Science.gov

Sample records for nuclear fireballs

  1. Strangeness conservation in hot nuclear fireballs

    SciTech Connect

    Letessier, J.; Tounsi, A. ); Heinz, U.; Sollfrank, J. ); Rafelski, J. )

    1995-04-01

    Within a thermal model generalized to allow for nonequilibrium strange particle abundances we study how the constraint that the balance of strangeness in a fireball is (nearly) zero impacts the allowable thermal fireball parameters. Using the latest data of the CERN-WA85 experiment for the case of 200[ital A] GeV S-[ital A] ([ital A][similar to]200) collisions we extract the values of the thermal parameters considering in detail the impact of hadronic resonance decays on the abundances and spectral form of strange baryons and antibaryons. Given these results and invoking further the observed charged particle multiplicities we are able to consider the (specific) entropy content of the fireball in order to understand the nature of the disagreement of the hadronic gas picture of the fireball with the experimental data.

  2. Numerical model of the late (ascending) stage of a nuclear fireball

    SciTech Connect

    Galbally, I.E.; Manins, P.C.; Ripari, L.; Bateup, R.

    1987-01-01

    A numerical model of the late ascending stage of a nuclear fireball is presented. The model is based on five equations covering the conservation of mass including entrainment, buoyancy, radiative loss, the energy balance of the fireball, and the velocity-distance relationship. The ideal gas law is used to relate pressure, volume, and temperature and Eriksson's (1971) free-energy-minimization scheme is used to calculate the molecular composition and enthalpy of the fireball air. The model simulations of the time-dependent behavior of selected parameters and the final rise heights compare favorably with available data from mid-latitude explosions. A simplification of the model, suitable only for physical calculations, is discussed in an appendix.

  3. DRAGON: Monte Carlo Generator of Particle Production from a Fragmented Fireball in Ultrarelativistic Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Tomasik, Boris

    2010-11-01

    A Monte Carlo generator of the final state of hadrons emitted from an ultrarelativistic nuclear collision is introduced. An important feature of the generator is a possible fragmentation of the fireball and emission of the hadrons from fragments. Phase space distribution of the fragments is based on the blast wave model extended to azimuthally non-symmetric fireballs. Parameters of the model can be tuned and this allows to generate final states from various kinds of fireballs. A facultative output in the OSCAR1999A format allows for a comprehensive analysis of phase-space distributions and/or use as an input for an afterburner. DRAGON's purpose is to produce artificial data sets which resemble those coming from real nuclear collisions provided fragmentation occurs at hadronisation and hadrons are emitted from fragments without any further scattering. Its name, DRAGON, stands for DRoplet and hAdron GeneratOr for Nuclear collisions. In a way, the model is similar to THERMINATOR, with the crucial difference that emission from fragments is included.

  4. DRAGON: Monte Carlo generator of particle production from a fragmented fireball in ultrarelativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris

    2009-09-01

    A Monte Carlo generator of the final state of hadrons emitted from an ultrarelativistic nuclear collision is introduced. An important feature of the generator is a possible fragmentation of the fireball and emission of the hadrons from fragments. Phase space distribution of the fragments is based on the blast wave model extended to azimuthally non-symmetric fireballs. Parameters of the model can be tuned and this allows to generate final states from various kinds of fireballs. A facultative output in the OSCAR1999A format allows for a comprehensive analysis of phase-space distributions and/or use as an input for an afterburner. Program summaryProgram title: DRAGON Catalogue identifier: AEDK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6383 No. of bytes in distributed program, including test data, etc.: 32 756 Distribution format: tar.gz Programming language: C++ Computer: PC Pentium 4, though no particular tuning for this machine was performed Operating system: Linux; the program has been successfully run on Gentoo Linux 2.6, RedHat Linux 9, Debian Linux 4.0, all with g++ compiler. It also ran successfully on MS Windows under Microsoft Visual C++ 2008 Express Edition as well as under cygwin/g++ RAM: 100 Mbytes Supplementary material: Sample output files from the test run, provided in the distribution, are available. Classification: 11.2 Nature of problem: Deconfined matter produced in ultrarelativistic nuclear collisions expands and cools down and eventually returns into the confined phase. If the expansion is fast, the fireball could fragment either due to spinodal decomposition or due to suddenly arising bulk viscous force. Particle abundances are reasonably well described with just a few parameters

  5. Halloween Fireball

    NASA Video Gallery

    Halloween fireballs or Taurid meteors are frequently seen in the night sky from mid-October until mid-November. The Marshall all-sky camera network captured an image of an early Halloween fireball ...

  6. Two-dimensional temperature analysis of nuclear fireballs using digitized film

    NASA Astrophysics Data System (ADS)

    Slaughter, Robert C.; Peery, Tyler R.; McClory, John W.

    2015-01-01

    Researchers at Lawrence Livermore National Laboratory have begun digitizing technical films spanning the atmospheric nuclear testing operations conducted by the United States from 1945 through 1962. Each atmospheric nuclear test was filmed by Edgerton, Germeshausen, and Grier, Inc., using between 20 to 40 cameras per test. These technical film test data represent a primary source for advancing the knowledge of nuclear weapon output as well as the understanding of nonnuclear high-temperature gases. This manuscript outlines the procedures followed in order to perform two-dimensional temperature calculations for early time nuclear fireballs using digitized film. The digitized optical densities of the film were converted into irradiance on the film that was then used to determine an effective power temperature. The events Wasp Prime and Tesla of Operation Teapot were analyzed using this technique. Film temperature results agreed within uncertainties with historic data collected by calorimeters. Results were also validated by comparison to a thermal heat flux solution that utilizes historic thermal yield values to normalize radiant flux. Additionally, digital imaging and remote sensing image generation was used to demonstrate that the two-dimensional temperature calculation was self-consistent.

  7. Fireballs from Australian Desert Fireball Network - search for similar orbits

    NASA Astrophysics Data System (ADS)

    Shrbený, L.; Spurný, P.; Bland, P. A.

    2016-01-01

    We studied the fireball activity from the Desert Fireball Network records from 2006 to 2014 and identified a couple of time periods with increased number of fireballs. We searched for orbital similarities among the fireballs in these time periods and have found members of 10 individual meteor showers and two groups of similar orbits that do not correspond to any known meteor shower.

  8. Spectacular Geminid Fireball!

    NASA Video Gallery

    Flaring brighter than the full moon, this spectacular Geminid lit up the sky above Cartersville, Ga., at 2:29 a.m. EST on the morning of Dec. 14. This is one of the brightest fireballs observed by ...

  9. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  10. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  11. Bright Fireball Over Georgia

    NASA Video Gallery

    A camera in Cartersville, Ga., captured this view of a bright fireball over Georgia on the night of Mar. 7, 2012, at approx. 10:19:11 EST. The meteor was first recorded at an altitude of 51.5 miles...

  12. Fireball Over Texas

    NASA Video Gallery

    Video of the fireball seen over Texas this morning (12/7/12); it was taken by a NASA camera located near Mayhill, New Mexico. It is very unusual for us to see a meteor all the way across Texas. The...

  13. Searching for Fireballs

    NASA Astrophysics Data System (ADS)

    Sullivan, G. M.; Klebe, D. I.

    2004-05-01

    Researchers at the Denver Museum of Nature and Science (DMNS) have developed the All Sky Program (ASP) for the purpose of monitoring fireballs across the state of Colorado. The ASP provides a great opportunity for young students (grades 6-12), introducing them to the scientific process wherein they provide valuable astronomical research. A network of fourteen low-light video cameras with wide-angle imaging capabilities have been mounted atop DMNS and several Colorado middle and high schools rooftops. These cameras are spread across Colorado creating nearly complete sky coverage, and making it possible to record the same event from multiple locations allowing for triangulation. When a fireball caused by an incoming meteorite is detected, the system automatically records the event. Participating student teams have assembled these specialized cameras and now filter the data that is collected nightly. This data is used to conduct an inquiry-based investigation of meteors, fireballs, and other solar system objects. The ASP supplies unique scientific information about the statistics of fireballs and meteors. Coordinate data also enables determination of possible meteorite search area and the recreation of original meteoroid orbits. DMNS researchers will display a replica of the ASP instrument and present data from the ASP including video of actual fireball events recorded by the system. Teachers came together to develop this program and create activities that support the Colorado Content Standards in Science, Math, Reading and Writing. Students from all corners of the state are working together remotely, as well as working with DMNS scientists and resources, including Curator of Geology Jack Murphy and the museums exceptional meteorite collection.

  14. Neutral gas dynamics in fireballs

    SciTech Connect

    Stenzel, R. L.; Ionita, C.; Schrittwieser, R.

    2011-06-01

    Fireballs are local discharge phenomena on positively biased electrodes in partially ionized plasmas. Electrons, energized at a double layer, heat neutral gas which expands. The gas pressure exceeds the plasma pressure, hence becomes important to the stability and transport in fireballs. The flow of gas moves the electrode and sensors similar to a mica pendulum. Flow speed and directions are measured. A fireball gun has been developed to partially collimate the flow of hot gas and heat objects in its path. New applications of fireballs are suggested.

  15. The NASA Fireball Network Database

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E.

    2011-01-01

    The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.

  16. The NASA Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.

    2013-01-01

    In the summer of 2008, the NASA Meteoroid Environments Office (MEO) began to establish a video fireball network, based on the following objectives: (1) determine the speed distribution of cm size meteoroids, (2) determine the major sources of cm size meteoroids (showers/sporadic sources), (3) characterize meteor showers (numbers, magnitudes, trajectories, orbits), (4) determine the size at which showers dominate the meteor flux, (5) discriminate between re-entering space debris and meteors, and 6) locate meteorite falls. In order to achieve the above with the limited resources available to the MEO, it was necessary that the network function almost fully autonomously, with very little required from humans in the areas of upkeep or analysis. With this in mind, the camera design and, most importantly, the ASGARD meteor detection software were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN), as NASA has a cooperative agreement with Western's Meteor Physics Group. 15 cameras have been built, and the network now consists of 8 operational cameras, with at least 4 more slated for deployment in calendar year 2013. The goal is to have 15 systems, distributed in two or more groups east of automatic analysis; every morning, this server also automatically generates an email and a web page (http://fireballs.ndc.nasa.gov) containing an automated analysis of the previous night's events. This analysis provides the following for each meteor: UTC date and time, speed, start and end locations (longitude, latitude, altitude), radiant, shower identification, light curve (meteor absolute magnitude as a function of time), photometric mass, orbital elements, and Tisserand parameter. Radiant/orbital plots and various histograms (number versus speed, time, etc) are also produced. After more than four years of operation, over 5,000 multi-station fireballs have been observed, 3 of which potentially dropped meteorites. A database containing data on all

  17. The Fireball integrated code package

    SciTech Connect

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state of the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.

  18. French fireball network FRIPON

    NASA Astrophysics Data System (ADS)

    Colas, F.; Zanda, B.; Vaubaillon, J.; Bouley, S.; Marmo, C.; Audureau, Y.; Kwon, M. K.; Rault, J.-L.; Caminade, S.; Vernazza, P.; Gattacceca, J.; Birlan, M.; Maquet, L.; Egal, A.; Rotaru, M.; Birnbaum, C.; Cochard, F.; Thizy, O.

    2015-01-01

    FRIPON (Fireball Recovery and Interplanetary Observation Network) was recently founded by ANR (Agence Nationale de la Recherche), its aim being to connect meteoritical science with asteroidal and cometary sciences, in order to better understand our solar system formation and evolution. The main idea is to cover all the French territory to collect a large number of meteorites (one or two per year) with an accurate orbit determination, allowing to pinpoint possible parent bodies. 100 all-sky cameras will be installed at the end of 2015, creating a dense network with an average distance of 100 km between the stations. To maximize the accuracy of the orbit determination, we will mix our optical data with radar data from the GRAVES transmitter received by 25 stations (Rault et al., 2015). As the network installation and the creation of research teams for meteorites involves many persons, at least many more than our small team of professionals, we will develop a participative science network for amateurs called Vigie-Ciel (Zanda et al., 2015). It will be possible to simply use our data, participate in research campaigns or even add cameras to the FRIPON network.

  19. Feasibility Investigation for Performing Fireball Temperature Tests

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Kurtz, Joe

    1997-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) was requested by the Launch Abort Subpanel and the Power Systems Subpanel of the Interagency Nuclear Safety Review Panel to investigate the feasibility of using spectroscopic techniques to measure propellant fireball gas temperatures. This report outlines the modeling and experimental approaches and results of this investigation. Descriptions of the theoretical particle temperature and mass effusion models are presented along with the results of the survivability of small plutonium dioxide (less than or equal to 1000 microns diameter) particles entrained in various propellant fireball scenarios. The experimental test systems used to measure the hydroxide radical, water, and particle graybody spectral emissions and absorptions are discussed. Spectral results along with temperatures extracted by analyzing the spectral features are presented for the flames investigated in the laboratory environment. Methods of implementing spectroscopic measurements for future testing using the WSTF Large-scale Hydrogen/Oxygen Explosion Facility are discussed, and the accuracy expected for these measurements is estimated from laboratory measurements.

  20. Annual Occurrence of Meteorite-Dropping Fireballs

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  1. Exceptional Fireball Activity of Orionids in 2006

    NASA Astrophysics Data System (ADS)

    Spurný, Pavel; Shrbený, Lukáš

    2008-06-01

    We report exceptional fireball activity of the Orionid meteor shower in 2006. During four nights in October 2006 the autonomous fireball observatories of the Czech part of the European Fireball Network (EN) recorded 48 fireballs belonging to the Orionids. This is significantly more than the total number of Orionids recorded during about five decades long continuous operation of the EN. Based on precise multi-station photographic and radiometric data we present accurate atmospheric trajectories, heliocentric orbits, light curves and basic physical properties of 10 Orionid fireballs with atmospheric trajectories that were long enough and, with one exception, were observed from at least three stations. Seven were recorded in within a 2-h interval in the night of 20/21 October. Their basic parameters such as radiant positions and heliocentric orbits are very similar. This high fireball activity originated from a very compact geocentric radiant defined by α = 95.10° ± 0.10° and δ = 15.50° ± 0.06°. These fireballs most likely belonged to a distinct filament of larger meteoroids trapped in 1:5 resonance with Jupiter. From detailed light curves and basic fireball classification we found that these meteoroids appertain to the weakest component of interplanetary matter.

  2. Electrophonic sounds from large meteor fireballs

    NASA Astrophysics Data System (ADS)

    Keay, Colin S. L.

    1992-06-01

    Anomalous sounds from large meteor fireballs, anomalous because they are audible simultaneously with the sighting, have been a matter for debate for over two centuries. Only a minority of observers perceive them. Ten years ago a viable physical explanation was developed (Keay, 1980) which accounts for the phenomenon in terms of ELF/VLF radiation from the fireball plasma being transduced into acoustic waves whenever appropriate objects happen to be in the vicinity of an observer. This explanation has now been verified observationally and supported by other evidence including the study of meteor fireball light curves reported here.

  3. Another View of June Fireball at Jupiter

    NASA Video Gallery

    Amateur astronomer Christopher Go, of Cebu, Philippines, captured this video of a fireball burning up in the Jupiter atmosphere on June 3, 2010. Go recorded the video at 55 frames per second in blu...

  4. IMO Fireball report form: results and prospects

    NASA Astrophysics Data System (ADS)

    Hankey, M.; Perlerin, V.

    2015-01-01

    At the 2014 IMC, we presented the new IMO (International Meteor Organization) online, Fireball report (available at fireballs.imo.net). This fireball report form was specifically designed for use by people with no astronomy experience who witnessed a fireball, a bolide or a suspected similar phenomenon. The IMO version of the form has been officially launched in February 2015. Since then, the form has been translated in different languages and customized for organizations around the world. In this paper, we will present preliminary results of the form and provide tips to improve the online presence of local organizations, in order to promote usage. We will also highlight procedures to be followed by local organizations to get a custom version of the form.

  5. Canadian fireball activity from 1962 to 1989

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2006-08-01

    The time of occurrence data for 2373 fireball events predominantly observed from across Canada and documented in the Millman Fireball Archive is studied. The cumulative number of fireballs, arranged according to solar longitude, has been constructed and is interpreted in terms of an annual fireball activity profile. We find distinct enhancements in fireball activity at the times of the alpha-Capricornid, Perseid, Taurid, Leonid, chi-Orionid and Geminid meteor showers. Six other peaks in the activity profile are also identified but these do not correspond to any prominent cometary meteor shower. The strongest peak in the entire activity profile falls at solar longitude = 165 deg (September 7) and we suggest that it may be related to the "Group 3" meteorite stream identified by Halliday et al., (1990). A peak at solar longitude = 248 deg (November 30) is also tentatively identified with the "Group 4" stream of Halliday et al. In addition we also tentatively associate a fireball peak at solar longitude = 191 deg (October 4) with the so-called HC34, H-chondrite meteorite stream identified by Wolf et al., (1995) and linked to the Peekskill meteorite fall in October of 1992.

  6. Fragmentation of the Chelyabinsk Fireball

    NASA Astrophysics Data System (ADS)

    Melosh, J.

    2013-12-01

    continue with a velocity of about 10 km/sec and thence undergo secondary fragmentation events above the surface which release most of the remaining energy. This accords well with reports of multiple explosion sounds. The specific energy release at the time of breakup is about 100 MJ/kg, nearly 10 times more than necessary to vaporize silicate rocks, which may account for the very small amount of solid material that finally reached the surface and the 'smoke' (condensed silicate vapor) that accompanied the event. The survival of any material at all (albeit partly melted: Some recovered specimens are remarkable in that their fusion crust is uniform over their entire surface) suggests that these fragments were in the outer part of the fireball. In spite of the simplicity of the pancake model, it can successfully account for the gross observations of the Chelyabinsk event. Nevertheless, the model is very simplistic and much more remains to be done to accurately model fireballs. That fact that most of the mass of the bolide vaporized accords well with the lack of any recovered meteorites from the ca. 10X larger Tunguska event. It appears that in this size range the fireball is energetic enough to largely or completely vaporize the incoming asteroid before it strikes the surface, a result that seems not to have been previously anticipated.

  7. New HANE Fireball Physics: Implications for US Infrastructure Vulnerability

    SciTech Connect

    Hewett, D W; Larson, D J; Eng, C; Tarwater, A E; Brecht, S H

    2009-01-26

    The vulnerability of the US infrastructure to High altitude Nuclear Explosions (HANEs) continues to be the object of studies by a number of blue-ribbon panels and commissions. In particular, studies suggest an alarming sensitivity of our electronic infrastructure to some types of ElectroMagnetic Pulse (EMP) while other types of EMP threaten our power distribution systems. Equally or perhaps more important is the concern that a large percentage of our satellites will experience 'upsets' or worse from these same HANE effects. Such studies, however, are all based on the sparse data obtained during the last HANE tests conducted in the early 1960's. A weakness in our present understanding is that almost all the conclusions about distributed-electric-current-driven EMP, with time scales 1/2 second or longer, are interpretations of old data guided by the computational MHD/fluid models available at the time. Fluid models make the assumption that the mean-free-path is zero and thus miss important physics regardless of the model used to couple ion motion to the magnetic field. Even when planetary length scales are modeled so that the gyro radius becomes negligible, the early dynamics of the fireball are not properly captured. The facts are, at relevant altitudes, the explosion expansion is almost unimpeded by the tenuous ionospheric background-particle mean-free-paths are of order 10,000 km. The primary impediment to the debris expansion is the earth's magnetic field bending the energetic ion trajectories emanating from the explosion into circular orbits with typical radii that range from 200 km for heavy ions to 10 km or less for the lighter ions in the debris. These particles thus gyrate many times before they are stopped by a collision with the background atmosphere. Only models that track ion gyro-motion can recover the myriad possibilities through which the complicated, energetic, 'fireball' of debris may evolve. Fireball evolution is important because it determines

  8. FRIPON, the French fireball network

    NASA Astrophysics Data System (ADS)

    Colas, F.; Zanda, B.; Bouley, S.; Vaubaillon, J.; Marmo, C.; Audureau, Y.; Kwon, M. K.; Rault, J. L.; Caminade, S.; Vernazza, P.; Gattacceca, J.; Birlan, M.; Maquet, L.; Egal, A.; Rotaru, M.; Gruson-Daniel, Y.; Birnbaum, C.; Cochard, F.; Thizy, O.

    2015-10-01

    FRIPON (Fireball Recovery and InterPlanetary Observation Network) [4](Colas et al, 2014) was recently founded by ANR (Agence Nationale de la Recherche). Its aim is to connect meteoritical science with asteroidal and cometary science in order to better understand solar system formation and evolution. The main idea is to set up an observation network covering all the French territory to collect a large number of meteorites (one or two per year) with accurate orbits, allowing us to pinpoint possible parent bodies. 100 all-sky cameras will be installed at the end of 2015 forming a dense network with an average distance of 100km between stations. To maximize the accuracy of orbit determination, we will mix our optical data with radar data from the GRAVES beacon received by 25 stations [5](Rault et al, 2015). As both the setting up of the network and the creation of search teams for meteorites will need manpower beyond our small team of professionals, we are developing a citizen science network called Vigie-Ciel [6](Zanda et al, 2015). The public at large will thus be able to simply use our data, participate in search campaigns or even setup their own cameras.

  9. The Chelyabinsk Fireball and Meteorite.

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Kolotov, V. P.; Nazarov, M. A.; Kostitsyn, Yu. A.; Kubrakova, I. V.; Kononkova, N. N.; Alekseev, I. A.; Koshkarov, L. L.; Badyukov, D. D.; Sevastyanov, V. S.; Pillinger, C. T.; Greenwood, R. C.; Verchovsky, A. B.; Johnson, D.; Tindle, A. G.; Buikin, A.

    2013-09-01

    On 15th February 2013 an extraordinarily large fireball detonated in the atmosphere over Chelyabinsk, Russia, with a total energy equivalent to 440 kilotons of TNT. It was the most energetic natural atmospheric occurrence since the Tunguska incident in 1908 and caused many injuries and extensive property damage. Geochemical and isotopic data show that the meteorite samples recovered after the event are LL5 type ordinary chondrites with a S4 shock history. The many thousands of small fragments comprise either of two distinct lithologies: a hondrule-rich light coloured material (~66%) or a less-abundant (~34%) dark shock-melt rather than mixtures. The break-up of the object, i.e. the explosion, appears to have been dictated by the object's pre-entry two component structure, which probably formed during a major collision in the asteroid belt 290 My ago. The Chelyabinsk event demonstrates that effective asteroid-hazard mitigation requires structural knowledge of threatening body similar to that obtained by the Hayabusa spacecraft at asteroid Itokawa. The observations made for Chelyabinsk suggest that the Tunguska bolide may also have been a structurally weakened object. Studies of the samples are still at an early stage. A full petrological description of the meteorite lithologies, geochemical and isotopic analyses, chronological data and fission track information will be available by the time of the conference

  10. The Valec fireball and predicted meteorite fall

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Spurny, P.

    1987-01-01

    A fireball was photographed with a luminous trajectory below a height of 20 km. On Aug. 3, 1984, seven stations photographed this slow moving fireball, which traversed 94 km of luminous trajectory in 9.2 sec and terminated its visible flight at a height of 19.1 km. The computed dark flight trajectory intersected the surface close to Valec, a small village 40 km west of Brno. The Valec fireball was the lowest photographed fireball ever. The Valec fireball was photographed by fish eye cameras. The positional precision of all the records were within the range of 1 to 2 minutes of arc. All computations were done using the FIRBAL program, a set of almost 4000 Fortran statements run on EC 1040 computer. The average computed mass at the terminal point, i.e., the predicted mass of the biggest meteorite, was 16 kg. This number is based on the dynamical data at the terminal point solely. Visual data was also collected from occasional observers. This observed phenomenon is discussed.

  11. CID Post-impact fireball

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Following its controlled impact on posts imbedded in the lakebed, the B-720 is sliding sideways and almost enveloped in the large fireball with only the aircraft's nose and right wing-tip exposed. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General

  12. CID Post-impact fireball

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The B-720 after impact and sliding through the wing openers is becoming enveloped in a fireball. The right wing appears to be folding over as the aircraft continues to slide. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested

  13. Dynamic radio spectra from two fireballs

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Taylor, G. B.; Lin, C. S.; Dowell, J.; Schinzel, F. K.; Stovall, K.

    2015-11-01

    We present dynamic spectra from the Long Wavelength Array telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a bump-on-tail instability within the trail. The spectra of one fireball display broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.

  14. The force exerted by a fireball

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2014-02-15

    The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

  15. The force exerted by a fireball

    NASA Astrophysics Data System (ADS)

    Makrinich, G.; Fruchtman, A.

    2014-02-01

    The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

  16. Thermal dileptons as fireball thermometer and chronometer

    NASA Astrophysics Data System (ADS)

    Rapp, Ralf; van Hees, Hendrik

    2016-02-01

    Thermal dilepton radiation from the hot fireballs created in high-energy heavy-ion collisions provides unique insights into the properties of the produced medium. We first show how the predictions of hadronic many-body theory for a melting ρ meson, coupled with quark-gluon plasma emission utilizing a modern lattice-QCD based equation of state, yield a quantitative description of dilepton spectra in heavy-ion collisions at the SPS and the RHIC beam energy scan program. We utilize these results to systematically extract the excess yields and their invariant-mass spectral slopes to predict the excitation function of fireball lifetimes and (early) temperatures, respectively. We thereby demonstrate that future measurements of these quantities can yield unprecedented information on basic fireball properties. Specifically, our predictions quantify the relation between the measured and maximal fireball temperature, and the proportionality of excess yield and total lifetime. This information can serve as a "caloric" curve to search for a first-order QCD phase transition, and to detect non-monotonous lifetime variations possibly related to critical phenomena.

  17. Lake Erie Fireball Meteor, Tavistock View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Tavi...

  18. Lake Erie Fireball Meteor, Orangeville View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Oran...

  19. Lake Erie Fireball Meteor, Mcmaster View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Mcma...

  20. DETECTION OF RADIO EMISSION FROM FIREBALLS

    SciTech Connect

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K.; Hartman, J. M.; Ellingson, S. W.; Helmboldt, J. F.; Wilson, T. L.; Kavic, M.; Simonetti, J. H.

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  1. Tajikistan fireball network and results of photographic observations

    NASA Astrophysics Data System (ADS)

    Kokhirova, G. I.; Babadzhanov, P. B.; Khamroev, U. Kh.

    2015-07-01

    The fireball network was created in Tajikistan with the aim of obtaining new data on the near-Earth meteoroid environment concerning large bodies, entering in the Earth's atmosphere and producing fireballs, as well as new observational data on the activity of known meteor/fireball showers. The network consists of five observational stations equipped with the photographic fireball and digital all-sky cameras. Distances between the stations are from 53 to 184 km and the area covered by monitoring is around 11000 km2. For astrometric reduction of fireball photographs, a technique has been developed that allows positions of object details to be determined at an accuracy of about 1', which is a sufficiently good result for negatives of this scale. In the method of photometric reduction, a dependence of measured widths of diurnal star trails on their magnitudes is used. As a result of processing of multi-station photographs of more than 200 fireballs, photographed by the fireball network for 2006-2013, the data on their atmospheric trajectories, coordinates of radiants, velocities, decelerations, orbits in the interplanetary space, light curves, photometric masses, and densities, as well as on the nature of origin of meteoroids which produced the fireballs are obtained; membership of the fireballs to the known fireball/meteor showers is determined. A brightness of the majority of fireballs is within the maximum absolute magnitude range from -5 to -8. It is shown that 62% of fireball-producing meteoroids have a cometary origin and the remaining 38% are of an asteroidal nature. The greater part of the photographed fireballs belongs to the known meteor/fireball showers, while the lesser part (almost 30%) relates to the sporadic background. The obtained results will noticeably replenish the world database with new information on fireballs and are required for solving contemporary astronomy problems associated with studying meteoroid environment in the near-Earth space and

  2. 2007 fireball activity imaged by the Spanish Fireball Network: identifying meteorite delivery sources.

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Madiedo, J. M.; Castro-Tirado, A. J.; Llorca, J.; Troughton, B.

    2008-09-01

    The Spanish Meteor and Fireball Network (SPMN) is an interdisciplinary join approach with the main aim to study interplanetary matter. Our network started operation on a continuous basis on 2004. Sky monitoring was achieved on the basis of the development of the first all-sky CCD camera capable of obtaining almost full sky coverage with an astrometric accuracy of about 1 arcmin [1] (see e.g. Fig. 1). The successful testing of this prototype for meteor and fireball detections [2] has been followed by the development of other detection techniques as e.g. high sensitivity video detectors [3], and forward scatter meteor detection. The SPMN is already developing and testing new instruments and software with the main goal of creating a new concept of fireball monitoring: an instantaneous patrol of the day and night. In fact, since 2005 SPMN video and CCD detectors are providing online information on meteor and fireball activity. Control software is able to inform us on the appearance of unusual activity in order to perform additional experiments, and for quickly alerting the astronomical community about these outbursts. This is interesting to increase the data coverage of encounters with cometary dust trails [4, 5].

  3. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors

    NASA Astrophysics Data System (ADS)

    Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Mialle, Pierrick; Brown, David; Herry, Pascal; Brachet, Nicolas

    2013-07-01

    15 February 2013, a large Earth-impacting fireball disintegrated over the Ural Mountains. This extraordinary event is, together with the 1908 Tunguska fireball, among the most energetic events ever instrumentally recorded. It generated infrasound returns, after circling the globe, at distances up to ~85,000 km, and was detected at 20 infrasonic stations of the global International Monitoring System (IMS). For the first time since the establishment of the IMS infrasound network, multiple arrivals involving waves that traveled twice round the globe have been clearly identified. A preliminary estimate of the explosive energy using empirical period-yield scaling relations gives a value of 460 kt of TNT equivalent. In the context of the future verification of the Comprehensive Nuclear-Test-Ban Treaty, this event provides a prominent milestone for studying in detail infrasound propagation around the globe for almost 3 days as well as for calibrating the performance of the IMS network.

  4. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  5. Featured Image: Fireball After a Temporary Capture?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    This image of a fireball was captured in the Czech Republic by cameras at a digital autonomous observatory in the village of Kunak. This observatory is part of a network of stations known as the European Fireball Network, and this particular meteoroid detection, labeled EN130114, is notable because it has the lowest initial velocity of any natural object ever observed by the network. Led by David Clark (University of Western Ontario), the authors of a recent study speculate that before this meteoroid impacted Earth, it may have been a Temporarily Captured Orbiter (TCO). TCOs are near-Earth objects that make a few orbits of Earth before returning to heliocentric orbits. Only one has ever been observed to date, and though they are thought to make up 0.1% of all meteoroids, EN130114 is the first event ever detected that exhibits conclusive behavior of a TCO. For more information on EN130114 and why TCOs are important to study, check out the paper below!CitationDavid L. Clark et al 2016 AJ 151 135. doi:10.3847/0004-6256/151/6/135

  6. Observations of Leonids 2009 by the Tajikistan Fireball Network

    NASA Technical Reports Server (NTRS)

    Borovicka, J.; Borovicka, J.

    2011-01-01

    The fireball network in Tajikistan has operated since 2009. Five stations of the network covering the territory of near eleven thousands square kilometers are equipped with all-sky cameras with the Zeiss Distagon "fish-eye" objectives and by digital SLR cameras Nikon with the Nikkor "fish-eye" objectives. Observations of the Leonid activity in 2009 were carried out during November 13-21. In this period, 16 Leonid fireballs have been photographed. As a result of astrometric and photometric reductions, the precise data including atmospheric trajectories, velocities, orbits, light curves, photometric masses and densities were determined for 10 fireballs. The radiant positions during the maximum night suggest that the majority of the fireball activity was caused by the annual stream component with only minor contribution from the 1466 trail. According to the PE criterion, the majority of Leonid fireballs belonged to the most fragile and weak fireball group IIIB. However, one detected Leonid belonged to the fireball group I. This is the first detection of an anomalously strong Leonid individual.

  7. Emission spectrum of a sporadic fireball afterglow

    NASA Astrophysics Data System (ADS)

    Madiedo, J.; Trigo-Rodríguez, J.

    2014-07-01

    A mag. -11 fireball was imaged over southern Spain on April 14, 2013 at 22:35:49.8 ± 0.1s UTC. Its emission spectrum was also obtained. This event was assigned the SPMN code 140413 after the recording date. By the end of its atmospheric path, it exhibited a very bright flare which resulted in a persistent train whose spectrum was recorded. Here we present a preliminary analysis of this event and focus special attention on the evolution of the main emission lines in the spectrum of the afterglow. An array of low-lux CCD video devices (models 902H and 902H Ultimate from Watec Co.) operating from our stations at Sevilla and El Arenosillo was employed to record the SPMN140413 fireball. The operation of these systems is explained in [1,2]. Some of these are configured as spectrographs by attaching holographic diffraction gratings (1000 lines/mm) to the objective lens [3]. To calculate the atmospheric trajectory, radiant, and orbit we have employed our AMALTHEA software, which follows the planes intersection method [4]. The spectrum was analyzed with our CHIMET application [5]. The parent meteoroid impacted the atmosphere with an initial velocity of 28.9 ± 0.3 km/s and the fireball began at a height of 104.4 ± 0.5 km. The event ended at 80.7 ± 0.5 km above the ground level, with the main flare taking place at 83 ± 0.5 km. The calculated radiant and orbital parameters confirm the sporadic nature of the bolide. The calibrated emission spectrum shows that the most important contributions correspond to the Na I-1 (588.9 nm) and Mg I-2 (517.2 nm) multiplets. In the ultraviolet, the contribution from the H and K lines from Ca was also identified. As usual in meteor spectra, most of the lines correspond to Fe I. The train spectrum was recorded during about 0.12 seconds. This provided the evolution with time of the intensity of the emission lines in this signal. The contributions from Mg I, Na I, Ca I, Fe I, Ca II, and O I were identified in the afterglow, with the Na I-1

  8. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed. PMID:17279961

  9. Microwave generation of stable atmospheric-pressure fireballs in air

    SciTech Connect

    Stephan, Karl D.

    2006-11-15

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  10. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  11. Microwave generation of stable atmospheric-pressure fireballs in air

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  12. Latest developments in Polish Fireball Network

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Żołądek, P.

    2015-01-01

    The Polish Fireball Network started in March 2004. Most of its observers are amateurs, members of the Comets and Meteors Workshop. The network consists of 40 continuously working stations, where nearly 70 sensitive CCTV video and digital cameras operate. The new cameras for digital meteor spectroscopy were tested. We use technology of crossed grids to have better chances to register a meteor spectrum. A resolution of 8 A/pixel + 5.5 A/pixel was achieved. For the meteor patrol we have chosen the DMK 23GX236 with a chip resolution of 1920x1200 pixels. Two new cameras will be able to cover almost the whole sky with a resolution 4'/pixel.

  13. Anomalous sounds from the entry of meteor fireballs.

    PubMed

    Keay, C S

    1980-10-01

    A very bright fireball observed over New South Wales in 1978 produced anomalous sounds clearly audible to some of the observers. An investigation of the phenomenon indicates that bright fireballs radiate considerable electromagnetic energy in the very-low-frequency (VLF) region of the spectrum. A mechanism for the production of VLF emissions from the highly energetic wake turbulence of the fireball is proposed. Trials with human subjects revealed a very extended range of thresholds for the perception of electrically excited sounds among a sample population, particularly when the VLF electric field excites surface acoustic waves in surrounding objects. This fact, together with variable propagation effects and local conditions, can account for the sporadic distribution of reports of anomalous sounds from fireballs and auroras. PMID:17751127

  14. The Chelyabinsk Fireball and Meteorite: Implications for Asteroid Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Pillinger, C. T.; Greenwood, R. C.; Kolotov, V. P.; Nazarov, M. A.; Kostitsyn, Y. A.; Buikin, A.; Verchovsky, A. B.; Kubrakova, I. V.; Kononkova, N. N.; Roschina, I. A.; Alekseev, V. A.; Koshkarov, L. L.; Badyukov, D. D.; Sevastyanov, V. S.; Johnson, D.; Tindle, A. G.

    2013-09-01

    The explosive break-up of the Chelyabinsk fireball was probably facilitated by its pre-entry shock-induced structure. The Chelyabinsk event demonstrates that effective asteroid-hazard mitigation requires structural knowledge of the threatening body.

  15. Anomalous sounds from the entry of meteor fireballs.

    PubMed

    Keay, C S

    1980-10-01

    A very bright fireball observed over New South Wales in 1978 produced anomalous sounds clearly audible to some of the observers. An investigation of the phenomenon indicates that bright fireballs radiate considerable electromagnetic energy in the very-low-frequency (VLF) region of the spectrum. A mechanism for the production of VLF emissions from the highly energetic wake turbulence of the fireball is proposed. Trials with human subjects revealed a very extended range of thresholds for the perception of electrically excited sounds among a sample population, particularly when the VLF electric field excites surface acoustic waves in surrounding objects. This fact, together with variable propagation effects and local conditions, can account for the sporadic distribution of reports of anomalous sounds from fireballs and auroras.

  16. The Status of the NASA All Sky Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  17. Photographic fireball networks. [for global recording of meteor trails

    NASA Technical Reports Server (NTRS)

    Halliday, I.

    1973-01-01

    Three networks for the photography of bright fireballs are now in operation; in the central United States, central Europe and western Canada. A detailed comparison is made of the parameters which describe the three networks. Although only two meteorites for which photographic orbital data are available have been recovered, the networks are contributing valuable data on fireball orbits, influx rates and problems of meteor physics.

  18. IDC infrasound analysis of the 15 February 2013 Chelyabinsk fireball

    NASA Astrophysics Data System (ADS)

    Mialle, P.; Bittner, P.; Brown, D.; Polich, P.; Gore, J.

    2013-12-01

    The first atmospheric event built only from infrasound arrivals was reported in the Reviewed Event Bulletin (REB) of the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) in 2003. In the last decade, 45 infrasound stations from the International Monitoring System (IMS) have been installed and are transmitting data to the IDC. In early 2010 the IDC began routine automatic processing of infrasound data reviewed by interactive analysis; the detected and located events are now systematically included in the REB. This study focuses on a major infragenic event that occurred in February 2013 and was thoroughly analyzed at the IDC. On February 15 a fireball in the Chelyabinsk region (Russia) was observed generating infrasound waves that were recorded by 20 infrasound IMS stations globally spread from Greenland to Antarctica. Chronology of the analysis and specificities of this event will be introduced. This event is the largest ever recorded by the infrasound component of the IMS network. Related seismic observations were also found.

  19. Observations of Twilight Fireballs over Kiev in

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Steklov, Aleksey; Vidmachenko, Anatoliy; Dashkiev, Grigoriy

    2016-07-01

    The phenomenon of "Chelyabinsk bolide" 15.02.2013, resulted in damage to more than 1000 buildings and injure more than 500 people, after the explosion of fireball's body in the atmosphere over Chelyabinsk. The question about the dangers of such astronomical phenomena for life and health of citizens and for the existence of entire countries, arose with renewed vigor. Normally, bolides leave bright trace from ionized gas and dust. Traces of ionization can be seen particularly well at night. If a meteorite invades at the daytime at the cloudless sky and bright sunshine, the phenomenon of the fireball may not be visible. But if the fireball's track has noticeable angular size, it can be seen even in the daytime. After the flight, bolide remains a noticeable trace of a dust, dark against the light sky. If such a dust trail illuminated by the rays of the Sun, which had just hid behind the horizon (or even in the moonlight), it is visible as bright lanes in the night sky or in twilight. That's why we call it the twilight bolides. Typically, astronomical observations using of meteor patrols, carried out at night after the evening astronomical twilight. But from March 2013 to October 2015, the authors have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs. We register the traces of invading to atmosphere of meteoroids of natural and artificial origin. At the same time, observe the traces of fireballs at the day-time are also possible. But they are less effective than in the twilight. Night observations of bright meteoric tracks can usually observe some seconds. While traces of the twilight bolides we observed from some minutes up to two hours, before they be scattered by atmospheric currents. It opens the great prospects for low-cost direct experiments probing of these tracks by using, for example, the astronomical aviation. We propose the twilight tracks are classified

  20. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  1. Status of the Desert Fireball Network

    NASA Astrophysics Data System (ADS)

    Devillepoix, H. A. R.; Bland, P. A.; Towner, M. C.; Cupák, M.; Sansom, E. K.; Jansen-Sturgeon, T.; Howie, R. M.; Paxman, J.; Hartig, B. A. D.

    2016-01-01

    A meteorite fall precisely observed from multiple locations allows us to track the object back to the region of the Solar System it came from, and sometimes link it with a parent body, providing context information that helps trace the history of the Solar System. The Desert Fireball Network (DFN) is built in arid areas of Australia: its observatories get favorable observing conditions, and meteorite recovery is eased thanks to the mostly featureless terrain. After the successful recovery of two meteorites with 4 film cameras, the DFN has now switched to a digital network, operating 51 cameras, covering 2.5 million km2 of double station triangulable area. Mostly made of off-the-shelf components, the new observatories are cost effective while maintaining high imaging performance. To process the data (~70TB/month), a significant effort has been put to writing an automated reduction pipeline so that all events are reduced with little human intervention. Innovative techniques have been implemented for this purpose: machine learning algorithms for event detection, blind astrometric calibration, and particle filter simulations to estimate both physical properties and state vector of the meteoroid. On 31 December 2015, the first meteorite from the digital systems was recovered: Murrili (the 1.68 kg H5 ordinary chondrite was observed to fall on 27 November 2015). Another 11 events have been flagged as potential meteorites droppers, and are to be searched in the coming months.

  2. Identification of dynamic parameters for fireballs

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.

    2007-08-01

    Now a big actual material on photographic registration of meteoric bodies trajectories in the Earth's atmosphere is accumulated. The greatest number of pictures is made by the four fireball networks which functioned at various times in the USA, Canada, the Europe and Spain. Approximation of real data by theoretical dependencies allows to receive the additional estimations which are not following directly from observations. Here the algorithm of selection of parameters, at which the theoretical dependence of height on speed in the best way approximates data of observations, is offered. The basic difference from previous works is approach of the set points by the analytical solution of the meteoric physics equations. The method was applied to some bright meteors from the Canadian network, Prairie network, and also to the Beneshov bolide, one of the largest, registered by the European network. Correct mathematical modeling of the meteoric phenomena in an atmosphere is necessary for the subsequent estimation of key parameters: extra-atmospheric mass, ablation coefficient, effective enthalpy of evaporation. In turn, these data are important for some applications: researches of asteroid-comet hazard, measures of planetary defense, and also for search of the bodies, capable to reach the Earth's surface.

  3. FIREBALL-2: Pioneering Space UV Baryon Mapping (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    This is the lead proposal of a multi-institutional submission. The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the Intergalactic Medium (IGM) for low redshift galaxies. This balloon is a modification of FIREBall-1 (FB-1), a path-finding mission built by our team with two successful flights. FB-1 provided the strongest constrains on IGM emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is nearly ready for integration and testing before an anticipated Spring 2016 launch from Ft. Sumner, New Mexico. The spectrograph has been redesigned and an upgraded detector system including a groundbreaking high QE, low-noise, UV CCD detector is under final testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and flight support team, with construction of all components nearly complete. The initial FIREBall-2 launch is now scheduled for Spring 2016. FIREBall-2 combines several innovations: -First ever multi-object UV spectrograph -Arcsecond quality balloon pointing system, developed from scratch, improved from FB-1 -Partnership of national space agencies (NASA & CNES); highly leveraged NASA resources -A Schmidt corrector built into the UV grating for better optical performance and throughput -A total of four women trained in space experimental astrophysics, including 3 Columbia Ph.Ds. and 1 Caltech Ph.D. -A total of 7 graduate students trained on FIREBall-1 (3) and FIREBall-2 (4), with opportunities for more in future flights. FIREBall-2 will test key technologies and science strategies for a future mission to map IGM emission. Its flights will provide important training for the next generation of space astrophysicists working in UV instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the

  4. Pulsating fireballs with high-frequency sheath-plasma instabilities

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Gruenwald, J.; Ionita, C.; Schrittwieser, R.

    2011-08-01

    High-frequency instabilities are observed in connection with unstable fireballs. Fireballs are discharge phenomena near positively biased electrodes in discharge plasmas. They are bounded by a double layer whose potential is of order of the ionization potential. Fireballs become unstable when plasma losses and plasma production are not in balance, resulting in periodic fireball pulses. High-frequency instabilities in the range of the electron plasma frequency have been observed. These occur between fireball pulses, hence are not due to electron beam-plasma instabilities since there are no beams without double layers. The instability has been identified as a sheath-plasma instability. Electron inertia creates a phase shift between high-frequency current and electric fields which destabilizes the sheath-plasma resonance. High-frequency signals are observed in the current to the electrode and on probes near the sheath of the electrode. Waveforms and spectra are presented, showing bursty emissions, phase shifts, frequency jumps, beat phenomena between two sheaths, and nonlinear effects such as amplitude clipping. These reveal many interesting properties of sheaths with periodic ionization phenomena.

  5. 250 Fireballs Observed in Norway 100 Years Ago

    NASA Astrophysics Data System (ADS)

    Skorve, J.

    2014-07-01

    In 1941 the Norwegian Academy of Sciences, presented a study in the Mathematcal-Natural Sciences section, by the Norwegian astronomer Sigurd Einbu. In this report, the information of each fireball is presented in a table containing eight parameters, including their radiants. The report also contains several illustrations. For about 60 of the most interesting fireballs, Einbu included additional information, as describing them in more details. Like, those fireballs producing infrasonic sounds, and/or having superbolide brightness. Also, the strong smell of sulfur, have been reported by a number of persons in a meteorite drop zone. Also, a unique incident of four bright fireballs that were observed within a period of 12 hours, all with the same radiant. During this period, we also experienced the brightest fireball that ever has been observed in Norway, the Trysil superbolide, of 1927. This paper discusses Einbu's report. With respect to when it was published, is surprisingly well suited to also to be read and studied by interested researchers.

  6. The relationship between fireballs and HRO Long Echos

    NASA Astrophysics Data System (ADS)

    Yanagida, E.; Amikura, S.

    Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.

  7. Nanoparticle production in arc generated fireballs of granular silicon powder

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Cappelli, Mark A.

    2012-03-01

    Recently we observed buoyant fireballs by arc igniting silicon that drift in air for several seconds and postulated that the low aggregate density was attributed to the formation of a network of nanoparticles that must completely surround the burning silicon core, trapping the heated vapor generated as a result of particle combustion [Ito et al. Phys Rev E 80, 067401 (2009)]. In this paper, we describe the capturing of several of these fireballs in flight, and have characterized their nanostructure by high resolution microscopy. The nanoparticle network is found to have an unusually high porosity (> 99%), suggesting that this arc-ignition of silicon can be a novel method of producing ultra-porous silica. While we confirm the presence of a nanoparticle network within the fireballs, the extension of this mechanism to the production of ball lightning during atmospheric lightning strikes in nature is still the subject of ongoing debate.

  8. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  9. The analysis of casual video records of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, Jiří

    2014-01-01

    An increasing number of fireballs is being recorded casually, e.g.; by security cameras or dashboard cameras. In some cases, these records may have high scientific value. Positional calibration must be, however, done before any casual record can be used for fireball trajectory determination. Here, I describe a calibration method based on stellar imagery. Practical hints for taking the calibration images are given, and the required precision of finding the site, where the original record was taken, is discussed. Formulae for converting the image pixel coordinates to astronomical coordinates are provided.

  10. Hydrodynamic collimation of gamma-ray-burst fireballs

    PubMed

    Levinson; Eichler

    2000-07-10

    Analytic solutions are presented for the hydrodynamic collimation of a relativistic fireball by a surrounding baryonic wind emanating from a torus. The opening angle is shown to be the ratio of the power output of the inner fireball to that of the exterior baryonic wind. The gamma ray burst 990123 might thus be interpreted as a baryon-poor jet (BPJ) with an energy output of order 10(50) erg or less, collimated by a baryonic wind from a torus with an energy output of order 10(52.5) erg, roughly the geometric mean of the BPJ and its isotropic equivalent.

  11. A trace of fireball stream activity in August 2005

    NASA Astrophysics Data System (ADS)

    Zoladek, Przemyslaw; Olech, Arkadiusz; Wisniewski, Mariusz

    2006-08-01

    Four bright meteors and fireballs were observed by photographic and video cameras a few days after the Perseid maximum. All paths of these meteors create a slightly diffuse radiant with coordinates alpha=238 deg and delta=+62 deg. Two approximate orbits are presented. An association with the kappa-Cygnids complex is noticed.

  12. 2013 Russian Fireball Largest Ever Detected by CTBTO Infrasound Sensors (Invited)

    NASA Astrophysics Data System (ADS)

    Pilger, C.; Ceranna, L.; Le Pichon, A.; Herry, P.; Brachet, N.; Mialle, P.; Brown, D.

    2013-12-01

    On 15 February 2013 at 03h20 UT, a large Earth impacting fireball disintegrated over the Ural Mountains near the city of Chelyabinsk. The bolide produced shock waves that blew out windows, injured hundreds of people and damaged buildings in many surrounding cities. Infrasonic waves generated by the explosion propagated over very long distances. The event was globally detected by 20 arrays part of the 44 operating infrasound IMS (International Monitoring System) stations of the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). This fireball event provides a prominent milestone for studying, in detail, infrasound propagation traveling twice around the globe for almost two days at distances larger than 80000 km. Therefore, its analysis offers a unique opportunity to calibrate detection and location methods and evaluate the global performance of the IMS network. The presentation will provide an overview on the global recordings and analyses. Moreover, in order to explain the detection capability of the overall operating IMS network, range-dependent propagation modeling considering both a point-like explosive source and a line source is performed.

  13. Collected Extraterrestrial Materials: Constraints on Meteor and Fireball Compositions

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III

    The bulk density and bulk porosity of IDPs and various meteorite classes show that protoplanet accretion and evolution were arrested at different stages as a function of parent body modification. The collected IDPs, micrometeorites and meteorites are aggregates of different structural entities that were inherited from the earliest times of solar system evolution. These structural entities and the extent of parent body lithification will determine the material strength of the meteoroids entering the Earth's atmosphere. There is a need for measurements of the material strength of collected extraterrestrial materials because they will in part determine the nature of the chemical interactions of descending meteors and fireballs in the atmosphere. High-precision determinations of meteor and fireball compositions are required to search for anhydrous, carbon-rich proto-CI material that has survived in the boulders of comet nuclei.

  14. Performance and Preliminary Results From FIREBALL and CWI.

    NASA Astrophysics Data System (ADS)

    Matuszewski, Mateusz; Martin, D.

    2011-01-01

    The Faint Intergalactic Redshifted Emission Balloon (FIREBALL) is a balloon-borne, vaccuum ultraviolet (200 nm), fiber-fed integral field spectrograph designed to observe line emission from the intergalactic (IGM) and circumgalactic (CGM) media in the redshift range 0.3 < z < 1.0. It had its first successful science flight in Juny 2009. The Cosmic Web Imager (CWI) is a slicer-based integral field spectrograph built for the 200" Hale Telescope at Palomar Observatory. It is designed to detect and map line emission from the IGM, CGM and circum-QSO medium (CQM) in the redshift range 2 < z < 7. The design, construction, commissioning, and initial scientific results of FIREBALL and CWI are presented.

  15. Observations of twilight fireballs over Kiev in 2013-2015

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.

    2016-04-01

    If a dust trail of bolide illuminated by the rays of the Sun, which had just hid behind the horizon, it is visible as bright lanes in the night sky or in twilight. That's why we call its the twilight bolides. We have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs

  16. The NASA Fireball Network All-Sky Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Rob M.

    2011-01-01

    The construction of small, inexpensive all-sky cameras designed specifically for the NASA Fireball Network is described. The use of off-the-shelf electronics, optics, and plumbing materials results in a robust and easy to duplicate design. Engineering challenges such as weather-proofing and thermal control and their mitigation are described. Field-of-view and gain adjustments to assure uniformity across the network will also be detailed.

  17. Torqued fireballs in relativistic heavy-ion collisions

    SciTech Connect

    Bozek, Piotr; Broniowski, Wojciech; Moreira, Joao

    2011-03-15

    We show that the fluctuations in the wounded-nucleon model of the initial stage of relativistic heavy-ion collisions, together with the natural assumption that the forward- (backward-) moving wounded nucleons emit particles preferably in the forward (backward) direction, lead to an event-by-event torqued fireball. The principal axes associated with the transverse shape are rotated in the forward region in the opposite direction than in the backward region. On the average, the standard deviation of the relative torque angle between the forward and backward rapidity regions is {approx}20 deg. for the central and 10 deg. for the midperipheral collisions. The hydrodynamic expansion of a torqued fireball leads to a torqued collective flow, yielding, in turn, torqued principal axes of the transverse-momentum distributions at different rapidities. We propose experimental measures, based on cumulants involving particles in different rapidity regions, which should allow for a quantitative determination of the effect from the data. To estimate the nonflow contributions from resonance decays we run Monte Carlo simulations with therminator, a thermal heavy-ion generator. If the event-by-event torque effect is found in the data, it will support the assumptions concerning the fluctuations in the early stage of the fireball formation, as well as the hypothesis of the asymmetric rapidity shape of the emission functions of the moving sources in the nucleus-nucleus collisions.

  18. Detector performance for the FIREBall-2 UV experiment

    NASA Astrophysics Data System (ADS)

    Jewell, April D.; Hamden, Erika T.; Ong, Hwei Ru; Hennessy, John; Goodsall, Timothy; Shapiro, Charles; Cheng, Samuel; Jones, Todd; Carver, Alexander; Hoenk, Michael; Schiminovich, David; Martin, Christopher; Nikzad, Shouleh

    2015-08-01

    We present an overview of the detector for the upcoming Faint Intergalactic Red-shifted Emission Balloon (FIREBall-2) experiment, with a particular focus on the development of device-integrated optical coatings and detector quantum efficiency (QE). FIREBall-2 is designed to measure emission from the strong resonance lines of HI, OVI, and CIV, all red-shifted to 195-225 nm window; its detector is a delta-doped electron multiplying charge coupled device (EM-CCD). Delta-doped arrays, invented at JPL, achieve 100% internal QE from the UV through the visible. External losses due to reflection (~70% in some UV regions) can be mitigated with antireflection coatings (ARCs). Using atomic layer deposition (ALD), thin-film optical filters are incorporated with existing detector technologies. ALD offers nanometer-scale control over film thickness and interface quality, allowing for precision growth of multilayer films. Several AR coatings, including single and multi-layer designs, were tested for FIREBall-2. QE measurements match modeled transmittance behavior remarkably well, showing improved performance in the target wavelength range. Also under development are ALD coatings to enhance QE for a variety of spectral regions throughout the UV (90-320 nm) and visible (320-1000 nm) range both for space-based imaging and spectroscopy as well as for ground-based telescopes.

  19. American Meteor Society Fireball reporting system and mobile application

    NASA Astrophysics Data System (ADS)

    Hankey, M.

    2014-07-01

    The American Meteor Society (AMS) founded in 1911 pioneered the visual study of meteors and has collected data relating to meteor observations and bright fireballs for over 100 years. In December 2010, the online fireball reporting system was upgraded to an interactive application that utilizes Google Maps and other programmatic methods to pinpoint the observer's location, azimuth and elevation values with a high degree of precision. The AMS has collected 10s of 1000s of witness reports relating to 100s of events each year since the new application was released. Three dimensional triangulation methods that average the data collected from witnesses have been developed that can determine the start and end points of the meteor with an accuracy of <50 km (when compared to published solutions provided by operators of all sky cameras). RA and DEC radiant estimates can also be computed for all significant events reported to the AMS. With the release of the mobile application, the AMS is able to collect more precise elevation angles than through the web application. Users can file a new report directly on the phone or update the values submitted through a web report. After web users complete their fireball report online, they are prompted to download the app and update their observation with the more precise data provided by the sensors in the mobile device. The mobile app also provides an accurate means for the witness to report the elapsed time of the fireball. To log this value, the user drags the device across the sky where they saw the fireball. This process is designed to require no button click or user interaction to start and stop the time recording. A count down initiates the process and once the user's phone crosses the plane of azimuth for the end point of the fireball the velocity timer automatically stops. Users are asked to log the recording three times in an effort to minimize error. The three values are then averaged into a final score. Once enough

  20. High-entropy fireballs and jets in gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    Two mechanisms whereby compact coalescing binaries can produce relatively 'clean' fireballs via neutrino-antineutrino annihilation are proposed. Preejected mass due to tidal heating will collimate the fireball into jets. The resulting anisotropic gamma-ray emission can be efficient and intense enough to provide an acceptable model for gamma-ray bursts, if these originate at cosmological distances.

  1. High energy neutrinos from gamma-ray burst fireballs

    NASA Astrophysics Data System (ADS)

    Tamborra, Irene

    2016-05-01

    The diffuse high-energy neutrino emission from long and short gamma-ray bursts (GRBs) is studied within the fireball emission model. By requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions, we find that GRBs could contribute up to a few percents to the observed IceCube high-energy neutrino flux for sub-PeV energies, if the latter has a diffuse origin. Our findings suggest that larger exposure is mandatory to detect neutrinos from GRBs in future stacking searches.

  2. Semi-kinematic mount of the FIREBALL large optics

    NASA Astrophysics Data System (ADS)

    Rossin, C.; Grange, R.; Milliard, B.; Martin, L.; Moreaux, G.; Blanchard, P.; Deharveng, J.-M.; Evrard, J.; Martin, C.; McLean, R.; Schiminovich, D.

    2008-07-01

    In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based observatories.

  3. Nanoparticle network growth in arc generated fireballs of silicon powder

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Cappelli, Mark; Osaka University Collaboration; Stanford University Collaboration

    2011-10-01

    Recently we observed buoyant fireballs by arc igniting silicon that drift in air for several seconds and postulated that the low aggregate density was attributed to the formation of a network of nanoparticles that must completely surround the burning silicon core, trapping the heated vapor generated as a result of particle combustion [Ito et al, Phys Rev E 80, 067401 (2009)]. In this study, we describe the capturing of several of these fireballs in flight, and have confirmed this nanostructure by scanning electron microscopy. The nanoparticle network is found to have an unusually high porosity (> 99%). It is also found that the overall nanoparticle network size is determined by the size of the molten silicon core, independent of the time of capture. In other words, the size and structure of the surrounding nanoparticle network seems to be limited by the vapor flux from the molten silicon core, which is determined by its surface area (size). Further details of both the experiments and analysis will be presented at the conference.

  4. MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY

    SciTech Connect

    Harrison, Richard; Kobayashi, Shiho

    2013-08-01

    The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.

  5. UCM Meteor and Fireball Research group: Results 2012--2014

    NASA Astrophysics Data System (ADS)

    Ocaña, F.; Sánchez de Miguel, A.; Zamorano, J.; Izquierdo, J.; Pascual, S.; Palos, M. F.; Oré, S.; Rodríguez-Coira, G.; Zamora, S.; Lorenzo, C.; San Juan, R.; Muñoz-Ibáñez, B.; Vázquez, C.; Alonso-Moragón, A.; Gallego, J.; Trigo-Rodríguez, J. M.; Madiedo, J. M.

    2015-05-01

    Most of the activity of the group is based on the Fireball Detection Station located at the Observatorio UCM, a system consisting of 6 high-sensitivity videocameras covering the whole sky with wide-angle lenses during nighttime. Another 15 cameras have been placed by the researchers between 10 and 200 km away from Madrid for multiple station observations. It works as a node in the SPanish Meteor and Fireball Network (SPMN), a network of similar stations covering the atmosphere over Spain. Besides the continuous monitoring, the group has worked on the recording and analysis of some meteor showers. Most of the attention was focused on the Draconids 2011 campaign at Observatorio de Sierra Nevada (Trigo-Rodríguez, J. M., Madiedo, J. M., Williams, I. P., et al. 2013, MNRAS, 433, 560; Ocaña, F., Palos, M. F., Zamorano, J., et al. 2013, Proceedings of the International Meteor Conference, 31st IMC, La Palma, Canary Islands, Spain, 2012, 70), and the 2012 Geminids balloon-borne mission over Spain (Sánchez de Miguel, A., Ocaña, F., Madiedo, J. M., et al. 2013, Lunar and Planetary Science Conference, 44, 2202). The products of the station have been used for undergraduate thesis projects at the Physics Faculty (Ocaña, F., 2011, UCM e-prints, 13292) and other undergraduate projects. In 2013 the station received new equipment thanks to the Certamen Arquímedes award, complementing the detection with spectroscopic and frame-integrating devices.

  6. On the interaction between two fireballs in low-temperature plasma

    SciTech Connect

    Dimitriu, D. G. Irimiciuc, S. A.; Popescu, S.; Agop, M.; Ionita, C.; Schrittwieser, R. W.

    2015-11-15

    We report experimental results and theoretical modeling showing the interaction between two fireballs excited on two positively biased electrodes immersed in a low-temperature plasma. This interaction leads to a synchronized dynamics of the two fireballs, its frequency depending on the plasma density, the voltages applied on the electrodes, and the distance between the two electrodes. By considering that the plasma particles (electrons, ions, neutrals) move on fractal curves, a theoretical model describing the interaction between the two fireballs is developed. The results of the theoretical model were found to be in good agreement with the experimental results.

  7. Self-similar magnetohydrodynamic model for direct current discharge fireball experiments

    SciTech Connect

    Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.

    2006-11-15

    Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].

  8. Self-similar magnetohydrodynamic model for direct current discharge fireball experiments

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.

    2006-11-01

    Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].

  9. Atmospheric collection of debris from the Revelstoke and Allende fireballs

    USGS Publications Warehouse

    Carr, M.H.

    1970-01-01

    In two separate events, Revelstoke and Allende, the air through which a fireball had been observed to pass was sampled for meteoritic debris. Particulate matter was collected on fibrous filters, which were mounted on aircraft and flown downwind from the site of the meteorite fall at altitudes of 10,000-12,000 m. From Revelstoke, a highly distinctive assemblage of particles was collected. Included were large numbers of magnetite spherules, transparent siliceous spherules, and several types of irregular nickel-bearing particles. The Allende collections yielded only slightly more magnetite and siliceous spherules than background and no nickel-bearing particles. Revelstoke and Allende are believed to be representative of two different types of events. In the Revelstoke type, large amounts of meteoritic debris are left in the atmosphere and little reaches the ground in large coherent fragments; in the Allende type, little material remains in the atmosphere but large fragments reach the ground in the fall area. ?? 1970.

  10. Transit time instabilities in an inverted fireball. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-15

    A new fireball configuration has been developed which produces vircator-like instabilities. Electrons are injected through a transparent anode into a spherical plasma volume. Strong high-frequency oscillations with period corresponding to the electron transit time through the sphere are observed. The frequency is below the electron plasma frequency, hence does not involve plasma eigenmodes. The sphere does not support electromagnetic eigenmodes at the instability frequency. However, the rf oscillations on the gridded anode create electron bunches which reinforce the grid oscillation after one transit time or rf period, which leads to an absolute instability. Various properties of the instability are demonstrated and differences to the sheath-plasma instability are pointed out, one of which is a relatively high conversion efficiency from dc to rf power. Nonlinear effects are described in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012105 (2011)].

  11. Hyper-entropic gravitational fireballs (grireballs) with firewalls

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-04-01

    Recently there has been much discussion as to whether old black holes have firewalls at their surfaces that would destroy infalling observers. Though I suspect that a proper handling of nonlocality in quantum gravity may show that firewalls do not exist, it is interesting to consider an extension of the firewall idea to what seems to be the logically possible concept of hyper-entropic gravitational hot objects (gravitational fireballs or grireballs for short) that have more entropy than ordinary black holes of the same mass. Here some properties of such grireballs are discussed under various assumptions, such as assuming that their radii and entropies both go as powers of their masses as the one independent parameter, or assuming that their radii depend on both their masses and their entropies as two independent parameters.

  12. Transit time instabilities in an inverted fireball. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-01

    A new fireball configuration has been developed which produces vircator-like instabilities. Electrons are injected through a transparent anode into a spherical plasma volume. Strong high-frequency oscillations with period corresponding to the electron transit time through the sphere are observed. The frequency is below the electron plasma frequency, hence does not involve plasma eigenmodes. The sphere does not support electromagnetic eigenmodes at the instability frequency. However, the rf oscillations on the gridded anode create electron bunches which reinforce the grid oscillation after one transit time or rf period, which leads to an absolute instability. Various properties of the instability are demonstrated and differences to the sheath-plasma instability are pointed out, one of which is a relatively high conversion efficiency from dc to rf power. Nonlinear effects are described in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012105 (2011)].

  13. Sedona Red Rock Cam footage of fireball on June 2, 2016

    NASA Video Gallery

    This footage from the Sedona Red Rock Cam (part of the EarthCam network) shows how brightly the ground was illuminated during the fireball, which entered the atmosphere over Arizona shortly before ...

  14. Fall and Recovery of the Murrili Meteorite, and an Update on the Desert Fireball Network

    NASA Astrophysics Data System (ADS)

    Bland, P. A.; Towner, M. C.; Sansom, E. K.; Devillepoix, H.; Howie, R. M.; Paxman, J. P.; Cupak, M.; Benedix, G. K.; Cox, M. A.; Jansen-Sturgeon, T.; Stuart, D.; Strangway, D.

    2016-08-01

    The Murrili meteorite was recovered from Lake Eyre, South Australia, on 31 December 2015. It is the third meteorite recovered by the Desert Fireball Network, and the first since the network was upgraded and expanded.

  15. Fireball ejection from a molten hot spot to air by localized microwaves.

    PubMed

    Dikhtyar, Vladimir; Jerby, Eli

    2006-02-01

    A phenomenon of fireball ejection from hot spots in solid materials (silicon, germanium, glass, ceramics, basalt, etc.) to the atmosphere is presented. The hot spot is created in the substrate material by the microwave-drill mechanism [Jerby, Science 298, 587 (2002)10.1126/science.1077062]. The vaporized drop evolved from the hot spot is blown up, and forms a stable fireball buoyant in the air. The experimental observations of fireball ejection from silicate hot spots are referred to the Abrahamson-Dinniss theory [Nature (London) 403, 519 (2000)10.1038/35000525] suggesting a mechanism for ball-lightning initiation in nature. The fireballs observed in our experiments tend to absorb the available microwave power entirely, similarly to the plasmon resonance effect in submicron wavelengths [Nie and Emory, Science 275, 1102 (1997)10.1126/science.275.5303.1102].

  16. Evidence for nanoparticles in microwave-generated fireballs observed by synchrotron x-ray scattering.

    PubMed

    Mitchell, J B A; LeGarrec, J L; Sztucki, M; Narayanan, T; Dikhtyar, V; Jerby, E

    2008-02-15

    The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett. 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball's particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of approximately 50 nm with average number densities on the order of approximately 10(9). Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)10.1038/35000525]. PMID:18352481

  17. Fireball ejection from a molten hot spot to air by localized microwaves.

    PubMed

    Dikhtyar, Vladimir; Jerby, Eli

    2006-02-01

    A phenomenon of fireball ejection from hot spots in solid materials (silicon, germanium, glass, ceramics, basalt, etc.) to the atmosphere is presented. The hot spot is created in the substrate material by the microwave-drill mechanism [Jerby, Science 298, 587 (2002)10.1126/science.1077062]. The vaporized drop evolved from the hot spot is blown up, and forms a stable fireball buoyant in the air. The experimental observations of fireball ejection from silicate hot spots are referred to the Abrahamson-Dinniss theory [Nature (London) 403, 519 (2000)10.1038/35000525] suggesting a mechanism for ball-lightning initiation in nature. The fireballs observed in our experiments tend to absorb the available microwave power entirely, similarly to the plasmon resonance effect in submicron wavelengths [Nie and Emory, Science 275, 1102 (1997)10.1126/science.275.5303.1102]. PMID:16486835

  18. Fireball Ejection from a Molten Hot Spot to Air by Localized Microwaves

    NASA Astrophysics Data System (ADS)

    Dikhtyar, Vladimir; Jerby, Eli

    2006-02-01

    A phenomenon of fireball ejection from hot spots in solid materials (silicon, germanium, glass, ceramics, basalt, etc.) to the atmosphere is presented. The hot spot is created in the substrate material by the microwave-drill mechanism [Jerby , Science 298, 587 (2002)SCIEAS0036-807510.1126/science.1077062]. The vaporized drop evolved from the hot spot is blown up, and forms a stable fireball buoyant in the air. The experimental observations of fireball ejection from silicate hot spots are referred to the Abrahamson-Dinniss theory [Nature (London)NATUAS0028-0836 403, 519 (2000)10.1038/35000525] suggesting a mechanism for ball-lightning initiation in nature. The fireballs observed in our experiments tend to absorb the available microwave power entirely, similarly to the plasmon resonance effect in submicron wavelengths [Nie and Emory, Science 275, 1102 (1997)SCIEAS0036-807510.1126/science.275.5303.1102].

  19. Evidence for nanoparticles in microwave-generated fireballs observed by synchrotron x-ray scattering.

    PubMed

    Mitchell, J B A; LeGarrec, J L; Sztucki, M; Narayanan, T; Dikhtyar, V; Jerby, E

    2008-02-15

    The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett. 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball's particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of approximately 50 nm with average number densities on the order of approximately 10(9). Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)10.1038/35000525].

  20. Evidence for Nanoparticles in Microwave-Generated Fireballs Observed by Synchrotron X-Ray Scattering

    SciTech Connect

    Mitchell, J. B. A.; Le Garrec, J. L.; Sztucki, M.; Narayanan, T.; Dikhtyar, V.; Jerby, E.

    2008-02-15

    The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett. 96 045002 (2006)]. The fireball's particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of {approx}50 nm with average number densities on the order of {approx}10{sup 9}. Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)].

  1. Observations of Twilight Fireballs over Kiev in 2013-2015

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Steklov, Aleksey; Vidmachenko, Anatoliy; Dashkiev, Grigoriy

    2016-07-01

    The phenomenon of "Chelyabinsk bolide" 15.02.2013, resulted in damage to more than 1000 buildings and injure more than 500 people, after the explosion of fireball's body in the atmosphere over Chelyabinsk. The question about the dangers of such astronomical phenomena for life and health of citizens and for the existence of entire countries, arose with renewed vigor. Normally, bolides leave bright trace from ionized gas and dust. Traces of ionization can be seen particularly well at night. If a meteorite invades at the daytime at the cloudless sky and bright sunshine, the phenomenon of the fireball may not be visible. But if the fireball's track has noticeable angular size, it can be seen even in the daytime. After the flight, bolide remains a noticeable trace of a dust, dark against the light sky. If such a dust trail illuminated by the rays of the Sun, which had just hid behind the horizon (or even in the moonlight), it is visible as bright lanes in the night sky or in twilight. That's why we call it the twilight bolides. Typically, astronomical observations using of meteor patrols, carried out at night after the evening astronomical twilight. But from March 2013 to October 2015, the authors have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs. We register the traces of invading to atmosphere of meteoroids of natural and artificial origin. At the same time, observe the traces of fireballs at the day-time are also possible. But they are less effective than in the twilight. Night observations of bright meteoric tracks can usually observe some seconds. While traces of the twilight bolides we observed from some minutes up to two hours, before they be scattered by atmospheric currents. It opens the great prospects for low-cost direct experiments probing of these tracks by using, for example, the astronomical aviation. We propose the twilight tracks are classified

  2. First meteorite recovery based on observations by the Finnish Fireball Network

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Lyytinen, Esko; Moilanen, Jarmo; Kohout, Tomáš; Dmitriev, Vasily; Lupovka, Valery; Midtskogen, V.; Kruglikov, Nikolai; Ischenko, Alexei; Yakovlev, Grigory; Grokhovsky, Victor; Haloda, Jakub; Halodova, Patricie; Peltoniemi, Jouni; Aikkila, Asko; Taavitsainen, Aki; Lauanne, Jani; Pekkola, Marko; Kokko, Pekka; Lahtinen, Panu; Larionov, Mikhail

    2014-02-01

    We present a summary of the trajectory reconstruction, dark flight simulations and pre-impact orbit for a bright fireball that appeared in the night sky over the Kola Peninsula, close to the Finnish border, on April 18 2014, at 22h14m13.0s (UTC). The fireball was instrumentally recorded in Finland from Kuusamo, Mikkeli and Muhos observing sites belonging to the Finnish Fireball Network. Additionally, a publicly available video made by Alexandr Nesterov in Snezhnogorsk (Russia), from the opposite side of the fireball track, was carefully calibrated and taken into account in the trajectory reconstruction. Based on a thorough analysis of the fireball, it was concluded that part of the meteoroid survived atmospheric entry and reached the ground. To further specify an impact area for a dedicated expedition, dark flight simulations were done to build a strewn field map showing the most probable distribution of fragments. A 5-day expedition with 4 participants from Russia and Finland took place at the end of May following snow melt and preceding vegetation growth. On May 29, 2014, a first 120.35 g meteorite fragment was found on a local forest road within the predicted impact area. A second 47.54 g meteorite fragment, fully covered with a fusion crust, was recovered nearby on the following day. Both pieces were preserved in very good condition without apparent weathering.

  3. Transit time instabilities in an inverted fireball. II. Mode jumping and nonlinearities

    SciTech Connect

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-15

    A fireball is formed inside a highly transparent spherical grid immersed in a dc discharge plasma. The ambient plasma acts as a cathode and the positively biased grid as an anode. A strong nearly current-free double layer separates the two plasmas. Electrons are accelerated into the fireball, ionize, and establish a discharge plasma with plasma potential near the grid potential. Ions are ejected from the fireball. Since electrons are lost at the same rate as ions, most electrons accelerated into the fireball just pass through it. Thus, the electron distribution contains radially counterstreaming electrons. High-frequency oscillations are excited with rf period given by the electron transit time through the fireball. Since the frequency is well below the electron plasma frequency, no eigenmodes other than a beam space-charge wave exists. The instability is an inertial transit-time instability similar to the sheath-plasma instability or the reflex vircator instability. In contrast to vircators, there is no electron reflection from a space-charge layer but counterstreaming arises from spherical convergence and divergence of electrons. While the basic instability properties have been presented in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012104 (2011)], the present paper focuses on observed mode jumping and nonlinear effects. The former produce frequency jumps and different potential profiles, the latter produce harmonics associated with electron bunching at large amplitudes. In situ probe measurements are presented and interpreted.

  4. Trajectory of the August 7, 2010 Biwako fireball determined from seismic recordings

    NASA Astrophysics Data System (ADS)

    Yamada, Masumi; Mori, Jim

    2012-01-01

    The Biwako fireball on August 7, 2010, produced a strong sonic boom throughout central Japan around 17:00 JST (UTC+9). There were many visual observations and reports of the sound in the Tokai and Kinki regions at that time. We have estimated the trajectory of this fireball and the location of its termination point by analyzing seismograms recorded on a dense local network. The isochrons of the arrival times are close to concentric circles, which suggest that the fireball disappeared due to fragmentation during entry. The fireball trajectory which explains the arrival times of the signal has a relatively high incident angle (55 degrees relative to the horizon) and the source is thought to disappear at a height of 26-km east of Lake Biwa. The azimuthal angle and velocity of the fireball are difficult to determine uniquely from this dataset. We identified an event thought to be due to fragmentation, with a location 3-km ENE and 9-km higher than the termination point. This location is consistent with the trajectory determined from the signal arrival. Based on this trajectory model, the source of the signal spans a horizontal range of 26 to 70 km, and the altitude of the source producing the sonic boom is about 30 to 50 km.

  5. The European Fireball Network 2011 - Status of Cameras and Observation Results in Germany

    NASA Astrophysics Data System (ADS)

    Flohrer, J.; Oberst, J.; Heinlein, D.; Grau, T.

    2012-09-01

    The European Fireball Network (EN) has been continuously operating since 1966 (Figure 1). Beginning in 1995, observing stations in Germany have been managed and operated by the DLR Institute of Planetary Research, Berlin. The stations in Germany are of the classical type, consisting of cameras on a tripod, looking down and taking images of a paraboloidal mirror. Rotating shutters mounted in front of the camera lens provide velocity information for the fast-moving meteors. Cameras are equipped with film. Typically, one longexposure image is taken every night, covering the whole sky (Figure 1). In 2011, 14 cameras were in regular operation. 59 fireballs on 81 photographs could be recorded, representing an extraordinary "fireball yield". The number of 78 fireball co-registrations with other central-European camera systems was extraordinary as well. Data reduction and orbit reconstruction (carried out at Ondřejov Observatory, P. Spurný and team) was possible for 6 meteors. The brightest meteor, registered on May 4, had a magnitude of -10. In the area monitored by the cameras, one fireball was recorded (Figure 1), following which, with high probability, a meteorite fall occurred. Unfortunately, due to terrain conditions within the urban area of Berlin no meteorites could be recovered.

  6. FIREBall, CHaS, and the diffuse universe

    NASA Astrophysics Data System (ADS)

    Hamden, Erika Tobiason

    the CGM. Other ways of probing the CGM including direct detection via emission lines. I built a proto-type of the Circumgalactic Halpha Spectrograph (CHalphaS), a wide-field, low-cost, narrow-band integral field unit (IFU) that is designed to observe Halpha emission from the CGM of nearby, low-z galaxies. This proto-type has had two recent science runs, with preliminary data on several nearby galaxies. Additional probes of the CGM are emission lines in the rest ultra-violet. These include OVI, Lyalpha, CIV, SiIII, CIII, CII, FeII, and MgII. Such lines are accessible for low redshift galaxies in the space UV, historically a difficult wavelength range in which to work due in part to low efficiency of the available detectors. I have worked with NASA's Jet Propulsion Laboratory to develop advanced anti-reflection (AR) coatings for use on thinned, delta-doped charge coupled device (CCD) detectors. These detectors have achieved world record quantum efficiency (QE) at UV wavelengths (>50% between 130 nm and 300nm), with the potential for even greater QE with a more complex coating. One of these AR coated detectors will be used on the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), a balloon-born UV spectrograph designed to observe the CGM at 205 nm via redshifted Lyalpha (at z=0.7), CIV (at z=0.3), and OVI (at z=1.0). FIREBall-2 will launch in the fall of 2015.

  7. The end height of fireball as a function of their residual kinetic energy

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    Previous analyses of meteoroid compositional groupings have utilized the end height of fireballs as a diagnostic tool. From an observational perspective this definition is straight forward, but from a theoretical viewpoint there are problems with using this operational definition. In order to realistically assess the estimated geometric uncertainty of + 1 km in the observed end height, a theoretical definition of the end height of meteoritic fireballs is proposed using the results from the integral radiation efficiency model of ReVelle. Three photographed and recovered meteorites are used as a calibration for this proposed definition. This definition was used to evaluate the end height of all fireballs that were deduced by Wetherill and ReVelle as being meteoritic. In almost all cases the theoretical values are lower than the observed values, in some cases as much as 5 km lower. A preliminary summary of results are given.

  8. Evidence for Nanoparticles in Microwave-Generated Fireballs Observed by Synchrotron X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Mitchell, J. B. A.; Legarrec, J. L.; Sztucki, M.; Narayanan, T.; Dikhtyar, V.; Jerby, E.

    2008-02-01

    The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett.PRLTAO0031-9007 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball’s particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of ˜50nm with average number densities on the order of ˜109. Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London)NATUAS0028-0836 403, 519 (2000)10.1038/35000525].

  9. dynamical evolution of an ultra-relativistic fireball colliding with a freely expanding gas

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2014-11-20

    We investigate the hydrodynamical evolution of an ultra-relativistic fireball colliding with a freely expanding gas. The hydrodynamical interaction of the fireball and the gas results in the formation of a geometrically thin shell. We study the dynamical evolution of the shell analytically and perform a numerical simulation equipped with adaptive mesh refinement to investigate the internal structure of the shell. The shocked gas can give rise to bright emission in the X-ray and gamma-ray energy range. We propose that the breakout emission from the forward shock and the photospheric emission from the reverse-shocked fireball contribute to early gamma-ray emission from gamma-ray bursts.

  10. Seismic and infrasonic analysis of the 9 March 2014 fireball passage over South Korea

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Lee, Hee-Il

    2015-04-01

    A bright fireball was observed by many people on the evening of 9 March 2014 in South Korea, and the energy associated with the fireball event was also recorded at 19 seismic stations and 7 infrasound stations in the country. Using the impulsive seismic signals, we calculated the possible extent of the sonic source of the fireball by assuming point- and line-source models. A comparison of the observed arrival times of the seismic signals with predicted arrival times from two simplifying source models indicated that the source extent of the sounds was better explained by a line-source model than by a single-point-source model in the atmosphere. The estimated parameters of the fireball's sonic trajectory, incorporating propagation dependent on the speed of the shock wave, were estimated to be an azimuth arrival angle of 313.5° clockwise from the north and an elevation arrival angle of 44.5° above the Earth's surface, with a source time of 11:04:51 UTC at which the predicted trajectory met the Earth's surface. The estimated ground impact point was about 2 km offset from locations where meteorites associated with the fireball were found. Infrasound signals from the fireball event had different features depending on the propagation distances. For stations locating more than 300 km away, multiple ray paths made the signals appear to be dispersed and of long duration because the rays were predominantly refracted from the stratosphere. In nearby infrasound stations, the pulse N-waves indicated a direct impact from the shockwave, with little refraction in atmosphere. The kinetic local-source energy generating the sound was estimated to be about 0.8 tons TNT, based on the infrasound measurements and semi-empirical relations developed for the point- and line-source models.

  11. Automation of the Czech part of the European fireball network: equipment, methods and first results

    NASA Astrophysics Data System (ADS)

    Spurný, Pavel; Borovička, Jiří; Shrbený, Lukáš

    2007-05-01

    Introduction: The Earth steadily interacts with meteoroids - small interplanetary bodies of miscellaneous dimensions, masses, composition and structure. A part of meteoroids are clearly linked to comets as shower meteors and another part is linked to asteroids and represents the densest part of the interplanetary matter. All meteorites with known pre-atmospheric orbits have the origin in the main belt of asteroids. The penetration of larger meteoroids through the atmosphere gives rise to spectacular luminous events - fireballs. Their photographic recordings provide excellent means to examine physical properties as well as the temporal and spatial distribution of extraterrestrial matter in the near-Earth space. The most efficient tools for registration of these very scarce events are the fireball networks, systems covering large areas of the Earth's surface, with multiple camera stations designed to image a large fraction of the night sky. First such camera network has been established in the Czech Republic and without interruption is in regular operation until now. Methods: In last several years the manually operated fish-eye cameras in the Czech part of the European fireball Network (EN) have been gradually replaced with the new generation cameras, modern and sophisticated completely autonomous fireball observatories (AFO), which were recently developed in the Czech Republic. The AFO's provide us with more complex data on fireballs we get never before. Results: We present complete data on several fireballs as example of capability of our new observing system. We show the high precision of all determined values as well as very detailed information about light curves of all presented cases. We demonstrate also much higher efficiency of this observing system in comparison with manually operated cameras and also its possibilities of operation not only in temperate climate of Central Europe but also in very remote and hostile regions, such as the Nullarbor desert of

  12. Fireball observations in central Europe and western Australia: instruments, methods, and results

    NASA Astrophysics Data System (ADS)

    Spurny, P.

    2012-01-01

    Penetration of larger meteoroids through the atmosphere which gives rise to spectacular luminous events - fireballs or even superbolides - is of the greatest interest. Their registrations, especially photographic and newly also photoelectric recordings, provide excellent means to examine physical properties as well as the temporal and spatial distribution of extraterrestrial matter in near-Earth space. The most efficient tools for registration of these very scarce events are the fireball networks: systems covering large areas of the Earth's surface, with multiple camera stations designed to image a large fraction of the night sky. Such camera networks for fireball observations have been set up in several nations at various times in the past (European Fireball Network (EN) in the Czech Republic, Germany, Austria, and Slovakia; the Prairie Network in the USA; and the Meteorite Observation and Recovery Project (MORP) in Canada). Of these networks, only the European fireball network is still in operation, and this continuously since it was started up, but recently new networks were established in South-West Australia and in Ontario, Canada. The two main scientific aims of all these programs remain the same as in the very beginning - first, to constrain the flux of extraterrestrial material to the Earth over a range of masses, and second, to provide a statistically significant group of meteorites with accurate orbits. This contribution was focused on the current work and some particular recent results from the European Fireball Network, especially from its Czech part (current status is described, for example, by Spurny et al., 2006) and from the Desert Fireball Network in the Nullarbor Plains of South-West Australia (Bland, 2004; Spurny et al., 2012; and Bland et al., 2012). The mode of operation of both networks and the analysis methods used were described in detail and illustrated by some examples. Similarly, the most important recent results, especially from the

  13. 2015 Southern Taurid fireballs and asteroids 2005 UR and 2005 TF50

    NASA Astrophysics Data System (ADS)

    Olech, A.; Żołądek, P.; Wiśniewski, M.; Rudawska, R.; Bęben, M.; Krzyżanowski, T.; Myszkiewicz, M.; Stolarz, M.; Gawroński, M.; Gozdalski, M.; Suchodolski, T.; Węgrzyk, W.; Tymiński, Z.

    2016-09-01

    On the night of October 31, 2015 two bright Southern Taurid fireballs occurred over Poland, being one of the most spectacular bolides of this shower in recent years. The first fireball - PF311015a Okonek - was detected by six video stations of Polish Fireball Network (PFN) and photographed by several bystanders, allowing for precise determination of the trajectory and orbit of the event. The PF311015a Okonek entered Earth's atmosphere with the velocity of 33.2 ± 0.1 km s-1 and started to shine at height of 117.88 ± 0.05 km. The maximum brightness of -16.0 ± 0.4 mag was reached at height of 82.5 ± 0.1 km. The trajectory of the fireball ended at height of 60.2 ± 0.2 km with terminal velocity of 30.2 ± 1.0 km s-1. The second fireball - PF311015b Ostrowite - was detected by six video stations of PFN. It started with velocity of 33.2 ± 0.1 km s-1 at height of 108.05 ± 0.02 km. The peak brightness of -14.8 ± 0.5 mag was recorded at height of 82.2 ± 0.1 km. The terminal velocity was 31.8 ± 0.5 km s-1 and was observed at height of 57.86 ± 0.03 km. The orbits of both fireballs are similar not only to orbits of Southern Taurids and comet 2P/Encke, but even closer resemblance was noticed for orbits of 2005 UR and 2005 TF50 asteroids. Especially the former object is interesting because of its close flyby during spectacular Taurid maximum in 2005. We carried out a further search to investigate the possible genetic relationship of Okonek and Ostrowite fireballs with both asteroids, that are considered to be associated with Taurid complex. Although, we could not have confirmed unequivocally the relation between fireballs and these objects, we showed that both asteroids could be associated, having the same origin in a disruption process that separates them.

  14. Remote and automatic small-scale observatories: experience with an all-sky fireball patrol camera

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C. M.

    2014-07-01

    This paper describes the design of a remote, automatic all-sky camera for capturing bright meteor trails based on a DSLR camera combined with Liquid Crystal shutter technology for angular velocity measurement. Design, performance and first results are discussed, as well the up scaling towards a large autonomous network for accurate fireball orbit determination and meteorite recovery.

  15. The results of observations of the twilight fireballs over Kiev and their classification

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Steklov, E. A.; Dashkiev, G. N.

    2015-08-01

    If fireball's track illuminated by rays of the just-gone sun, it can be visible as a bright silvery stripe against the twilight sky. We therefore called them twilight fireballs. In recent years the US geostationary satellites has repeatedly registered in Earth's atmosphere flash brighter -17m. The characteristic initial size of such stony body is 1-3 m. If these meteoroids are composed of ice and snow, their size increases up to tens of meters. After the event of Chelyabinsk bolide researchers suggested that such sight should be expected in 100-150 years. But in the evening of 29.03.2013 we were able to register a rare phenomenon of three fireball traces in the twilight sky over Kiev. They were formed during the 22 seconds after falling of three large fragments perhaps of cometary nucleus. Traces were visible for about 20 minutes. In the evening of 10/27/2013 we again observed a falling of bright (-16m) fireball over Kiev. Its dust trail was visible about 50 minutes. Over 2 years we have received several thousands of different "tracks in the sky." We propose to classify them into the following four types: AMT - aerometeorological tracks, ATT - aero-technical, AKT - aerospace, UNT - traces of unknown nature, not yet classified.

  16. The European Fireball Network 2010 - Status und Results of Cameras in Germany

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Heinlein, D.; Grau, T.; Flohrer, J.

    2011-10-01

    The European Fireball Network (EN) has been continuously operating since 1966 (Fig. 1). Beginning in 1995, observing stations in Germany have been operated by the DLR Institute of Planetary Research. The stations in Germany are of the classical type, consisting of cameras on a tripod, looking down and taking images of a spherical mirror. Rotating shutters mounted in front of the camera lens provide velocity information for the fast-moving meteors. Cameras are equipped with film. Typically, one long-exposure image is taken every night. In 2010, 15 cameras were in regular operation. 36 fireballs on 82 photographs could be recorded, representing average "fireball yield". Fireball coregistrations could be made with other EN stations in 20 cases, and in 3 cases with other camera types. Data reduction and orbit reconstruction (carried out at Ondřejov Observatory, P. Spurný and team) was possible for 1 meteor. The brightest meteor that was recorded in 2010 had a magnitude of -13. Progress has been made in development of a prototype digital camera version. Quite remarkably, in the area monitored by the cameras, 2 meteorite falls were recovered mainly using eyewitness reports to guide the meteorite search. Due to weather and daylight hours, no images from the cameras could be obtained. This contribution will describe the activities and results of 2010.

  17. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  18. The results of observations of the twilight fireballs over Kyiv and their classification

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Steklov, E. A.; Dashkiev, G. N.

    2015-09-01

    Fireball - a meteoritic phenomenon brighter -4m. If such dust track illuminated by rays of the just-gone sun, it can be visible as a bright silvery stripe against the twilight sky. We therefore called them twilight fireballs. In recent years the US geostationary satellites has repeatedly registered in Earth's atmosphere flash brighter -17m. The characteristic initial size of such stony body is 1-3 m. If these meteoroids are composed of ice and snow (fragments of comet nuclei), their size increases up to tens of meters. After the event of Chelyabinsk bolide researchers suggested that such sight should be expected in 100-150 years. But in the evening of 29.03.2013 we were able to register a rare phenomenon of three fireball traces in the twilight sky over Kiev. They were formed during the 12 seconds after falling of three large fragments perhaps of cometary nucleus [1]. Traces were visible for about 20 minutes. In the evening of 10/27/2013 we again observed a falling of bright (-16m) fireball over Kiev. Its dust trail was visible about 50 minutes. Over 2 years we have received several thousands of different "tracks in the sky." We propose [2] to classify them into the following four types: AM - aerometeorological, AT - aero-technical, AK - aerospace, others - not yet classified. A detailed study of our photo library allows to make such conclusions. 1. We have discovered a new class of astronomical objects - fragments of cometary nuclei, "scratching" the Earth (erdgreyzery). 2. is proposed and tested a new class of effective twilight observations of fireballs. References. [1] Churjumov K. I., Vidmachenko A. P., Steklov A. F., Steklov E. A. Three bright bolides in Kiev sky on 29 March 2013 // Conference "Meteoroids 2013". Program and abstracts. 26-30 Aug. 2013, Poznan;, Poland P. 77. [2] Churyumov K. I., Steklov O. F., Vidmachenko A. P., Steklov E. A. Traces on sky: the classification and the results of regular observations of twilight fireballs // Astronomical School

  19. Vigie Ciel a collaborative project to study fireballs and organise meteorite recoveries

    NASA Astrophysics Data System (ADS)

    Colas, F.; Zanda, B.; Bouley, S.; Lewin, E.; Vaubaillon, J.; Marmo, C.; Rotaru, M.; Labenne, L.; Julien, J. F.; Linares, M.; Steinhausser, A.; Rault, J. L.; Vernazza, P.

    2015-10-01

    Research on fireballs and meteorites has always been of interest to the public, due to the beauty of shooting stars in the night sky and to the extraterrestrial origin of meteorites. A fireball observation network called FRIPON [1] (Colas et al, 2015) is currently being setup, funded by ANR (Agence Nationale pour la Recherche). It will cover France with 100 cameras and is expected to be operational for the end of 2015. FRIPON will detect fireballs and hence allow us to define meteorite strewn fields within 24h, so that meteorite searches can be launched very early on. Because of the need to search all over France, including in private land, it is important that the general public be aware of our project and be willing to help or participate. Indeed, as the main goal of FRIPON is to recover fresh meteorites (within a few days), our aim is to be able to organize a search with at least 50 persons to scan an area of a few km2 within a week. Help from the public would hence be most helpful but it is also important to have an operational and trained research team. This project thus appears as a unique occasion to involve the public in a scientific project while promoting informal scientific education. This prompted us to set up Vigie-Ciel, a citizen science network centered on meteorite recovery. FRIPON is an open network based on open-source software, it will accept citizenrun cameras. In addition to fireballs, it will allow scientists and Vigie-Ciel participants to study anything that can be observed by all-sky cameras: bird migrations, bats, clouds, lightning, etc. The data will be freely available to all.

  20. Meteor reporting made easy- The Fireballs in the Sky smartphone app

    NASA Astrophysics Data System (ADS)

    Sansom, E.; Ridgewell, J.; Bland, P.; Paxman, J.

    2016-01-01

    Using smartphone technology, the award-winning 'Fireballs in the Sky' app provides a new approach to public meteor reporting. Using the internal GPS and sensors of a smartphone, a user can record the start and end position of a meteor sighting with a background star field as reference. Animations are used to visualize the duration and characteristics of the meteor. The intuitive application can be used in situ, providing a more accurate eye witness account than after-the-fact reports (although reports may also be made through a website interface). Since its launch in 2013, the app has received over 2000 submissions, including 73 events which were reported by multiple users. The app database is linked to the Desert Fireball Network in Australia (DFN), meaning app reports can be confirmed by DFN observatories. Supporting features include an integrated meteor shower tool that provides updates on active showers, their visibility based on moon phase, as well as a tool to point the user toward the radiant. The locations of reports are also now shown on a live map on the Fireballs in the Sky webpage.

  1. A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence.

    PubMed

    Gusev, G A; Saito, T; Tsarev, V A; Uryson, A V

    2007-06-01

    We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.

  2. The UV multi-object slit-spectrograph FIREBall-2 simulator

    NASA Astrophysics Data System (ADS)

    Mège, P.; Pascal, S.; Quiret, S.; Corlies, L.; Vibert, D.; Grange, R.; Milliard, B.

    2015-08-01

    The FIREBall-2 Instrument Model (FIREBallIMO) is a piece of software simulating the optical behaviour of the Multi-Object Two-Curved Schmidt Slit Spectograph of FIREBall-2 (Faint Intergalactic Redshifted Emission BALLoon), a balloon-borne telescope (40 km in alt.) designed to perform a direct detection of the faint Circum Galactic Medium (CGM) in emission around low-z galaxies. The spectrograph has been optimized to operate in a narrow UV band [195-225] nanometers, the so-called atmospheric sweet spot, where the sky background presents no emission lines and can be considered approximately flat, a value of 500 continnum units, seen through an optical transmission of 50% at an atmospheric pressure of 3 millibars. This paper gives an overview of the software current modular architecture after a year of productive effort (in terms of parametric model space definition, associated data cubes generation and digital processing) starting from the instrument initial optical model designed under Zemax software to the final 2D-detected image. A special emphasis is put on the design of a cython-wrapped driver able to retrieve dense ray-sampled PSFs out of the Zemax box efficiently. The optical mappings and distortions from the sky to the spectrograph's entrance slit plane and from the sky to the detection plane are presented, as well as some end-to-end simulations leading to Signal-to-Noise Ratio estimates computed on artificial point-like or extended test sources.

  3. The physical-chemical properties of substance of the bright fireball EN171101 Turyi Remety

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Belevtsev, Rudolf; Sobotovich, Emlen; Spivak, Svitlana; Churyumova, Tetyana

    2015-03-01

    In 2007-2011 searches were conducted for mineralogical and geochemical studies of the soil in the region of fall down of a bright fireball EN171101 ``Turyi Remety`` matter in Perechyn district of Transcarpathian. In the assumed location of the fall of a meteorite material for analysis was taken from the bottom of streams of Transcarpathian Mountains. In this matter we have been found numerous small magnetic spheres (microspherul) and fused segments, which have enough large sizes - up to 5 mm in diameter, which probably are fragments of the Turyi Remety meteoroid. One of the known signs of fireballs are sand-sized magnetic balls (by diameter 0.1-1.0 mm), which are often found in the magnetic concentrate fraction. This small balls, together with fragments of fused iotsit (FeO) are formed during the ablation of the meteoroid, and their sizes decreases during the motion of the meteoroid in the Earths atmosphere. From the east to the west, the radius of the balls in the study area decreased from an average of 0.7-0.5 mm to 0.1-0.3 mm. The sizes of such balls, as glowing molten particles of the meteoroid, are in good agreement with calculations based on the energy loss of the Turyi Remety meteoroid. This confirms the cosmic origin of these found small balls. Pre-calculated physical parameters of the Turyi Remety meteoroid are the velocity, mass, kinetic energy, the resistance force during ablation, the average fireball particle radius along trajectory path of a meteoroid fragments depending from the mass and size. Rapid mass loss of the meteoroid in more than 10 times, stronger, shorter ablation and damping fireball at the high altitude say about instability and the participation of the meteoroid gas in ablation. Perhaps the presence of ice, and other fireball gases in the meteoroid composition shows that its composition was close to comet one or to a chondrite with ice (gas hydrates). Especially likely gaseous hydrates of heavy gases such as CO2, H2S, hydrocarbons

  4. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H.; Fimognari, Peter J.

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  5. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    NASA Astrophysics Data System (ADS)

    Martin, Adam K.; Eskridge, Richard H.; Fimognari, Peter J.; Lee, Michael H.

    2006-01-01

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  6. On the development of new SPMN diurnal video systems for daylight fireball monitoring

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.

    2008-09-01

    Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y

  7. Fireball data analysis: bridging the gap between small solar system bodies and meteorite studies

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Moreno-Ibáñez, Manuel; Kuznetsova, Daria; Bouquet, Alexis; Trigo-Rodríguez, Josep; Peltoniemi, Jouni; Koschny, Detlef

    2015-08-01

    One of the important steps in identification of meteorite-producing fireballs and prediction of impact threat to Earth raised by potentially hazardous asteroids is the understanding and modeling of processes accompanying the object’s entry into the terrestrial atmosphere (Gritsevich et al., 2012). Such knowledge enables characterization, simulation and classification of possible impact consequences with further reommendation for potential meteorite searches. Using dimensionless expressions, which involve the pre-atmospheric meteoroid parameters, we have built physically based parametrisation to describe changes in mass, height, velocity and luminosity of the object along its atmospheric path (Gritsevich and Koschny, 2011; Bouquet et al., 2014). The developed model is suitable to estimate a number of crucial unknown values including shape change coefficient, ablation rate, and surviving meteorite mass. It is also applicable to predict the terminal height of the luminous flight and therefore, duration of the fireball (Moreno-Ibáñez et al., 2015). Besides the model description, we demonstrate its application using the wide range of observational data from meteorite-producing fireballs appearing annually (such as Košice) to larger scale impacts (such as Chelyabinsk, Sikhote-Alin and Tunguska).REFERENCESBouquet A., Baratoux D., Vaubaillon J., Gritsevich M.I., Mimoun D., Mousis O., Bouley S. (2014): Planetary and Space Science, 103, 238-249, http://dx.doi.org/10.1016/j.pss.2014.09.001Gritsevich M., Koschny D. (2011): Icarus, 212(2), 877-884, http://dx.doi.org/10.1016/j.icarus.2011.01.033Gritsevich M.I., Stulov V.P., Turchak L.I. (2012): Cosmic Research, 50(1), 56-64, http://dx.doi.org/10.1134/S0010952512010017Moreno-Ibáñez M., Gritsevich M., Trigo-Rodríguez J.M. (2015): Icarus, 250, 544-552, http://dx.doi.org/10.1016/j.icarus.2014.12.027

  8. The European Fireball Network - Current Status of the All-Sky Cameras in Germany

    NASA Astrophysics Data System (ADS)

    Flohrer, J.; Oberst, J.; Heinlein, D.; Grau, T.; Spurny, P.

    The European Fireball network (EN) consists of a consortium of cameras deployed in the Czech Republic, Germany, Austria, Luxemburg, and France operated jointly for observations of fireballs in Central Europe. 24 cameras of the all-sky mirror type" had been built in the 60s, of which 14 (fourteen) are currently in operation. Recently, funding has been allocated to put some of the presently not used cameras back into operation. In January 2005 one camera was put into commission at a new location, in Liebenhof, approx. 50 km east of Berlin, which effectively adds to camera observations from the EN cameras in the Czech Republic. This month (June 2006), a second camera has been put into commission at a new location near Osenbach, Alsace, which greatly extends the observational coverage of the network to the West. One other camera is currently being refurbished and upgraded,. Specifically, the original Leica camera is replaced with a digital counterpart, an EOS 5D. The system is currently being tested on the roof top of the DLR Institute of Planetary Research facility in Berlin. Efforts are currently being made to improve contacts and cooperations with other meteor network observers in Europe. In the past year (2005), the cameras have recorded data from 35 fireballs on 58 images, 3 of which were reduced for orbit determination, a procedure which is carried out at Ondrejov Observatory (Czechia). The largest meteor (m=-13 mag) was recorded on Feb 1, 2005 at 19h37m UTC southeast of Berlin. On the poster, we will show samples of recently obtained meteor images.

  9. Fireball on 6 July 2002 over the Mediterranean Sea is a fragment of the comet's nucleus

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kruchinenko, Vitaly G.; Churyumova, Tetyana; Mozgova, Alyona

    2015-03-01

    Today has been known for a considerable number of cases, the explosion of large meteoroids in Earth's atmosphere. This is confirmed by the data of registrations of fireballs by devices and the results of measurements in the atmosphere of bright light flashes by photodiodes Corporation ``Sandia Laboratories", which were installed on geostationary satellites of the United States, and also by data of measurements of acoustic-gravitational waves from the thermal explosions of meteoroids [ReVelle D.O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves, Near-Earth Objects, Ed. Remo J. Annals of the New York Academy of Sciences 882, 284-302, 1997]. The work [Brown P., Spalding R.E., ReVelle D.O. et al. The flux of small near-Earth objects colliding with the Earth, Nature 420, 314-316, 2002.] shows the results of processing the observations of flashes of large meteoroids in Earth's atmosphere, obtained with the help of geostationary satellites of the United States. Over 8.5 years (from February 1994 to September 2002) 300 such events were registered. On July 6, 2002 r over the Mediterranean Sea a bright fireball was registered. The energy of the meteoroid explosion that caused the phenomenon of the car, was 26 kilotons of TNT [Brown et al., 2002]. We believe that this energy refers to the height of the full bracking of the meteoroid. At a speed of 20.3 km/s adopted by the authors, body mass at this height is 5 × 108 g, and when entering the Earth's atmosphere, it was about 7 × 108 g. Based on the obtained values of the mass, we conclude that the exploded meteoroid, causing a phenomenon of the fireball was a fragment of the comet nucleus. In processing the density of the body were taken 1 g/cm 3 and the initial velocity (~30 km/s).

  10. Hysteresis of fluctuation dynamics associated with a fireball in a magnetized glow discharge plasma in a currentless toroidal assembly

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabuj; Shaw, Pankaj Kumar; Saha, Debajyoti; Janaki, M. S.; Sekar Iyengar, A. N.

    2016-09-01

    Floating potential fluctuations associated with an anode fireball in a glow discharge plasma in the toroidal vacuum vessel of the SINP tokamak are found to exhibit different kinds of oscillations under the action of vertical magnetic field of different strengths. While increasing the vertical magnetic field, the fluctuations have shown transitions as: chaotic oscillation → inverse homoclinic transition → intermittency → chaotic oscillation. However, on decreasing the magnetic field, the fluctuations are seen to follow: chaotic oscillations → homoclinic transition → chaotic oscillation; that is the intermittent feature is not observed. Fireball dynamics is found to be closely related to the magnetic field applied; results of visual inspection with a high speed camera are in close agreement with the fluctuations, and the fireball dynamics is found to be closely related to the transitions. The statistical properties like skewness, kurtosis, and entropy of the fluctuations are also found to exhibit this hysteresis behaviour.

  11. Traces on sky: the classification and the results of regular observations of twilight fireballs

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim I.; Steklov, Alexei F.; Vidmachenko, Anatoliy P.; Steklov, E.

    2014-12-01

    We propose to organize a small basic Observatory aerospace monitoring of dangerous fireballs for a detailed study of the Earth interaction with space environment. During the observation from March 2013 to July 2014 we recorded fall at least a dozen of comet nuclei fragments, at least five large and dozens of smaller fragments of meteoroids. So, like most countries in Europe and America, Ukraine needs to create a network of small basic aerospace monitoring observatories equipped with wide-angle lenses with a simple compact camera to measure these phenomena on a personal computer. These simple inexpensive hardware complexes should be equipped a professional observatory and university, school and amateur observation points.

  12. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids

    NASA Astrophysics Data System (ADS)

    Halliday, Ian; Griffin, Arthur A.; Blackwell, Alan T.

    1996-03-01

    We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s-1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.

  13. Detection of the large meteoroid/NEO flux using infrasound: Recent detection of the November 21, 1995 Colorado fireball

    SciTech Connect

    ReVelle, D.O.; Whitaker, R.W.

    1996-08-01

    During the early morning of November 21, 1995, a fireball as bright as the full moon entered the atmosphere over southeastern Colorado and subsequently produced audible sonic boom reports from Texas to Wyoming. The event was detected locally by a security video camera which showed the reflection of the fireball event on the hood of a truck. The camera also recorded tree shadows cast by the light of the fireball. This recording includes the audio signal of a strong double boom as well. Subsequent investigation of the array near Los Alamos, New Mexico operated by the Los Alamos National Laboratory as part of its commitment to the Comprehensive Test Ban Treaty negotiations, showed the presence of an infrasonic signal from the proper direction at about the correct time for this fireball. The Los Alamos array is a four-element infrasonic array in near-continuous operation on the Laboratory property. The preliminary characteristics of the signal include the signal onset arrival time of 0939:20 UT (0239:20 MST), with a maximum timing uncertainty of {+-} 2 minutes, the signal onset time delay from the appearance of the fireball of 19 minutes, 20 seconds, the total signal duration of 2 minutes 10 seconds, the source location toward 31 degrees from true north, the horizontal trace velocity of 429 m/sec, the signal velocity of 0.30 {+-} 0.03 km/sec, assuming a 400 km horizontal range to the fireball, the dominant signal frequency content of 0.25 to 0.84 Hz (analyzed in the frequency interval from 0.2 to 2.0 Hz), the maximum signal cross-correlation of 0.97 and the maximum signal amplitude of 2.0 {+-} 0.1 microbars. Also, on the basis of the signal period at maximum amplitude, we estimate a source energy for this event of between 10 to 100 tons of TNT (53.0 tons nominal).

  14. Buoyancy of the ''Y2K'' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Rairden, Rick L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  15. Precise multi-instrument data on exceptional fireballs recorded over Central Europe in the period 2012-2014

    NASA Astrophysics Data System (ADS)

    Spurny, P.; Borovicka, J.

    2014-07-01

    Introduction: Instrumental recordings of fireballs provide an excellent means of examining the physical and structural properties of larger meteoroids, as well as their temporal and spatial distribution in the Solar System. Except direct information about this component of interplanetary bodies this study also yields very valuable knowledge about their parent bodies, asteroids and comets. In some special and very rare cases, when such instrumentally observed fireball terminates by a meteorite fall, we have even direct information about the composition, structure and mineralogy not only of this particular meteorite but also of its parent body. The most efficient systems for systematic fireball observations are so-called fireball networks. In this work we present precise and complex data on several exceptional fireballs based on photographic and photoelectric records taken by the Czech Fireball Network, which is the longest continuously operated and the most developed part of the European Fireball Network (EN). Instruments and data processing: The Czech part of the EN has been entirely modernized in the last decade and its operation was in the large extent automatized [1]. This change significantly increased not only efficiency but also quality and complexity of our observations. However, this observing system, which provides us with photographic and photoelectric data about fireballs brighter than -4 magnitude, still uses photographic films, which brings some limitations for the data processing. Primarily it implies a non-negligible delay between data acquisition and their analysis as we had to transport photographic films physically from remote stations and only then to develop and digitize them. There is also much lower efficiency of observations during the full Moon period than during moonless nights. Taking the advantage of fast progress of digital photography, we have constructed a new generation of the Digital Autonomous Fireball Observatory (DAFO), which

  16. Chelyabinsk, Zond IV, and a possible first-century fireball of historical importance

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2015-03-01

    The well-recorded Chelyabinsk event, the Tunguska event, and the re-entry of the Zond IV vehicle offer opportunities to compare reactions of modern eyewitnesses to eyewitness accounts of possible ancient fireball events. The first-century book, Acts of the Apostles, gives three separate descriptions of a bright light "from heaven," which occurred probably in the 30s (C.E.) near Damascus, Syria. The details offer a strikingly good match to a Chelyabinsk-class or Tunguska-class fireball. Among the most impressive, unexpected consistencies with modern knowledge is the first-century description of symptoms of temporary blindness caused by exposure to intense radiation, matching a condition now known as photokeratitis. An analysis of the re-entry of debris from the Russian Zond IV over the eastern United States in 1968 shows how actual perceived phenomena in an unfamiliar natural celestial apparition are often conceived by the observer in terms of current cultural conceptions, and it is suggested that this happened also in the first-century case.

  17. On the dispersion relation of the transit time instability in inverted fireballs

    SciTech Connect

    Gruenwald, J.

    2014-08-15

    Recently discovered inverted fireballs are non-linear plasma phenomena, which are formed in hollow grid anodes with high transparency in an existing background plasma. If a sufficiently large potential is applied, accelerated electrons from the bulk start to oscillate through the grid. Experimental investigations have shown that they produce different types of plasma instabilities. One of those oscillations is a transit time instability which originates from strong electron beams that travel through the inverted fireball. This type of instability is similar to vircator reflex oscillations and produces radio frequency waves. Hence, it is suitable to convert DC signals into signals oscillating in the MHz range. This paper analyses the dispersion relation of the transit time instability for three different plasma regimes. The regimes can be divided into a collision less regime, a regime with high collisionality and one in between those former two. It is demonstrated that the plasma properties of the surrounding background plasma have a strong influence on the behavior of the instability itself.

  18. Noise and dark performance for the FIREBall-2 EMCCD delta-doped UV optimized CCD detector

    NASA Astrophysics Data System (ADS)

    Hamden, Erika T.; Lingner, Nicole; Kyne, Gillian; Morrissey, Patrick; Martin, Christopher D.; FIREBall-2 Team

    2016-01-01

    The Faint Intergalactic Redshifted Emission Balloon (FIREBall-2) is a UV multi-object spectrograph experiment designed to observe low-density emission from HI, CIV, and OVI in the circum-galactic medium (CGM) around low-redshift galaxies (z=0.3-1.0) from a high altitude balloon. To detect this diffuse emission, we have chosen to use a high-efficiency photon-counting EMCCD as part of FIREBall-2's detector system. The flight camera system includes a custom printed circuit board, a mechanical cryo-cooler, zeolite and charcoal getters, and a NUVU controller, for fast read-out speeds and waveform shaping. Here we report on overall detector system performance. We describe our characterization of detector noise from a delta-doped, anti-reflection-coated, electron-multiplying e2v CCD201-20. We describe our use of a NUVU controller to create custom waveforms that reduce clock-induced charge (CIC). We detail the clock frequencies, waveform shapes, and well depths required to reduce parallel and serial CIC to acceptable levels for our application (~10-3 events/pix/frame), at a range of substrate voltages. We also describe dark current measurements at several temperatures, including at our operating temperature of -115°C, with the flight set-up.

  19. Current progress in the understanding of the physics of large bodies recorded by photographic and digital fireball networks

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, M.; Gritsevich, M.; Trigo-Rodríguez, J. M.; Lyytinen, E.

    2016-01-01

    The basic equations of motion of a meteor in the atmosphere require a concise knowledge about the body physical properties, such as the bulk density, shape, mass, etc. These properties do change during the flight and they also depend on the observations' reliability and camera resolution. The usual way of tackling this problem relies on using average values which are retrieved either from previous experience or from the observations available from the astrometric reduction of each specific event. Alternatively, a different approach is suggested. Instead of using the average values as input data, all unknowns can be gathered into dimensionless parameters, retrievable from the observations with the help of inverse techniques. This methodology has already been implemented in several scientific studies. In order to demonstrate the applicability of the model, we have already used archived data from the Meteorite Observation and Recovery Project (MORP) operated in Canada between 1970 and 1985 as well as selected recent fireball records from the Spanish Fireball and Meteorite Recovery (SPMN) Network. Recently, a correction which accounts for real atmosphere conditions has also been successfully included in the model. Our next steps foresee fireball data processing obtained by the Finnish Fireball Network (FFN) and the SPMN.

  20. Thermal dileptons from coarse-grained transport as fireball probes at SIS energies

    NASA Astrophysics Data System (ADS)

    Galatyuk, Tetyana; Hohler, Paul M.; Rapp, Ralf; Seck, Florian; Stroth, Joachim

    2016-05-01

    Utilizing a coarse-graining method to convert hadronic transport simulations of Au+Au collisions at SIS energies into local temperature, baryon and pion densities, we compute the pertinent radiation of thermal dileptons based on an in-medium ρ spectral function that describes available spectra at ultrarelativistic collision energies. In particular, we analyze how far the resulting yields and slopes of the invariant-mass spectra can probe the lifetime and temperatures of the fireball. We find that dilepton radiation sets in after the initial overlap phase of the colliding nuclei of about 7fm/ c, and lasts for about 13fm/ c. This duration closely coincides with the development of the transverse collectivity of the baryons, thus establishing a direct correlation between hadronic collective effects and thermal EM radiation, and supporting a near local equilibration of the system. This fireball "lifetime" is substantially smaller than the typical 20-30fm/ c that naive considerations of the density evolution alone would suggest. We furthermore find that the total dilepton yield radiated into the invariant-mass window of M=0.3 -0.7GeV/ c^2 normalized to the number of charged pions, follows a relation to the lifetime found earlier in the (ultra-) relativistic regime of heavy-ion collisions, and thus corroborates the versatility of this tool. The spectral slopes of the invariant-mass spectra above the φ -meson mass provide a thermometer of the hottest phases of the collision, and agree well with the maximal temperatures extracted from the coarse-grained hadron spectra.

  1. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles

  2. Shock wave dynamics of novel aluminized detonations and empirical model for temperature evolution from post-detonation combustion fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos

    Optical forensics of explosion events can play a vital role in investigating the chain of events leading up to the explosion by possibly identifying key spectral characteristics and even molecules in the post-detonation fireball that may serve as the fingerprint for a particular explosive type used. This research characterizes the blast wave and temperature evolution of an explosion fireball in order to improve the classification of aluminized conventional munitions based on a single explosive type such as RDX. High speed 4 kHz visible imagery is collected for 13 field detonations of aluminized novel munitions to study fireball and shock wave dynamics. The 238 mus temporal resolution visible imagery and the 12 ms temporal resolution FTS spectra are the data sets upon which shock wave dynamics and the time dependence of the fireball temperature are studied, respectively. The Sedov-Taylor point blast theory is fitted to data where a constant release (s = 1) of energy upon detonation suggests shock energies of 0.5--8.9 MJ corresponding to efficiencies of 2--15 percent of the RDX heats of detonation with blast dimensionalities indicative of the spherical geometry observed in visible imagery. A drag model fit to data shows initial shock wave speeds of Mach 4.7--8.2 and maximum fireball radii ranging from 4.3--5.8 m with most of the radii reached by 50 ms upon detonation. Initial shock speeds are four times lower than theoretical maximum detonation speed of RDX and likely contributes to the low efficiencies. An inverse correlation exists between blast wave energy and overall aluminum or liner content in the test articles. A two-color best fit Planckian is used to extract temperature profiles from collected Fourier-transform spectrometer spectra. The temperatures decay from initial values of 1290--1850 K to less than 1000 K within 1 s after detonation. A physics-based low-dimensionality empirical model is developed to represent the temperature evolution of post

  3. Detection of the large meteoroid/NEO flux using infrasound: recent detection of the November 21, 1995, Colorado fireball

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.; Whitaker, Rodney W.

    1996-10-01

    During the early morning of November 21, 1995, a fireball as bright as the full moon entered the atmosphere over southeastern Colorado and initially produced audible sonic boom reports from Texas to Wyoming. The event was detected locally by a security video camera which showed the reflection of the fireball event on the hood of a truck. The camera also recorded tree shadows cast by the light of the fireball. This recording includes the audio signal of a strong double boom as well. Subsequent investigation of the array near Los Alamos, New Mexico operated by the Los Alamos National Laboratory as part of its commitment to the Comprehensive Test Ban Treaty negotiations, showed the presence of an infrasonic signal from the proper direction at about the correct time for this fireball. The Los Alamos array is a four-element infrasonic system in near-continuous operation on the laboratory property. The nominal spacing between the array elements is 212 m. The basic sensor is a Globe Universal Sciences Model 100C microphone whose response is flat from about 0.1 to 300 Hz (which we filter at the high frequency end to be limited to 20 Hz). Each low frequency microphone is connected to a set of twelve porous hoses to reduce wind noise. The characteristics of the observed signal include the onset arrival time of 0939:20 UT (0239:20 MST), with a maximum timing uncertainty of plus or minus 2 minutes, the signal onset time delay from the appearance of the fireball of 21 minutes, 20 seconds, total signal duration of 2 minutes 10 seconds, the source location determined to be toward 31 degrees from true north, the horizontal trace velocity of 429 m/sec, the signal velocity of 0.29 plus or minus 0.03 km/sec, assuming a 375 km horizontal range to the fireball, the dominant signal frequency content of 0.25 to 0.84 Hz (analyzed in the frequency interval from 0.2 to 2.0 Hz), the maximum signal cross-correlation of 0.97 and the maximum signal amplitude of 2.0 plus or minus 0.1 microbars

  4. ICECUBE NONDETECTION OF GAMMA-RAY BURSTS: CONSTRAINTS ON THE FIREBALL PROPERTIES

    SciTech Connect

    He Haoning; Liu Ruoyu; Wang Xiangyu; Dai Zigao; Nagataki, Shigehiro; Murase, Kohta E-mail: ryliu@nju.edu.cn

    2012-06-10

    The increasingly deep limit on the neutrino emission from gamma-ray bursts (GRBs) with IceCube observations has reached a level that could place useful constraints on the fireball properties. We first present a revised analytic calculation of the neutrino flux that predicts a flux of one order of magnitude lower than that obtained by the IceCube Collaboration. For the benchmark model parameters (e.g., the bulk Lorentz factor is {Gamma} = 10{sup 2.5}, the observed variability time for the long GRBs is t{sup ob}{sub v} = 0.01 s, and the ratio between the energy in the accelerated protons and in the radiation is {eta}{sub p} = 10 for every burst) in the standard internal shock scenario, the predicted neutrino flux from 215 bursts during the period of the 40- and 59-string configurations is a factor of {approx}3 below the IceCube sensitivity. However, if we accept the recently found inherent relation between the bulk Lorentz factor and the burst energy, then the expected neutrino flux significantly increases and the spectral peak shifts to a lower energy. In this case, the nondetection implies that the baryon-loading ratio should be {eta}{sub p} {approx}< 10 if the variability time of the long GRBs is fixed to t{sup ob}{sub v} = 0.01 s. Instead, if we relax the standard internal-shock scenario but still assume {eta}{sub p} = 10, then the nondetection constrains the dissipation radius, R {approx}> 4 Multiplication-Sign 10{sup 12} cm, assuming the same dissipation radius for every burst and benchmark parameters for the fireballs. We also calculate the diffuse neutrino flux from the GRBs for different luminosity functions from the literature. The expected flux exceeds the current IceCube limit for some of the luminosity functions, and, thus, the nondetection constrains {eta}{sub p} {approx}< 10 when the variability time of the long GRBs is fixed at t{sup ob}{sub v} = 0.01 s.

  5. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    NASA Technical Reports Server (NTRS)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  6. fireball/amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems.

    PubMed

    Mendieta-Moreno, Jesús I; Walker, Ross C; Lewis, James P; Gómez-Puertas, Paulino; Mendieta, Jesús; Ortega, José

    2014-05-13

    In recent years, quantum mechanics/molecular mechanics (QM/MM) methods have become an important computational tool for the study of chemical reactions and other processes in biomolecular systems. In the QM/MM technique, the active region is described by means of QM calculations, while the remainder of the system is described using a MM approach. Because of the complexity of biomolecules and the desire to achieve converged sampling, it is important that the QM method presents a good balance between accuracy and computational efficiency. Here, we report on the implementation of a QM/MM technique that combines a DFT approach specially designed for the study of complex systems using first-principles molecular dynamics simulations (fireball) with the amber force fields and simulation programs. We also present examples of the application of this QM/MM approach to three representative biomolecular systems: the analysis of the effect of electrostatic embedding in the behavior of a salt bridge between an aspartic acid and a lysine residue, a study of the intermediate states for the triosephosphate isomerase catalyzed conversion of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, and the detailed description, using DFT QM/MM molecular dynamics, of the cleavage of a phosphodiester bond in RNA catalyzed by the enzyme RNase A.

  7. On tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Ackerson, K. L.; Lepping, R. P.

    1976-01-01

    The plasma instrumentation (the Lepedea) and the magnetometer aboard IMP 8 performed correlative measurements of magnetic fields and plasmas within the geomagnetic tail at geocentric radial distances of about 23-46 R-E during March-October 1974. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continuous flow and were threaded with northward, or closed geomagnetic lines. The satellite encountered a region of acceleration in the magnetotail, the 'fireball' which exhibits strong jetting of plasmas in excess of 1000 km/s, proton temperatures of about 10 to the 7th K, disordered magnetic fields, southward magnetic fields during tailward jetting of plasmas, and northward magnetic fields for fast plasma flows toward earth. In addition, the magnetosheath plasmas within the boundary layers which are contiguous to the plasma sheet display evidence of plasma heating, great changes in bulk flow velocities, and acceleration of energetic electrons with an energy of greater than 45 keV.

  8. Radio Observations Provide New Clues to Nature of Gamma Ray Fireball

    NASA Astrophysics Data System (ADS)

    1997-09-01

    A team of astronomers using a pair of National Science Foundation (NSF) radio telescopes has made the first measurements of the size and expansion of a mysterious, intense "fireball" resulting from a cosmic gamma ray burst last May. After three months of observations with the NSF's Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes, scientists have learned that the "fireball" of debris expands very closely to the speed of light. They estimate its current size to be about one-tenth of a light-year, or 170 times the distance between the sun and Pluto. The scientists reported their findings about the May 8 gamma ray burst in the September 18 issue of Nature. "For 30 years, we've known almost nothing about these mysterious explosions in the sky. Our observations show that these events release truly incredible amounts of energy," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "It was only a few months ago that our observations showed that such bursting objects are located far beyond our own galaxy. However, astronomers had little evidence for how this cosmological juggernaut actually works. The radio observations have revealed a size of the fireball, unobtainable by any other technique, thereby enabling astronomers to learn about inner workings of such objects," said Shri Kulkarni, professor of astronomy at the California Institute of Technology (Caltech). In addition to Frail and Kulkarni, the astronomers are Greg Taylor of NRAO and Italians Luciano Nicastro and Marco Feroci of the BeppoSAX Gamma Ray Burst Team. BeppoSAX is an Italian-Dutch satellite, launched late last year, that detects gamma ray bursts and provides precise sky positions to allow ground-based telescopes to observe them. Cosmic gamma ray bursts, occurring about once per day, have been observed for some 30 years. However, until this year, very little was known about them. Even their distances from Earth were the subject of great

  9. Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network

    NASA Astrophysics Data System (ADS)

    Dyl, Kathryn A.; Benedix, Gretchen K.; Bland, Phil A.; Friedrich, Jon M.; Spurný, Pavel; Towner, Martin C.; O'Keefe, Mary Claire; Howard, Kieren; Greenwood, Richard; Macke, Robert J.; Britt, Daniel T.; Halfpenny, Angela; Thostenson, James O.; Rudolph, Rebecca A.; Rivers, Mark L.; Bevan, Alex W. R.

    2016-03-01

    Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS-XRD, element mapping via energy dispersive spectroscopy [EDS], and X-ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67-0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread "silicate darkening" is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α-quartz and a rim of both low- and high-Ca pyroxene. The mineralogy allows the calculation of the temperatures and ƒ(O2) characterizing thermal metamorphism on the parent body using both the two-pyroxene and the olivine-chromite geo-oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ƒ(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.

  10. Multi-wavelength Observations of GRB 111228A and Implications for the Fireball and its Environment

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Wang, Yuan-Zhu; Lin, Ting-Ting; Liang, En-Wei; Lü, Hou-Jun; Zhong, Shu-Qing; Urata, Yuji; Zhao, Xiao-Hong; Wu, Chao; Wei, Jian-Yan; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Jin-Song

    2016-02-01

    Observations of very early multi-wavelength afterglows are critical to reveal the properties of the radiating fireball and its environment as well as the central engine of gamma-ray bursts (GRBs). We report our optical observations of GRB 111228A from 95 s to about 50 hr after the burst trigger and investigate its properties of the prompt gamma-rays and the ambient medium using our data and the data from the Swift and Fermi missions. Our joint optical and X-ray spectral fits to the afterglow data show that the ambient medium features a low dust-to-gas ratio. Incorporating the energy injection effect, our best fit to the afterglow light curves with the standard afterglow model via the Markov Chain Monte Carlo technique shows that {ɛ }e=(6.9+/- 0.3)× {10}-2, {ɛ }B=(7.73+/- 0.62)× {10}-6,{E}K=(6.32+/- 0.86)× {10}53 {erg}, n=0.100+/- 0.014 cm-3. The low medium density likely implies that the afterglow jet may be in a halo or in a hot ISM. A chromatic shallow decay segment observed in the optical and X-ray bands is well explained with the long-lasting energy injection from the central engine, which would be a magnetar with a period of about 1.92 ms inferred from the data. The Ep of its time-integrated prompt gamma-ray spectrum is ˜26 KeV. Using the initial Lorentz factor ({{{Γ }}}0={476}-237+225) derived from our afterglow model fit, it is found that GRB 111228A satisfies the {L}{{iso}}-{E}p,z-{{{Γ }}}0 relation and bridges the typical GRBs and low luminosity GRBs in this relation.

  11. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    SciTech Connect

    Thompson, Christopher; Gill, Ramandeep

    2014-08-10

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10{sup 3}-10{sup 8}). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m{sub e}c {sup 2} in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F{sub ω} ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10{sup –5} of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle){sup –1} at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  12. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    SciTech Connect

    Tamborra, Irene; Ando, Shin'ichiro E-mail: s.ando@uva.nl

    2015-09-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.

  13. Propagation and neutrino oscillations in the base of a highly magnetized gamma-ray burst fireball flow

    SciTech Connect

    Fraija, N.

    2014-06-01

    Neutrons play an important role in the dynamics of gamma-ray bursts. The presence of neutrons in the baryon-loaded fireball is expected. If the neutron abundance is comparable to that of protons, important features may be observed, such as quasi-thermal multi-GeV neutrinos in coincidence with a subphotospheric γ-ray emission, nucleosynthesis at later times, and rebrightening of the afterglow emission. Additionally, thermal MeV neutrinos are created by electron-positron annihilation, electron (positron) capture on protons (neutrons), and nucleonic bremsstrahlung. Although MeV neutrinos are difficult to detect, quasi-thermal GeV neutrinos are expected in cubic kilometer detectors and/or DeepCore and IceCube. In this paper, we show that neutrino oscillations have outstanding implications for the dynamics of the fireball evolution and also that they can be detected through their flavor ratio on Earth. For that, we derive the resonance and charged-neutrality conditions as well as the neutrino self-energy and effective potential up to the order of m{sub W}{sup −4} at strong, moderate, and weak magnetic field approximations to constrain the dynamics of the fireball. We found important implications: (1) resonant oscillations are suppressed for high baryon densities as well as neutron abundance larger than that of protons, and (2) the effect of magnetic field is to decrease the proton-to-neutron ratio aside from the number of multi-GeV neutrinos expected in the DeepCore detector. Also, we estimate the GeV neutrino flavor ratios along the jet and on Earth.

  14. Robotic systems for the determination of the composition of solar system materials by means of fireball spectroscopy

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.

    2014-12-01

    The operation of the automated CCD spectrographs deployed by the University of Huelva at different observatories along Spain is described. These devices are providing information about the chemical nature of meteoroids ablating in the atmosphere. In this way, relevant physico-chemical data are being obtained from the ground for materials coming from different bodies in the Solar System (mainly asteroids and comets). The spectrographs, which work in a fully autonomous way by means of software developed for this purpose, are being employed to perform a systematic fireball spectroscopic campaign since 2006. Some examples of meteor spectra obtained by these devices are also presented and discussed.

  15. PF131010 Ciechanów fireball: the body possibly related to near earth asteroids 2010 TB54 and 2010 SX11

    NASA Astrophysics Data System (ADS)

    Olech, A.; Żołądek, P.; Wiśniewski, M.; Rudawska, R.; Laskowski, J.; Polakowski, K.; Maciejewski, M.; Krzyżanowski, T.; Fajfer, T.; Tymiński, Z.

    2015-12-01

    On 2010 October 13, the Apollo-type 20-m asteroid 2010 TB54 passed within 6.1 lunar distances from the Earth. On the same date, but 11.4 h earlier, exactly at 02:52:32 UT, the sky over central Poland was illuminated by the -8.6 mag PF131010 Ciechanów fireball. The trajectory and orbit of the fireball were computed using multi-station data from the Polish Fireball Network. The results indicate that the orbit of the meteoroid that caused the PF131010 fireball is similar to the orbit of asteroid 2010 TB54 and both bodies may be related. Moreover, 2 d before the appearance of the Ciechanów fireball, another small asteroid, 2010 SX11, passed close to the Earth-Moon system. Its orbit is even more similar to the orbit of the Ciechanów fireball's parent body than 2010 TB54. PF131010 Ciechanów entered Earth's atmosphere with a velocity of 12.9 ± 0.2 km s-1 and started to shine at a height of 82.5 ± 0.3 km. Clear deceleration started after the first 3 s of flight, and the terminal velocity of the meteor was only 5.8 ± 0.2 km s-1 at a height of 29.3 ± 0.1 km. Such a low terminal velocity indicates that fragments with a total mass of around 2 kg could survive the atmospheric passage and cause a fall of meteorites. The predicted area of possible meteorite impact is computed as being near Grabowo village south of Ostrołęka city.

  16. REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination

    NASA Astrophysics Data System (ADS)

    Molinari, E.; Vergani, S. D.; Malesani, D.; Covino, S.; D'Avanzo, P.; Chincarini, G.; Zerbi, F. M.; Antonelli, L. A.; Conconi, P.; Testa, V.; Tosti, G.; Vitali, F.; D'Alessio, F.; Malaspina, G.; Nicastro, L.; Palazzi, E.; Guetta, D.; Campana, S.; Goldoni, P.; Masetti, N.; Meurs, E. J. A.; Monfardini, A.; Norci, L.; Pian, E.; Piranomonte, S.; Rizzuto, D.; Stefanon, M.; Stella, L.; Tagliaferri, G.; Ward, P. A.; Ihle, G.; Gonzalez, L.; Pizarro, A.; Sinclaire, P.; Valenzuela, J.

    2007-07-01

    Context: Gamma-ray burst (GRB) emission is believed to originate in highly relativistic fireballs. Aims: Currently, only lower limits were securely set to the initial fireball Lorentz factor Γ_0. We aim to provide a direct measure of Γ_0. Methods: The early-time afterglow light curve carries information about Γ_0, which determines the time of the afterglow peak. We have obtained early observations of the near-infrared afterglows of GRB 060418 and GRB 060607A with the REM robotic telescope. Results: For both events, the afterglow peak could be clearly singled out, allowing a firm determination of the fireball Lorentz of Γ_0˜ 400, fully confirming the highly relativistic nature of GRB fireballs. The deceleration radius was inferred to be R_dec ≈ 1017 cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB. Tables 2 and 3 are only available in electronic form at http://www.aanda.org

  17. Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball.

    PubMed

    Raji, Kehinde; Ranario, Jennifer; Ogunmakin, Kehinde

    2016-05-15

    Transient lingual papillitis is a benign condition characterized by the inflammation of one or more fungiform papillae on the dorsolateral tongue. Although it is a common condition that affects more than half of the population, few cases have been reported in the dermatological literature. Therefore, it is a condition uncommonly recognized by dermatologists though it has a distinct clinical presentation that may be easily diagnosed by clinicians familiar with the entity. We report an interesting case of transient lingual papillitis in a 27 year-old healthy woman following the consumption of the hard candy, Atomic Fireball. We describe treatment and resolution of the condition, and its recurrence following re-exposure to the identified culprit. This report further reviews the literature to illustrate the clinical manifestations, etiology, differential diagnosis, course, and treatment of this condition.

  18. Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball.

    PubMed

    Raji, Kehinde; Ranario, Jennifer; Ogunmakin, Kehinde

    2016-01-01

    Transient lingual papillitis is a benign condition characterized by the inflammation of one or more fungiform papillae on the dorsolateral tongue. Although it is a common condition that affects more than half of the population, few cases have been reported in the dermatological literature. Therefore, it is a condition uncommonly recognized by dermatologists though it has a distinct clinical presentation that may be easily diagnosed by clinicians familiar with the entity. We report an interesting case of transient lingual papillitis in a 27 year-old healthy woman following the consumption of the hard candy, Atomic Fireball. We describe treatment and resolution of the condition, and its recurrence following re-exposure to the identified culprit. This report further reviews the literature to illustrate the clinical manifestations, etiology, differential diagnosis, course, and treatment of this condition. PMID:27617517

  19. The fall of the Grimsby meteorite—I: Fireball dynamics and orbit from radar, video, and infrasound records

    NASA Astrophysics Data System (ADS)

    Brown, P.; McCausland, P. J. A.; Fries, M.; Silber, E.; Edwards, W. N.; Wong, D. K.; Weryk, R. J.; Fries, J.; Krzeminski, Z.

    2011-03-01

    The Grimsby meteorite (H4-06) fell on September 25, 2009. As of mid-2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all-sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all-sky video records, the initial entry velocity was 20.91 ± 0.19 km s-1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20-050 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.

  20. Photosphere emission in the X-ray flares of swift gamma-ray bursts and implications for the fireball properties

    SciTech Connect

    Peng, Fang-Kun; Liang, En-Wei; Xi, Shao-Qiang; Lu, Rui-Jing; Zhang, Bing; Wang, Xiang-Yu; Hou, Shu-Jin; Zhang, Jin E-mail: xywang@nju.edu.cn

    2014-11-10

    X-ray flares of gamma-ray bursts (GRBs) are usually observed in the soft X-ray range and the spectral coverage is limited. In this paper, we present an analysis of 32 GRB X-ray flares that are simultaneously observed by both Burst Alert Telescope and X-Ray Telescope on board the Swift mission, so that a joint spectral analysis with a wider spectral coverage is possible. Our results show that the joint spectra of 19 flares are fitted with the absorbed single power law or the Band function models. More interestingly, the joint spectra of the other 13 X-ray flares are fitted with the absorbed single power-law model plus a blackbody component. Phenomenally, the observed spectra of these 13 flares are analogous to several GRBs with a thermal component, but only with a much lower temperature of kT = 1 ∼ 3 keV. Assuming that the thermal emission is the photosphere emission of the GRB fireball, we derive the fireball properties of the 13 flares that have redshift measurements, such as the bulk Lorentz factor Γ{sub ph} of the outflow. The derived Γ{sub ph} range from 50 to 150 and a relation of Γ{sub ph} to the thermal emission luminosity is found. It is consistent with the Γ{sub 0} – L {sub iso} relations that are derived for the prompt gamma-ray emission. We discuss the physical implications of these results within the content of jet composition and the radiation mechanism of GRBs and X-ray flares.

  1. Signatures of α clustering in light nuclei from relativistic nuclear collisions.

    PubMed

    Broniowski, Wojciech; Ruiz Arriola, Enrique

    2014-03-21

    We argue that relativistic nuclear collisions may provide experimental evidence of α clustering in light nuclei. A light α-clustered nucleus has a large intrinsic deformation. When collided against a heavy nucleus at very high energies, this deformation transforms into the deformation of the fireball in the transverse plane. The subsequent collective evolution of the fireball leads to harmonic flow reflecting the deformation of the initial shape, which can be measured with standard methods of relativistic heavy-ion collisions. We illustrate the feasibility of the idea by modeling the (12)C-(208)Pb collisions and point out that very significant quantitative and qualitative differences between the α-clustered and uniform (12)C nucleus occur in such quantities as the triangular flow, its event-by-event fluctuations, or the correlations of the elliptic and triangular flows. The proposal offers a possibility of studying low-energy nuclear structure phenomena with "snapshots" made with relativistic heavy-ion collisions.

  2. DRoplet and hAdron generator for nuclear collisions: An update

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris

    2016-10-01

    The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.

  3. Transformation of a Virgo Cluster dwarf irregular galaxy by ram pressure stripping: IC3418 and its fireballs

    SciTech Connect

    Kenney, Jeffrey D. P.; Geha, Marla; Jáchym, Pavel; Dague, William; Crowl, Hugh H.; Chung, Aeree; Van Gorkom, Jacqueline; Vollmer, Bernd

    2014-01-10

    We present optical imaging and spectroscopy and H I imaging of the Virgo Cluster galaxy IC 3418, which is likely a 'smoking gun' example of the transformation of a dwarf irregular into a dwarf elliptical galaxy by ram pressure stripping. IC 3418 has a spectacular 17 kpc length UV-bright tail comprised of knots, head-tail, and linear stellar features. The only Hα emission arises from a few H II regions in the tail, the brightest of which are at the heads of head-tail UV sources whose tails point toward the galaxy ('fireballs'). Several of the elongated tail sources have Hα peaks outwardly offset by ∼80-150 pc from the UV peaks, suggesting that gas clumps continue to accelerate through ram pressure, leaving behind streams of newly formed stars which have decoupled from the gas. Absorption line strengths, measured from Keck DEIMOS spectra, together with UV colors, show star formation stopped 300 ± 100 Myr ago in the main body, and a strong starburst occurred prior to quenching. While neither Hα nor H I emission are detected in the main body of the galaxy, we have detected 4 × 10{sup 7} M {sub ☉} of H I from the tail with the Very Large Array. The velocities of tail H II regions, measured from Keck LRIS spectra, extend only a small fraction of the way to the cluster velocity, suggesting that star formation does not happen in more distant parts of the tail. Stars in the outer tail have velocities exceeding the escape speed, but some in the inner tail should fall back into the galaxy, forming halo streams.

  4. CTBT infrasound network performance to detect the 2013 Russian fireball event

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Ceranna, Lars; Ross, J. Ole; Le Pichon, Alexis; Mialle, Pierrick; Garcés, Milton A.

    2015-04-01

    The explosive fragmentation of the 2013 Chelyabinsk meteorite generated a large airburst with an equivalent yield of 500 kT TNT. It is the most energetic event recorded by the infrasound component of the Comprehensive Nuclear-Test-Ban Treaty-International Monitoring System (CTBT-IMS), globally detected by 20 out of 42 operational stations. This study performs a station-by-station estimation of the IMS detection capability to explain infrasound detections and nondetections from short to long distances, using the Chelyabinsk meteorite as global reference event. Investigated parameters influencing the detection capability are the directivity of the line source signal, the ducting of acoustic energy, and the individual noise conditions at each station. Findings include a clear detection preference for stations perpendicular to the meteorite trajectory, even over large distances. Only a weak influence of stratospheric ducting is observed for this low-frequency case. Furthermore, a strong dependence on the diurnal variability of background noise levels at each station is observed, favoring nocturnal detections.

  5. Substorm processes in the magnetotail - Comments on 'On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail' by L. A. Frank, K. L. Ackerson, and R. P. Lepping

    NASA Technical Reports Server (NTRS)

    Hones, E. W., Jr.

    1977-01-01

    Various theories regarding the magnetotail are reviewed and discussed. These include the work of Dungey (1961) and Eastman et al., (1976) regarding the generation of the magnetotail, Frank et al., (1976) concerning the so-called magnetotail fireball and its characteristics, and Hones et al., (1976 and 1976a) on the formation of a neutral line across the near-earth plasma sheet near the substorm onset. A detailed discussion of a fireball encounter during 0900-1400 UT in April 1974 is presented, noting plasma and magnetic phenomena observed, and magnetic records from the earth. A critique is made by Hones of the interpretation of this fireball made by Frank et al. In an accompanying reply, Frank et al. comment on the observations made by Hones, with attention to the most evident discrepancy between the two theories, i.e., the generation of large closed magnetic loops in the plasma sheet during magnetic substorms.

  6. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout.

    PubMed

    Cassata, W S; Prussin, S G; Knight, K B; Hutcheon, I D; Isselhardt, B H; Renne, P R

    2014-11-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. PMID:25014883

  7. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout.

    PubMed

    Cassata, W S; Prussin, S G; Knight, K B; Hutcheon, I D; Isselhardt, B H; Renne, P R

    2014-11-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms.

  8. Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki

    SciTech Connect

    Kerr, G.D.; Pace, J.V. III; Scott, W.H. Jr.

    1983-06-01

    Initial nuclear radiation is comprised of prompt neutrons and prompt primary gammas from an exploding nuclear device, prompt secondary gammas produced by neutron interactions in the environment, and delayed neutrons and delayed fission-product gammas from the fireball formed after the nuclear device explodes. These various components must all be considered in establishing tissue kerma vs distance relationships which describe the decrease of initial nuclear radiation with distance in Hiroshima and in Nagasaki. The tissue kerma at ground evel from delayed fission-product gammas and delayed neutrons was investigated using the NUIDEA code developed by Science Applications, Inc. This code incorporates very detailed models which can take into account such features as the rise of the fireball, the rapid radioactive decay of fission products in it, and the perturbation of the atmosphere by the explosion. Tissue kerma vs distance relationships obtained by summing results of these current state-of-the-art calculations will be discussed. Our results clearly show that the prompt secondary gammas and delayed fission-product gammas are the dominant components of total tissue kerma from initial nuclear radiation in the cases of the atomic (or pure-fission) devices detonated over Hiroshima and Nagasaki.

  9. Photo-induced reactions from efficient molecular dynamics with electronic transitions using the FIREBALL local-orbital density functional theory formalism.

    PubMed

    Zobač, Vladimír; Lewis, James P; Abad, Enrique; Mendieta-Moreno, Jesús I; Hapala, Prokop; Jelínek, Pavel; Ortega, José

    2015-05-01

    The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.

  10. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  11. October Fireball: Brief and Brilliant

    NASA Video Gallery

    On Saturday, Oct. 2, 2010 at approximately 8:50 p.m. CDT, cameras operated by NASA's Meteoroid Environment Office at Marshall Space Flight Center in Huntsville, Ala., recorded a slow-moving firebal...

  12. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  13. Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN

    NASA Astrophysics Data System (ADS)

    Schukraft, Jurgen; Stock, Reinhard

    2015-07-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium, to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD phase boundary. We describe three decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultrarelativistic heavy ion physics is today a central pillar of contemporary nuclear physics and forms a significant part of the LHC programme.

  14. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  15. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  16. Nuclear weapons and nuclear war

    SciTech Connect

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  17. Nuclear Theory - Nuclear Power

    NASA Astrophysics Data System (ADS)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  18. Fission xenon in trinities from the first nuclear test

    NASA Astrophysics Data System (ADS)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  19. Thermal Radiation from Nuclear Detonations in Urban Environments

    SciTech Connect

    Marrs, R E; Moss, W C; Whitlock, B

    2007-06-04

    There are three principal causes of ''prompt'' casualties from a nuclear detonation: nuclear (gamma-ray and neutron) radiation, thermal radiation, and blast. Common estimates of the range of these prompt effects indicate that thermal radiation has the largest lethal range [1]. Non-lethal skin burns, flash blindness, and retinal burns occur out to much greater range. Estimates of casualties from thermal radiation assume air bursts over flat terrain. In urban environments with multiple buildings and terrain features, the extent of thermal radiation may be significantly reduced by shadowing. We have developed a capability for calculating the distribution of thermal energy deposition in urban environments using detailed 3D computer models of actual cities. The size, height, and radiated power from the fireball as a function of time are combined with ray tracing to calculate the energy deposition on all surfaces. For surface bursts less than 100 kt in locations with large buildings or terrain features, the calculations confirm the expected reduction in thermal damage.

  20. Nuclear choices

    SciTech Connect

    Wolfson, R.

    1991-01-01

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

  1. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  2. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  3. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  4. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  5. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  6. Nuclear mortality

    SciTech Connect

    Krauthammer, C.

    1983-10-01

    The author notes that the anti-nuclear movement is shifting its focus from bodily harm to concern for the impact on our souls from building and threatening the use of nuclear weapons. Two aspects of nuclear deterrence receiving the most public attention are the freeze effort to halt weapons modernization and the no-first-use effort to take down the nuclear umbrella. Opponents attack both the countervalue and the counterforce approach, but the arguments of the Catholic bishops, Jonathan Schell, and others stop short of unilateral disarmament, which would be the greatest threat to our survival. Mr. Krauthammer observes that nuclear deterrence has worked, however, and will continue to be useful only if potential adversaries believe we have the will to use nuclear weapons. 2 references. (DCK)

  7. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  8. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  9. Sudden Hadronization in Relativistic Nuclear Collisions

    SciTech Connect

    Rafelski, Johann; Letessier, Jean

    2000-11-27

    We formulate and study a mechanical instability criterion for sudden hadronization of dense matter fireballs formed in 158A GeV Pb-Pb collisions. Considering properties of quark-gluon matter and hadron gas we obtain the phase boundary between these two phases and demonstrate that the required deep quark-gluon-plasma supercooling prior to sudden hadronization has occurred.

  10. Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  11. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  12. Nuclear hostages

    SciTech Connect

    O'Keefe, B.J.

    1983-01-01

    Classical physics since Roentgen's discovery of X-rays led quickly to work on atomic structure and the Nuclear Age. The author traces the history of decisions to pursue nuclear fission, the organization of the Manhattan Project, the compromises of the 1963 test ban treaty, and the dilemma of nuclear weapons development and deployment that now hold mankind hostage. He reviews the rationale for limited nuclear war, first strike, massive retaliation, non-proliferation, and the Strategic Arms Limitation Talks (SALT) treaties. He argues that the concepts of mobile MX weapons, fratricide, and population dispersal for civil defense are unworkable, suggesting a program of unilaterally withdrawing tactical nuclear weapons from Europe and strengthening intelligence and law-enforcement powers to withstand terrorist activity. Economic cooperation and political reconciliation may take a generation to achieve, but should be our national goal.

  13. Charged particle spectra in {sup 32}S + {sup 32}S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    SciTech Connect

    Teitelbaum, L.P.

    1992-04-01

    We have measured the transverse momentum spectra 1/p{sub T} dN/dp{sub T} and rapidity distributions dN/dy of negatively charged hadrons and protons for central {sup 32}S + {sup 32}S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be {Delta}y {approximately} 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p{sub T}. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T{sub f} {approximately} 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.

  14. Charged particle spectra in [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon from CCD-imaged nuclear collisions in a streamer chamber

    SciTech Connect

    Teitelbaum, L.P.

    1992-04-01

    We have measured the transverse momentum spectra 1/p[sub T] dN/dp[sub T] and rapidity distributions dN/dy of negatively charged hadrons and protons for central [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be [Delta]y [approximately] 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p[sub T]. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T[sub f] [approximately] 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.

  15. Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio

    2003-04-01

    In this report I will try to illustrate some of the main research themes and "hot topics" in nuclear astrophysics. The particular aim of the present report is to briefly illustrate the research activities, in the field of nuclear astrophysics, performed by the Italian nuclear physicist community within the "Programma di Interesse Nazionale su Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi" (National Research Program on Theoretical Physics of Nuclei and Many Body Systems) supported by the "Ministero dell'Istruzione dell'Università e della Ricerca".

  16. Nuclear Speckles

    PubMed Central

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. PMID:20926517

  17. (Nuclear theory). [Research in nuclear physics

    SciTech Connect

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

  18. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  19. Nuclear Disarmament.

    ERIC Educational Resources Information Center

    Johnson, Christopher

    1982-01-01

    Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)

  20. Nuclear battlefields

    SciTech Connect

    Arkin, W.M.; Fieldhouse, R.W.

    1985-01-01

    This book provides complete data on the nuclear operations and research facilities in the U.S.A., the U.S.S.R., France, China and the U.K. It describes detailed estimates on the U.S.S.R.'s nuclear stockpile for over 500 locations. It shows how non-nuclear countries cooperate with the world-wide war machine. And it maps the U.S. nuclear facilities from Little America, WY, and Charleston, SC, to the battleships patroling the world's oceans and subs stalking under the sea. The data were gathered from unclassified sources through the Freedom of Information Act, from data supplied to military installations, and from weapons source books. It provides guidance for policymakers, government and corporate officials.

  1. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  2. Nuclear Data

    SciTech Connect

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  3. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  4. Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  5. Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  6. Nuclear telemedicine

    NASA Astrophysics Data System (ADS)

    Morrison, R. T.; Szasz, I. J.

    1990-06-01

    Diagnostic nuclear medicine patient images have been transniitted for 8 years from a regional conununity hospital to a university teaching hospital 700 kiloinetres away employing slow scan TV and telephone. Transruission and interpretation were done at the end of each working day or as circumstances required in cases of emergencies. Referring physicians received the nuclear medicine procedure report at the end of the completion day or within few minutes of completion in case of emergency procedures. To date more than 25 patient studies have been transmitted for interpretation. Blinded reinterpretation of the original hard copy data of 350 patient studies resulted in 100 agreement with the interpretation of transmitted data. This technique provides high quality diagnostic and therapeutic nuclear medicine services in remote hospitals where the services of an on-site nuclear physician is not available. 2. HISTORY Eight years ago when the nuclear medicine physician at Trail Regional Hospital left the Trail area and an other could not be recruited we examined the feasibility of image transmission by phone for interpretation since closing the department would have imposed unacceptable physical and financial hardship and medical constraints on the patient population the nearest nuclear medicine facility was at some 8 hours drive away. In hospital patients would have to be treated either based purely on physical findings or flown to Vancouver at considerable cost to the health care system (estimated cost $1500.

  7. Application of the ORIGEN Fallout Analysis Tool and the DELFIC Fallout Planning Tool to National Technical Nuclear Forensics

    SciTech Connect

    Jodoin, Vincent J; Lee, Ronald W; Peplow, Douglas E.; Lefebvre, Jordan P

    2011-01-01

    The objective of this project was to provide a robust fallout analysis and planning tool for the National Technical Nuclear Forensics interagency ground sample collection team. Their application called for a fast-running, portable mission-planning tool for use in response to emerging improvised nuclear device (IND) post-detonation situations. The project met those goals by research and development of models to predict the physical, chemical, and radiological properties of fallout debris. ORNL has developed new graphical user interfaces for two existing codes, the Oak Ridge Isotope Generation (ORIGEN) code and the Defense Land Fallout Interpretive Code (DELFIC). ORIGEN is a validated, radionuclide production and decay code that has been implemented into the Fallout Analysis Tool to predict the fallout source term nuclide inventory after the detonation of an IND. DELFIC is a validated, physics-based, research reference fallout prediction software package. It has been implemented into the Fallout Planning Tool and is used to predict the fractionated isotope concentrations in fallout, particle sizes, fractionation ratios, dose rate, and integrated dose over the planned collection routes - information vital to ensure quality samples for nuclear forensic analysis while predicting dose to the sample collectors. DELFIC contains a particle activity module, which models the radiochemical fractionation of the elements in a cooling fireball as they condense into and onto particles to predict the fractionated activity size distribution for a given scenario. This provides the most detailed physics-based characterization of the fallout source term phenomenology available in an operational fallout model.

  8. The expanding fireball of Nova Delphini 2013.

    PubMed

    Schaefer, G H; ten Brummelaar, T; Gies, D R; Farrington, C D; Kloppenborg, B; Chesneau, O; Monnier, J D; Ridgway, S T; Scott, N; Tallon-Bosc, I; McAlister, H A; Boyajian, T; Maestro, V; Mourard, D; Meilland, A; Nardetto, N; Stee, P; Sturmann, J; Vargas, N; Baron, F; Ireland, M; Baines, E K; Che, X; Jones, J; Richardson, N D; Roettenbacher, R M; Sturmann, L; Turner, N H; Tuthill, P; van Belle, G; von Braun, K; Zavala, R T; Banerjee, D P K; Ashok, N M; Joshi, V; Becker, J; Muirhead, P S

    2014-11-13

    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common-envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 ± 0.59 kiloparsecs from the Sun. PMID:25363778

  9. Current status of Polish Fireball Network

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Żołądek, P.; Olech, A.; Tyminski, Z.; Maciejewski, M.; Fietkiewicz, K.; Gozdalski, M.; Gawroński, M. P.; Suchodolski, T.; Myszkiewicz, M.; Stolarz, M.; Polakowski, K.

    2016-01-01

    The PFN started in March 2004. Most of its observers are amateurs, members of the Comets and Meteors Workshop. The network consists of 40 continuously working stations, where nearly 80 sensitive CCTV video and digital cameras operate. During the years 2011-2015 PFN cameras recorded 215049 single events. Using this data 34608 trajectories and orbits have been calculated.

  10. Chelyabinsk fireball and Dyatlov pass tragedy

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk bolide as well as the Kunashak meteorite in 1949 (Fig. 3, black square) hit ground in ectonically peculiar place in the Ural Mountains. The main explosion was followed by a series of weaker bangs. The long Uralian fold belt (Pz) separates two subsectors (1 & 2, Fig. 1) of the Eurasian sector (1+2) of the Eastern hemisphere sectoral structure (Fig. 1). At the Pamirs-Hindukush massif (the "Pamirs' cross") meet four tectonic sectors of this structure: two opposite differently uplifted (Africa-Mediterranean ++ and Asian +) and separating them two opposite differently subsided (Eurasian - and Indooceanic - -). Tectonic bisectors divide the sectors into two differently tectonically elevated subsectors. The Ural Mountains is one of these bisectors dividing the somewhat risen East-European subsector and the relatively fallen West-Siberian one. Even more important is the sharp tectonic boundary between subsided Eurasian sector and uplifted Asian one (between 2 and 3, Fig. 1). Fig. 3 shows distribution of electrophonic bolides over USSR [1]. Observations numbers are in circles. The total of 343 observations is distributed at relevant districts; accompanied meteorites were found only in 23-24 cases; in the chart are excluded background values of 1-2 observations per district. Two areas are obviously anomalous. These of the Urals, and the Eurasia-Asia sectoral contact (Novosibirsk - Yenisei R. - Tunguska). A location in the long Uralian belt is determined by its intersection with the Timan fold belt coming from the northwest (Fig. 3). The catastrophic Dyatlov pass where nine people mysteriously died at once occurs there (triangle in Fig. 3). Mancy aborigines know this place as deadly where killing white shining spheres appear. Moreover this belt intersection is well known among hunters for UFO as the Permian triangle (Fig. 2). They meet there to observe unusual atmospheric shining and other anomalous phenomena. In the Yenisei-Tunguska-Baikal region lightning balls appear regularly causing broken trees [2]. In conclusion, these two tectonically distinctive regions are famous by anomalously often appearance of bolides part of which is accompanied by meteorite falls. Out of 343 observations meteorites accompanied less than 10 %. Unclear remains a strange attraction of bolides by very pronounced tectonic features.

  11. Nuclear waste

    SciTech Connect

    Not Available

    1988-05-01

    This paper discusses how, as part of the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommend to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE's failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million for the Deaf Smith site and $85 million for the Hanford site.

  12. Nuclear scales

    SciTech Connect

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  13. Nuclear pursuits

    SciTech Connect

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  14. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  15. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  16. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  17. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  18. Nuclear Misinformation

    ERIC Educational Resources Information Center

    Ford, Daniel F.; Kendall, Henry W.

    1975-01-01

    Many scientists feel that research into nuclear safety has been diverted or distorted, and the results of the research concealed or inaccurately reported on a large number of occasions. Of particular concern have been the emergency cooling systems which have not, as yet, been adequately tested. (Author/MA)

  19. Nuclear explosions

    SciTech Connect

    Broyles, A.A.

    1982-07-01

    A summary of the physics of a nuclear bomb explosion and its effects on human beings is presented at the level of a sophomore general physics course without calculus. It is designed to supplement a standard text for such a course and problems are included.

  20. Nuclear energy.

    PubMed

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.

  1. Nuclear Terrorism.

    SciTech Connect

    Hecker, Siegfried S.

    2001-01-01

    As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

  2. Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988

    SciTech Connect

    Mahoney, J.

    1989-10-01

    Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

  3. Nuclear politics

    NASA Astrophysics Data System (ADS)

    Ranson, John

    2009-04-01

    The sentiments expressed by Sidney Drell in his forum article "The nuclear threat: a new start" (February pp16-17) are laudable, but it was disappointing to find this almost entirely political story in isolation. The article, which outlined the prospects for reducing weapons stockpiles under the new US administration, would have been more pertinent as an introduction to a series describing the technology used in detecting nuclear-testing activity. It would have been interesting to discuss the specific equipment and methods used, together with the analysis and correlation techniques - along with an indication of how sensitive and reliable they are (if the information is not classified). It is far easier to detect an explosive event than it is to detect and quantify weapons stores, which is a key factor for any negotiated solution. Apart from deductions based on actual inspection and satellite surveillance, are there other techniques that can be applied to this issue?

  4. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  5. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  6. Nuclear Chirality

    SciTech Connect

    Starosta, Krzysztof

    2005-04-05

    Nuclear chirality is a novel manifestation of spontaneous symmetry breaking resulting from an orthogonal coupling of angular momentum vectors in triaxial nuclei. Three perpendicular angular momenta can form two systems of opposite handedness; the time reversal operator, which reverses orientation of each of the angular momentum components, relates these two systems. The status of current experimental searches for chiral doubling of states, as well as recent progress on the theoretical side is reviewed.

  7. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  8. Nuclear terrorism.

    PubMed

    Hogan, David E; Kellison, Ted

    2002-06-01

    Recent events have heightened awareness of the potential for terrorist attacks employing nonconventional weaponry such as biological agents and radiation. Historically, the philosophy of nuclear risk has focused on global or strategic nuclear exchanges and the resulting damage from large-scale releases. Currently, nuclear accidents or terrorist attacks involving low-level or regional release of radiation are considered the most likely events. Thus far, there have been several regional radiation incidents exposing hundreds of thousands of people to radiation, but there have been only a limited number of significant contaminations resulting in death. There are several different types of radioactive particles that differ in mass, extent of radiation emitted, and the degree to which tissue penetration occurs. Radiation affects its toxicity on biological systems by ionization, which creates tissue damage by the generation of free radicals, disruption of chemical bonds, and directly damaging cellular DNA and enzymes. The extent of damage depends on the type of radioisotope and the radiation dose. Radiation doses exceeding 2 to 10 Gy are considered lethal. Optimal management of radiation casualties requires knowledge of the type and dose of radiation received, a recognition of the manifestations of radiation sickness, and the use of standard medical care, decontamination, and decorporation techniques. PMID:12074488

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  10. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  11. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  12. Predictions of Elliptic flow and nuclear modification factor from 200 GeV U+U collisions at RHIC

    SciTech Connect

    Masui, Hiroshi; Mohanty, Bedangadas; Xu, Nu

    2010-07-07

    Predictions of elliptic flow (v{sub 2}) and nuclear modification factor (R{sub AA}) are provided as a function of centrality in U + U collisions at {radical}s{sub NN} = 200 GeV. Since the {sup 238}U nucleus is naturally deformed, one could adjust the properties of the fireball, density and duration of the hot and dense system, for example, in high energy nuclear collisions by carefully selecting the colliding geometry. Within our Monte Carlo Glauber based approach, the v{sub 2} with respect to the reaction plane v{sub 2}{sup RP} in U + U collisions is consistent with that in Au + Au collisions, while the v{sub 2} with respect to the participant plane v{sub 2}{sup PP} increases {approx}30-60% at top 10% centrality which is attributed to the larger participant eccentricity at most central U + U collisions. The suppression of R{sub AA} increases and reaches {approx}0.1 at most central U + U collisions that is by a factor of 2 more suppression compared to the central Au + Au collisions due to large size and deformation of Uranium nucleus.

  13. Numerical simulations of cloud rise phenomena associated with nuclear bursts: compressible and low Mach approaches

    NASA Astrophysics Data System (ADS)

    Kanarska, Y.; Lomov, I.; Antoun, T.

    2008-12-01

    The nuclear cloud rise is a two stage phenomenon. The initial phase (fireball expansion) of the cloud formation is dominated by compressible flow effects and propagation of shock waves. At the later stage, shock waves become weak, the Mach number decreases and the time steps required by an explicit code to model the acoustic waves make simulation of the late time cloud dynamics with a compressible code very expensive. The buoyant cloud rise at this stage can be efficiently simulated by low Mach-number approximation. In this approach acoustic waves are removed analytically, compressible effects are included as a non-zero divergence constraint due to background stratification and the system of equations is solved implicitly using pressure projection methods. Our numerical approach includes fluid mechanical models that are able to simulate both compressible, incompressible and low Mach regimes. Compressible dynamics is simulated with the explicit high order Eulerian code GEODYN (Lomov et al., 2001). It is based on the second-order Godunov method of Colella and Woodward (1984) that is extended for multiple dimensions using operator-splitting. The code includes the material interface tracking based on a volume-of-fluid (VOF) approach of Miller and Puckett (1996). The code we use for the low Mach approximation (LMC) is based on the incompressible solver of Bell et al., (2003). An unsplit second-order Godunov method and the MAC projection method (Bell et al., 2003) are used. An algebraic slip multiphase model is implemented to describe fallout of dust particles. Both codes incorporate adaptive mesh refinement (AMR). Additionally, the codes are explicitly coupled via input/output files. First, we compared solutions for an idealized buoyant bubble rise problem, that is characterized by low Mach numbers, in GEODYN and LMC codes. While the cloud evolution process is reproduced in both codes, some differences are found in the cloud rise speed and the cloud interface structure

  14. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    SciTech Connect

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.

  15. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    DOE PAGES

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration ofmore » chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less

  16. Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test.

    PubMed

    Lewis, L A; Knight, K B; Matzel, J E; Prussin, S G; Zimmer, M M; Kinman, W S; Ryerson, F J; Hutcheon, I D

    2015-10-01

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ((238)U/(235)U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < (235)U/(238)U < 11.84 among all five spherules and 0.02 < (235)U/(238)U < 7.41 within a single spherule. In two spherules, the (235)U/(238)U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between (234)U/(238)U, (235)U/(238)U, and (236)U/(238)U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members. PMID:26225462

  17. Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test.

    PubMed

    Lewis, L A; Knight, K B; Matzel, J E; Prussin, S G; Zimmer, M M; Kinman, W S; Ryerson, F J; Hutcheon, I D

    2015-10-01

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ((238)U/(235)U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < (235)U/(238)U < 11.84 among all five spherules and 0.02 < (235)U/(238)U < 7.41 within a single spherule. In two spherules, the (235)U/(238)U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between (234)U/(238)U, (235)U/(238)U, and (236)U/(238)U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.

  18. The Nuclear Power and Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Leventhal, Paul

    1990-01-01

    Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)

  19. The nuclear arsenals and nuclear disarmament.

    PubMed

    Barnaby, F

    1998-01-01

    Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.

  20. The Nuclear Power/Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Totten, Sam; Totten, Martha Wescoat

    1985-01-01

    Once they have nuclear power, most countries will divert nuclear materials from commercial to military programs. In excerpts from the book "Facing the Danger" (by Totten, S. and M. W., Crossing Press, 1984), five anti-nuclear activists explain how and why they have been addressing the nuclear connection. (RM)

  1. Nuclear security

    SciTech Connect

    Dingell, J.D.

    1991-02-01

    The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secret document control program was also assessed.

  2. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  3. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  4. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened. PMID:20873683

  5. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  6. Dictionary of nuclear engineering

    SciTech Connect

    Sube, R.

    1985-01-01

    Ralf Sube, an experienced compiler of three wellknown four-language reference works has now prepared this glossary of nuclear engineering terms in English, German, French and Russian. Based on the proven lexicography of the Technik-Worterbuch series, it comprises about 30,000 terms in each language covering the following: Nuclear and Atomic Physics; Nuclear Radiation and Isotopes; Nuclear Materials; Nuclear Facilties; Nuclear Power Industry; Nuclear Weapons.

  7. Nuclear "waffles"

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Horowitz, C. J.

    2014-11-01

    Background: The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuniform phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts. Purpose: To characterize the topology and compute two observables, the radial distribution function (RDF) g (r ) and the structure factor S (q ) , for systems with proton fractions Yp=0.10 ,0.20 ,0.30 , and 0.40 at about one-third of nuclear saturation density, n =0.050 fm-3 , and temperatures near k T =1 MeV . Methods: We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations with 51 200 and 409 600 nucleons. From the output of the MD simulations we obtain the two desired observables. Results: We compute and discuss the differences in topology and observables for each simulation. We observe that the two lowest proton fraction systems simulated, Yp=0.10 and 0.20 , equilibrate quickly and form liquidlike structures. Meanwhile, the two higher proton fraction systems, Yp=0.30 and 0.40 , take a longer time to equilibrate and organize themselves in solidlike periodic structures. Furthermore, the Yp=0.40 system is made up of slabs, lasagna phase, interconnected by defects while the Yp=0.30 systems consist of a stack of perforated plates, the nuclear waffle phase. Conclusions: The periodic configurations observed in our MD simulations for proton fractions Yp≥0.30 have important consequences for the structure factors S (q ) of protons and neutrons, which relate to many transport properties of supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature, size of the simulation, and the screening length showed that finite-size effects appear to be under control and, also, that the plates in the waffle phase merge at temperatures slightly above 1.0 MeV and

  8. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  10. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  11. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  12. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  13. Nuclear exoticism

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2016-07-01

    Extreme states of nuclearmatter (such that feature high spins, large deformations, high density and temperature, or a large excess of neutrons and protons) play an important role in studying fundamental properties of nuclei and are helpful in solving the problem of constructing the equation of state for nuclear matter. The synthesis of neutron-rich nuclei near the nucleon drip lines and investigation of their properties permit drawing conclusions about the positions of these boundaries and deducing information about unusual states of such nuclei and about their decays. At the present time, experimental investigations along these lines can only be performed via the cooperation of leading research centers that possess powerful heavy-ion accelerators, such as the Large Hadron Collider (LHC) at CERN and the heavy-ion cyclotrons at the Joint Institute for Nuclear Research (JINR, Dubna), where respective experiments are being conducted by physicists from about 20 JINR member countries. The present article gives a survey of the most recent results in the realms of super neutron-rich nuclei. Implications of the change in the structure of such nuclei near the nucleon drip lines are discussed. Information about the results obtained by measuring the masses (binding energies) of exotic nuclei, the nucleon-distribution radii (neutron halo) and momentum distributions in them, and their deformations and quantum properties is presented. It is shown that the properties of nuclei lying near the stability boundaries differ strongly from the properties of other nuclei. The problem of the stability of nuclei that is associated with the magic numbers of 20 and 28 is discussed along with the effect of new magic numbers.

  14. Nuclear war: Opposing viewpoints

    SciTech Connect

    Szumski, B.

    1985-01-01

    This book presents opposing viewpoints on nuclear war. Topics discussed include: how nuclear would begin; would humanity survive; would civil defense work; will an arms agreement work; and can space weapons reduce the risk of nuclear war.

  15. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  16. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  17. Nuclear thermal/nuclear electric hybrids

    NASA Technical Reports Server (NTRS)

    Reid, B. D.

    1991-01-01

    A description is given of the nuclear thermal and nuclear electric hybrid. The specifications are described along with its mission performance. Next, the technical status, development requirements, and some cost estimates are provided.

  18. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect

    Boyer, Brian D.

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  19. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  20. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  1. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  2. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  3. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  4. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  5. The New Nuclear Nations.

    ERIC Educational Resources Information Center

    Spector, Leonard S.

    1990-01-01

    Explores the issue of nuclear proliferation, noting that the countries with nuclear capability now include Israel, South Africa, India, and Pakistan. Describes the role and problems of the United States in halting nuclearization. Supplies charts, maps, and information concerning the state of nuclear capability in each country. (NL)

  6. Nuclear medicine annual, 1984

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1984-01-01

    The following topics are reviewed in this work: nuclear physicians role in planning for and handling radiation accidents; the role of nuclear medicine in evaluating the hypertensive patient; studies of the heart with radionuclides; role of radionuclide imaging in the patient undergoing chemotherapy; hematologic nuclear medicine; the role of nuclear medicine in sports related injuries; radionuclide evaluation of hepatic function with emphasis on cholestatis.

  7. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  8. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  9. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  10. Frontiers of Nuclear Structure

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    Current developments in nuclear structure at the `limits` are discussed. The studies of nuclear behavior at extreme conditions provide us with invaluable information about the nature of the nuclear interaction and nucleonic correlations at various energy-distance scales. In this talk frontiers of nuclear structure are briefly reviewed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  11. [Chilean nuclear policy].

    PubMed

    Bobadilla, E

    1996-06-01

    This official document is statement of the President of the Chilean Nuclear Energy Commission, Dr. Eduardo Bobadilla, about the nuclear policy of the Chilean State, Thanks to the international policy adopted by presidents Aylwin (1990-1994) and his successor Frei Ruiz Tagle (1994-), a nuclear development plan, protected by the Chilean entrance to the nuclear weapons non proliferation treaty and Tlatelolco Denuclearization treaty, has started. Chile will be able to develop without interference, an autonomous nuclear electrical system and other pacific uses of nuclear energy. Chile also supports a new international treaty to ban nuclear weapon tests.

  12. Intergenerational issues regarding nuclear power, nuclear waste, and nuclear weapons.

    PubMed

    Ahearne, J F

    2000-12-01

    Nuclear power, nuclear waste, and nuclear weapons raise substantial public concern in many countries. While new support for nuclear power can be found in arguments concerning greenhouse gases and global warming, the long-term existence of radioactive waste has led to requirements for 10,000-year isolation. Some of the support for such requirements is based on intergenerational equity arguments. This, however, places a very high value on lives far in the future. An alternative is to use discounting, as is applied to other resource applications. Nuclear weapons, even though being dismantled by the major nations, are growing in number due to the increase in the number of countries possessing these weapons of mass destruction. This is an unfortunate legacy for future generations. PMID:11314726

  13. Nuclear Structure Aspects in Nuclear Astrophysics

    SciTech Connect

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that we have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.

  14. Biogenesis of nuclear bodies.

    PubMed

    Dundr, Miroslav; Misteli, Tom

    2010-12-01

    The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.

  15. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  16. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  17. Nuclear fear revisited

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2010-10-01

    In 1988 the science historian Spencer Weart published a groundbreaking book called Nuclear Fear: A History of Images, which examined visions of radiation damage and nuclear disaster in newspapers, television, film, literature, advertisements and popular culture.

  18. Nuclear disarmament verification

    SciTech Connect

    DeVolpi, A.

    1993-12-31

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  19. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  20. Triangle Universities Nuclear Laboratory

    SciTech Connect

    Not Available

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  1. Fundamentals in Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Basdevant, Jean-Louis, Rich, James, Spiro, Michael

    This course on nuclear physics leads the reader to the exploration of the field from nuclei to astrophysical issues. Much nuclear phenomenology can be understood from simple arguments such as those based on the Pauli principle and the Coulomb barrier. This book is concerned with extrapolating from such arguments and illustrating nuclear systematics with experimental data. Starting with the basic concepts in nuclear physics, nuclear models, and reactions, the book covers nuclear decays and the fundamental electro-weak interactions, radioactivity, and nuclear energy. After the discussions of fission and fusion leading into nuclear astrophysics, there is a presentation of the latest ideas about cosmology. As a primer this course will lay the foundations for more specialized subjects. This book emerged from a series of topical courses the authors delivered at the Ecole Polytechnique and will be useful for graduate students and for scientists in a variety of fields.

  2. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  3. Teaching "The Nuclear Predicament."

    ERIC Educational Resources Information Center

    Carman, Philip; Kneeshaw, Stephen

    1987-01-01

    Contends that courses on nuclear war must help students examine the political, social, religious, philosophical, economic, and moral assumptions which characterized the dilemma of nuclear armament/disarmament. Describes the upper level undergraduate course taught by the authors. (JDH)

  4. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Nuclear power browning out

    SciTech Connect

    Flavin, C.; Lenssen, N.

    1996-05-01

    When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

  6. Nuclear air cushion vehicles.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  7. Multiparticle Production in Particle and Nuclear Collisions. I

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  8. Multiparticle Production in Particle and Nuclear Collisions. II

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  9. Nuclear fact book

    SciTech Connect

    Hill, O. F.; Platt, A. M.; Robinson, J. V.

    1983-05-01

    This reference provides significant highlights and summary facts in the following areas: general energy; nuclear energy; nuclear fuel cycle; uranium supply and enrichment; nuclear reactors; spent fuel and advanced repacking concepts; reprocessing; high-level waste; gaseous waste; transuranic waste; low-level waste; remedial action; transportation; disposal; radiation information; environment; legislation; socio-political aspects; conversion factors; and a glossary. (GHT)

  10. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  11. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  12. Revitalizing Nuclear Safety Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    This report covers the general issues involved in nuclear safety research and points out the areas needing detailed consideration. Topics included are: (1) "Principles of Nuclear Safety Research" (examining who should fund, who should conduct, and who should set the agenda for nuclear safety research); (2) "Elements of a Future Agenda for Nuclear…

  13. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  14. Effects of Nuclear Weapons.

    ERIC Educational Resources Information Center

    Sartori, Leo

    1983-01-01

    Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…

  15. Teaching Nuclear History.

    ERIC Educational Resources Information Center

    Holl, Jack M.; Convis, Sheila C.

    1991-01-01

    Presents results of a survey of the teaching about nuclear history at U.S. colleges and universities. Reports the existence of a well-established and extensive literature, a focus on nuclear weapons or warfare, and a concentration on nuclear citizenship, therapy, or eschatology for courses outside of history departments. Discusses individual…

  16. Commercial nuclear power 1990

    SciTech Connect

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  17. History of Nuclear India

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ram

    2000-04-01

    India emerged as a free and democratic country in 1947, and entered into the nuclear age in 1948 by establishing the Atomic Energy Commission (AEC), with Homi Bhabha as the chairman. Later on the Department of Atomic Energy (DAE) was created under the Office of the Prime Minister Jawahar Lal Nehru. Initially the AEC and DAE received international cooperation, and by 1963 India had two research reactors and four nuclear power reactors. In spite of the humiliating defeat in the border war by China in 1962 and China's nuclear testing in 1964, India continued to adhere to the peaceful uses of nuclear energy. On May 18, 1974 India performed a 15 kt Peaceful Nuclear Explosion (PNE). The western powers considered it nuclear weapons proliferation and cut off all financial and technical help, even for the production of nuclear power. However, India used existing infrastructure to build nuclear power reactors and exploded both fission and fusion devices on May 11 and 13, 1998. The international community viewed the later activity as a serious road block for the Non-Proliferation Treaty and the Comprehensive Test Ban Treaty; both deemed essential to stop the spread of nuclear weapons. India considers these treaties favoring nuclear states and is prepared to sign if genuine nuclear disarmament is included as an integral part of these treaties.

  18. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  19. Overview of nuclear data

    SciTech Connect

    Firestone, R.B.

    2003-06-30

    For many years, nuclear structure and decay data have been compiled and disseminated by an International Network of Nuclear Structure and Decay Data (NSDD) evaluators under the auspices of the International Nuclear Data Committee (INDC) of the International Atomic Energy Agency (IAEA). In this lecture I will discuss the kinds of data that are available and describe various ways to obtain this information. We will learn about some of the publications that are available and Internet sources of nuclear data. You will be introduced to Isotope Explorer software for retrieving and displaying nuclear structure and radioactive decay data. The on-line resources Table of Radioactive Isotopes, PGAA Database Viewer, Nuclear Science Reference Search, Table of Isotopes Educational Website, and other information sources will be discussed. Exercises will be provided to increase your ability to understand, access, and use nuclear data.

  20. Environmental consequences of nuclear war

    SciTech Connect

    Harwell, M.A.; Hutchinson, T.C.; Cropper, W.P. Jr.; Harwell, C.C.; Grover, H.D.

    1989-01-01

    This book addresses the ecological, agricultural, and human effects of nuclear war. The topics covered include: Ecological principles relevant to nuclear war; Vulnerability of ecological systems to climatic effects on nuclear war; Additional potential effects of nuclear war on ecological systems; Potential effects of nuclear war on agricultural productivity; Food availability after nuclear war; and Experiences and extrapolations from Hiroshima and Nagasaki.

  1. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  2. British nuclear policymaking

    SciTech Connect

    Bowie, C.J.; Platt, A.

    1984-01-01

    This study analyzes the domestic political, economic, and bureaucratic factors that affect the nuclear policymaking process in Great Britain. Its major conclusion is that, although there have been changes in that process in recent years (notably the current involvement of a segment of the British public in the debate about the deployment of intermediate-range nuclear forces), future British nuclear policymaking will remain much what it has been in the past. Three ideas are central to understanding British thinking on the subject: (1) Britain's long-standing resolve to have her own national nuclear force is largely traceable to her desire to maintain first-rank standing among the nations of the world in spite of loss of empire. (2) Financial considerations have always been important--so much so that they have usually dominated issues of nuclear policy. (3) The executive branch of government dominates the nuclear policymaking process but does not always present a united front. The United States heavily influences British nuclear policy through having supplied Britain since the late 1950s with nuclear data and components of nuclear weapon systems such as Polaris and Trident. The relationship works both ways since the U.S. depends on Britain as a base for deployment of both conventional and nuclear systems.

  3. NUCLEAR DATABASES FOR REACTOR APPLICATIONS.

    SciTech Connect

    PRITYCHENKO, B.; ARCILLA, R.; BURROWS, T.; HERMAN, M.W.; MUGHABGHAB, S.; OBLOZINSKY, P.; ROCHMAN, D.; SONZOGNI, A.A.; TULI, J.; WINCHELL, D.F.

    2006-06-05

    The National Nuclear Data Center (NNDC): An overview of nuclear databases, related products, nuclear data Web services and publications. The NNDC collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. The NNDC maintains and contributes to the nuclear reaction (ENDF, CSISRS) and nuclear structure databases along with several others databases (CapGam, MIRD, IRDF-2002) and provides coordination for the Cross Section Evaluation Working Group (CSEWG) and the US Nuclear Data Program (USNDP). The Center produces several publications and codes such as Atlas of Neutron Resonances, Nuclear Wallet Cards booklets and develops codes, such as nuclear reaction model code Empire.

  4. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  5. Ongoing Space Nuclear Activities

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2007-01-01

    Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.

  6. Assessing the nuclear age

    SciTech Connect

    Ackland, L.; McGuire, S.

    1986-01-01

    This book presents papers on nuclear weapons and arms control. Topics considered include historical aspects, the arms race, nuclear power, flaws in the non-proliferation treaty, North-South issues, East-West confrontation, Soviet decision making with regard to national defense, US and Soviet perspectives on national security, ballistic missile defense (''Star Wars''), political aspects, nuclear winter, stockpiles, US foreign policy, and military strategy.

  7. Nuclear power in space

    SciTech Connect

    Aftergood, S. ); Hafemeister, D.W. ); Prilutsky, O.F.; Rodionov, S.N. ); Primack, J.R. )

    1991-06-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space.

  8. Nuclear power in space

    NASA Astrophysics Data System (ADS)

    Written and verbal testimony presented before the House Subcommittee on Energy Research and Development is documented. Current research efforts related to space nuclear power are discussed including the SP-100 Space Reactor Program, development of radioisotope thermoelectric generators, and the Advanced Nuclear Systems Program. Funding, research and test facilities, specific space mission requirements, and the comparison of solar and nuclear power systems are addressed. Witnesses included representatives from DOD, NASA, DOE, universities, and private industry.

  9. Nuclear Proliferation Challenges

    SciTech Connect

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conference’s failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  13. Nuclear free zone

    SciTech Connect

    Christoffel, T.

    1987-07-01

    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used. The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system.

  14. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  15. Technologists for Nuclear Medicine

    ERIC Educational Resources Information Center

    Barnett, Huey D.

    1974-01-01

    Physicians need support personnel for work with radioisotopes in diagnosing dangerous diseases. The Nuclear Medicine Technology (NMT) Program at Hillsborough Community College in Tampa, Florida, is described. (MW)

  16. Nuclear Energy and the Environment.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  17. Gordon Conference on Nuclear Research

    SciTech Connect

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei.

  18. Nuclear-Powered Debate.

    ERIC Educational Resources Information Center

    Arce, Gary

    1992-01-01

    Describes an exercise to develop interest and understanding about nuclear energy in which students make presentations regarding a proposal to build a hypothetical nuclear power plant. Students spend two weeks researching the topic; give testimony before a "Senate Energy Committee"; and vote on the proposal. Background information is provided. (MDH)

  19. Exotic nuclear matter

    NASA Astrophysics Data System (ADS)

    Lenske, H.; Dhar, M.; Tsoneva, N.; Wilhelm, J.

    2016-01-01

    Recent developments of nuclear structure theory for exotic nuclei are addressed. The inclusion of hyperons and nucleon resonances is discussed. Nuclear multipole response functions, hyperon interactions in infinite matter and in neutron stars and theoretical aspects of excitations of nucleon resonances in nuclei are discussed.

  20. Nuclear Taskforce Summation.

    ERIC Educational Resources Information Center

    1979

    At the end of 1978, there were approximately 230 nuclear-fueled electric generating plants around the world; 72 of these were in the United States. Each plant requires an operations-and-maintenance workforce of 92 people, and attrition occurs at a rate of 8% per year. Requirements for a nuclear taskforce and job training, in view of current…

  1. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  2. Nuclear Charge Radii Systematics

    SciTech Connect

    Marinova, Krassimira

    2015-09-15

    This paper is a brief overview of the existing systematics on nuclear mean square charge radii, obtained by a combined analysis of data from different types of experiment. The various techniques yielding data on nuclear charge radii are summarized. Their specific feature complexities and the accuracy and precision of the obtained information are also discussed.

  3. Talk About Nuclear Power

    ERIC Educational Resources Information Center

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  4. Nuclear physics and cosmology

    SciTech Connect

    Coc, Alain

    2014-05-09

    There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

  5. Nuclear effects at HERA

    SciTech Connect

    Brodsky, S.J.

    1996-07-01

    The development of a nuclear beam facility at HERA would allow the study of fundamental features of quark and gluon interactions in QCD. I briefly review the physics underlying nuclear shadowing and anti-shadowing as well as other diffractive and jet fragmentation processes that can be studies in high energy electron-nucleus collisions.

  6. Nuclear Shuttle in Flight

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  7. Nucleation of nuclear bodies.

    PubMed

    Dundr, Miroslav

    2013-01-01

    The nucleus is a complex organelle containing numerous highly dynamic, structurally stable domains and bodies, harboring functions that have only begun to be defined. However, the molecular mechanisms for their formation are still poorly understood. Recently it has been shown that a nuclear body can form de novo by self-organization. But little is known regarding what triggers the formation of a nuclear body and how subsequent assembly steps are orchestrated. Nuclear bodies are frequently associated with specific active gene loci that directly contribute to their formation. Both coding and noncoding RNAs can initiate the assembly of nuclear bodies with which they are physiologically associated. Thus, the formation of nuclear bodies occurs via recruitment and consequent accumulation of resident proteins in the nuclear bodies by nucleating RNA acting as a seeder. In this chapter I describe how to set up an experimental cell system to probe de novo biogenesis of a nuclear body by nucleating RNA and nuclear body components tethered on chromatin. PMID:23980018

  8. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  9. Nuclear Weapons and Schools.

    ERIC Educational Resources Information Center

    Howie, David I.

    1984-01-01

    The growing debate on nuclear weapons in recent years has begun to make inroads into school curricula. Elementary and secondary school teachers now face the important task of educating their students on issues relating to nuclear war without indoctrinating them to a particular point of view. (JBM)

  10. Vertical nuclear proliferation.

    PubMed

    Sidel, Victor W

    2007-01-01

    All the nuclear-weapon states are working to develop new nuclear-weapon systems and upgrade their existing ones. Although the US Congress has recently blocked further development of small nuclear weapons and earth-penetrating nuclear weapons, the United States is planning a range of new warheads under the Reliable Replacement Warhead programme, and renewing its nuclear weapons infrastructure. The United Kingdom is spending 1 billion pounds sterling on updating the Atomic Weapons Establishment at Aldermaston, and about 20 billion pounds sterling on replacing its Vanguard submarines and maintaining its Trident warhead stockpile. The US has withdrawn from the Anti-Ballistic Missile Treaty and plans to install missile defence systems in Poland and the Czech Republic; Russia threatens to upgrade its nuclear countermeasures. The nuclear-weapon states should comply with their obligations under Article VI of the Non-Proliferation Treaty, as summarised in the 13-point plan agreed at the 2000 NPT Review Conference, and they should negotiate a Nuclear Weapons Convention.

  11. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  12. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  13. Under the Nuclear Umbrella.

    ERIC Educational Resources Information Center

    Williams, Leon F.

    1987-01-01

    Entertains the thesis that social work has a stake in the technological-humanistic debate and should greet the recent and spectacular technological failures with protest and alarm. Discusses relationship of nuclear issue and social work, effects of nuclear issue on children, and Chernobyl. Advocates pacifism, activism, and a coherent conception of…

  14. TRAINING NUCLEAR TECHNICIANS.

    ERIC Educational Resources Information Center

    KOVNER, EDGAR A.

    PROBLEMS CONFRONTED BY PLANNERS OF NUCLEAR PROGRAMS AT THE TECHNICIAN LEVEL INCLUDE (1) LACK OF PRECEDENT IN CURRICULUM, COURSE OUTLINES, AND GRADUATE PLACEMENT, (2) DIFFICULTY IN DETERMINING COSTS OF LABORATORY CONSTRUCTION, EQUIPMENT, AND OPERATION, AND (3) REQUIREMENT OF ATOMIC ENERGY COMMISSION LICENSES IN NUCLEAR OCCUPATIONS. A 92-SEMESTER…

  15. Lipid droplets go nuclear.

    PubMed

    Farese, Robert V; Walther, Tobias C

    2016-01-01

    Lipid droplets (LDs) are sometimes found in the nucleus of some cells. In this issue, Ohsaki et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507122) show that the nuclear membrane, promyelocytic leukemia bodies, and the protein PML-II play a role in nuclear LD formation, suggesting functional relationships between these structures. PMID:26728852

  16. Nuclear physics: Macroscopic aspects

    SciTech Connect

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions {h_bar} {yields} 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses.

  17. World nuclear outlook 1994

    SciTech Connect

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  18. World nuclear outlook 1995

    SciTech Connect

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  19. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect

    Sanruddin, A.K.

    1986-01-01

    The proceedings of a colloquium convened by the Groupe de Bellerive offers the contributions of Carl Sagan, Gabriel Garcia Marquez, Kenneth Galbraith, Pierre Trudeau, Edward Kennedy, and other eminent scientists, politicians, and strategists on the subject of the proliferation of nuclear weaponry and its potential ramifications.

  20. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  1. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  2. The nuclear pore complex and nuclear transport.

    PubMed

    Wente, Susan R; Rout, Michael P

    2010-10-01

    Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures is the nucleus, which is bounded by a double membrane termed the nuclear envelope (NE). Though this NE separates the nucleoplasm and genetic material within the nucleus from the surrounding cytoplasm, it is studded throughout with portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of protein and ribonucleoprotein cargoes. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, and the NPC carries binding sites for many of the proteins that modulate and modify the cargoes as they pass across the NE. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation. All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes. PMID:20630994

  3. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  4. US nuclear weapons policy

    SciTech Connect

    May, M.

    1990-12-05

    We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

  5. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear... (10 CFR), Section 2.206, ``Requests for Action under this Subpart,'' the U.S. Nuclear...

  6. 75 FR 39057 - Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear... CFR), Section 2.206, ``Requests for Action under this Subpart,'' the U.S. Nuclear...

  7. The nuclear dynamo; Can a nuclear tornado annihilate nations

    SciTech Connect

    McNally, J.R. Jr.

    1991-01-01

    This paper reports on the development of the hypothesis of a nuclear dynamo for a controlled nuclear fusion reactor. This dynamo hypothesis suggests properties for a nuclear tornado that could annihilate nations if accidentally triggered by a single high yield to weight nuclear weapon detonation. The formerly classified reports on ignition of the atmosphere, the properties of a nuclear dynamo, methods to achieve a nuclear dynamo in the laboratory, and the analogy of a nuclear dynamo to a nuclear tornado are discussed. An unclassified international study of this question is urged.

  8. Supporting Our Nation's Nuclear Industry

    SciTech Connect

    Lyons, Peter

    2011-01-01

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  9. Radiological Effects of Nuclear War.

    ERIC Educational Resources Information Center

    Shapiro, Charles S.

    1988-01-01

    Described are the global effects of nuclear war. Discussed are radiation dosages, limited nuclear attacks, strategic arms reductions, and other results reported at the workshop on nuclear war issues in Moscow in March 1988. (CW)

  10. Supporting Our Nation's Nuclear Industry

    ScienceCinema

    Lyons, Peter

    2016-07-12

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  11. Your Radiologist Explains Nuclear Medicine

    MedlinePlus

    ... produced by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  12. Nuclear forensics: Soil content

    SciTech Connect

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  13. Evaluated Nuclear Data

    SciTech Connect

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  14. Nuclear Material Management Abstract

    SciTech Connect

    Jesse C. Schreiber

    2007-07-10

    Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed.

  15. The new nuclear nations

    SciTech Connect

    Spector, L.

    1985-01-01

    Using 251 pages of text, 66 pages of references and 26 pages of appendixes, Spector delves into a world of new nuclear suppliers whose voracious hunger for profits may lead them to provide unwise assistance to countries that are unduly interested in nuclear weaponry. He assails a new dragon, a 'nuclear netherworld' that would illicitly supply such items for profit or political gain. Spector's book tells of covert dealings in nuclear technologies and materials. For him, the buyers have but one goal: '... to gain possession of the knowledge and materials necessary for development of nuclear weapons'. He warns of dangers from this illicit trade, of the loopholes in existing controls and the need to close them. His warnings come wrapped in stories of undercover transactions, many about Pakistan's efforts to get what it needs for its centrifuge enrichment plant. Recognizing the tightening of controls over nuclear trade since the 1970s, including those for dual-use items, Spector is nonetheless pessimistic that these efforts are sufficient to irradicate the nuclear netherworld or to deter newcomers from it.

  16. Perspectives of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Faessler, Amand

    2003-04-01

    The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics will develop quite fast: (1) Quantum Chromodynamics and effective field theories in the confinement region. (2) Nuclear structure at the limits. (3) High energy heavy ion collisions. (4) Nuclear astrophysics. (5) Neutrino physics. (6) Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: (1) The perturbative chiral quark model and the nucleon Σ-term. (2) VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renaissance. (3) Measurement of important astrophysical nuclear reactions in the Gamow peak. (4) The solar neutrino problem. As examples for testing new physics beyond the standard model by rare processes I had prepared to speak about the measurement of the electric neutron dipole moment and of the neutrinoless double beta decay. But the time is limited and so I have to skip these points, although they are extremely interesting.

  17. American Society of Nuclear Cardiology

    MedlinePlus

    ... much more! class="box-li"> Journal of Nuclear Cardiology Official publication of the American Society of Nuclear Cardiology Clinical Guidelines Procedures, Appropriate Use Criteria, Information Statements ...

  18. Virtual nuclear weapons

    SciTech Connect

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  19. Launch Vehicle Fire Accident Preliminary Analysis of a Liquid-Metal Cooled Thermionic Nuclear Reactor: TOPAZ-II

    NASA Astrophysics Data System (ADS)

    Hu, G.; Zhao, S.; Ruan, K.

    2012-01-01

    In this paper, launch vehicle propellant fire accident analysis of TOPAZ-II reactor has been done by a thermionic reactor core analytic code-TATRHG(A) developed by author. When a rocket explodes on a launch pad, its payload-TOPAZ-II can be subjected to a severe thermal environment from the resulting fireball. The extreme temperatures associated with propellant fires can create a destructive environment in or near the fireball. Different kind of propellants - liquid propellant and solid propellant which will lead to different fire temperature are considered. Preliminary analysis shows that the solid propellant fires can melt the whole toxic beryllium radial reflector.

  20. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  1. Advances in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Frois, B.

    2005-04-01

    This paper briefly reviews the next generations of nuclear reactors and the perspectives of development of nuclear energy. Advanced reactors will progressively replace the existing ones during the next two decades. Future systems of the fourth generation are planned to be built beyond 2030. These systems have been studied in the framework of the "Generation IV" International Forum. The goals of these systems is to have a considerable increase in safety, be economically competitive and produce a significantly reduced volume of nuclear wastes. The closed fuel cycle is preferred.

  2. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  3. Nuclear power after Chernobyl.

    PubMed

    Ahearne, J F

    1987-05-01

    The causes and progress of the accident at Chernobyl are described, and a comparison between the Chernobyl accident and the 1979 accident at the Three Mile Island nuclear power station is made. Significant similarities between Chernobyl and Three Mile Island include complacency of operators and industry, deliberate negation of safety systems, and a lack of understanding of their plant on the part of the operators, which shows the critical importance of the human element. The Chernobyl accident has implications for nuclear power in the United States; it will affect the research program of the Nuclear Regulatory Commission, regulation of Department of Energy reactors, new reactor designs, and public attitudes. PMID:3576192

  4. Fictions of nuclear disaster

    SciTech Connect

    Dowling, D.

    1987-01-01

    This work is critical study of literary interpretations of the nuclear holocaust. The author examines more than 250 stories and novels dealing with the theme of nuclear power and its devastating potential implications. Addressing such topics as the scientist and Armageddon, the role of religion, future evolution and mutation, and the postnuclear society, the author assesses the response of Bradbury, Lessing, Malamud, Shute, Huxley, Vonnegut, Heinlein, and others to the threat of nuclear apocalypse, with in-depth analyses of Alter Miller's A canticle for Leibowitz and Russell Hoban's Riddley Walker.

  5. Nuclear Medicine Annual, 1989

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  6. Nuclear regulation and safety

    SciTech Connect

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

  7. Nuclear lipid droplets: a novel nuclear domain.

    PubMed

    Layerenza, J P; González, P; García de Bravo, M M; Polo, M P; Sisti, M S; Ves-Losada, A

    2013-02-01

    We investigated nuclear neutral-lipid (NL) composition and organization, as NL may represent an alternative source for providing fatty acids and cholesterol (C) to membranes, signaling paths, and transcription factors in the nucleus. We show here that nuclear NL were organized into nonpolar domains in the form of nuclear-lipid droplets (nLD). By fluorescent confocal microscopy, representative nLD were observed in situ within the nuclei of rat hepatocytes in vivo and HepG2 cells, maintained under standard conditions in culture, and within nuclei isolated from rat liver. nLD were resistant to Triton X-100 and became stained with Sudan Red, OsO4, and BODIPY493/503. nLD and control cytosolic-lipid droplets (cLD) were isolated from rat-liver nuclei and from homogenates, respectively, by sucrose-gradient sedimentation. Lipids were extracted, separated by thin-layer chromatography, and quantified. nLD were composed of 37% lipids and 63% proteins. The nLD lipid composition was as follows: 19% triacylglycerols (TAG), 39% cholesteryl esters, 27% C, and 15% polar lipids; whereas the cLD composition contained different proportions of these same lipid classes, in particular 91% TAG. The TAG fatty acids from both lipid droplets were enriched in oleic, linoleic, and palmitic acids. The TAG from the nLD corresponded to a small pool, whereas the TAG from the cLD constituted the main cellular pool (at about 100% yield from the total homogenate). In conclusion, nLD are a domain within the nucleus where NL are stored and organized and may be involved in nuclear lipid homeostasis. PMID:23098923

  8. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. After nuclear war - a nuclear winter

    SciTech Connect

    Tangley, L.

    1984-01-01

    The environmental and biological consequences of nuclear war were discussed by more than 100 eminent biologists, physicists and atmospheric scientists at the recent World after Nuclear War conference. The long-term effects were determined to be worse than the well-known immediate effects. They predicted that 225 million tons of smoke would be generated within a few days in their baseline scenario. As a result, the amount of sunlight reaching the earth would be reduced to a few percent of normal and temperatures would fall to -23/sup 0/C. About 30% of the northern middle latitudes would receive more than 250 rads radiation dose for several months and about 50% of the land area would receive more than 100 rads. Dangerous levels of solar ultraviolet light would burn through the atmosphere. It was also determined that these effects would be felt in the southern hemisphere. Those who survived the blast, fire and prompt radiation would face starvation from shutdown of plant photosynthesis and inhibition of phytoplankton photosynthesis. Huge wildfires and acid rains would stress any surviving plants and animals. Conference participants agreed that scientists had taken a new and significant step toward understanding the full consequences of nuclear war.

  12. Nuclear data interface retrospective

    SciTech Connect

    Gray, Mark G

    2008-01-01

    The Nuclear Data Interface (NDI) code library and data formats are the standards for multigroup nuclear data at Los Alamos National Laboratory. NDI's analysis, design, implementation, testing, integration, and maintenance required a ten person-year and ongoing effort by the Nuclear Data Team. Their efforts provide a unique, contemporary experience in producing a standard component library. In reflection upon that experience at NDI's decennial, we have identified several factors critical to NDI's success: it addressed real problems with appropriate simplicity, it fully supported all users, it added extra value through the code to the raw nuclear data, and its team went the distance from analysis through maintenance. In this report we review these critical success factors and discuss their implications for future standardization projects.

  13. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  14. Nuclear plants - military hostages

    SciTech Connect

    Ramberg, B.

    1986-03-01

    Recent events suggest that nuclear reactors could make tempting military or terrorist targets. Despite the care with which most reactors are built, studies document their vulnerability to willful destruction through disruption of coolant mechanisms both inside and outside the containment building. In addition to reactors, such nuclear support facilities as fuel fabrication, reprocessing, and waste storage installations may be attractive military targets. A nuclear bomb which exploded in the vicinity of a reactor could increase its lethal effects by one-third. The implications of this is vulnerability for Middle East stability as well as to other volatile regions. The author suggests several avenues for controlling the dangers: international law, military and civil defense, facility siting, increasing plant safety, and the international management of nuclear energy. 21 references.

  15. Modeling nuclear explosion

    NASA Astrophysics Data System (ADS)

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  16. Desalting and Nuclear Energy

    ERIC Educational Resources Information Center

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  17. JPRS report, nuclear developments

    SciTech Connect

    1991-03-28

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea; (3) Bulgaria; (4) Argentina, Brazil, Honduras; (5) India, Iran, Pakistan, Syria; (6) Soviet Union; and (7) France, Germany, Turkey.

  18. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  19. Nuclear material operations manual

    SciTech Connect

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  20. What Is Nuclear Medicine?

    MedlinePlus

    ... known as cosmic radiation, is in the upper atmosphere due to solar and galactic emissions. A typical ... used in medical procedures. 4 Cosmic Radiation Sun - - + - Atmosphere - + +- + + Earth How many nuclear medicine procedures are performed ...

  1. International Nuclear Security

    SciTech Connect

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  2. Nuclear air cleaning

    SciTech Connect

    Bellamy, R.R.

    1994-12-31

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters.

  3. Nuclear Fuel Reprocessing

    SciTech Connect

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  4. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  5. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  6. The nuclear matter problem

    SciTech Connect

    Carlson, J. A.; Cowell, S.; Morales, J.; Ravenhall, D. G.; Pandharipande, V. R.

    2002-01-01

    We review the present statiis of the many-body theory of nuclear and pure neutron matter based on realistic models of nuclear forces, The current models of two- and three-nucleon interactions are discussed along with recent results obtained with the Brueckner and variatioual methods. New initiatives in the variational method and quantuni Monte Carlo nicthods to study pure neutron matter are described, and finally, the analytic behavior of the energy of piire neutron matter at low densities is cliscussed.

  7. Principles of nuclear geology

    SciTech Connect

    Aswathanarayana, U.

    1985-01-01

    This book treats the basic principles of nuclear physics and the mineralogy, geochemistry, distribution and ore deposits of uranium and thorium. The application of nuclear methodology in radiogenic heat and thermal regime of the earth, radiometric prospecting, isotopic age dating, stable isotopes and cosmic-ray produced isotopes is covered. Geological processes, such as metamorphic chronology, petrogenesis, groundwater movement, and sedimentation rate are focussed on.

  8. Nuclear Plant Inspection

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  9. Nuclear Fuel Cycle

    SciTech Connect

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  10. Internet - a nuclear update

    SciTech Connect

    Slone, B.J. III; Richardson, C.E.; Buck, B.L.

    1994-12-31

    Although the connection rate is slow, new nuclear utility Internet connections are being made. However, the rate of information exchange has not grown. To expedite connections, individuals are obtaining their own Internet accounts to support job-related and personal needs. The nuclear industry should increase its use of Internet to share information and access information from on-line servers. A coordinated industry effort should be made to expedite additional utility connections and provide a server system for information exchange.

  11. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  12. Nuclear and radiochemical analysis

    SciTech Connect

    Ehmann, W.D.; Yates, S.W.

    1988-06-15

    In this, their second fundamental review under the present authorship and title, they have chosen to continue their emphasis on topics representing the use of nuclear properties for chemical analysis. Excluded are topics in the areas of health physics, nuclear spectroscopy (unless directly related to analysis), nuclear engineering, fusion, radioactive waste disposal, fallout, and nuclear and particle physics. Other topics such as particle-induced X-ray emission (PIXE), plasma desorption mass spectrometry, radioimmunoassay, Moessbauer spectroscopy, nuclear dating methods, and radiotracer applications are treated briefly here, since they are adequately covered in other current reviews in this or other major journals. Only a brief mention is made of well logging, since many of the advances in this field do not currently appear in the open literature. As in their previous review, they finish with short comments on some interesting developments in nuclear and radiochemistry that are not strictly analytical in nature. This review is based largely on a computerized keyword search of Chemical Abstracts (CA) for the period from mid-November 1985 through December 31, 1987.

  13. Superpower nuclear minimalism

    SciTech Connect

    Graben, E.K.

    1992-01-01

    During the Cold War, the United States and the Soviet Union competed in building weapons -- now it seems like America and Russia are competing to get rid of them the fastest. The lengthy process of formal arms control has been replaced by exchanges of unilateral force reductions and proposals for reciprocal reductions not necessarily codified by treaty. Should superpower nuclear strategies change along with force postures President Bush has yet to make a formal pronouncement on post-Cold War American nuclear strategy, and it is uncertain if the Soviet/Russian doctrine of reasonable sufficiency formulated in the Gorbachev era actually heralds a change in strategy. Some of the provisions in the most recent round of unilateral proposals put forth by Presidents Bush and Yeltsin in January 1992 are compatible with a change in strategy. Whether such a change has actually occurred remains to be seen. With the end of the Cold War and the breakup of the Soviet Union, the strategic environment has fundamentally changed, so it would seem logical to reexamine strategy as well. There are two main schools of nuclear strategic thought: a maximalist school, mutual assured destruction (MAD) which emphasizes counterforce superiority and nuclear war- fighting capability, and a MAD-plus school, which emphasizes survivability of an assured destruction capability along with the ability to deliver small, limited nuclear attacks in the event that conflict occurs. The MAD-plus strategy is based on an attempt to conventionalize nuclear weapons which is unrealistic.

  14. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  15. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  16. Thinking About Preventing Nuclear War.

    ERIC Educational Resources Information Center

    Ground Zero, Washington, DC.

    Potential paths to nuclear war and the available means of prevention of nuclear war are discussed. Presented is a detailed description of six nuclear war scenarios, and brief examples of types of potential deterrents to nuclear war (firebreaks) which are relevant for each. To be effective, the right combination of firebreaks must be used, the…

  17. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory...

  18. Panel report: nuclear physics

    SciTech Connect

    Carlson, Joseph A; Hartouni, Edward P

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the

  19. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  20. BOLIDE PHYSICAL THEORY WITH APPLICATION TO PN AND EN FIREBALLS.

    SciTech Connect

    ReVelle, D. O.

    2001-01-01

    Using data on 22 'precise bolides' with up to 882 individual points on their trajectories and using data on 29 'bright bolides' and on 10 artificial meteors, we tried to derive dependence of ablation and shape-density coefficients, and of luminous efficiency on various time dependent parameters. The only significant dependence we found was that on v{sub {infinity}} - v (on difference of initial and instantaneous velocities). We present the results as Eq. 3, 4 and 8, with coefficients a{sub 1}, a{sub 2}, a{sub 3}, a{sub 4}, b{sub 1}, b{sub 2}, a{sub 3}, c{sub 1}, c{sub 2}, computed for different bolide types. Also average values of ablation, and shape-density coefficients as well as average luminous efficiencies for individual bolide types are given.

  1. NASA Meteor Cam Video of June 2, 2016 Arizona Fireball

    NASA Video Gallery

    Video obtained from the NASA meteor camera situated at the MMT Observatory on the site of the Fred Lawrence Whipple Observatory, located on Mount Hopkins, Arizona, in the Santa Rita Mountains. Cred...

  2. Back-to-back correlations for finite expanding fireballs

    SciTech Connect

    Padula, Sandra S.; Krein, G.; Csoergo'', T.; Hama, Y.; Panda, P.K.

    2006-04-15

    Back-to-back correlations of particle-antiparticle pairs are related to the in-medium mass-modification and squeezing of the quanta involved. They are predicted to appear when hot and dense hadronic matter is formed in high energy nucleus-nucleus collisions. The survival and magnitude of the back-to-back correlations (BBC) of boson-antiboson pairs generated by in-medium mass modifications are studied here in the case of a thermalized, finite-sized, spherically symmetric expanding medium. We show that the BBC signal indeed survives the finite-time emission, as well as the expansion and flow effects, with sufficient intensity to be observed at BNL Relativistic Heavy Ion Collider (RHIC)

  3. Nuclear Regulatory Commission information digest

    SciTech Connect

    None,

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide.

  4. NESST: A nuclear energy safety and security treaty-Separating nuclear energy from nuclear weapons

    NASA Astrophysics Data System (ADS)

    McNamara, Brendan

    2012-06-01

    Fission and Fusion energy is matched by the need to completely separate civilian energy programmes from the production of nuclear weapons. The Nuclear Proliferation Treaty (NPT, 1968) muddles these issues together. The case is presented here for making a new Nuclear Energy Security Treaty (NESST) which is rigorous, enforceable without violence, and separate from the political quagmire of nuclear weapons.

  5. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  6. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  7. Nuclear age thinking

    SciTech Connect

    Depastas, A.N.

    1990-01-01

    According to the practicalist school, thinking emerges from activity and each human practice is giving food to its own distinctive kinds of perception, conduct, and perspective of the world. The author, while studying and describing developments after the commencement of the nuclear age in many fields of human behavior and knowledge, including the social sciences, particularly psychology and international politics, became an adherent to the practicalist philosophy when he perceived new relevant thoughts coming to his mind at the same time. Indeed writing is a learning experience. He has, therefore, systematically included these thoughts in the following pages and synoptically characterized them in the title: Nuclear Age Thinking. He considers this kind of thinking as automatic, conscious activity which is gradually influencing our choices and decisions. The author has reservations as regards Albert Einstein's saying that the unleashed power of the atom changed everything save our modes of thinking, because the uncontrollability of nuclear energy is apparently in the subconscious of mankind nowadays, influencing the development of a new mode of thinking, and that is the nuclear age thinking which is the subject of this book. Nuclear age thinking drives from the collective fear of extinction of life on earth due to this new power at man's disposal, and it is not only limited to the change in the conventional meaning of the words war and peace.

  8. Europe's nuclear dominos

    SciTech Connect

    Sharp, J. )

    1993-06-01

    As long as the United States continues to play a leading role in NATO, the incentive for European powers to acquire independent nuclear weapons is virtually zero. Most European power, however, have relatively sophisticated nuclear establishments and could easily manufacture nuclear explosives if they judged that their security required an independent capability. They might judge so if the United States pulls out of Europe and out of NATO. It is the opinion of the author that if the United States withdraws, and if France and Britain insist on maintaining their current status as independent nuclear weapons powers, they will encourage proliferation by example. The likelihood of different countries deciding to manufacture nuclear weapons under these cicumstances is evaluated. The future of NATO is assessed. The conclusions of and future structure of the Conference on Cooperation and Security in Europe (CSCE) is discussed. The impact of United Nations involvement in preventing proliferation is evaluated. Recommendations are proposed for the utilization of existing organizations to deter proliferation in Europe.

  9. Nuclear Lunar Logistics Study

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This document has been prepared to incorporate all presentation aid material, together with some explanatory text, used during an oral briefing on the Nuclear Lunar Logistics System given at the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, on 18 July 1963. The briefing and this document are intended to present the general status of the NERVA (Nuclear Engine for Rocket Vehicle Application) nuclear rocket development, the characteristics of certain operational NERVA-class engines, and appropriate technical and schedule information. Some of the information presented herein is preliminary in nature and will be subject to further verification, checking and analysis during the remainder of the study program. In addition, more detailed information will be prepared in many areas for inclusion in a final summary report. This work has been performed by REON, a division of Aerojet-General Corporation under Subcontract 74-10039 from the Lockheed Missiles and Space Company. The presentation and this document have been prepared in partial fulfillment of the provisions of the subcontract. From the inception of the NERVA program in July 1961, the stated emphasis has centered around the demonstration of the ability of a nuclear rocket to perform safely and reliably in the space environment, with the understanding that the assignment of a mission (or missions) would place undue emphasis on performance and operational flexibility. However, all were aware that the ultimate justification for the development program must lie in the application of the nuclear propulsion system to the national space objectives.

  10. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  11. Pediatric nuclear medicine

    SciTech Connect

    Not Available

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  12. Nuclear Parton Distribution Functions

    SciTech Connect

    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens

    2009-06-01

    We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.

  13. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  14. Atlas of Nuclear Isomers

    SciTech Connect

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  15. Nuclear transfer in ruminants.

    PubMed

    Lee, Joon-Hee; Maalouf, Walid E

    2015-01-01

    Ruminants were the first mammalian species to be cloned successfully by nuclear transplantation. Those experiments were designed to multiply high merit animals (Willadsen, Nature 320(6057):63-65, 1986; Prather et al., Biol Reprod 37(4):859-866, 1987; Wilmut et al., Nature 385(6619):810-813, 1997). Since then, cloning has provided us with a vast amount of knowledge and information on the reprogramming ability of somatic cells to different cell types which became an important basis for stem cell research and human medicine. Nowadays, the goals of most nuclear transfer work vary widely but in most cases the micromanipulation procedures remain the same. However, differences between species require different technical considerations. In this chapter, we describe in detail somatic cell nuclear transfer which is the foremost method for cloning ruminants with specific reference to sheep and cattle.

  16. Nuclear resonant spectroscopy

    NASA Astrophysics Data System (ADS)

    Sturhahn, Wolfgang

    2004-02-01

    Nuclear resonant scattering techniques with synchrotron radiation (SR) are introduced on a basic level. We focus on the theoretical background and on experimental aspects of two popular methods with a widening range of applications, nuclear resonant inelastic x-ray scattering and synchrotron Mössbauer spectroscopy. The inelastic method provides specific vibrational information, e.g., the phonon density of states. The Mössbauer method permits determination of hyperfine interactions. All nuclear resonance techniques take full advantage of the unique properties of SR: intensity, collimation, time structure, and polarization. As a result both methods discussed here have led to novel applications for materials under extreme conditions, proteins with biological functionality, and magnetic nanostructures.

  17. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  18. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  19. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  20. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  1. Swedish nuclear waste efforts

    SciTech Connect

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  2. Shoreham Nuclear Power Plant

    SciTech Connect

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated on such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.

  3. Nuclear structure research

    NASA Astrophysics Data System (ADS)

    Brenner, D. S.

    1992-07-01

    The TRISTAN on-line isotope separator and the capture gamma ray facility at the HFBR are the experimental foci of the program which has four principal research themes, three involving nuclear structure physics and one directed towards astrophysics. These themes are: (1) the manifestation of the proton-neutron interaction in the evolution of nuclear structure and its relation to collectivity; (2) the appearance and the role of symmetries and supersymmetries in nuclei; (3) the study of new regions of magic nuclei; and (4) the characterization of nuclei important in r-process stellar nucleosynthesis.

  4. Introduction to nuclear physics.

    PubMed

    Patton, J A

    1998-01-01

    Photons for counting or imaging applications in nuclear medicine result from several processes. Gamma rays are produced from excited state transitions after beta decay and electron capture. Annihilation photons result from positron decay. The de-excitation of the atom after electron capture results in the production of characteristic x rays or Auger electrons. Metastable state transitions result in gamma ray emission or internal conversion electrons. All radiopharmaceuticals used in diagnostic nuclear medicine applications are tagged with radionuclides that emit photons as a result of one of these processes.

  5. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  6. Nuclear Innovation Workshops Report

    SciTech Connect

    Jackson, John Howard; Allen, Todd Randall; Hildebrandt, Philip Clay; Baker, Suzanne Hobbs

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  7. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  8. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  9. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  10. Managing nuclear operations

    SciTech Connect

    Carter, A.B.; Steinbruner, J.D.; Zraket, C.A.

    1987-01-01

    This book seeks to remedy the neglect of nuclear operations as a major flaw in the prevailing understanding of security. It aims to make the operational terrain at least more familiar if not much firmer. It describes the instruments involved in nuclear operations - the sensors, communications links, and command centers that form the physical network as well as the plans, procedures, organizations, and widely shared assumptions that allow the parts to work together coherently. The book as a whole seeks more to pose fundamental issues of operations management than to give definitive answers. It promotes no particular policy and makes no recommendations.

  11. Nuclear War Survival Skills

    SciTech Connect

    Kearny, C.H.

    2002-06-24

    The purpose of this book is to provide Americans with information and instructions that will significantly increase their chances of surviving a possible nuclear attack. It brings together field-tested instructions that, if followed by a large fraction of Americans during a crisis that preceded an attack, could save millions of lives. The author is convinced that the vulnerability of our country to nuclear threat or attack must be reduced and that the wide dissemination of the information contained in this book would help achieve that objective of our overall defense strategy.

  12. Friction in nuclear dynamics

    SciTech Connect

    Swiatecki, W.J.

    1985-03-01

    The problem of dissipation in nuclear dynamics is related to the breaking down of nuclear symmetries and the transition from ordered to chaotic nucleonic motions. In the two extreme idealizations of the perfectly Ordered Regime and the fully Chaotic Regime, the nucleus should behave as an elastic solid or an overdamped fluid, respectively. In the intermediate regime a complicated visco-elastic behaviour is expected. The discussion is illustrated by a simple estimate of the frequency of the giant quadrupole resonance in the Ordered Regime and by applications of the wall and window dissipation formulae in the Chaotic Regime. 51 refs.

  13. Nuclear Plant Data Bank

    SciTech Connect

    Booker, C.P.; Turner, M.R.; Spore, J.W.

    1986-01-01

    The Nuclear Plant Data Bank (NPDB) is being developed at the Los Alamos National Laboratory to assist analysts in the rapid and accurate creation of input decks for reactor transient analysis. The NPDB will reduce the time and cost of the creation or modification of a typical input deck. This data bank will be an invaluable tool in the timely investigation of recent and ongoing nuclear reactor safety analysis. This paper discusses the status and plans for the NPDB development and describes its anticipated structure and capabilities.

  14. Nuclear waste's last stand

    SciTech Connect

    Not Available

    1992-12-01

    It's hard to imagine a more unwelcome neighbor than nuclear waste. But something has to be done with the spent fuel now piling up at nuclear plants in the United States. While a handful of Indian tribes and other communities have shown interest in hosting a temporary storage site, the outcry from their neighbors and politicians may squash their plans. Now, a decade after the federal government began the search for a permanent repository, it still can't find even a temporary destination. Here's look at the problem and its consequences.

  15. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  16. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  17. Nuclear physics. Fourth edition

    SciTech Connect

    Wehr, M.R.; Richards, J.A.; Adair, T.W.

    1984-01-01

    This book is designed to be an extension of the introductory college physics course into the realm of atomic physics: It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light and electricity. Topics included: the atomic view of matter; the atomic view of electricity; the atomic view of radiation; the atomic models of Rutherford and Bohr; relativity; x-rays; waves and particles; quantum mechanics; the atomic view of solids; natural radioactivity; nuclear reactions and artificial radioactivity; nuclear energy; and high-energy physics.

  18. Safety culture in the nuclear versus non-nuclear organization

    SciTech Connect

    Haber, S.B.; Shurberg, D.A.

    1996-10-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period.

  19. Nuclear effects in Neutrino Nuclear Cross-sections

    SciTech Connect

    Singh, S. K.; Athar, M. Sajjad

    2008-02-21

    Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a {delta} dominance model taking into account the renormalization of {delta} properties in the nuclear medium.

  20. Nuclear cardiograph and scintigraphy

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1975-01-01

    Extensive advances in the technology of detectors, data analysis systems, and tracers used have resulted in greatly expanded applications of radioisotopes to the assessment of cardiac function and disease. The development of nuclear cardiology has proceeded along four lines: (1) radionuclide angiography, (2) myocardial perfusion imaging, (3) intracoronary microsphere imaging, and (4) regional myocardial blood flow determination using inert gases.

  1. Nuclear testing: Executive summary

    SciTech Connect

    Drell, S.; Cornwall, J.; Dyson, F.

    1995-08-01

    The authors have examined the experimental and analytic bases for understanding the performance of each of the weapon types that are currently planned to remain in the US enduring nuclear stockpile. They have also examined whether continued underground tests at various nuclear yield thresholds would add significantly to the confidence in this stockpile in the years ahead. The starting point for this examination was a detailed review of past experience in developing and testing modern nuclear weapons, their certification and recertification processes, their performance margins, and evidence of aging or other trends over time for each weapon type in the enduring stockpile. The findings, as summarized in Conclusions 1 through 6, are consistent with US agreement to enter into a Comprehensive Test Ban Treaty (CTBT) of unending duration, that includes a standard ``supreme national interest`` clause. Recognizing that the challenge of maintaining an effective nuclear stockpile for an indefinite period without benefit of underground tests is an important and also a new one, the US should affirm its readiness to invoke the supreme national interest clause should the need arise as a result of unanticipated technical problems in the enduring stockpile.

  2. Nuclear Cluster Physics

    SciTech Connect

    Kamimura, Masayasu

    2011-05-06

    Predictive power of theory needs good models and accurate calculation methods to solve the Schroedinger equations of the systems concerned. We present some examples of successful predictions based on the nuclear cluster models of light nuclei and hypernuclei and on the calculation methods that have been developed by Kyushu group.

  3. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. Topics in nuclear power

    SciTech Connect

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  5. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  6. Nuclear and radiochemical analysis

    SciTech Connect

    Ehmann, W.D.; Robertson, J.D.; Yates, S.W.

    1992-06-15

    This is the fourth in a series of periodic reviews on the subject of nuclear and radiochemical analysis. The review covers material found in books and journals concerning radiochemical, neutron activation, charged-particle activation, ion beam, isotope dilution, direct counting, transmission, attenuation, scattering, tracer, and isotopic dating methods.

  7. Children's (Pediatric) Nuclear Medicine

    MedlinePlus

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  8. Washington: Hanford Nuclear Reservation

    Atmospheric Science Data Center

    2014-05-15

    ... area around the Hanford Nuclear Reservation near Richland, Washington. On June 27, 2000, a fire in the dry sagebrush was sparked by an ... CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, ...

  9. NUCLEAR CONVERSION APPARATUS

    DOEpatents

    Seaborg, G.T.

    1960-09-13

    A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

  10. Viewpoints on Nuclear Education.

    ERIC Educational Resources Information Center

    Social Education, 1983

    1983-01-01

    The Committee on the Present Danger, Inc., the Committee of Atomic Bomb Survivors in the United States, the World Friendship Center in Hiroshima, two authors, physics and education professors, an English and history teacher, and a high school student comment on nuclear education. (RM)

  11. Second Nuclear Era

    SciTech Connect

    Weinberg, A.M.; Spiewak, I.; Barkenbus, J.N.; Livingston, R.S.; Phung, D.L.

    1984-03-01

    The Institute for Energy Analysis with support from The Andrew W. Mellon Foundation has studied the decline of the present nuclear era in the United States and the characteristics of a Second Nuclear Era which might be instrumental in restoring nuclear power to an appropriate place in the energy options of our country. The study has determined that reactors operating today are much safer than they were at the time of the TMI accident. A number of concepts for a supersafe reactor were reviewed and at least two were found that show considerable promise, the PIUS, a Swedish pressurized water design, and a gas-cooled modular design of German and US origin. Although new, safer, incrementally improved, conventional reactors are under study by the nuclear industry, the complete lack of new orders in the United States will slow their introduction and they are likely to be more expensive than present designs. The study recommends that supersafe reactors be taken seriously and that federal and private funds both be used to design and, if feasible, to build a prototype reactor of substantial size. 146 references, 8 figures, 2 tables.

  12. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  13. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  14. JPRS report, nuclear developments

    SciTech Connect

    1991-03-19

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea, Taiwan; (3) Bulgaria, Czechoslovakia, Yugoslavia; (4) Argentina, Brazil, Panama; (5) India, Iran, Pakistan, Israel, Afghanistan; (6) Soviet Union; (7) France, Germany, Turkey, Belgium, Canada, Netherlands, Switzerland, United Kingdom; and (8) South Africa.

  15. JPRS report, nuclear developments

    SciTech Connect

    1991-01-04

    This report contains articles concerning the nuclear developments of the following countries: (1) China; (2) Japan, North Korea, South Korea; (3) Bulgaria, Czechoslovakia, Rumania; (4) Argentina, Brazil, Peru; (5) India, Iraq, Syria, Israel, Egypt, Mauritania, Pakistan; (6) Soviet Union; (7) France, Germany, Austria, Canada, Italy, Spain; and (8) South Africa.

  16. Preserving Nuclear Grade Knowledge

    SciTech Connect

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  17. Nuclear Radiation Damages Minds!

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Professors Ernest Sternglass (University of Pittsburgh) and Steven Bell (Berry College) have assembled cogent, conclusive evidence indicating that nuclear radiation is associated with impaired cognition. They suggest that Scholastic Aptitude Scores (SATs), which have declined steadily for 19 years, will begin to rise. Their prediction is based on…

  18. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  19. Nuclear Power in Space.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  20. Nuclear light bulb

    NASA Technical Reports Server (NTRS)

    Latham, Tom

    1991-01-01

    The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.

  1. NUCLEAR FUEL COMPOSITION

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.

    1960-05-31

    A novel reactor composition for use in a self-sustaining fast nuclear reactor is described. More particularly, a fuel alloy comprising thorium and uranium-235 is de scribed, the uranium-235 existing in approximately the same amount that it is found in natural uranium, i.e., 1.4%.

  2. Detecting Illicit Nuclear Materials

    SciTech Connect

    Kouzes, Richard T.

    2005-09-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide.

  3. Nuclear Power in Japan.

    ERIC Educational Resources Information Center

    Powell, John W.

    1983-01-01

    Energy consumption in Japan has grown at a faster rate than in any other major industrial country. To maintain continued prosperity, the government has embarked on a crash program for nuclear power. Current progress and issues/reactions to the plan are discussed. (JN)

  4. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  5. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  6. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  7. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  8. Nuclear Medical Technology Training.

    ERIC Educational Resources Information Center

    Simmons, Guy H., Ed.

    This 1-day colloquium, attended by 23 participants representing societies, government agencies, colleges and universities, and other training programs, was conducted for the purpose of reporting on and discussing the curriculums developed at the University of Cincinnati for training nuclear medical technologists. Pilot programs at both the…

  9. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  10. Targeting Nuclear Envelope Repair.

    PubMed

    2016-06-01

    Migrating cancer cells undergo repeated rupture of the protective nuclear envelope as they squeeze through small spaces in the surrounding tissue, compromising genomic integrity. Inhibiting both general DNA repair and the mechanism that seals these tears may enhance cell death and curb metastasis. PMID:27130435

  11. Topics in nuclear power

    NASA Astrophysics Data System (ADS)

    Budnitz, Robert J.

    2015-03-01

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of "significant events" since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its "lessons learned" have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  12. Politics of nuclear waste

    SciTech Connect

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  13. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  14. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    SciTech Connect

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  15. United Campuses to Prevent Nuclear War: Nuclear War Course Summaries.

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 1983

    1983-01-01

    Briefly describes 46 courses on nuclear war available from United Campuses to Prevent Nuclear War (UCAM). These courses are currently being or have been taught at colleges/universities, addressing effects of nuclear war, arms race history, new weapons, and past arms control efforts. Syllabi (with assignments/reading lists) are available from UCAM.…

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  17. Nuclear material detection techniques

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Sia, Radia; Dokhale, Purushottam; Shestakova, Irina; Nagarkar, Vivek; Shah, Kanai; Johnson, Erik B.; Stapels, Christopher J.; Ryan, James M.; Macri, John; Bravar, Ulisse; Leung, Ka-Ngo; Squillante, Michael R.

    2008-04-01

    Illicit nuclear materials represent a threat for the safety of the American citizens, and the detection and interdiction of a nuclear weapon is a national problem that has not been yet solved. Alleviating this threat represents an enormous challenge to current detection methods that have to be substantially improved to identify and discriminate threatening from benign incidents. Rugged, low-power and less-expensive radiation detectors and imagers are needed for large-scale wireless deployment. Detecting the gamma rays emitted by nuclear and fissionable materials, particularly special nuclear materials (SNM), is the most convenient way to identify and locate them. While there are detectors that have the necessary sensitivity, none are suitable to meet the present need, primarily because of the high occurrence of false alarms. The exploitation of neutron signatures represents a promising solution to detecting illicit nuclear materials. This work presents the development of several detector configurations such as a mobile active interrogation system based on a compact RF-Plasma neutron generator developed at LBNL and a fast neutron telescope that uses plastic scintillating-fibers developed at the University of New Hampshire. A human-portable improved Solid-State Neutron Detector (SSND) intended to replace pressurized 3He-tubes will be also presented. The SSND uses an ultra-compact CMOS-SSPM (Solid-State Photomultiplier) detector, developed at Radiation Monitoring devices Inc., coupled to a neutron sensitive scintillator. The detector is very fast and can provide time and spectroscopy information over a wide energy range including fast neutrons.

  18. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  19. Nuclear Proliferation and Grand Challenges

    ScienceCinema

    McCarthy, Kathy

    2016-07-12

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  20. The Nuclear Debate in Film

    ERIC Educational Resources Information Center

    Dowling, John

    1977-01-01

    Provides a nuclear film bibliography grouped into the areas of: building and using the bomb; living with the bomb; and living with nuclear power. These films are for mature high school students and older. (MLH)

  1. A Career in Nuclear Energy

    ScienceCinema

    Lambregts, Marsha

    2016-07-12

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  2. Adventures in scientific nuclear diplomacy

    SciTech Connect

    Hecker, Siegfried S.

    2014-05-09

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  3. A Career in Nuclear Energy

    SciTech Connect

    Lambregts, Marsha

    2009-01-01

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  4. Nuclear Proliferation and Grand Challenges

    SciTech Connect

    McCarthy, Kathy

    2009-01-01

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. Psychoanalysis and the nuclear threat

    SciTech Connect

    Levine, H.B.; Jacobs, D.; Rubin, L.J.

    1988-01-01

    {ital Psychoanalysis and the Nuclear Threat} provides coverage of the dynamic and clinical considerations that follow from life in the nuclear age. Of special clinical interest are chapters dealing with the developmental consequences of the nuclear threat in childhood, adolescence, and adulthood, and those exploring the technical issues raised by the occurrence in analytic and psychotherapeutic hours of material related to the nuclear threat. Additional chapters bring a psychoanalytic perspective to bear on such issues as the need to have enemies, silence as the real crime, love, work, and survival in the nuclear age, the relationship of the nuclear threat to issues of mourning and melancholia, apocalyptic fantasies, the paranoid process, considerations of the possible impact of gender on the nuclear threat, and the application of psychoanalytic thinking to nuclear arms strategy. Finally, the volume includes the first case report in the English language---albeit a brief psychotherapy---involving the treatment of a Hiroshima survivor.

  6. Nuclear Radiation and the Thyroid

    MedlinePlus

    ... most radiation-sensitive parts of the body. Most nuclear accidents release radioactive iodine into the atmosphere which can ... works? After the 1986 Chornobyl (formerly called “Chernobyl”) nuclear accident, shifting winds blew a radioactive cloud over Europe. ...

  7. Adventures in scientific nuclear diplomacy

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2014-05-01

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  8. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  9. Nuclear weapon detection categorization analysis

    SciTech Connect

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  10. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  11. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2016-07-12

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  12. Nuclear eclectic power.

    PubMed

    Rose, D J

    1974-04-19

    The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The "hydrogen economy." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses. By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600 degrees C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements. Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also

  13. Nuclear eclectic power.

    PubMed

    Rose, D J

    1974-04-19

    The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The "hydrogen economy." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses. By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600 degrees C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements. Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also

  14. Nuclear Wallet Cards from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    Tuli, Jagdish K.

    Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are: spin and parity assignments, nuclear mass excesses, half-life, isotopic abundances, and decay modes. Appendices contain properties of elements, fundamental constants and other useful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated. The Nuclear Wallet Cards by Dr. Jagdish K. Tuli, presently in its 8th edition, is distributed in print as well as in PDA-adaptable Palm Pilot format; the data table as an ASCII file is available upon request. [Taken from http://www.nndc.bnl.gov/wallet/

  15. Game Imaging Meets Nuclear Reality

    SciTech Connect

    Michel, Kelly; Watkins, Adam

    2011-03-21

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  16. Report Card on Nuclear Power

    ERIC Educational Resources Information Center

    Novick, Sheldon

    1974-01-01

    Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…

  17. Game Imaging Meets Nuclear Reality

    ScienceCinema

    Michel, Kelly; Watkins, Adam

    2016-07-12

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  18. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  19. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  20. Overview paper on nuclear power

    SciTech Connect

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.