nuclear Research Establishment (WNRE) Hot Cell Facilities.
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
10 CFR Appendix A to Subpart B of... - General Statement of Safety Basis Policy
Code of Federal Regulations, 2011 CFR
2011-01-01
... for the design and construction of a new DOE nuclear facility or a major modification to an existing... acceptable nuclear safety design criteria for use in preparing a preliminary documented safety analysis. As a... mitigate hazards to workers, the public, or the environment. They include (1) physical, design, structural...
Code of Federal Regulations, 2014 CFR
2014-01-01
... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...
Code of Federal Regulations, 2013 CFR
2013-01-01
... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...
Code of Federal Regulations, 2012 CFR
2012-01-01
... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...
Code of Federal Regulations, 2010 CFR
2010-01-01
... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...
Code of Federal Regulations, 2011 CFR
2011-01-01
... public reading room (FOIA requests). 1703.105 Section 1703.105 Energy DEFENSE NUCLEAR FACILITIES SAFETY... address for such requests is: Designated FOIA Officer, Defense Nuclear Facilities Safety Board, 625... pertain to an immediate source of risk to the public health and safety or worker safety at a defense...
DIANA - A deep underground accelerator for nuclear astrophysics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winklehner, Daniel; Leitner, Daniela; Lemut, Alberto
DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulombmore » barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartashov,V.V.; Pratt,W.; Romanov, Y.A.
The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, David; Petrone, Floriana; Buckle, Ian
The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Andrea Beth
2004-07-01
This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... designed to minimize proliferation risks world-wide, including the Nuclear Non- Proliferation Treaty, the U... and licensees ensure that they comply with requirements designed to minimize proliferation risks... NRC's regulations on physical security, information security, material control and accounting, cyber...
Code of Federal Regulations, 2010 CFR
2010-01-01
... atomic weapon, designed or used to sustain nuclear fission in a self-supporting chain reaction. (g... experiments; or (ii) A liquid fuel loading; or (iii) An experimental facility in the core in excess of 16... in the isotope 235, except laboratory scale facilities designed or used for experimental or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the isotope 235, except laboratory scale facilities designed or used for experimental or... atomic weapon, designed or used to sustain nuclear fission in a self-supporting chain reaction. (g... experiments; or (ii) A liquid fuel loading; or (iii) An experimental facility in the core in excess of 16...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in the isotope 235, except laboratory scale facilities designed or used for experimental or... atomic weapon, designed or used to sustain nuclear fission in a self-supporting chain reaction. (g... experiments; or (ii) A liquid fuel loading; or (iii) An experimental facility in the core in excess of 16...
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Control console replacement at the WPI Reactor. [Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility
NASA Astrophysics Data System (ADS)
Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan
2014-05-01
The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.
ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlmeister, J E; Haberer, W V; Casey, D F
1960-12-15
The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... or asked to report: Licensees and applicants for nuclear power plants and research and test... detailed review of applications for licenses and amendments thereto to construct and operate nuclear power plants, preliminary or final design approvals, design certifications, research and test facilities...
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Leveraging Safety Programs to Improve and Support Security Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Janice; Snell, Mark K.; Pratt, R.
2015-10-01
There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
NASA Technical Reports Server (NTRS)
2005-01-01
This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.
ASME Nuclear Crane Standards for Enhanced Crane Safety and Increased Profit
NASA Astrophysics Data System (ADS)
Parkhurst, Stephen N.
2000-01-01
The ASME NOG-1 standard, 'Rules for Construction of Overhead and Gantry Cranes', covers top running cranes for nuclear facilities; with the ASME NUM-1 standard, 'Rules for Construction of Cranes, Monorails, and Hoists', covering the single girder, underhung, wall and jib cranes, as well as the monorails and hoists. These two ASME nuclear crane standards provide criteria for designing, inspecting and testing overhead handling equipment with enhanced safety to meet the 'defense-in-depth' approach of the United States Nuclear Regulatory Commission (USNRC) documents NUREG 0554 and NUREG 0612. In addition to providing designs for enhanced safety, the ASME nuclear crane standards provide a basis for purchasing overhead handling equipment with standard safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities. The ASME NOG-1 and ASME NUM-1 standards not only provide enhanced safety for handling a critical load, but also increase profit by minimizing the possibility of load drops, by reducing cumbersome operating restrictions, and by providing the foundation for a sound licensing position. The ASME nuclear crane standards can also increase profit by providing the designs and information to help ensure that the right standard equipment is purchased. Additionally, the ASME nuclear crane standards can increase profit by providing designs and information to help address current issues, such as the qualification of nuclear plant cranes for making 'planned engineered lifts' for steam generator replacement and decommissioning.
Design of early warning system for nuclear preparedness case study at Serpong
NASA Astrophysics Data System (ADS)
Farid, M. M.; Prawito, Susila, I. P.; Yuniarto, A.
2017-07-01
One effort to protect the environment from the increasing of potentially environmental radiation hazards as an impact of radiation discharge around nuclear facilities is by a continuous monitoring of the environmental radiation in real time It is important to disclose the dose rate information to public or authorities for radiological protection. In this research, we have designed a nuclear preparedness early warning system around the Serpong nuclear facility. The design is based on Arduino program, general packet radio service (GPRS) shield, and radio frequencies technology to transmit environmental radiation result of the measurement and meteorological data. Data was collected at a certain location at The Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The system consistency models are defined by the quality of data and the level of radiation exposure in the deployed environment. Online users can access the website which displays the radiation dose on the environment marked on Google Map. This system is capable to issue an early warning emergency when the dose reaches three times of the background radiation exposure value, 250 nSv/hour.
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
10 CFR 52.167 - Issuance of manufacturing license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkas, Dmytro
2011-10-01
As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin
2015-02-01
Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.
2011-01-01
An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.
Comparison of DOE and NIRMA approaches to configuration management programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, E.Y.; Kulzick, K.C.
One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility`s design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configurationmore » management program as outlined in the U.S. Department of Energy`s (DOE`s) DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program,{close_quotes} with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, {open_quotes}Position Paper on Configuration Management{close_quotes} 2. PP03-1992, {open_quotes}Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facility{close_quotes} 3. PP04-1994 {open_quotes}Position Paper for Configuration Management Information Systems.{close_quotes}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.
The WPI reactor-readying for the next generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.M.
1993-01-01
Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Construction Cost Growth for New Department of Energy Nuclear Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, Jr., William L.
Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facilitymore » (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.« less
Magnet Design Considerations for Fusion Nuclear Science Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; Kessel, C.; El-Guebaly, L.
2016-06-01
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
Magnet design considerations for Fusion Nuclear Science Facility
Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...
2016-02-25
The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less
The measurement programme at the neutron time-of-flight facility n_TOF at CERN
NASA Astrophysics Data System (ADS)
Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Negret, A.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.
SARS: Safeguards Accounting and Reporting Software
NASA Astrophysics Data System (ADS)
Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.
In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.
Maternal residential proximity to nuclear facilities and low birth weight in offspring in Texas.
Gong, Xi; Benjamin Zhan, F; Lin, Yan
2017-03-01
Health effects of close residential proximity to nuclear facilities have been a concern for both the general public and health professionals. Here, a study is reported examining the association between maternal residential proximity to nuclear facilities and low birth weight (LBW) in offspring using data from 1996 through 2008 in Texas, USA. A case-control study design was used together with a proximity-based model for exposure assessment. First, the LBW case/control births were categorized into multiple proximity groups based on distances between their maternal residences and nuclear facilities. Then, a binary logistic regression model was used to examine the association between maternal residential proximity to nuclear facilities and low birth weight in offspring. The odds ratios were adjusted for birth year, public health region of maternal residence, child's sex, gestational weeks, maternal age, education, and race/ethnicity. In addition, sensitivity analyses were conducted for the model. Compared with the reference group (more than 50 km from a nuclear facility), the exposed groups did not show a statistically significant increase in LBW risk [adjusted odds ratio (aOR) 0.91 (95% confidence interval (CI): 0.81, 1.03) for group 40-50 km; aOR 0.98 (CI 0.84, 1.13) for group 30-40 km; aOR 0.95 (CI 0.79, 1.15) for group 20-30 km; aOR 0.86 (CI 0.70, 1.04) for group 10-20 km; and aOR 0.98 (CI 0.59, 1.61) for group 0-10 km]. These results were also confirmed by results of the sensitivity analyses. The results suggest that maternal residential proximity to nuclear facilities is not a significant factor for LBW in offspring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.
Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time wasmore » Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)« less
2017-12-01
enrichment facility); 3. The acquisition of the technology and know-how to design, assemble, and manufacture the bomb ; 4. A full-scale nuclear test...14 Scott D. Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” International...15 Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” 57–59. 16 Lewis A. Dunn and Herman Kahn, Trends in Nuclear
Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter
2007-01-01
An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.
Scientific Opportunities and Plans for FRIB
NASA Astrophysics Data System (ADS)
Bollen, Georg
2014-09-01
FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.
Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report thatmore » investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR 52 and a detailed discussion of seismic probabilistic risk assessments for isolated facilities.« less
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.
2014-04-01
The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less
NASA Astrophysics Data System (ADS)
Van Dyke, Melissa; Martin, James
2005-02-01
The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
Nuclear Security Education Program at the Pennsylvania State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... correlation for the General Electric Nuclear Energy advanced fuel designs (i.e., GE14 and GNF2 fuels) used at... Electric Nuclear Energy in its report, ``10 CFR 21 Reportable Condition Notification: Potential to Exceed... failure-maximum demand open (PRFO) transient as reported by General Electric Nuclear Energy in its Part 21...
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Christian; Rall, Anna-Maria; Thummerer, Severin
In order to assess the risk of radiological consequences of incidents and accidents in nuclear facilities it is important to contemplate their frequency of occurrence. It has to be shown that incidents and accidents occur sufficiently seldom according to their radiological consequences i. e. the occurrence frequency of radiological doses has to be limited. This is even demanded by the German radiation protection ordinance (StrlSchV), which says that in nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, the occurrence frequency of incidents and accidents shall be contemplated in order to prove the design of safetymore » measures and safety installations. Based on the ideas of the ICRP64, we developed a risk based assessment concept for nuclear facilities, which fulfils the requirements of the German regulations concerning dose limits in normal operation and design basis accidents. The general use of the concept is dedicated to nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, where the regulation of risk assessment is less sophisticated. The concept specifies occurrence frequency limits for radiation exposure dose ranges, i. e. the occurrence frequency of incidents and accidents has to be limited according to their radiological effects. To apply this concept, scenarios of incidents and accidents are grouped in exposition classes according to their resulting potential effective dose to members of the general public. The occurrence frequencies of the incidents and accidents are summarized in each exposition class whereas the sum must not exceed the frequency limits mentioned above. In the following we introduce the application of this concept in the assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor. We carried out this assessment for the licensing process of the decommissioning on behalf of German authorities. (authors)« less
The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morneau, Rachel Anne; Klasky, Marc Louis
The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Status of DEMO-FNS development
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Shpanskiy, Yu. S.; DEMO-FNS Team
2017-07-01
Fusion-fission hybrid facility based on superconducting tokamak DEMO-FNS is developed in Russia for integrated commissioning of steady-state and nuclear fusion technologies at the power level up to 40 MW for fusion and 400 MW for fission reactions. The project status corresponds to the transition from a conceptual design to an engineering one. This facility is considered, in RF, as the main source of technological and nuclear science information, which should complement the ITER research results in the fields of burning plasma physics and control.
3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, J.H.; Choung, W.M.; You, G.S.
The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluationmore » plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.« less
Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter
2006-01-01
A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.
Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.K.; Freemerman, R.L.
1989-11-01
On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-02-01
This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the majormore » Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.
For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less
NASA Astrophysics Data System (ADS)
De Jesús, M.; Trujillo-Zamudio, F. E.
2010-12-01
A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.
2017-11-01
The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.
Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.
Establishment of a National Accelerator Facility: Design and construction phase
NASA Astrophysics Data System (ADS)
1981-06-01
The main components of an accelerator facility for nuclear physics, isotope production, and radiotherapy in South Africa are in 8-MeV solid pole injector cyclotron and a separated sector cyclotron with a k-value of 200 MeV. Progress made in the development of the light ion injector and in the design of the control and beam transport systems is described. Mechanical and engineering tasks associated with component manufacture are discussed as well as the construction of the building to house the facility and the installation of necessary services.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., tests, analyses and acceptance criteria established under the combined license; (2) The conduct of pre... facility the reactor design for which is approved after December 31, 1993, by the Nuclear Regulatory Commission (and such design or a substantially similar design of comparable capacity was not approved on or...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., tests, analyses and acceptance criteria established under the combined license; (2) The conduct of pre... facility the reactor design for which is approved after December 31, 1993, by the Nuclear Regulatory Commission (and such design or a substantially similar design of comparable capacity was not approved on or...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., tests, analyses and acceptance criteria established under the combined license; (2) The conduct of pre... facility the reactor design for which is approved after December 31, 1993, by the Nuclear Regulatory Commission (and such design or a substantially similar design of comparable capacity was not approved on or...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., tests, analyses and acceptance criteria established under the combined license; (2) The conduct of pre... facility the reactor design for which is approved after December 31, 1993, by the Nuclear Regulatory Commission (and such design or a substantially similar design of comparable capacity was not approved on or...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., tests, analyses and acceptance criteria established under the combined license; (2) The conduct of pre... facility the reactor design for which is approved after December 31, 1993, by the Nuclear Regulatory Commission (and such design or a substantially similar design of comparable capacity was not approved on or...
SAVY 4000 Container Filter Design Life and Extension Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Reeves, Kirk Patrick; Veirs, Douglas Kirk
The SAVY 4000 is a general purpose, reusable container for the storage of solid nuclear material inside a nuclear facility. The canister has a permitted loading for material with a thermal output not to exceed 25 watts. This wattage limit applies to all containers, regardless of their size.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Concepts. 60.102 Section 60.102 Energy NUCLEAR REGULATORY... § 60.102 Concepts. This section provides a functional overview of subpart E. In the event of any... (4) of the Energy Reorganization Act of 1974. Any of these facilities is designated a HLW facility...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-02-01
This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted inmore » the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.« less
Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.A.; Bishop, S.; D'Auria, J.M.
2003-08-26
The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-14
The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
Spent nuclear fuel project cold vacuum drying facility operations manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
IRWIN, J.J.
This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Safety Oversight of Decommissioning Activities at DOE Nuclear Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zull, Lawrence M.; Yeniscavich, William
2008-01-15
The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... construction or manufacture, or any defect found in the final design of a facility as approved and released for..., combined licenses, and manufacturing licenses. 50.55 Section 50.55 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of...
NASA Reactor Facility Hazards Summary. Volume 1
NASA Technical Reports Server (NTRS)
1959-01-01
The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.
NASA Astrophysics Data System (ADS)
Donohue, Jay
This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.
New design incinerator being built
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.
Seismic assessment of Technical Area V (TA-V).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medrano, Carlos S.
The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig; Chad Pope; Jason Andrus
The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure,more » temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izmaylov, Alexandr V.; Babkin, Vladimir; Kurov, Valeriy
2009-10-07
The development of new or the upgrade of existing physical protection systems (PPS) for nuclear facilities involves a multi-step and multidimensional process. The process consists of conceptual design, design, and commissioning stages. The activities associated with each of these stages are governed by Russian government and agency regulations. To ensure a uniform approach to development or upgrading of PPS at Russian nuclear facilities, the development of a range of regulatory and methodological documents is necessary. Some issues of PPS development are covered by the regulatory documents developed by Rosatom, as well as other Russian agencies with nuclear facilities under theirmore » control. This regulatory development has been accomplished as part of the U.S.-Russian MPC&A cooperation or independently by the Russian Federation. While regulatory coverage is extensive, there are a number of issues such as vulnerability analysis, effectiveness assessment, upgrading PPS, and protection of information systems for PPS that require additional regulations be developed. This paper reports on the status of regulatory coverage for PPS development or upgrade, and outlines a new approach to regulatory document development. It describes the evolutionary process of regulatory development through experience gained in the design, development and implementation of PPS as well as experience gained through the cooperative efforts of Russian and U.S. experts involved the development of MPC&A regulations.« less
76 FR 61346 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... defense nuclear facilities, including the Chemistry and Metallurgy Research Building, Area G in Technical... the integration of safety-in-design for the Chemistry and Metallurgy Research Replacement project, the...
Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve
2018-02-01
To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.
Air cushion vehicles: A briefing
NASA Technical Reports Server (NTRS)
Anderson, J. L.; Finnegan, P. M.
1971-01-01
Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.
Environment, Safety, and Health: Status of DOE’s Reorganization of it’s Safety Oversight Function
1990-01-01
facilities. After deliberation, the Congress in late 1988 directed that the Defense Nuclear Facilities Safety Board be established to provide...nuclear safety matters will be conducted by either the Advisory Committee on Nuclear Facility Safety or the recently mandated Defense Nuclear Facilities Safety...the facilities under the statutory purview of the Defense Nuclear Facilities Safety Board once the board determines it is ready to assume independent
Code of Federal Regulations, 2011 CFR
2011-01-01
..., as amended, and the regulations issued by the Commission. 2.(a) For facilities designed for producing... occurrence including an extraordinary nuclear occurrence or series of occurrences at the location or in the... extraordinary nuclear occurrence or series of occurrences causing bodily injury, sickness, disease or death, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., as amended, and the regulations issued by the Commission. 2.(a) For facilities designed for producing... occurrence including an extraordinary nuclear occurrence or series of occurrences at the location or in the... extraordinary nuclear occurrence or series of occurrences causing bodily injury, sickness, disease or death, or...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., as amended, and the regulations issued by the Commission. 2.(a) For facilities designed for producing... occurrence including an extraordinary nuclear occurrence or series of occurrences at the location or in the... extraordinary nuclear occurrence or series of occurrences causing bodily injury, sickness, disease or death, or...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., as amended, and the regulations issued by the Commission. 2.(a) For facilities designed for producing... occurrence including an extraordinary nuclear occurrence or series of occurrences at the location or in the... extraordinary nuclear occurrence or series of occurrences causing bodily injury, sickness, disease or death, or...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., as amended, and the regulations issued by the Commission. 2.(a) For facilities designed for producing... occurrence including an extraordinary nuclear occurrence or series of occurrences at the location or in the... extraordinary nuclear occurrence or series of occurrences causing bodily injury, sickness, disease or death, or...
2017 LLNL Nuclear Forensics Summer Internship Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Internship Program (NFSIP) is designed to give graduate students an opportunity to come to LLNL for 8-10 weeks of hands-on research. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students can also meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
Seismic risk management solution for nuclear power plants
Coleman, Justin; Sabharwall, Piyush
2014-12-01
Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, B.J.; Sullivan, S.G.; Baum, J.W.
1994-01-01
Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.« less
Passive Safety Features Evaluation of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
2016-06-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less
76 FR 26716 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing. FEDERAL REGISTER CITATIONS... Defense Nuclear Facilities Safety Board, Public Hearing Room, 625 Indiana Avenue, NW., Suite 300...
The Design of PSB-VVER Experiments Relevant to Accident Management
NASA Astrophysics Data System (ADS)
Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander
Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.
Considerations for setting up an order entry system for nuclear medicine tests.
Hara, Narihiro; Onoguchi, Masahisa; Nishida, Toshihiko; Honda, Minoru; Houjou, Osamu; Yuhi, Masaru; Takayama, Teruhiko; Ueda, Jun
2007-12-01
Integrating the Healthcare Enterprise-Japan (IHE-J) was established in Japan in 2001 and has been working to standardize health information and make it accessible on the basis of the fundamental Integrating Healthcare Enterprise (IHE) specifications. However, because specialized operations are used in nuclear medicine tests, online sharing of patient information and test order information from the order entry system as shown by the scheduled workflow (SWF) is difficult, making information inconsistent throughout the facility and uniform management of patient information impossible. Therefore, we examined the basic design (subsystem design) for order entry systems, which are considered an important aspect of information management for nuclear medicine tests and needs to be consistent with the system used throughout the rest of the facility. There are many items that are required by the subsystem when setting up an order entry system for nuclear medicine tests. Among these items, those that are the most important in the order entry system are constructed using exclusion settings, because of differences in the conditions for using radiopharmaceuticals and contrast agents and appointment frame settings for differences in the imaging method and test items. To establish uniform management of patient information for nuclear medicine tests throughout the facility, it is necessary to develop an order entry system with exclusion settings and appointment frames as standard features. Thereby, integration of health information with the Radiology Information System (RIS) or Picture Archiving Communication System (PACS) based on Digital Imaging Communications in Medicine (DICOM) standards and real-time health care assistance can be attained, achieving the IHE agenda of improving health care service and efficiently sharing information.
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
Multiloop Integral System Test (MIST): MIST Facility Functional Specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, T F; Koksal, C G; Moskal, T E
1991-04-01
The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility --more » the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs.« less
78 FR 4393 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... Session II, the Board will receive testimony concerning safety at Pantex defense nuclear facilities. The...
77 FR 479 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... of the Defense Nuclear Facilities Safety Board's (Board) public hearing and meeting described below... Nuclear Facilities Safety Board, 625 Indiana Avenue NW., Suite 700, Washington, DC 20004-2901, (800) 788...
77 FR 48970 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... (NNSA) efforts to mitigate risks to public and worker safety posed by aging defense nuclear facilities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan Gray; Robert Anderson; Julio G. Rodriguez
Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energymore » Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.« less
RADIATION FACILITY FOR NUCLEAR REACTORS
Currier, E.L. Jr.; Nicklas, J.H.
1961-12-12
A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)
High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Waltz, Cory; HFNG Collaboration
2015-04-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Tsong L.
The Stuxnet attack at the Natanz facility is an example of a targeted and successful cyber attack on a nuclear facility. Snowden's release of National Security Agency documents demonstrated the consequences of the insider threat. More recently, the United States tried to attack North Korea but failed, South Korea was attempting to attack North Korea, and both applied Stuxnet-like approaches. These sophisticated targeted attacks differ from web-site hacking events that are reported almost daily in the news mainly because targeted attacks require detailed design and operation information of the systems attacked and/or are often carried out by insiders. For instance,more » in order to minimize disruption of facilities around the world, Stuxnet remained idle until it recognized the specific configuration of the Natanz facility, demonstrating that the attackers possessed extremely detailed information about the facility. Such targeted cyber attacks could become a national-level military weapon and be used in coercion of hostile countries.« less
Feasibility study for a transportation operations system cask maintenance facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennich, M.J.; Medley, L.G.; Attaway, C.R.
The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less
High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.
The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. B Appendix B to Part 50—Quality Assurance... report a description of the quality assurance program to be applied to the design, fabrication...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C.W.; Giraud, K.M.
Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less
Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purnomo, A.S.
2007-07-01
Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
The counter effects of the accident at Fukushima Dai-ichi nuclear power station
NASA Astrophysics Data System (ADS)
Murakami, Kenta
2017-01-01
The counter effects of the accident at the Fukushima Dai-ichi Nuclear Power Station are discussed in this paper. Though decommission and remediation have been conducted in the facility and surrounding area, ninety thousand residences near the facility are still under the evacuation order. Four nuclear power units have already restarted under the new regulatory framework, but two of them in Fukui prefecture stop the operation due to the provisional disposition declared by Ohtsu district court in Shiga prefecture. Reinforcement of the latter layer of the defense in depth has been improved in many ways. The improvement of decision-making process is very important in latter layers of the defense in depth, in contrast the plant behaviors are automatically decided based on their design in the prior layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUSmore » facility as a museum.« less
Overview of the ISOL facility for the RISP
NASA Astrophysics Data System (ADS)
Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.
2015-02-01
The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.
10 CFR 75.10 - Facility information.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., to the extent feasible, to the form, location and flow of nuclear material, and to the general layout... paragraph (b)(5) of this section, must be prepared on IAEA approved Design Information Questionnaire forms...
10 CFR 75.10 - Facility information.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., to the extent feasible, to the form, location and flow of nuclear material, and to the general layout... paragraph (b)(5) of this section, must be prepared on IAEA approved Design Information Questionnaire forms...
10 CFR 75.10 - Facility information.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., to the extent feasible, to the form, location and flow of nuclear material, and to the general layout... paragraph (b)(5) of this section, must be prepared on IAEA approved Design Information Questionnaire forms...
10 CFR 75.10 - Facility information.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., to the extent feasible, to the form, location and flow of nuclear material, and to the general layout... paragraph (b)(5) of this section, must be prepared on IAEA approved Design Information Questionnaire forms...
Fiber Optic Tamper Indicating Enclosure (TIE); A Case Study in Authentication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Benz, Jacob M.; Tanner, Jennifer E.
2015-07-15
A robust fiber optic-based tamper-indicating enclosure (TIE) has been developed by PNNL through funding by the National Nuclear Security Administration Office of Nuclear Verification over the past few years. The objective of this work is to allow monitors to have confidence in both the authenticity and integrity of the TIE and the monitoring equipment inside, throughout the time it may be located at a host facility. Incorporating authentication features into the design were the focus of fiscal year 2014 development efforts. Throughout the development process, modifications have been made to the physical TIE design based on lessons learned via exercisesmore » and expert elicitation. The end result is a robust and passive TIE which can be utilized to protect monitoring party equipment left in a host facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, B.; Stern, W.; Colley, J.
International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less
Site-wide seismic risk model for Savannah River Site nuclear facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, S.A.; Shay, R.S.; Durant, W.S.
1993-09-01
The 200,000 acre Savannah River Site (SRS) has nearly 30 nuclear facilities spread throughout the site. The safety of each facility has been established in facility-specific safety analysis reports (SARs). Each SAR contains an analysis of risk from seismic events to both on-site workers and the off-site population. Both radiological and chemical releases are considered, and air and water pathways are modeled. Risks to the general public are generally characterized by evaluating exposure to the maximally exposed individual located at the SRS boundary and to the off-site population located within 50 miles. Although the SARs are appropriate methods for studyingmore » individual facility risks, there is a class of accident initiators that can simultaneously affect several of all of the facilities, Examples include seismic events, strong winds or tornados, floods, and loss of off-site electrical power. Overall risk to the off-site population from such initiators is not covered by the individual SARs. In such cases multiple facility radionuclide or chemical releases could occur, and off-site exposure would be greater than that indicated in a single facility SAR. As a step towards an overall site-wide risk model that adequately addresses multiple facility releases, a site-wide seismic model for determining off-site risk has been developed for nuclear facilities at the SRS. Risk from seismic events up to the design basis earthquake (DBE) of 0.2 g (frequency of 2.0E-4/yr) is covered by the model. Present plans include expanding the scope of the model to include other types of initiators that can simultaneously affect multiple facilities.« less
A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania
NASA Astrophysics Data System (ADS)
Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.
2015-09-01
A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Martin, James
2005-01-01
The EFF-TF provides a facility to experimentally evaluate thermal hydraulic issues through the use of highly effective non-nuclear testing. These techniques provide a rapid, more cost effective method of evaluating designs and support development risk mitigation when concerns are associated with non-nuclear aspects of space nuclear systems. For many systems, electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004. Initial evaluation of the SAFE-100a (19 module stainless steel/sodium heat pipe reactor with integral gas neat exchanger) was performed with tests up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium SAFE-100 heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37-fuel pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to field a near term space nuclear system. Efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2011 Service Contract...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of FY 2010 Service Contract Inventories. SUMMARY: In accordance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2010 Service Contract...
Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Michelson, D.C.; Knox, N.P.
1987-09-01
The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program,more » Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.« less
Westinghouse Cementation Facility of Solid Waste Treatment System - 13503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Torsten; Aign, Joerg
2013-07-01
During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less
2016 LLNL Nuclear Forensics Summer Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Program is designed to give graduate students an opportunity to come to LLNL for 8–10 weeks for a hands-on research experience. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students also have the opportunity to meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timothy Shaw; Anthony Baratta; Vaughn Whisker
2005-02-28
Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
78 FR 49262 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... associated with continued operation of aging defense nuclear [[Page 49263
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...
Evolution of a visual impact model to evaluate nuclear plant siting and design option
Brian A. Gray; John Ady; Grant R. Jones
1979-01-01
The development of a visual impact method- elegy is reviewed from first concepts (1973) to application.3/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity) to assess change in a setting's visual quality as the result of construction of a nuclear facility, or any other visible alteration. Slides of "before...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.« less
Northrop Triga facility decommissioning plan versus actual results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, F.W.
1986-01-01
This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.
The roles and functions of a lunar base Nuclear Technology Center
NASA Astrophysics Data System (ADS)
Buden, D.; Angelo, J. A., Jr.
This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.
The new postirradiation examination facility of the Atomic Energy Corporation of South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.
1992-01-01
The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less
Downgrading Nuclear Facilities to Radiological Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy
2015-08-01
Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1994-10-11
The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less
Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...
2017-03-23
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, E. I.; Lindl, J. D.; Spaeth, M. L.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...
Code of Federal Regulations, 2013 CFR
2013-01-01
... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...
Code of Federal Regulations, 2014 CFR
2014-01-01
... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...
75 FR 56080 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Facilities Safety Board's public hearing and meeting. FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: 75... INFORMATION: Brian Grosner, General Manager, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...
Analytical dose evaluation of neutron and secondary gamma-ray skyshine from nuclear facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, K.; Nakamura, T.
1985-11-01
The skyshine dose distributions of neutron and secondary gamma rays were calculated systematically using the Monte Carlo method for distances up to 2 km from the source. The energy of source neutrons ranged from thermal to 400 MeV; their emission angle from 0 to 90 deg from the ver tical was treated with a distribution of the direction cosine containing five equal intervals. Calculated dose distributions D(r) were fitted to the formula; D(r) = Q exp (-r/lambda)/r. The value of Q and lambda are slowly varied functions of energy. This formula was applied to the benchmark problems of neutron skyshinemore » from fission, fusion, and accelerator facilities, and good agreement was achieved. This formula will be quite useful for shielding designs of various nuclear facilities.« less
Lacoste, V; Gressier, V
2007-01-01
The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation.
Potential Impacts of Accelerated Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. R.; Vail, L. W.
2016-05-31
This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhancemore » NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.« less
Radiological controls integrated into design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kindred, G.W.
1995-03-01
Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less
NASA Astrophysics Data System (ADS)
Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi
2018-03-01
The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.
Progress in magnet design activities for the material plasma exposure experiment
Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...
2017-07-01
One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less
Analysis of ORNL site temperature and humidity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, B.E.
1989-08-01
The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, Joanna; Environmental and Occupational Health Sciences Institute, Piscataway, NJ; Gochfeld, Michael
2012-07-01
As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider themore » protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)« less
76 FR 11764 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's public hearing and meeting described below. Interested persons... the matters to be considered. TIME AND DATE OF MEETING: 9 a.m., March 31, 2011. PLACE: Defense Nuclear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Abdul Aziz; Al Rashid Megat Ahmad, Megat Harun; Md Idris, Faridah
2010-01-05
Malaysian Nuclear Agency's (Nuclear Malaysia) Small Angle Neutron Scattering (SANS) facility--(MYSANS)--is utilizing low flux of thermal neutron at the agency's 1 MW TRIGA reactor. As the design nature of the 8 m SANS facility can allow object resolution in the range between 5 and 80 nm to be obtained. It can be used to study alloys, ceramics and polymers in certain area of problems that relate to samples containing strong scatterers or contrast. The current SANS system at Malaysian Nuclear Agency is only capable to measure Q in limited range with a PSD (128x128) fixed at 4 m from themore » sample. The existing reactor hall that incorporate this MYSANS facility has a layout that prohibits the rebuilding of MYSANS therefore the position between the wavelength selector (HOPG) and sample and the PSD cannot be increased for wider Q range. The flux of the neutron at current sample holder is very low which around 10{sup 3} n/cm{sup 2}/sec. Thus it is important to rebuild the MYSANS to maximize the utilization of neutron. Over the years, the facility has undergone maintenance and some changes have been made. Modification on secondary shutter and control has been carried out to improve the safety level of the instrument. A compact micro-focus SANS method can suit this objective together with an improve cryostat system. This paper will explain some design concept and approaches in achieving higher flux and the modification needs to establish the micro-focused SANS.« less
Nuclear Warheads: The Reliable Replacement Warhead program and the Life Extension Program
2007-12-03
eliminate the need for ESD controls.”67 CRS-22 68 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight...public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov...about/index.html]. 69 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, September 14, 2006. 70
Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program
2006-12-13
Defense Nuclear Facilities Safety Board was created by Congress 1988 "as an independent oversight organization within the Executive Branch charged... nuclear facilities ." U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. involving CHE and plutonium...approach, if successful, would “reduce or eliminate the need for ESD controls.”42 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities
Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program
2007-04-04
Information provided by Pantex Plant, Sept. 19, 2006. 50 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent...protection of public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http...www.dnfsb.gov/about/index.html]. 51 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, Sept. 14, 2006
Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program
2007-07-16
The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight organization within the Executive Branch charged... nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. beginning, addressed safety...approach, if successful, would “reduce or eliminate the need for ESD controls.”55 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, Moshe
The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less
ASC FY17 Implementation Plan, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P. G.
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less
Indispensable Nation: U.S. Security Guarantees and Nuclear Proliferation
2017-06-01
to achieve this capability. This is encapsulated in Pakistani Prime Minister Zulfikar Ali Bhutto’s famous declaration, “We will make an atomic bomb ...the Bomb " argues that states that receive sensitive nuclear assistance, in the form of aid in weapons design, enrichment facility construction, or...3 Feroz Khan, Eating Grass: The Making of the Pakistani Bomb . (Stanford: Stanford University Press, 2012), 87. 4 Matthew Kroenig, “Importing
Security culture for nuclear facilities
NASA Astrophysics Data System (ADS)
Gupta, Deeksha; Bajramovic, Edita
2017-01-01
Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.
Experiences with welding multi-assembly sealed baskets at Palisades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agace, S.; Worrell, S.; Stewart, L.
1995-12-01
Four utilities were using operational canister-based dry storage facilities at year-end, and seven more have contracts to establish similar facilities. Consumers Power`s Palisades Nuclear Power Plant has successfully completed loading its eighth dry storage canister with the Ventilated Storage Cask (VSC) system, under license to Sierra Nuclear Corporation. The VSC has a Multi-Assembly Sealed Basket (MSB) containing 24 specially-selected and aged spent fuel assemblies. MSB closure occurs when two independent lids are welded at the utility. The canister wall and lids are SA-516 Grade 70 carbon steel. This paper discusses the welding system design, closure operations and MSB closure operationsmore » at Palisades.« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
NASA Astrophysics Data System (ADS)
Emrich, William J.
2008-01-01
To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
Methods for nuclear air-cleaning-system accident-consequence assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.
1982-01-01
This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptionsmore » of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.« less
Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)
NASA Astrophysics Data System (ADS)
Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana
2017-09-01
Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.
Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Michelson, D.C.; Knox, N.P.
1985-09-01
This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Majormore » chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.« less
The neutrons for science facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Bauge, E.; Bélier, G.; Bém, P.; Borcea, C.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fischer, U.; Frégeau, M. O.; Grinyer, J.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Henning, G.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrázek, J.; Negoita, F.; Novák, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Prokofiev, A. V.; Ramillon, J. M.; Farget, F.; Ridikas, D.; Rossé, B.; Sérot, O.; Simakov, S. P.; Šimečková, E.; Štefánik, M.; Sublet, J. C.; Taïeb, J.; Tarrío, D.; Tassan-Got, L.; Thfoin, I.; Varignon, C.
2017-09-01
Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...
49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...
49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...
49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...
49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...
340 Facility secondary containment and leak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendixsen, R.B.
1995-01-31
This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.
Cultural Awareness in Nuclear Security Programs: A Critical Link
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine
Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applicationsmore » in the Jordanian context will be presented.« less
Cultural Awareness in Nuclear Security Programs: A Critical Link
Nasser, Al-Sharif Nasser bin; Auda, Jasmine; Bachner, Katherine
2016-11-20
Nuclear security programs that offer training and capacity building opportunities to practitioners working in nuclear facilities play a central role in strengthening the global nuclear security architecture. There is often a significant divide, however, between both the development of these programs and their implementation, and between the programs’ intended and actual outcomes. This article argues that this disconnect can often be attributed to an absence of cultural awareness and an inability for internationally-designed programs to effectively resonate with local audiences. Furthermore, the importance of the role of cultural awareness in implementing nuclear security programs will be assessed, and its applicationsmore » in the Jordanian context will be presented.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Code of Federal Regulations, 2010 CFR
2010-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Code of Federal Regulations, 2011 CFR
2011-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... Draft Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and... alternatives for constructing and operating the nuclear facility (NF) portion of the Chemistry and Metallurgy...
NASA Technical Reports Server (NTRS)
1991-01-01
The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Kosson, D.
2009-11-30
Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focusmore » of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various chapters contain both a description of the mechanism or and a discussion of the current approaches to modeling the phenomena.« less
2004-01-01
Defense Nuclear Facilities Safety Board 1 0.2 Export-Import Bank 1 0.2 National Archives and Records Administration 1 0.2 Supreme Court of the United...Agency Commodity Futures Trading Commission Consumer Product Safety Commission Defense Nuclear Facilities Safety Board Environmental Protection Agency...Intelligence www.cia.gov Defense Nuclear Facilities Safety Board Defense Nuclear Facilities Safety Board www.dnfsb.gov Department of
Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa
NASA Astrophysics Data System (ADS)
de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.
The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.
CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configurationmore » management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.« less
Legacies of the Manhattan Project
NASA Astrophysics Data System (ADS)
Kevles, Daniel
2017-01-01
The Manhattan Project of World War II mobilized thousands of people, including many of the nation's leading physicists, and extensive material resources to design, develop, and manufacture the world's first nuclear weapons. It also established sprawling new facilities for the production of fissionable fuels - notably at Oak Ridge, Tennessee, and Hanford, Washington. It left a set of powerful legacies in the context of the Cold War - endowing scientists with conscience-taxing responsibilities in the nuclear arms race; promoting enormous patronage of academic research by defense and defense-related federal agencies, notably the Office of Naval Research and the Atomic Energy Commission; and turning its wartime facilities into major national laboratories that advanced the fields of high-energy and nuclear physics and stimulated local industrial economies but that in some cases, notably at Hanford, severely polluted the surrounding environment with radioactive waste and disrupted the livelihoods of native peoples. ``Legacies of the Manhattan Project''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then bymore » facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.« less
The Future of U.S. Nuclear Forces: Boom or Bust
2007-03-30
materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftin, Bradley; Koenig, Richard
2013-08-08
The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This papermore » will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.« less
Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinsuo
Pyroprocessing is an electrochemical method based on the molten salt electrolyte, mainly the LiCl-KCl eutectic molten salt, to recycle the used nuclear fuel. For a conceptual design of commercial pyroprocessing facility, tons of special nuclear materials, namely U and Pu, may be involved, which could be used for non-peaceful purposes if they are diverted. Effective safeguards approaches have to be developed prior to the development and construction of a pyroprocessing facility. Present research focused on two main objectives, namely calculating the properties of nuclear species in LiCl-KCl molten salt and developing integrated model to safeguard a pyroprocessing facility. Understanding themore » characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important to understand their behaviors in an electrorefiner. The model development for the separation processes in the pyroprocessing, including electrorefining, actinide drawdown, and rare earth drawdown benefits the understanding of material transport and separation performance of these processes under various conditions. The output signals, such as potential, current, and species concentration contribute to the material balance closure and provide safeguards signatures to detect the scenarios of diversion. U and Pu are the two main elements concerned in this study due to our interest in safeguards.« less
JAEA's actions and contributions to the strengthening of nuclear non-proliferation
NASA Astrophysics Data System (ADS)
Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro
2012-06-01
Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.
Accelerator Production of Isotopes for Medical Use
NASA Astrophysics Data System (ADS)
Lapi, Suzanne
2014-03-01
The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.
Nuclear facility decommissioning and site remedial actions: a selected bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Knox, N.P.; Fielden, J.M.
This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uraniummore » Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolsey, G.B.; Wilhite, E.L.
1980-01-01
This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste.
Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, W E
2000-12-05
The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less
Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, W.E.
2000-09-29
The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less
POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.
1963-06-21
A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Phillips, M.; Etheridge, D.
2012-07-01
Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less
Postirradiation Testing Laboratory (327 Building)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammenzind, D.E.
A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompassmore » health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.« less
Space Fission Propulsion Testing and Development Progress. Phase 1
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.
Phase 1 space fission propulsion system testing and development progress
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter
2001-02-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .
10 CFR 770.1 - What is the purpose of this part?
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at defense nuclear facilities for economic development. (b) This part also... DOE activities at the defense nuclear facility. ...
NASA Astrophysics Data System (ADS)
Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.
2017-09-01
Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.
Project Summaries, 1989 - 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Student designs summarized here include two undergraduate space designs and five graduate space designs from fall 1989, plus four undergraduate space designs and four undergraduate aircraft designs from spring 1990. Progress in a number of programs is described. The Geostationary Satellite Servicing Facility, the Lunar Farside Observatory and Science Base, the Texas Educational Satellite, an asteroid rendezvous vehicle, a Titan probe, a subsystems commonality assessment for lunar/Mars landers, a nuclear-thermal rocket propelled Earth-Mars vehicle, and a comprehensive orbital debris management program are among the topics discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
NASA Astrophysics Data System (ADS)
Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.
2005-04-01
With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
A continuously self regenerating high-flux neutron-generator facility
NASA Astrophysics Data System (ADS)
Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.
2013-10-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruder, Kristan; Goodwin, Derek
2013-07-01
AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
10 CFR 50.30 - Filing of application; oath or affirmation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operate, or manufacture, a production or utilization facility (including an early site permit, combined.... (e) Filing Fees. Each application for a standard design approval or production or utilization... 50.30 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION...
Heavy ion linear accelerator for radiation damage studies of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less
Heavy ion linear accelerator for radiation damage studies of materials
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif
2017-03-01
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...
Low-level radwaste storage facility at Hope Creek and Salem Generating Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyen, L.C.; Lee, K.; Bravo, R.
Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less
77 FR 51943 - Procedures for Safety Investigations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period. SUMMARY: The Defense Nuclear Facilities Safety Board is extending the time for comments on its proposed...
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
Radioactive Liquid Waste Treatment Facility: Environmental Information Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.
1993-11-01
At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emrich, William J. Jr.
2008-01-21
To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowingmore » hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.« less
75 FR 29785 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...
48 CFR 926.7103 - Requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...
48 CFR 926.7103 - Requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...
48 CFR 926.7103 - Requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...
48 CFR 926.7103 - Requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...
48 CFR 926.7103 - Requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...
76 FR 17627 - Sunshine Act Meeting Postponed
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Postponed AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of public meeting postponement. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register of March 3, 2011 (76 FR 11764...
77 FR 14007 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...
Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility
NASA Technical Reports Server (NTRS)
Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.
Realistic development and testing of fission systems at a non-nuclear testing facility
NASA Astrophysics Data System (ADS)
Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, K.W.; Twitchell, Ch.A.
2008-07-01
Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is an electric company in the Republic of Korea with twenty operational nuclear power plants and eight additional units that are either planned or currently under construction. Regulations require that KHNP manage the radioactive waste generated by their nuclear power plants. In the course of planning low, intermediate, and high level waste storage facilities, KHNP sought interaction with an acknowledged expert in the field of radioactive waste management and, consequently, contacted Sandia National Laboratories (SNL). KHNP has contracted with SNL to provide a year long training program on repository science. This papermore » discusses the design of the curriculum, specific plans for execution of the training program, and recommendations for smooth implementation of international training programs. (authors)« less
The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. R. Allen; J. B. Benson; J. A. Foster
2009-05-01
To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less
The solar physics Shuttle/Spacelab program and its relationship to studies of the flare build-up
NASA Technical Reports Server (NTRS)
Neupert, W. M.
1976-01-01
The main phase of solar physics (including flare-buildup) research on Shuttle/Spacelab during the 1980s centers around the use of facility instruments for multiple-user, multiple flight operations. Three main facilities are being considered: a meter-class optical telescope for visible and near-UV wavelengths, an EUV/XUV/soft X-ray facility, and a hard X-ray imaging facility (including a full-sun 5-600 keV spectrometer, a nuclear gamma ray spectrometer, and an X-ray polarimeter for the 5-100 keV range). Smaller instruments designed for specific observations and other classes of instruments such as solar monitors that are not on the facility level are also being considered.
Vacuum ultraviolet light production by nuclear irradiation of liquid and gaseous xenon
NASA Technical Reports Server (NTRS)
Baldwin, G. C.
1981-01-01
Recent Los Alamos investigations suggest that a liquefied noble element may be the long-sought medium for a nuclear-excited laser or flashlamp. Research is needed to confirm this finding and to provide a basis for design and application studies. Quantitative and qualitative information are needed on the nature and behavior of the excited species, the effects of impurities and additives in the liquid phase under nuclear excitation, and the existence and magnitudes of nonlinear effects. Questions that need to be addressed and the most appropriate types of facilities for this task are identified.
Hot conditioning equipment conceptual design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, F.W., Westinghouse Hanford
1996-08-06
This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2008-01-01
To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
First neutron generation in the BINP accelerator based neutron source.
Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S
2009-07-01
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.
Safety analysis in test facility design
NASA Astrophysics Data System (ADS)
Valk, A.; Jonker, R. J.
1990-09-01
The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.
Nuclear Power Plant Security and Vulnerabilities
2009-03-18
Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...
The Organization and Management of the Nuclear Weapons Program.
1997-03-01
over operations include the Defense Nuclear Facilities Safety Board, the Environmental Protection Agency, the Occupational Safety and Health...Safety, and Health. Still more guidance is received from the Defense Nuclear Facilities Safety Board and other external bodies such as the...state regulatory agencies, and the Defense Nuclear Facilities Safety Board. This chapter briefly reviews the most recent decade of this history, describes
Code of Federal Regulations, 2010 CFR
2010-01-01
... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...
High-performance superconductors for Fusion Nuclear Science Facility
Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...
2016-11-09
High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less
High-performance superconductors for Fusion Nuclear Science Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Yuhu; Kessel, Chuck; Barth, Christian
High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb 3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steelmore » jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced J cNb 3Sn RRP strands (J c > 1000 A/mm 2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2011 CFR
2011-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2013 CFR
2013-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2012 CFR
2012-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2014 CFR
2014-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2010 CFR
2010-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, Peter; Laughter, Mark D; Martyn, Rose
The Cylinder Accountability and Tracking System (CATS) is a tool designed for use by the International Atomic Energy Agency (IAEA) to improve overall inspector efficiency through real-time unattended monitoring of cylinder movements, site specific rules-based event detection, and the capability to integrate many types of monitoring technologies. The system is based on the tracking of cylinder movements using (radio frequency) RF tags, and the collection of data, such as accountability weights, that can be associated with the cylinders. This presentation will cover the installation and evaluation of the CATS at the Global Nuclear Fuels (GNF) fuel fabrication facility in Wilmington,more » NC. This system was installed to evaluate its safeguards applicability, operational durability under operating conditions, and overall performance. An overview of the system design and elements specific to the GNF deployment will be presented along with lessons learned from the installation process and results from the field trial.« less
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
Nuclear Criticality Experimental Research Center (NCERC) Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk
The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less
75 FR 27228 - Proposed FOIA Fee Schedule Update
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...
77 FR 41258 - FOIA Fee Schedule Update
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...
76 FR 28194 - Proposed FOIA Fee Schedule Update
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...
76 FR 43819 - FOIA Fee Schedule Update
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...
78 FR 20625 - Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on January 22, 2013...
77 FR 65871 - Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on August 15, 2012...
78 FR 1206 - Second Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Second Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Second extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on...
75 FR 21605 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... depth federal safety management and oversight policies being developed by DOE and NNSA for defense... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... in the Sunshine Act'' (5 U.S.C. 552b), notice is hereby given of the Defense Nuclear Facilities...
LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blink, J A
2011-03-23
Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less
Nuclear Cryogenic Propulsion Stage Affordable Development Strategy
NASA Technical Reports Server (NTRS)
Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.
2014-01-01
The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.
Chemical processing in geothermal nuclear chimney
Krikorian, O.H.
1973-10-01
A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack S. Brenizer, Jr.
2003-01-17
The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantsev, A. A., E-mail: kazantsevanatoly@gmail.com; Sergeev, V. V.; Kochnov, O. Yu.
The temperature regime is calculated for two different designs of containers with uranium-bearing material for the upgraded VVR-Ts research reactor facility (IVV.10M). The containers are to be used in the production of {sup 99}Mo. It is demonstrated that the modification of the container design leads to a considerable temperature reduction and an increase in the near-wall boiling margin and allows one to raise the amount of material loaded into the container. The calculations were conducted using the international thermohydraulic contour code TRAC intended to analyze the technical safety of water-cooled nuclear power units.
78 FR 65978 - Draft Revised Strategic Plan for FY 2014-2018
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2014-2018 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with Office of Management and Budget Circular No. A-11, the Defense Nuclear Facilities Safety Board (DNFSB) is soliciting...
75 FR 4794 - Draft Revised Strategic Plan for FY 2010-2015
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2010-2015 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with OMB Circular No. A-11, the Defense Nuclear Facilities Safety Board is soliciting comments from all interested and potentially...
Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollar, Lenka; Mathews, Caroline E.
This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less
Nuclear space power safety and facility guidelines study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehlman, W.F.
1995-09-11
This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system ismore » planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.« less
Greenberg, Michael R
2009-09-01
Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.
10 CFR 770.2 - What real property does this part cover?
Code of Federal Regulations, 2014 CFR
2014-01-01
....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at closed or downsized defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn...
10 CFR 770.2 - What real property does this part cover?
Code of Federal Regulations, 2013 CFR
2013-01-01
....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn from the...
10 CFR 770.1 - What is the purpose of this part?
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at closed or downsized defense nuclear facilities for economic development. (b... contaminant as a result of DOE activities at the defense nuclear facility. [65 FR 10689, Feb. 29, 2000, as...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... facility portion of the Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Nuclear Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, Arnold; Meitner, Steve; Graves, Van
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...
2017-08-07
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.
PHYSICS: Will Livermore Laser Ever Burn Brightly?
Seife, C; Malakoff, D
2000-08-18
The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.
2014-01-01
Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.
NEP technology: FY 1992 milestones (NASA LeRC)
NASA Technical Reports Server (NTRS)
Sovey, Jim
1993-01-01
A discussion of Nuclear Electric Propulsion (NEP) thrusters and facilities is presented in vugraph form. The NEP thrusters are discussed in the context of the following three items: (1) establishing a 100 H test capability for 100-kW magnetoplasmadynamic (MPD) thrusters; (2) demonstrating a lightweight 20-kW krypton ion thruster; and (3) the optimization of the design of low-mass power processor transformers. The primary accomplishment at NEP facilities was the completion of the Electric Propulsion Laboratory's (EPL's) tank 5 cryopump upgrade.
44 CFR 351.21 - The Nuclear Regulatory Commission.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...
44 CFR 351.21 - The Nuclear Regulatory Commission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...
44 CFR 351.21 - The Nuclear Regulatory Commission.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...
44 CFR 351.21 - The Nuclear Regulatory Commission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...
Code of Federal Regulations, 2011 CFR
2011-01-01
... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
The Neutrons for Science Facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Blomgren, J.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Herber, S.; Jacquot, B.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecolley, J. F.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Petrascu, M.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Shcherbakov, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Steckmeyer, J. C.; Sublet, J. C.; Taïeb, J.; Tassan-Got, L.; Takibayev, A.; Tungborn, E.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.; Wieleczko, J. P.
2011-12-01
The "Neutrons for Science" (NFS) facility will be a component of SPIRAL-2, the future accelerator dedicated to the production of very intense radioactive ion beams, under construction at GANIL in Caen (France). NFS will be composed of a pulsed neutron beam for in-flight measurements and irradiation stations for cross-section measurements and material studies. Continuous and quasi-monokinetic energy spectra will be available at NFS respectively produced by the interaction of deuteron beam on thick a Be converter and by the 7Li(p,n) reaction on a thin converter. The flux at NFS will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV to 40 MeV range. NFS will be a very powerful tool for physics and fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.
Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.
2011-01-01
Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-25
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site Building 235-F Safety AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1...
630A MARITIME NUCLEAR STEAM GENERATOR. Progress Report No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-07-31
Work on the 630A Maritime Nuclear Steam Generator Scoping Study is summarized. The objective of the program is to establish a specific 630A configuration and to develop specifications for components and test equipment. During the period, work was initiated in critical experiment design and fabrication, additional fuel and materials investigations, boiler-test design and fabrication; blower studies; design of component tests; nuclear, thermodynamic, mechanical and safety analysis, and test facility and equipment studies. Design of the critical experiment mockup and test equipment was completed and fabrication of the parts is approximately 50% complete. A rough draft of the critical experiment hazardsmore » report was completed. A fuel test in the ORR completed 876.5 hr of testing out of a planned 2200-hr test without indication of failure. The burnup was equivalent to about 6000 hr of 630A operation. Damage to the capsule during refueling of the ORR caused termination of the test. The design of an MTR fuel-burnup test was completed and fabrication of the sample initiated. Ni-Cr fuel sheet and cladding stock are being tested for creep and oxidation properties at temperatures up to 1750 deg F and have accumulated times up to 5000 hr; no failures have occurred. These tests are continuing. Specimens of Ni-Cr were fabricated and will be tested to determine the effect of neutron irradiation. Cycle operating conditions with 120O deg F reactor-discharge-air temperature were studied and found to be acceptable for the proposed maritime application. Increases in cycle efficiency above 30.2% appear to be possible and practical. Studies during the period indicate that an acceptable power distribution can be maintained through the life of the reactor and the maximum hot spot temperature and maximum burnup location would not coincide. Specifications for the fuel loading of the critical experiment are being prepared. Study of the pressure vessel resulted in selection of 304 SS. Containment studies indfcated the practicality of designing the shield tank outer shell as part of the containment vessel. A blower scoping study subcontract was completed. The study verified the feasibility of the main and afterblower concept. Alternate shaft-seal designs were proposed. The design of a performance test for the two seal types has been initiated. The design of the boiler test from which control characteristics will be determined was completed and fabrication started. The decision was made that the Low Power Test Facility (LPTF) will be the site used for the critical experiment. A preliminary study of the power test facility requirements were completed. The study indicated that locating the facility adjacent to the LPTF would be operationally and economically feasible. (auth)« less
A facility for testing 10 to 100-kWe space power reactors
NASA Astrophysics Data System (ADS)
Carlson, William F.; Bitten, Ernest J.
1993-01-01
This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.
Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K
2009-01-01
In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less
Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.
A review of ventilated storage cask (VSC) system projects and experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConaghy, W.
1995-12-31
First, the author discusses the ventilated storage cask (VSC) design and an operations summary is given. Next VSC project status at Palisades, Point Beach, Arkansas Nuclear One, Fast Flux Test Facility and Zaporozhye is discussed. Lastly, VSC operational experience and VSC transportation interfaces are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Cris William
Los Alamos National Laboratory (LANL) hosted the Stewardship Science Academic Programs Symposium, which is designed to foster relationships among young scientists, sponsors and the National Nuclear Security Administration national laboratories. The event highlights much of the work done by prominent scientists and allows attendees to view the multiple on site facilities at LANL.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Design,'' GDC 31, ``Fracture Prevention of Reactor Coolant Pressure Boundary,'' and GDC 32, ``Inspection... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration...
NSAC Recommends a Relativistic Heavy-Ion Collider.
ERIC Educational Resources Information Center
Physics Today, 1984
1984-01-01
Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)
Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test
NASA Astrophysics Data System (ADS)
Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.
2004-02-01
One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.
DOE’s Management and Oversight of the Nuclear Weapons Complex
1990-03-22
and Economic Development Division Before the Department of Energy Defense Nuclear Facilities Panel Committee on Armed Services House of Representatives...and newly created DOE offices. The Defense Nuclear Facilities Safety Board, whose board members were appointed this past year, was created to provide 6...mandated Defense Nuclear Facilities Safety Board. Continuing dialogue between DOE and the Board can also serve to enhance DOE’s ability to respond more
75 FR 81675 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Fuel Cycle Facilities.'' FOR FURTHER INFORMATION CONTACT: Mekonen M. Bayssie, Regulatory Guide... Materials in Liquid and Gaseous Effluents from Nuclear Fuel Cycle Facilities,'' was published as Draft... guidance is applicable to nuclear fuel cycle facilities, with the exception of uranium milling facilities...
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas
2018-04-01
Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, J. N.; Chin, M. R.; Sjoden, G. E.
2013-07-01
A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less
Nuclear thermal rocket nozzle testing and evaluation program
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1993-01-01
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.
Code of Federal Regulations, 2013 CFR
2013-01-01
... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Information supporting the economic viability of the proposed development; and (v) The consideration offered... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...
Code of Federal Regulations, 2012 CFR
2012-01-01
... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...
Code of Federal Regulations, 2010 CFR
2010-01-01
... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...
Code of Federal Regulations, 2010 CFR
2010-01-01
... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6... transferred for economic development? Any person or entity may request that specific real property be made...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Richardson, J. E.; Fallows, P.
2006-07-01
Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Gary A.
The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O 2 fuel rods.
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-09-25
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in amore » remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.« less
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
None
2018-01-16
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.
Numerical simulation of tornado wind loading on structures
NASA Technical Reports Server (NTRS)
Maiden, D. E.
1976-01-01
A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.
Radiation Safety System for SPIDER Neutral Beam Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandri, S.; Poggi, C.; Coniglio, A.
2011-12-13
SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less
Overview on the target fabrication facilities at ELI-NP and ongoing strategies
NASA Astrophysics Data System (ADS)
Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.
2016-10-01
Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.
Nuclear energy center site survey reactor plant considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, H.
The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers.
Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew
Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan; ...
2017-08-23
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Suzette J.; Coppersmith, Kevin J.; Coppersmith, Ryan
A key decision for nuclear facilities is evaluating the need for an update of an existing seismic hazard analysis in light of new data and information that has become available since the time that the analysis was completed. We introduce the newly developed risk-informed Seismic Hazard Periodic Review Methodology (referred to as the SHPRM) and present how a Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 probabilistic seismic hazard analysis (PSHA) was performed in an implementation of this new methodology. The SHPRM offers a defensible and documented approach that considers both the changes in seismic hazard and engineering-based risk informationmore » of an existing nuclear facility to assess the need for an update of an existing PSHA. The SHPRM has seven evaluation criteria that are employed at specific analysis, decision, and comparison points which are applied to seismic design categories established for nuclear facilities in United States. The SHPRM is implemented using a SSHAC Level 1 study performed for the Idaho National Laboratory, USA. The implementation focuses on the first six of the seven evaluation criteria of the SHPRM which are all provided from the SSHAC Level 1 PSHA. Finally, to illustrate outcomes of the SHPRM that do not lead to the need for an update and those that do, the example implementations of the SHPRM are performed for nuclear facilities that have target performance goals expressed as the mean annual frequency of unacceptable performance at 1x10 -4, 4x10 -5 and 1x10 -5.« less
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
Regulatory Guidance for Lightning Protection in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Wilgen, John B; Ewing, Paul D
2006-01-01
Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less
Regulatory guidance for lightning protection in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.
2006-07-01
Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less
Modeling nuclear processes by Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false What procedures are to be used to transfer real property at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...
ERIC Educational Resources Information Center
Ling, A. Campbell
1979-01-01
The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-326; NRC-2010-0217] University of California, Irvine; License Renewal for University of California, Irvine Nuclear Reactor Facility; Supplemental Information... Renewal for University of California, Irvine Nuclear Reactor Facility,'' to inform the public that the NRC...
The Neutrons for Science Facility at SPIRAL-2.
Ledoux, X; Aïche, M; Avrigeanu, M; Avrigeanu, V; Balanzat, E; Ban-d'Etat, B; Ban, G; Bauge, E; Bélier, G; Bém, P; Borcea, C; Caillaud, T; Chatillon, A; Czajkowski, S; Dessagne, P; Doré, D; Fischer, U; Frégeau, M O; Grinyer, J; Guillous, S; Gunsing, F; Gustavsson, C; Henning, G; Jacquot, B; Jansson, K; Jurado, B; Kerveno, M; Klix, A; Landoas, O; Lecolley, F R; Lecouey, J L; Majerle, M; Marie, N; Materna, T; Mrázek, J; Novák, J; Oberstedt, S; Oberstedt, A; Panebianco, S; Perrot, L; Plompen, A J M; Pomp, S; Prokofiev, A V; Ramillon, J M; Farget, F; Ridikas, D; Rossé, B; Serot, O; Simakov, S P; Šimecková, E; Stanoiu, M; Štefánik, M; Sublet, J C; Taïeb, J; Tarrío, D; Tassan-Got, L; Thfoin, I; Varignon, C
2017-11-21
The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs
Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...
2013-12-20
As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less
Leveraging Available Data to Support Extension of Transportation Packages Service Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, K.; Abramczyk, G.; Bellamy, S.
Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping packagemore » results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.
This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
Getting Beyond Yucca Mountain - 12305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halstead, Robert J.; Williams, James M.
2012-07-01
The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However,more » the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)« less
NASA Astrophysics Data System (ADS)
Ponds, Charles D.; Knaur, James A.
1988-01-01
This paper presents the design and test requirements in developing an electromagnetic compatibility missile system. Environmental levels are presented for electromagnetic radiation hazards, electromagnetic radiation operational, electrostatic discharge, lightning, and electromagnetic pulse (nuclear). Testing techniques and facility capabilities are presented for research and development testing of missile systems.
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Knox, N.P.; Chilton, B.D.
1984-09-01
This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department ofmore » Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.« less
Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility
NASA Astrophysics Data System (ADS)
Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu
2013-12-01
The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.
Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David
The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less
Design and fabrication of 55-gallon drum shuffler standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, S.M.; Hsue, F.; Hoth, C.
1994-08-01
To analyze waste with varying levels of nuclear material, suitable standards are needed to calibrate analytical instrumentation. At the Los Alamos Plutonium Facility, the authors have designed and fabricated a single drum standard for a passive-active neutron counter (shuffler). The standard is modified simply by adding or subtracting plutonium of uranium cylinders to adapt to a range of nuclear material. The plutonium or uranium oxide was placed into small cylindrical containers (1-in. diameter by 5-in. long) and diluted with diatomaceous earth. The cylinders were welded closed and removed from the glove box environment without any external contamination. The containers weremore » leak tested and then placed on a segmented gamma scanner to assure homogeneous distribution of the nuclear material. The cylinders are now placed into the drum to achieve the needed ranges for calibration of the instruments.« less
Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation
2010-06-01
Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness
Nuclear Criticality Safety Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbach, D. F.
The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob
1999-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetti, Chandrakanth; Yu, Chingching; Coleman, Justin
This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.
Meteorology Assessment of Historic Rainfall for Los Alamos During September 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruggeman, David Alan; Dewart, Jean Marie
2016-02-12
DOE Order 420.1, Facility Safety, requires that site natural phenomena hazards be evaluated every 10 years to support the design of nuclear facilities. The evaluation requires calculating return period rainfall to determine roof loading requirements and flooding potential based on our on-site rainfall measurements. The return period rainfall calculations are done based on statistical techniques and not site-specific meteorology. This and future studies analyze the meteorological factors that produce the significant rainfall events. These studies provide the meteorology context of the return period rainfall events.
Department of Energy Actions Necessary to Improve DOE’s Training Program
1999-02-01
assessments, the Department has completed analyses and implemented training programs for the defense nuclear facilities technical workforce and...certification standards, such as those examined by the Defense Nuclear Facilities Safety Board in its reviews of Department operations, impose... nuclear facilities will have their technical skills assessed and will receive continuing training to maintain certain necessary skills. Page 17 GAO/RCED
Risk, media, and stigma at Rocky Flats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, J.; Peters, E.; Mertz, C.K.
1998-12-01
Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. Thismore » paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.« less
NASA Astrophysics Data System (ADS)
Hébert, Hélène; Abadie, Stéphane; Benoit, Michel; Créach, Ronan; Frère, Antoine; Gailler, Audrey; Garzaglia, Sébastien; Hayashi, Yutaka; Loevenbruck, Anne; Macary, Olivier; Marcer, Richard; Morichon, Denis; Pedreros, Rodrigo; Rebour, Vincent; Ricchiuto, Mario; Silva Jacinto, Ricardo; Terrier, Monique; Toucanne, Samuel; Traversa, Paola; Violeau, Damien
2014-05-01
TANDEM (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) is a French research project dedicated to the appraisal of coastal effects due to tsunami waves on the French coastlines, with a special focus on the Atlantic and Channel coastlines, where French civil nuclear facilities have been operating since about 30 years. This project aims at drawing conclusions from the 2011 catastrophic tsunami, and will allow, together with a Japanese research partner, to design, adapt and validate numerical methods of tsunami hazard assessment, using the outstanding database of the 2011 tsunami. Then the validated methods will be applied to estimate, as accurately as possible, the tsunami hazard for the French Atlantic and Channel coastlines, in order to provide guidance for risk assessment on the nuclear facilities. The project TANDEM follows the recommendations of International Atomic Energy Agency (IAEA) to analyse the tsunami exposure of the nuclear facilities, as well as the recommendations of the French Nuclear Safety Authority (Autorité de Sûreté Nucléaire, ASN) in the aftermath of the 2011 catastrophe, which required the licensee of nuclear facilities to conduct complementary safety assessments (CSA), also including "the robustness beyond their design basis". The tsunami hazard deserves an appraisal in the light of the 2011 catastrophe, to check whether any unforeseen tsunami impact can be expected for these facilities. TANDEM aims at defining the tsunami effects expected for the French Atlantic and Channel coastlines, basically from numerical modeling methods, through adaptation and improvement of numerical methods, in order to study tsunami impacts down to the interaction with coastal structures (thus sometimes using 3D approaches) (WP1). Then the methods will be tested to better characterize and quantify the associated uncertainties (in the source, the propagation, and the coastal impact) (WP2). The project will benefit from a Japanese cooperation (Meteorological Research Institute, MRI) to study in detail the coastal impact of the 2011 Tohoku tsunami (WP3). In this framework TANDEM will apply the models to the French study area, which includes investigating historical documents, defining the possible tsunamigenic sources able to strike the regions of interest (earthquakes and/or landslides), and modeling the coastal effects at a regional scale and for selected sites. Using high resolution bathymetric and topographic data in the frame of Litto3D (a French project whose main objective is to build a seamless integrated topographic and bathymetric coastal Digital Terrain Model), TANDEM will thoroughly investigate possible sources, through a detailed characterization of the slope stability off the coastlines (for the Celtic and Armorican margins, Bay of Biscay), and estimate the coastal impacts. It will also consider events (Canaries) whose assumed catastrophic impact has been widely discussed these recent years, needing a reappraisal regarding French coastlines. A special attention will also be paid to the estimation of the return periods expected for the tsunami scenarios.
2008-05-01
building up to and beyond the 2013 time frame. However, in October 2007, the Defense Nuclear Facilities Safety Board, which monitors safety...manufacturing. They said that NNSA is still working through this process with the Defense Nuclear Facilities Safety Board. Processing of waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 AND 50-364; NRC-2012-0053] Facility Operating License Amendment From Southern Nuclear Operating, Inc., Joseph M. Farley Nuclear Plant, Units 1 and 2...-0053. You may submit comments by the following methods: Federal Rulemaking Web site: Go to http://www...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr
2011-10-01
The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed trainingmore » needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S
2014-08-01
The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nuclear thermal rocket nozzle testing and evaluation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidian, K.O.; Kacynski, K.J.
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulsemore » values are expected to be within plus or minus 1.17%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, Alex W.; Janairo, Lisa
2013-07-01
The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. Themore » Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, M.A.M.
1995-03-01
Even though the ALARA philosophy was formally implemented in the early 1980`s, to some extent, ALARA considerations already had been incorporated into the design of most commercial equipment and facilities based on experience and engineering development. In Mexico, the design of medical and industrial facilities were based on international recommendations containing those considerations. With the construction of Laguna Verde Nuclear Power Station, formal ALARA groups were created to review some parts of its design, and to prepare the ALARA Program and related procedures necessary for its commercial operation. This paper begins with a brief historical description of ALARA development inmore » Mexico, and then goes on to discuss our regulatory frame in Radiation Protection, some aspects of the ALARA Program, efforts in controlling and reducing of sources of radiation, and finally, future perspectives in the ALARA field.« less
Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A
2010-01-01
We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less
Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.
The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.
Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less
Manned space flight nuclear system safety. Volume 1: base nuclear system safety
NASA Technical Reports Server (NTRS)
1972-01-01
The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, T. P.; Easterly, C. E.
Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and bettermore » communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.« less
Nuclear Security Objectives of an NMAC System
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Rebecca Lynn
After completing this module, you should be able to: Describe the role of Nuclear Material Accounting and Control (NMAC) in comprehensive nuclear security at a facility; Describe purpose of NMAC; Identify differences between the use of NMAC for IAEA safeguards and for facility nuclear security; List NMAC elements and measures; and Describe process for resolution of irregularities
76 FR 20052 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... simulation facility for use in operator and senior operator training, license examination operating tests...
Fundamental neutron physics beamline at the spallation neutron source at ORNL
Fomin, N.; Greene, G. L.; Allen, R. R.; ...
2014-11-04
In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.
Operational and design aspects of accelerators for medical applications
NASA Astrophysics Data System (ADS)
Schippers, Jacobus Maarten; Seidel, Mike
2015-03-01
Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.
NASA Astrophysics Data System (ADS)
D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.
2015-11-01
In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.
NASA Astrophysics Data System (ADS)
Lin, Y.; Zhang, W. J.
2005-02-01
This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.
10 CFR 110.32 - Information required in an application for a specific license/NRC Form 7.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) and its chemical and physical form. (2) For enriched uranium, the maximum weight percentage of... and its total dollar value. (4) For nuclear reactors, the name of the facility, its design power level..., physical and chemical characteristics, route of transit of shipment, classification (as defined in § 61.55...
Advanced Electronic Technology
1977-11-15
Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched
Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, E.; Ott, W.R.
2008-01-15
The focus of this paper is on a regulatory guide (draft guide DG-4012) being developed by the Office of Nuclear Regulatory Research for the implementation of 10 CFR 20.1406. The draft guide was published in the Federal Register on July 31, 2007 for a 90 day public comment period. Besides being available in the Federal Register, it is also available electronically in NRC's agency data management system (ADAMS). The accession number is ML0712100110. 10 CFR 20.1406 requires license applicants, other than renewals, after August 20, 1997, '..to describe in the application how facility design and procedures for operation will minimize,more » to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize to the extent practicable, the generation of radioactive waste'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures that will reduce and control contamination and facilitate eventual decommissioning. 10 CFR 20.1406 is significant because it applies to all new facilities and in the very near future (perhaps as soon as the fall of 2007), the U.S. Nuclear Regulatory Commission (NRC) anticipates receiving one or more license applications for new nuclear power plants. The regulatory guide is intended to facilitate that licensing by providing suggestions of things an applicant can do to minimize contamination of the facility and the environment, minimize generation of waste, and to facilitate decommissioning. Over 100 different kinds of activities are covered by license applications submitted to the NRC. They do not all reflect the same potential for contamination of a facility and the environment, or for the generation of radioactive waste. Therefore, an applicant should use sound judgment to evaluate the potential for contamination and the consequences of such contamination in deciding on the extent to which this guide applies to any given facility or activity. Factors which may enter into this decision include form (e.g., dry solids, liquids, gases), inventory, and environmental mobility of unintended releases. The bulk of the guidance presented in the guide will consist of specific design considerations drawn from nuclear industry experience and lessons learned from decommissioning. These design suggestions provide examples of measures which can be combined to support a contaminant management philosophy for a new facility. The principles embodied in this philosophy are threefold: (1) prevention of unintended release, (2) early detection if there is unintended release of radioactive contamination, and (3) prompt and aggressive clean-up should there be an unintended release of radioactive contamination. If the guiding principles are followed through the use of 'good' engineering and science, as well as careful attention to operational practices, it should result in meeting the requirements of 10 CFR 20.1406. All this should be considered in the context of the life cycle of the facility from the early planning stages through the final plans for decommissioning and waste disposal. Some of the mechanisms which can be employed for life cycle planning are described further in the Discussion section. In summary: The principles of the guide are threefold: prevention, early detection, and prompt response. If these guiding principles are followed through the use of 'good' engineering and science, as well as careful attention to operational practices, it should result in meeting the requirements of 10 CFR 20 In summary, the thrust of this guide is for an applicant to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. This approach should consider the materials and processes involved (e.g., solids, liquids, gases) and focus on: (1) the relative significance of potential contamination; (2) areas most susceptible to leaks; and (3) the appropriate level of consideration to prevention and control of contamination that should be incorporated in facility design. Since the applicability of the guidance is a facility-by-facility decision, early consultation with the NRC is strongly suggested.« less
NASA Technical Reports Server (NTRS)
1986-01-01
The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.
Skylab Shroud in the Space Power Facility
1970-12-21
The 56-foot tall, 24,400-pound Skylab shroud installed in the Space Power Facility’s vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. The Space Power Facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. Payload shrouds are aerodynamic fairings to protect the payload during launch and ascent to orbit. The Skylab mission utilized the largest shroud ever attempted. Unlike previous launches, the shroud would not be jettisoned until the spacecraft reached orbit. NASA engineers designed these tests to verify the dynamics of the jettison motion in a simulated space environment. Fifty-four runs and three full-scale jettison tests were conducted from mid-September 1970 to June 1971. The shroud behaved as its designers intended, the detonators all fired, and early design issues were remedied by the final test. The Space Power Facility continues to operate today. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morneau, Rachel Anne
This report describes the US Stockpile Stewardship Program which is meant to sustain and evaluate nuclear weapon stockpile with no underground nuclear tests. This research will focus on DARHT, the Dual Axis Radiographic Hydrodynamic Test facility.