Sample records for nuclear level density

  1. Nuclear shape evolution based on microscopic level densities

    DOE PAGES

    Ward, D. E.; Carlsson, B. G.; Døssing, T.; ...

    2017-02-27

    Here, by combining microscopically calculated level densities with the Metropolis walk method, we develop a consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution in the fission process. For each nucleus under consideration, the level density is calculated microscopically for each of more than five million shapes with a recently developed combinatorial method. The method employs the same single-particle levels as those used for the extraction of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. Containing no new parameters, the treatment is suitable for elucidating the energy dependence of the dynamics of warmmore » nuclei on pairing and shell effects. It is illustrated for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.« less

  2. Experimental signature of collective enhancement in nuclear level density

    NASA Astrophysics Data System (ADS)

    Pandit, Deepak; Bhattacharya, Srijit; Mondal, Debasish; Roy, Pratap; Banerjee, K.; Mukhopadhyay, S.; Pal, Surajit; De, A.; Dey, Balaram; Banerjee, S. R.

    2018-04-01

    We present a probable experimental signature of collective enhancement in the nuclear level density (NLD) by measuring the neutron and the giant dipole resonance (GDR) γ rays emitted from the rare-earth 169Tm compound nucleus populated at 26.1 MeV excitation energy. An enhanced yield is observed in both neutron and γ -ray spectra corresponding to the same excitation energy in the daughter nuclei. The enhancement could only be reproduced by including a collective enhancement factor in the Fermi gas model of NLD to explain the neutron and GDR spectra simultaneously. The experimental results show that the relative enhancement factor is of the order of 10 and the fadeout occurs at ˜14 MeV excitation energy, much before the commonly accepted transition from deformed to spherical shape. We also explain how the collective enhancement contribution changes the inverse level density parameter k from 8 to 9.5 MeV observed recently in several deformed nuclei.

  3. Nuclear level densities of 64 , 66 Zn from neutron evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.

    Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less

  4. Nuclear level densities of 64 , 66 Zn from neutron evaporation

    DOE PAGES

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...

    2013-12-26

    Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less

  5. Overview and evaluation of different nuclear level density models for the 123I radionuclide production.

    PubMed

    Nikjou, A; Sadeghi, M

    2018-06-01

    The 123 I radionuclide (T 1/2 = 13.22 h, β+ = 100%) is one of the most potent gamma emitters for nuclear medicine. In this study, the cyclotron production of this radionuclide via different nuclear reactions namely, the 121 Sb(α,2n), 122 Te(d,n), 123 Te(p,n), 124 Te(p,2n), 124 Xe(p,2n), 127 I(p,5n) and 127 I(d,6n) were investigated. The effect of the various phenomenological nuclear level density models such as Fermi gas model (FGM), Back-shifted Fermi gas model (BSFGM), Generalized superfluid model (GSM) and Enhanced generalized superfluid model (EGSM) moreover, the three microscopic level density models were evaluated for predicting of cross sections and production yield predictions. The SRIM code was used to obtain the target thickness. The 123 I excitation function of reactions were calculated by using of the TALYS-1.8, EMPIRE-3.2 nuclear codes and with data which taken from TENDL-2015 database, and finally the theoretical calculations were compared with reported experimental measurements in which taken from EXFOR database. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  7. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  8. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  9. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2013-01-01

    A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message

  10. Minimal nuclear energy density functional

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  11. Minimal nuclear energy density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  12. Minimal nuclear energy density functional

    DOE PAGES

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; ...

    2018-04-17

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  13. The role of seniority-zero states in nuclear level densities

    DOE PAGES

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; ...

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  14. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    DOT National Transportation Integrated Search

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  15. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  16. Microscopic study of spin cut-off factors of nuclear level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholami, M.; Kildir, M.; Behkami, A. N.

    Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less

  17. Fission Dynamics with Microscopic Level Densities

    DOE PAGES

    Ward, D.; Carlsson, B. G.; Dossing, Th.; ...

    2017-01-01

    We present a consistent framework for treating the energy and angularmomentum dependence of the shape evolution in the nuclear fission. It combines microscopically calculated level densities with the Metropolis-walk method, has no new parameters, and can elucidate the energy-dependent influence of pairing and shell effects on the dynamics of warm nuclei.

  18. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  19. Nuclear moisture-density evaluation.

    DOT National Transportation Integrated Search

    1964-11-01

    This report constitutes the results of a series of calibration curves prepared by comparing the Troxler Nuclear Density - Moisture Gauge count ratios with conventional densities as obtained by the Soiltest Volumeter and the sand displacement methods....

  20. Influence of the nuclear level density on the odd-even staggering in 56Fe+p spallation at energies from 300 to 1500 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Su, Jun; Zhu, Long; Guo, Chenchen

    2018-05-01

    Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration

  1. Density dependence of the nuclear energy-density functional

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  2. Fission dynamics with microscopic level densities

    NASA Astrophysics Data System (ADS)

    Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven

    2018-03-01

    Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.

  3. Nuclear field density problems.

    DOT National Transportation Integrated Search

    1975-01-01

    The densities of subgrade soil at various locations throughout the state were determined using the different model nuclear gages owned by the Department. In addition, some laboratory testing and sand cote testing were carried out. It was concluded th...

  4. Nuclear density evaluation on asphaltic concrete: final report.

    DOT National Transportation Integrated Search

    1967-04-01

    This study was one of two studies designated as Research Project 62-1SB to evaluate the use of nuclear devices in highway construction. (1) The primary objective of this study was to evaluate a nuclear density device for obtaining densities on asphal...

  5. Nuclear level densities in {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn from neutron evaporation spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A.; Titarenko, N. N.

    The spectra of neutrons from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, and {sup 54}Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed withinmore » the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.« less

  6. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    PubMed

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  7. Probing the nuclear symmetry energy at high densities with nuclear reactions

    NASA Astrophysics Data System (ADS)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  8. Calibration and evaluation of a nuclear density and moisture measuring apparatus.

    DOT National Transportation Integrated Search

    1963-11-01

    The research objectives of this project were to investigate a new : method of in-place determination of soils densities and moisture levels : employing a nuclear physics principle of the gamma radiation function as : the measurement technique, with s...

  9. Serum osteoprotegerin levels and mammographic density among high-risk women.

    PubMed

    Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne

    2018-06-01

    Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.

  10. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  11. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  12. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  13. Nuclear moisture-density evaluation : part II : final report.

    DOT National Transportation Integrated Search

    1966-06-01

    The determination of in-place density by the use of nuclear moisture-density devices has proven to be an exceptionally useful tool to the modern Highway Engineer. In order to adequately adapt this new testing equipment to efficient field use, evaluat...

  14. Field correlation of PQI gauge with nuclear density gauge: phase 1.

    DOT National Transportation Integrated Search

    2006-12-01

    Traditionally, the Oklahoma Department of Transportation (ODOT) uses a nuclear density gauge as a quality control (QC) and quality assurance (QA) tool for in-place density. The nuclear-based devices, however, tend to have problems associated with lic...

  15. Non-nuclear methods for HMA density measurements : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-05-01

    Non-nuclear methods for the measurement of hot-mix asphalt (HMA) density offer the ability to take numerous density readings in a very short period of time, without the need for intensive licensing, training, and maintenance efforts common to nuclear...

  16. Nuclear-level densities in the {sup 49}V and {sup 57}Co nuclei on the basis of evaporated-neutron spectra in (p, n) and (d, n) reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Titarenko, N. N.

    The spectra of neutrons from the reactions {sup 49}Ti(p, n){sup 49}V and {sup 57}Fe (p, n){sup 57}Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions {sup 48}Ti(d, n){sup 49}V and {sup 56}Fe (d, n){sup 57}Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibriummore » models of nuclear reactions. The respective calculations based on the Hauser–Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert–Cameron composite formula. The nuclear-level densities of {sup 49}V and {sup 57}Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.« less

  17. Non-Nuclear Alternatives to Monitoring Moisture-Density Response in Soils

    DTIC Science & Technology

    2013-03-01

    devices can be done pretest or posttest , as they all provide a means to correct the raw field data readings. Moisture Density Indicator (M+DI) The...obtained from the soil nuclear density gauge. The devices and techniques that were tested are grouped into four broad families: nuclear, electrical...43  Details of device rejection based on errors .............................................................................. 43  Accuracy of

  18. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  19. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation.

    PubMed

    Hammoud, S; Liu, L; Carrell, D T

    2009-04-01

    Fertile males express two forms of sperm nuclear proteins, protamine 1 (P1) and protamine 2 (P2), in roughly equal quantities, whereas some infertile men have been shown to have a reduction in protamine content and an increase in the level of histones retained in mature sperm. In this study, we assessed histone and protamine levels in spermatozoa isolated from different layers of a density gradient centrifugation column to evaluate the nuclear protein content of the sperm population selected. Protamine levels were measured using acid gel electrophoresis and immunofluorescence, and the percentage of cells retaining histones was evaluated using aniline staining and immunofluorescence. Our data suggests that there is an inverse correlation between P1/P2 ratio and the level of histone expression in the different layers of the density gradient. Paradoxically, the 90% layer had a lower P1/P2 ratio, which corresponded with an increase in histone expression. It is concluded that although the sperm population selected in the 90% layer of the density gradient columns had a lower P1/P2 ratio, it was yet similar to the P1/P2 ratio observed in previously screened fertile donors.

  20. Central depression of nuclear charge density distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Yanyun; Ren Zhongzhou; Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Armore » and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.« less

  1. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  2. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  3. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  4. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.

    Proton double-differential cross sections from 59Co(α,p) 62Ni, 57Fe(α,p) 60Co, 56Fe( 7Li,p) 62Ni, and 55Mn( 6Li,p) 60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtainedmore » with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  5. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  6. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  7. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  8. Thin layer asphaltic concrete density measuring using nuclear gages.

    DOT National Transportation Integrated Search

    1989-03-01

    A Troxler 4640 thin layer nuclear gage was evaluated under field conditions to determine if it would provide improved accuracy of density measurements on asphalt overlays of 1-3/4 and 2 inches in thickness. Statistical analysis shows slightly improve...

  9. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  10. Uncertainty quantification and propagation in nuclear density functional theory

    DOE PAGES

    Schunck, N.; McDonnell, J. D.; Higdon, D.; ...

    2015-12-23

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less

  11. Feasibility of development of a nuclear density gage for determining the density of plastic concrete at a particular stratum : final report.

    DOT National Transportation Integrated Search

    1981-05-01

    Development of a nuclear density gage for determining the degree of consolidation of plastic concrete in selected horizontal layers was determined to be feasible. A commercially available, with some modifications, two-probe density gage (detector in ...

  12. Neutrino Opacity in High Density Nuclear Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Sergio M. dos; Razeira, Moises; Vasconcellos, Cesar A.Z.

    2004-12-02

    We estimate the contribution of the nucleon weak magnetism on the neutrino absorption mean free path inside high density nuclear matter. In the mean field approach, three different ingredients are taken into account: (a) a relativistic generalization of the approach developed by Sanjay et al.; (b) the inclusion of the nucleon weak-magnetism (c) and the pseudo-scalar interaction involving the nucleons. Our main result shows that the neutrino absorption mean free path is three times the corresponding result obtained by those authors.

  13. Scalable nuclear density functional theory with Sky3D

    NASA Astrophysics Data System (ADS)

    Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin

    2018-02-01

    In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.

  14. Nuclear power: levels of safety.

    PubMed

    Lidsky, L M

    1988-02-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the "nuclear establishment" itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired.

  15. Controlling nuclear RNA levels.

    PubMed

    Schmid, Manfred; Jensen, Torben Heick

    2018-05-10

    RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.

  16. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  17. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    NASA Astrophysics Data System (ADS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  18. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  19. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  20. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  1. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  2. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis

    PubMed Central

    Maksud, F.A.N.; Kakehasi, A.M.; Guimarães, M.F.B.R.; Machado, C.J.; Barbosa, A.J.A.

    2017-01-01

    Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide. PMID:28538835

  3. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis.

    PubMed

    Maksud, F A N; Kakehasi, A M; Guimarães, M F B R; Machado, C J; Barbosa, A J A

    2017-05-18

    Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.

  4. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  5. Urologist Density and County-Level Urologic Cancer Mortality

    PubMed Central

    Odisho, Anobel Y.; Cooperberg, Matthew R.; Fradet, Vincent; Ahmad, Ardalan E.; Carroll, Peter R.

    2010-01-01

    Purpose The surgical work force distribution at the county level varies widely across the United States, and the impact of differential access on cancer outcomes is unclear. We used urologists as a test case because they are the first care providers for urologic cancers, can easily be identified from available data sources, and are unevenly distributed throughout the country. The goal of this study was to determine the effect of increasing urologist density on local prostate, bladder, and kidney cancer mortality. Patients and Methods Using county-level data from the Area Resource File, US Census, National Cancer Institute, and Centers for Disease Control, regression models were built for prostate, bladder, and kidney cancer mortality, controlling for categorized urologist density, county demographics, socioeconomic factors, and preexisting health care infrastructure. Results For each of the three cancers, there was a statistically significant cancer-specific mortality reduction associated with counties that had more than zero urologists (16% to 22% reduction for prostate cancer, 17% to 20% reduction for bladder cancer, and 8% to 14% reduction for kidney cancer with increasing urologist density) relative to zero urologists. However, increasing density greater than two urologists per 100,000 people had no statistically significant impact on mortality for any of the tumors studied. Conclusion The presence of a urologist is associated with lower mortality for urologic cancers in that county, but increasing urologist density does not yield further improvements. Therefore, a nuanced and geographically aware policy toward the size and distribution of the future work force is most likely to provide the greatest population-level improvement in cancer mortality outcomes. PMID:20406931

  6. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  7. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  8. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  9. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    NASA Astrophysics Data System (ADS)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.

  10. Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2003-09-01

    Structure of cold nuclear matter at subnuclear densities for the proton fraction x=0.5, 0.3, and 0.1 is investigated by quantum molecular dynamics (QMD) simulations. We demonstrate that the phases with slablike and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple “pasta” phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the effective QMD interaction used in the present work to examine the validity of our results. The resultant energy per nucleon ɛn of the pure neutron matter, the proton chemical μ(0)p in pure neutron matter and the nuclear surface tension Esurf are generally reasonable in comparison with other nuclear interactions.

  11. Continuum Level Density in Complex Scaling Method

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Myo, T.; Katō, K.

    2005-11-01

    A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique.

  12. Two-level convolution formula for nuclear structure function

    NASA Astrophysics Data System (ADS)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  13. Influence of acute promyelocytic leukemia therapeutic drugs on nuclear pore complex density and integrity.

    PubMed

    Lång, Anna; Øye, Alexander; Eriksson, Jens; Rowe, Alexander D; Lång, Emma; Bøe, Stig Ove

    2018-05-15

    During cell division, a large number of nuclear proteins are released into the cytoplasm due to nuclear envelope breakdown. Timely nuclear import of these proteins following exit from mitosis is critical for establishment of the G1 nuclear environment. Dysregulation of post-mitotic nuclear import may affect the fate of newly divided stem or progenitor cells and may lead to cancer. Acute promyelocytic leukemia (APL) is a malignant disorder that involves a defect in blood cell differentiation at the promyelocytic stage. Recent studies suggest that pharmacological concentrations of the APL therapeutic drugs, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), affect post-mitotic nuclear import of the APL-associated oncoprotein PML/RARA. In the present study, we have investigated the possibility that ATRA and ATO affect post-mitotic nuclear import through interference with components of the nuclear import machinery. We observe reduced density and impaired integrity of nuclear pore complexes after ATRA and/or ATO exposure. Using a post-mitotic nuclear import assay, we demonstrate distinct import kinetics among different nuclear import pathways while nuclear import rates were similar in the presence or absence of APL therapeutic drugs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  15. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Oblozinsky, P.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES

  16. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Capote,R.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains

  17. Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, P. E.; Lehmann, H.; Jolie, J.

    2001-08-01

    Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less

  18. Impact of nuclear cataract density on postoperative refractive outcome: IOL Master versus ultrasound.

    PubMed

    Ueda, Tetsuo; Taketani, Futoshi; Ota, Takeo; Hara, Yoshiaki

    2007-01-01

    To evaluate the effect of cataract density on the postoperative refractive outcome. For 59 nuclear cataract eyes, the axial length was preoperatively measured by the IOL Master (Zeiss, Germany) and ultrasound (US; UD-6000, Tomey, Japan) and the cataract density by EAS-1000 (Nidek, Japan). The prediction error was used as evaluation of the accuracy of ocular biometry. There were significant differences between IOL Master and US in the mean error (0.24 +/- 0.63 vs. 0.69 +/- 0.64 dpt, p < 0.001) and the mean absolute error (0.57 +/- 0.36 vs. 0.79 +/- 0.53 dpt, p < 0.001). The cataract density was significantly correlated with the prediction error with IOL Master (r = 0.24, p = 0.03) and US (r = 0.29, p = 0.01). Measurements with the IOL Master are slightly affected by the cataract density due to the refractive index change, but its accuracy is less affected than US. (c) 2007 S. Karger AG, Basel.

  19. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  20. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  1. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  2. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans.

    PubMed

    Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N

    Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1 H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [ 3 H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  3. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

  4. Level densities of residual nuclei from the reactions ^6Li on ^58Fe and ^7Li on ^57Fe

    NASA Astrophysics Data System (ADS)

    Oginni, Babatunde; Grimes, Steven; Voinov, Alexander; Adekola, Aderemi; Brune, Carl; Heinen, Zachary; Hornish, Michael; Massey, Thomas; Matei, Catalin; Carter, Don; O'Donnell, John

    2008-04-01

    The reactions ^6Li on ^58Fe and ^7Li on ^57Fe have been studied; these two reactions give the same compound nucleus, ^64Cu. The neutron, proton and alpha spectra were measured at backward angles, and the level densities of the residual nuclei from the particle evaporation spectra have been obtained. The contribution of the breakup mechanism to the reaction cross-section was studied from ^6Li on ^197Au reaction. The data obtained have been compared with Hauser Feshbach model calculations performed with HF and Empire codes. Three other reactions were also studied to see how level densities change as we move away from the nuclear stability line. These are: ^18O on ^64Ni reaction, this gives ^82Kr as compound nucleus which is on the stability line; ^24Mg on ^58Fe, this gives ^82Sr as compound nucleus and ^24Mg on ^58Ni which gives ^82Zr as compound nucleus; these are two and four steps away from the stability line respectively. Some results are presented.

  5. Two-parameter partially correlated ground-state electron density of some light spherical atoms from Hartree-Fock theory with nonintegral nuclear charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.

    2007-05-15

    Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.

  6. Cone Photoreceptor Packing Density and the Outer Nuclear Layer Thickness in Healthy Subjects

    PubMed Central

    Chui, Toco Y. P.; Song, Hongxin; Clark, Christopher A.; Papay, Joel A.; Burns, Stephen A.; Elsner, Ann E.

    2012-01-01

    Purpose. We evaluated the relationship between cone photoreceptor packing density and outer nuclear layer (ONL) thickness within the central 15 degrees. Methods. Individual differences for healthy subjects in cone packing density and ONL thickness were examined in 8 younger and 8 older subjects, mean age 27.2 versus 56.2 years. Cone packing density was obtained using an adaptive optics scanning laser ophthalmoscope (AOSLO). The ONL thickness measurements included the ONL and the Henle fiber layer (ONL + HFL), and were obtained using spectral domain optical coherence tomography (SDOCT) and custom segmentation software. Results. There were sizeable individual differences in cone packing density and ONL + HFL thickness. Older subjects had on average lower cone packing densities, but thicker ONL + HFL measurements. Cone packing density and ONL + HFL thickness decreased with increasing retinal eccentricity. The ratio of the cone packing density-to-ONL2 was larger for the younger subjects group, and decreased with retinal eccentricity. Conclusions. The individual differences in cone packing density and ONL + HFL thickness are consistent with aging changes, indicating that normative aging data are necessary for fine comparisons in the early stages of disease or response to treatment. Our finding of ONL + HFL thickness increasing with aging is inconsistent with the hypothesis that ONL measurements with SDOCT depend only on the number of functioning cones, since in our older group cones were fewer, but thickness was greater. PMID:22570340

  7. Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  8. Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58

    DOE PAGES

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...

    2015-07-06

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  9. Effects of population density on corticosterone levels of prairie voles in the field

    PubMed Central

    Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.

    2015-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968

  10. Effects of population density on corticosterone levels of prairie voles in the field.

    PubMed

    Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M

    2016-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: non-uniqueness of density-derived molecular structure.

    PubMed

    Ludeña, E V; Echevarría, L; Lopez, X; Ugalde, J M

    2012-02-28

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

  12. Nature of non-nuclear (3, -3) π-attractor and π-bonding: Theoretical analysis on π-electron density

    NASA Astrophysics Data System (ADS)

    Lv, Jiao; Yang, Lihua; Sun, Zheng; Meng, Lingpeng; Li, Xiaoyan

    2018-01-01

    Understanding the nature of π-electron density is important to characterize the conjugate π molecular systems. In this work, the π-electron densities of some typical conjugated π molecular systems were separated from their total electron densities; the positions and natures of non-nuclear (3, -3) π-attractors and the π-bond critical points (π-BCPs) are investigated. The calculated results show that for the same element, the position of the π-attractor is constant, regardless of the chemical surroundings. The position of the π-BCP is closer to the atom with the larger electronegativity.

  13. Shampoo, Soy Sauce, and the Prince's Pendant: Density for Middle-Level Students

    ERIC Educational Resources Information Center

    Chandrasekhar, Meera; Litherland, Rebecca

    2006-01-01

    In this article, the authors describe a series of activities they have used with middle-level students. The first set of lessons explores density through the layering of liquids. In the second set, they use some of the same liquids to explore the density of solids. The third set investigates how temperature affects the density of…

  14. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludena, E. V.; Echevarria, L.; Lopez, X.

    2012-02-28

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities canmore » be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.« less

  15. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  16. Effects of Differing Energy Dependences in Three Level-Density Models on Calculated Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, C.Y.

    2000-07-15

    Three level-density formalisms commonly used for cross-section calculations are examined. Residual nuclides in neutron interaction with {sup 58}Ni are chosen to quantify the well-known differences in the energy dependences of the three formalisms. Level-density parameters for the Gilbert and Cameron model are determined from experimental information. Parameters for the back-shifted Fermi-gas and generalized superfluid models are obtained by fitting their level densities at two selected energies for each nuclide to those of the Gilbert and Cameron model, forcing the level densities of the three models to be as close as physically allowed. The remaining differences are in their energy dependencesmore » that, it is shown, can change the calculated cross sections and particle emission spectra significantly, in some cases or energy ranges by a factor of 2.« less

  17. Steady-state nuclear actin levels are determined by export competent actin pool.

    PubMed

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. Copyright © 2013 Wiley Periodicals, Inc.

  18. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  19. Nuclear structure and reaction properties of Ne, Mg and Si isotopes with RMF densities

    NASA Astrophysics Data System (ADS)

    Panda, R. N.; Sharma, Mahesh K.; Patra, S. K.

    2014-01-01

    We have studied nuclear structure and reaction properties of Ne, Mg and Si isotopes, using relativistic mean field (RMF) densities, in the framework of Glauber model. Total reaction cross-section σR for Ne isotopes on 12C target have been calculated at incident energy 240 MeV. The results are compared with the experimental data and with the recent theoretical study [W. Horiuchi et al., Phys. Rev. C 86, 024614 (2012)]. Study of σR using deformed densities have shown a good agreement with the data. We have also predicted total reaction cross-section σR for Ne, Mg and Si isotopes as projectiles and 12C as target at different incident energies.

  20. Nuclear parton density functions from dijet photoproduction at the EIC

    NASA Astrophysics Data System (ADS)

    Klasen, M.; Kovařík, K.

    2018-06-01

    We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.

  1. Density-induced suppression of the {alpha}-particle condensate in nuclear matter and the structure of {alpha}-cluster states in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225

    2008-06-15

    At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less

  2. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  3. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    PubMed

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  5. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  6. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.

  7. Density-dependent covariant energy density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  8. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent

  9. Quantum nuclear pasta and nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  10. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  11. Density diagnostics of ionized outflows in active galactic nuclei. X-ray and UV absorption lines from metastable levels in Be-like to C-like ions

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Raassen, A. J. J.; Gu, Liyi; Miller, J. M.

    2017-11-01

    Context. Ionized outflows in active galactic nuclei (AGNs) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modeled ionization parameters. Aims: We perform a theoretical study of density diagnostics of ionized outflows using absorption lines from metastable levels in Be-like to C-like cosmic abundant ions. Methods: With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1-2000 Å wavelength range. Results: In the broad density range of nH ∈ (106, 1020) m-3, the metastable levels 2s2p (3P0-2) in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s22p (2P3/2) can be used as a density probe. For C-like ions, the first two excited levels 2s22p2 (3P1 and 3P2) are better density probes than the next two excited levels 2s22p2 (1S0 and 1D2). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameters, but also a wide range of density values. On the other hand, within the same isonuclear sequence, those less ionized ions probe lower density and smaller ionization parameters. Finally, we reanalyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002 using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of

  12. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less

  13. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  14. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  15. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  16. Self-consistent mean-field approach to the statistical level density in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.

    2018-06-01

    A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.

  17. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  18. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  19. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...

  20. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  1. Evaluation of the Effect of Hemoglobin or Hematocrit Level on Dural Sinus Density Using Unenhanced Computed Tomography

    PubMed Central

    Cha, Sang-Hoon; Lee, Sung-Hyun; Shin, Dong-Ick

    2013-01-01

    Purpose To identify the relationship between hemoglobin (Hgb) or hematocrit (Hct) level and dural sinus density using unenhanced computed tomography (UECT). Materials and Methods Patients who were performed UECT and had records of a complete blood count within 24 hours from UECT were included (n=122). We measured the Hounsfield unit (HU) of the dural sinus at the right sigmoid sinus, left sigmoid sinus and 2 points of the superior sagittal sinus. Quantitative measurement of dural sinus density using the circle regions of interest (ROI) method was calculated as average ROI values at 3 or 4 points. Simple regression analysis was used to evaluate the correlation between mean HU and Hgb or mean HU and Hct. Results The mean densities of the dural sinuses ranged from 24.67 to 53.67 HU (mean, 43.28 HU). There was a strong correlation between mean density and Hgb level (r=0.832) and between mean density and Hct level (r=0.840). Conclusion Dural sinus density on UECT is closely related to Hgb and Hct levels. Therefore, the Hgb or Hct levels can be used to determine whether the dural sinus density is within the normal range or pathological conditions such as venous thrombosis. PMID:23225795

  2. Radial chromatin positioning is shaped by local gene density, not by gene expression

    PubMed Central

    2009-01-01

    G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional

  3. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    NASA Astrophysics Data System (ADS)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β22<0 have higher spin-orbit barrier (compact spin-orbit configuration) in comparison to systems with β2>0. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  4. Effects of dietary energy density on serum adipocytokine levels in diabetic women.

    PubMed

    Tabesh, M; Hosseinzadeh, M J; Tabesh, M; Esmaillzadeh, A

    2013-10-01

    This study was aimed to assess the effect of dietary energy density (kcal/g) on serum levels of adipocytokines of type 2 diabetic women. In this randomized parallel design clinical trial, a total of 60 diabetic women (aged 30-60 years; BMI>25 kg/m²) were assigned to consume either a low-energy dense (LED) (65% of energy from carbohydrates and 25% from fats), normal-energy dense (NED) (60% from carbohydrates, 30% from fats), or high-energy dense (HED) diet (55% from carbohydrates and 35% from fats) for 8 weeks. The low-energy dense diet was rich in fruits, vegetables, whole grains, and water, while the high-energy dense diet was rich in fats and oils and limited in fruits and vegetables as compared with the normal-dense diet. At baseline and at the end of intervention fasting blood samples were taken to assess metabolic profile. Women in the LED group consumed significantly more dietary fiber (p<0.001), fruits (p<0.001) and vegetables (p<0.001) than those in the NED and HED groups. We failed to find a significant effect of dietary energy density (kcal/g) on serum adiponectin and visfatin levels. Even the within-group changes in serum adiponectin and visfatin levels were not significant. Consumption of LED and NED diets resulted in a significant increase in serum chemerin levels (p=0.04). Comparison of mean changes of serum chemerin levels across 3 groups revealed a significant difference (p=0.04). Our study provides evidence indicating that consumption of HED diet for 8 weeks among diabetic patients prevented the increase in serum chemerin levels compared with LED and NED diets. Furthermore, we found no significant effect of dietary energy density (kcal/g) on serum adiponectin and visfatin concentrations in the current study. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  6. N/Z influence on the level density parameter

    NASA Astrophysics Data System (ADS)

    Ademard, G.; Augey, L.; Borderie, B.; Le Neindre, N.; Marini, P.; Rivet, M.-F.; Twarog, T.

    2015-04-01

    A completely exclusive experiment was performed by the INDRA collaboration to study the isospin dependence of the level density parameter. Over a large N/Z range, the fusion-evaporation charged products of 34,36,40Ar+58,60,64Ni reactions were measured and identified both in charge and mass by coupling INDRA and VAMOS spectrometer. Preliminary results obtained by combining data of both detectors are presented for the 36Ar+58Ni at 13.3 A MeV. The analysis method of relevant observables for such an ambitious investigation are discussed and the progress of the data analysis are reviewed.

  7. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  8. Can change in high-density lipoprotein cholesterol levels reduce cardiovascular risk?

    PubMed

    Dean, Bonnie B; Borenstein, Jeff E; Henning, James M; Knight, Kevin; Merz, C Noel Bairey

    2004-06-01

    The cardiovascular risk reduction observed in many trials of lipid-lowering agents is greater than expected on the basis of observed low-density lipoprotein cholesterol (LDL-C) level reductions. Our objective was to explore the degree to which high-density lipoprotein cholesterol (HDL-C) level changes explain cardiovascular risk reduction. A systematic review identified trials of lipid-lowering agents reporting changes in HDL-C and LDL-C levels and the incidence of coronary heart disease (CHD). The observed relative risk reduction (RRR) in CHD morbidity and mortality rates was calculated. The expected RRR, given the treatment effect on total cholesterol level, was calculated for each trial with logistic regression coefficients from observational studies. The difference between observed and expected RRR was plotted against the change in HDL-C level, and a least-squares regression line was calculated. Fifty-one trials were identified. Nineteen statin trials addressed the association of HDL-C with CHD. Limited numbers of trials of other therapies precluded additional analyses. Among statin trials, therapy reduced total cholesterol levels as much as 32% and LDL-C levels as much as 45%. HDL-C level increases were <10%. Treatment effect on HDL-C levels was not a significant linear predictor of the difference in observed and expected CHD mortality rates, although we observed a trend in this direction (P =.08). Similarly, HDL-C effect was not a significant linear predictor of the difference between observed and expected RRRs for CHD morbidity (P =.20). Although a linear trend toward greater risk reduction was observed with greater effects on HDL-C, differences were not statistically significant. The narrow range of HDL-C level increases in the statin trials likely reduced our ability to detect a beneficial HDL-C effect, if present.

  9. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  10. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    PubMed Central

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  11. Level Density in the Complex Scaling Method

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Myo, T.; Katō, K.

    2005-06-01

    It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of L(2) basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM.

  12. Density diagnostics of ionized outflows in active galacitc nuclei

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.

    2017-10-01

    Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.

  13. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care

    PubMed Central

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  14. Level density parameter behaviour at high excitation energy

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Giardina, G.; Taccone, A.

    1991-06-01

    We present a formalism to calculate the intrinsic (without collective effects) and effective (with collective effects) level density parameters over a wide range of excitation energy up to 180 MeV. The behaviour of aint and aeff as an energy function is shown for several typical nuclei (115Cd, 129Te, 148Pm, 173Yb, 192Ir and 248Cm). Moreover, local systematics of the parameter aeff as a function of the neutron number N, also for nuclei extremely far from the β-line, is shown for some typical nuclei (Rb, Pd, Sn, Ba and Hg) at excitation energies of 15, 80 and 150 MeV.

  15. On the response of superpressure balloons to displacements from equilibrium density level

    NASA Technical Reports Server (NTRS)

    Levanon, N.; Kushnir, Y.

    1976-01-01

    The response of a superpressure balloon to an initial displacement from its constant-density floating level is examined. An approximate solution is obtained to the governing vertical equation of motion for constant-density superpressure balloons. This solution is used to filter out neutrally buoyant oscillations in balloon records despite the nonlinear behavior of the balloon. The graph depicting the pressure data after deconvolution between the raw pressure data and the normalized balloon wavelet shows clearly the strong filtering-out of the neutral buoyancy oscillations.

  16. No relationship between circulating levels of sex steroids and mammographic breast density: the Prospect-EPIC cohort

    PubMed Central

    Verheus, Martijn; Peeters, Petra HM; van Noord, Paulus AH; van der Schouw, Yvonne T; Grobbee, Diederick E; van Gils, Carla H

    2007-01-01

    Background High breast density is associated with increased breast cancer risk. Epidemiologic studies have shown an increase in breast cancer risk in postmenopausal women with high levels of sex steroids. Hence, sex steroids may increase postmenopausal breast cancer risk via an increase of breast density. The objective of the present study was to study the relation between circulating oestrogens and androgens as well as sex hormone binding globulin (SHBG) in relation to breast density. Methods We conducted a cross-sectional study among 775 postmenopausal women, using baseline data of a random sample of the Prospect-EPIC study. Prospect-EPIC is one of two Dutch cohorts participating in the European Prospective Investigation into Cancer and Nutrition, and women were recruited via a breast cancer screening programme. At enrolment a nonfasting blood sample was taken and a mammogram was made. Oestrone, oestradiol, dehydroepiandrosterone sulfate, androstenedione, testosterone and SHBG levels were measured, using double-antibody radioimmunoassays. Concentrations of free oestradiol and free testosterone were calculated from the measured oestradiol, testosterone and SHBG levels Mammographic dense and nondense areas were measured using a semiquantitative computerized method and the percentage breast density was calculated. Mean breast measures for quintiles of hormone or SHBG levels were estimated using linear regression analyses. Results Both oestrogens and testosterone were inversely related with percent breast density, but these relationships disappeared after adjustment for BMI. None of the sex steroids or SHBG was associated with the absolute measure of breast density, the dense area. Conclusion The results of our study do not support the hypothesis that sex steroids increase postmenopausal breast cancer risk via an increase in breast density. PMID:17692133

  17. SERUM LEVELS OF FIBROBLAST GROWTH FACTOR-23, OSTEOPROTEGERIN, AND RECEPTOR ACTIVATOR OF NUCLEAR FACTOR KAPPA B LIGAND IN PATIENTS WITH PROLACTINOMA.

    PubMed

    Arslan, Muyesser Sayki; Sahin, Mustafa; Karakose, Melia; Tutal, Esra; Topaloglu, Oya; Ucan, Bekir; Demirci, Taner; Caliskan, Mustafa; Ozdemir, Seyda; Ozbek, Mustafa; Cakal, Erman

    2017-03-01

    The aim of this study to was to evaluate the effect of fibroblast growth factor-23 (FGF-23), osteoprotegerin (OPG), receptor activator nuclear κB ligand (RANKL), and vitamin D hormones on bone loss in patients with hyperprolactinemia due to pituitary prolactinoma. We recruited 46 premenopausal female patients with prolactinoma and age and sex-matched healthy controls (Group 3, n = 20) for this cross-sectional study. Prolactinoma patients were divided into 2 groups as patients newly diagnosed (Group 1, n = 26) and those under cabergoline treatment (Group 2, n = 20). Anthropometric and metabolic variables; hormonal profiles; and osteocalcin, deoxypyridinoline (DOP), and bone mineral density measurements were performed for all participants. FGF-23, OPG, and RANKL levels were analyzed in all groups. FGF-23, OPG, calcium, phosphorus, and parathormone levels were similar between all groups despite significantly higher levels in the control group in terms of vitamin D and RANKL levels than in patients. Bone loss was found more in Group 2, particularly observed in Z scores of femur and spinal bone (P<.05). Correlation analysis revealed a negative correlation between FGF-23 and femur neck T score (r = -0.0433, P = .05) in patients with active prolactinoma. A positive correlation was also observed between parameters of DOP and OPG (r = 0.673, P = .02). In patients with remission there were a negative correlation between prolactin and luteinizing hormone (r = -600, P = .08). Additionally, a negative correlation was found between osteocalcin and osteoprotegerin in patients in remission (r = -0.73, P = .01). Our data indicated that FGF-23 and OPG levels do not play a critical role on the development of bone decrease in patients with hyperprolactinemia. However, further prospective studies in larger numbers of participants should be designed to clarify this issue. BFP = body fat percentage BMD = bone mineral density BMI = body mass index CV = coefficient of variation DOP

  18. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  19. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  20. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  1. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    PubMed

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding

    PubMed Central

    Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.

    2016-01-01

    ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604

  3. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  4. A journey from nuclear criticality methods to high energy density radflow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbatsch, Todd James

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.« less

  5. A journey from nuclear criticality methods to high energy density radflow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbatsch, Todd James

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy, but they sure are fun.« less

  6. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.

  7. YY1 Controls Immunoglobulin Class Switch Recombination and Nuclear Activation-Induced Deaminase Levels

    PubMed Central

    Zaprazna, Kristina

    2012-01-01

    Activation-induced deaminase (AID) is an enzyme required for class switch recombination (CSR) and somatic hypermutation (SHM), processes that ensure antibody maturation and expression of different immunoglobulin isotypes. AID function is tightly regulated by tissue- and stage-specific expression, nuclear localization, and protein stability. Transcription factor YY1 is crucial for early B cell development, but its function at late B cell stages is unknown. Here, we show that YY1 conditional knockout in activated splenic B cells interferes with CSR. Knockout of YY1 did not affect B cell proliferation, transcription of the AID and IgM genes, or levels of various switch region germ line transcripts. However, we show that YY1 physically interacts with AID and controls the accumulation of nuclear AID, at least in part, by increasing nuclear AID stability. We show for the first time that YY1 plays a novel role in CSR and controls nuclear AID protein levels. PMID:22290437

  8. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  9. Comparison of variability in breast density assessment by BI-RADS category according to the level of experience.

    PubMed

    Eom, Hye-Joung; Cha, Joo Hee; Kang, Ji-Won; Choi, Woo Jung; Kim, Han Jun; Go, EunChae

    2018-05-01

    Background Only few studies have assessed variability in the results obtained by the readers with different experience levels in comparison with automated volumetric breast density measurements. Purpose To examine the variations in breast density assessment according to BI-RADS categories among readers with different experience levels and to compare it with the results of automated quantitative measurements. Material and Methods Density assignment was done for 1000 screening mammograms by six readers with three different experience levels (breast-imaging experts, general radiologists, and students). Agreement level between the results obtained by the readers and the Volpara automated volumetric breast density measurements was assessed. The agreement analysis using two categories-non-dense and dense breast tissue-was also performed. Results Intra-reader agreement for experts, general radiologists, and students were almost perfect or substantial (k = 0.74-0.95). The agreement between visual assessments of the breast-imaging experts and volumetric assessments by Volpara was substantial (k = 0.77). The agreement was moderate between the experts and general radiologists (k = 0.67) and slight between the students and Volpara (k = 0.01). The agreement for the two category groups (nondense and dense) was almost perfect between the experts and Volpara (k = 0.83). The agreement was substantial between the experts and general radiologists (k = 0.78). Conclusion We observed similar high agreement levels between visual assessments of breast density performed by radiologists and the volumetric assessments. However, agreement levels were substantially lower for the untrained readers.

  10. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  11. Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.

    PubMed

    Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed

    2017-01-01

    To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.

  12. The ZO-1–associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density

    PubMed Central

    Balda, Maria S.; Garrett, Michelle D.; Matter, Karl

    2003-01-01

    Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1–associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction–associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1–based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4. PMID:12566432

  13. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  14. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding.

    PubMed

    Vuković, Lidija D; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A; Levy, Daniel L

    2016-03-15

    Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. © 2016. Published by The Company of Biologists Ltd.

  15. Threshold level or not for low-density lipoprotein cholesterol.

    PubMed

    Barter, P J; Sacks, F M

    2001-05-01

    As drugs, such as the statins, and other therapies demonstrate the ability to significantly lower levels of low-density lipoprotein cholesterol (LDL-C), one issue is whether there is a lower threshold below which no further decline in coronary heart disease occurs. Those who evaluate the data from multiple trials and conclude that no significant decrease in coronary event rates occurs at or below 125 mg/dL suggest using this level as a guideline for clinical application of cholesterol-lowering therapy. On the other hand, analysis of the results of the same population and primary prevention studies concludes that no such threshold exists. The issues affected by the decision of whether to use a threshold include costs to the healthcare system for additional physician time, tests, and medication; unknown clinical events and safety related to very low LDL-C; and resource prioritization to an unestablished therapeutic approach.

  16. Estimations of electron densities and temperatures in He-3 dominated plasmas. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Depaola, B. D.; Marcum, S. D.; Wrench, H. K.; Whitten, B. L.; Wells, W. E.

    1979-01-01

    It is very useful to have a method of estimation for electron temperature and electron densities in nuclear pumped plasmas because measurements of such quantities are very difficult. This paper describes a method, based on rate equation analysis of the ionized species in the plasma and the electron energy balance. In addition to the ionized species, certain neutral species must also be calculated. Examples are given for pure helium and a mixture of helium and argon. In the HeAr case, He(+), He2(+), He/2 3S/, Ar(+), Ar2(+), and excited Ar are evaluated.

  17. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    USDA-ARS?s Scientific Manuscript database

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  18. Kaon Condensation and the Non-Uniform Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi

    2004-04-01

    Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.

  19. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  20. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  1. Environmental radioactivity levels, Browns Ferry Nuclear Plant: Annual report, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    The report presents data gathered during radiological monitoring program conducted in the environs of the Browns Ferry Nuclear Plant. Dose estimates were made from concentrations of radioactivity found in samples of media including air, milk, food products, drinking water, and fish. Inhalation and ingestion doses estimated for persons at the indicator locations were essentially identical to those determined for persons at control locations. Greater than 95% of those doses were contributed by the naturally occurring K-40 and by Sr-90 and Cs-137 which are long-lived radioisotopes found in fallout from nuclear weapons testing. Increased levels of I-131 were reported in air,more » milk, and rainwater following the accident at the Chernobyl nuclear power station. In addition, Ru-103, Cs-137, and Cs-134 were identified in air particulates, and traces of Ru-103 were found in rainwater. (ACR)« less

  2. The use of a non-nuclear density gauge for monitoring the compaction process of asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van den bergh, Wim; Vuye, Cedric; Kara, Patricia; Couscheir, Karolien; Blom, Johan; Van Bouwel, Philippe

    2017-09-01

    The mechanical performance of an asphalt pavement affects its durability - thus carbon footprint. Many parameters contribute to the success of a durable asphalt mix, e.g. material selection, an accurate mix and even the road design in which the asphalt mix quality is quantified. The quality of the asphalt mix, by its mechanical properties, is also related to the compaction degree. However, and specifically for high volume rates, the laying process at the construction site needs an effective method to monitor and adjust immediately the compaction quality before cooling and without damaging the layer, which is now absent. In this paper the use of a non-nuclear density gauge (PQI - Pavement Quality Indicator) is evaluated, based on a site at Brussels Airport. Considering the outcome of the present research, this PQI is advised as a unique tool for continuous density measurements and allow immediate adjustments during compaction, and decreases the number of core drilling for quality control, and as a posteriori asphalt pavement density test where cores are prohibited. The use of PQI could be recommended to be a part of the standard quality control process in the Flemish region.

  3. Higher serum levels of rheumatoid factor and anti-nuclear antibodies in helicobacter pylori-infected peptic ulcer patients.

    PubMed

    Jafarzadeh, Abdollah; Nemati, Maryam; Rezayati, Mohammad Taghi; Nabizadeh, Mansooreh; Ebrahimi, Medhi

    2013-07-01

    H. pylori infection has been associated with some autoimmune disorders. The aim of this study was to evaluate the serum concentrations of rheumatoid factor and anti-nuclear antibodies in H. pylori-infected peptic ulcer patients, H. pylori-infected asymptomatic carriers and a healthy control group. A Total of 100 H. pylori-infected peptic ulcer patients, 65 asymptomatic carriers and 30 healthy H. pylori-negative subjects (as a control group) were enrolled into study. Serum samples of participants tested for the levels of rheumatoid factor and anti-nuclear antibodies by use of ELISA. The mean serum levels of rheumatoid factor and anti-nuclear antibodies in peptic ulcer group was significantly higher in comparison to the control group (p<0.05). Although, the mean serum levels of rheumatoid factor and anti-nuclear antibodies in the asymptomatic carriers group was higher than those in the control group, the difference was not statistically significant. No significant differences were observed between peptic ulcer patients and asymptomatic carriers groups regarding the mean serum levels of rheumatoid factor and anti-nuclear antibodies. The mean serum levels of rheumatoid factor in men with peptic ulcer was significantly higher compared to the group of healthy men (p<0.05). Although in female of peptic ulcer patients or asymptomatic carriers groups, the mean serum levels of rheumatoid factor was higher than that in healthy women, but the differences were not statistically significant. Also, no significant differences were observed between men and women with peptic ulcer, asymptomatic carriers control groups based on the serum levels of anti-nuclear antibodies. The results showed higher serum levels of rheumatoid factor and anti-nuclear antibodies in H. pylori-infected patients with peptic ulcer disease which represent the H. pylori-related immune disturbance in these patients. Additional follow-up studies are necessary to clarify the clinical significance of these

  4. Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Kruppa, A. T.; Giraud, B. G.; Katō, K.

    2008-06-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the ^{4}He = [^{3}H + p] + [^3{He} + n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L^{2} basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role.

  5. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  6. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  7. Correlation of outer nuclear layer thickness with cone density values in patients with retinitis pigmentosa and healthy subjects.

    PubMed

    Menghini, Moreno; Lujan, Brandon J; Zayit-Soudry, Shiri; Syed, Reema; Porco, Travis C; Bayabo, Kristine; Carroll, Joseph; Roorda, Austin; Duncan, Jacque L

    2014-12-16

    We studied the correlation between outer nuclear layer (ONL) thickness and cone density in normal eyes and eyes with retinitis pigmentosa (RP). Spectral-domain optical coherence tomography (SD-OCT) scans were acquired using a displaced pupil entry position of the scanning beam to distinguish Henle's fiber layer from the ONL in 20 normal eyes (10 subjects) and 12 eyes with RP (7 patients). Cone photoreceptors were imaged using adaptive optics scanning laser ophthalmoscopy. The ONL thickness and cone density were measured at 0.5° intervals along the horizontal meridian through the fovea nasally and temporally. The ONL thickness and cone density were correlated using Spearman's rank correlation coefficient r. Cone densities averaged over the central 6° were lower in eyes with RP than normal, but showed high variability in both groups. The ONL thickness and cone density were significantly correlated when all retinal eccentricities were combined (r = 0.74); the correlation for regions within 0.5° to 1.5° eccentricity was stronger (r = 0.67) than between 1.5° and 3.0° eccentricity (r = 0.23). Although cone densities were lower between 0.5° and 1.5° in eyes with RP, ONL thickness measures at identical retinal locations were similar in the two groups (P = 0.31), and interindividual variation was high for ONL and cone density measures. Although ONL thickness and retinal eccentricity were important predictors of cone density, eccentricity was over 3 times more important. The ONL thickness and cone density were correlated in normal eyes and eyes with RP, but both were strongly correlated with retinal eccentricity, precluding estimation of cone density from ONL thickness. (ClinicalTrials.gov number, NCT00254605.). Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  8. Correlation of Outer Nuclear Layer Thickness With Cone Density Values in Patients With Retinitis Pigmentosa and Healthy Subjects

    PubMed Central

    Menghini, Moreno; Lujan, Brandon J.; Zayit-Soudry, Shiri; Syed, Reema; Porco, Travis C.; Bayabo, Kristine; Carroll, Joseph; Roorda, Austin; Duncan, Jacque L.

    2015-01-01

    Purpose. We studied the correlation between outer nuclear layer (ONL) thickness and cone density in normal eyes and eyes with retinitis pigmentosa (RP). Methods. Spectral-domain optical coherence tomography (SD-OCT) scans were acquired using a displaced pupil entry position of the scanning beam to distinguish Henle's fiber layer from the ONL in 20 normal eyes (10 subjects) and 12 eyes with RP (7 patients). Cone photoreceptors were imaged using adaptive optics scanning laser ophthalmoscopy. The ONL thickness and cone density were measured at 0.5° intervals along the horizontal meridian through the fovea nasally and temporally. The ONL thickness and cone density were correlated using Spearman's rank correlation coefficient r. Results. Cone densities averaged over the central 6° were lower in eyes with RP than normal, but showed high variability in both groups. The ONL thickness and cone density were significantly correlated when all retinal eccentricities were combined (r = 0.74); the correlation for regions within 0.5° to 1.5° eccentricity was stronger (r = 0.67) than between 1.5° and 3.0° eccentricity (r = 0.23). Although cone densities were lower between 0.5° and 1.5° in eyes with RP, ONL thickness measures at identical retinal locations were similar in the two groups (P = 0.31), and interindividual variation was high for ONL and cone density measures. Although ONL thickness and retinal eccentricity were important predictors of cone density, eccentricity was over 3 times more important. Conclusions. The ONL thickness and cone density were correlated in normal eyes and eyes with RP, but both were strongly correlated with retinal eccentricity, precluding estimation of cone density from ONL thickness. (ClinicalTrials.gov number, NCT00254605.) PMID:25515570

  9. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  10. The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum.

    PubMed

    Wildy, Erica L; Chivers, Douglas P; Kiesecker, Joseph M; Blaustein, Andrew R

    2001-07-01

    Previous studies have examined abiotic and biotic factors that facilitate agonistic behavior. For larval amphibians, food availability and conspecific density have been suggested as important factors influencing intraspecific aggression and cannibalism. In this study, we examined the separate and combined effects of food availability and density on the agonistic behavior and life history of larval long-toed salamanders, Ambystoma macrodactylum. We designed a 2×2 factorial experiment in which larvae were raised with either a high or low density of conspecifics and fed either a high or low level of food. For each treatment, we quantified the amount of group size variation, biting, and cannibalism occurring. Additionally, we examined survival to, time to and size at metamorphosis for all larvae. Results indicated that differences in both density and food level influenced all three life history traits measured. Moreover, differences in food level at which larvae were reared resulted in higher within-group size variation and heightened intraspecific biting while both density and food level contributed to increased cannibalism. We suggest that increased hunger levels and an uneven size structure promoted biting among larvae in the low food treatments. Moreover, these factors combined with a higher encounter rate with conspecifics in the high density treatments may have prompted larger individuals to seek an alternative food source in the form of smaller conspecifics.

  11. Elementary diagrams in nuclear and neutron matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developedmore » a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.« less

  12. Temporal and spatial variations of radioactive cesium levels in Northeast Japan following the Fukushima nuclear accident.

    PubMed

    Arai, Takaomi

    2016-10-01

    Radioactive emissions into the environment from the Fukushima Daiichi Nuclear Power Plant accident led to global contamination. Radionuclides such as 131 I, 134 Cs, and 137 Cs were further transported to North America and Europe. Thus, the Fukushima Daiichi Nuclear Power Plant accident is a global concern for both human health and the ecosystem because a number of countries ban or impose restrictions the import of Japanese products. In the present study, three-year (May 2011 to May 2014) fluctuations and accumulations of Cs, 134 Cs, and 137 Cs in two salmonid fish, white-spotted char and masu salmon were examined in Northeast Japan. The total Cs, 134 Cs, and 137 Cs levels in the fish gradually decreased throughout the three-year studied period after the Fukushima Daiichi Nuclear Power Plant accident; however, higher levels (more than 100 Bq kg -1 ) were still detected in the Fukushima prefecture and neighboring prefectures in Japan 3 years after the Fukushima Daiichi Nuclear Power Plant accident. Spatial radiocesium levels gradually decreased with increasing distance from the Fukushima Daiichi Nuclear Power Plant (Fukushima prefecture). The radiocesium levels facing the Pacific Ocean area were generally higher than those facing the Sea of Japan area. These results suggest that radionuclides from Fukushima Daiichi Nuclear Power Plant are still widely distributed and remain in the natural environment in Northeast Japan.

  13. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  14. Influence of atomic densities on propagation property for ultrashort pulses in a two-level medium

    NASA Astrophysics Data System (ADS)

    Liu, Bingxin; Gong, Shangqing; Song, Xiaohong; Jin, Shiqi

    2005-05-01

    The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2? ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.

  15. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  16. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  17. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake.

    PubMed

    Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A

    1993-12-01

    To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.

  18. Ocean Turbulence V: Mesoscale Modeling in Level Coordinates. The Effect of Random Nature of Density

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    1998-01-01

    The main result of this paper is the derivation of a new expression for the tracer subgrid term in level coordinates S(l) to be employed in O-GCM. The novel feature is the proper account of the random nature of the density field which strongly affects the transformation from isopycnal to level coordinates of the variables of interest, velocity and tracer fields, their correlation functions and ultimately the subgrid terms. In deriving our result we made use of measured properties of vertical ocean turbulence. The major new results are: 1) the new subgrid expression is different from that of the heuristic GM model, 2) u++(tracer)=1/2u+(thickness), where u++ and u+ are the tracer and thickness bolus velocities. In previous models, u++ = u+, 2) the subgrid for a tracer tau is not the same as that for the density rho even when one accounts for the obvious absence of a diffusion term in the latter. The difference stems from a new treatment of the stochastic nature of the density, 3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's from the bottom of the ocean to the level z.

  19. Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ma, J.; Ng, E.; Yuan, C.; Lai, A.

    2015-12-01

    Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.

  20. Longitudinal development of hormone levels and grey matter density in 9 and 12-year-old twins.

    PubMed

    Brouwer, Rachel M; Koenis, M M G; Schnack, Hugo G; van Baal, G Caroline; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-05-01

    Puberty is characterized by major changes in hormone levels and structural changes in the brain. To what extent these changes are associated and to what extent genes or environmental influences drive such an association is not clear. We acquired circulating levels of luteinizing hormone, follicle stimulating hormone (FSH), estradiol and testosterone and magnetic resonance images of the brain from 190 twins at age 9 [9.2 (0.11) years; 99 females/91 males]. This protocol was repeated at age 12 [12.1 (0.26) years] in 125 of these children (59 females/66 males). Using voxel-based morphometry, we tested whether circulating hormone levels are associated with grey matter density in boys and girls in a longitudinal, genetically informative design. In girls, changes in FSH level between the age of 9 and 12 positively associated with changes in grey matter density in areas covering the left hippocampus, left (pre)frontal areas, right cerebellum, and left anterior cingulate and precuneus. This association was mainly driven by environmental factors unique to the individual (i.e. the non-shared environment). In 12-year-old girls, a higher level of circulating estradiol levels was associated with lower grey matter density in frontal and parietal areas. This association was driven by environmental factors shared among the members of a twin pair. These findings show a pattern of physical and brain development going hand in hand.

  1. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  2. The future of high-level nuclear waste disposal, state sovereignty and the tenth amendment: Nevada v. Watkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swazo, S.

    The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less

  3. Level Densities of Residual Nuclei from particle evaporation of 64Cu

    NASA Astrophysics Data System (ADS)

    Oginni, B. M.; Grimes, S. M.; Voinov, A. V.; Adekola, A. S.; Brune, C. R.; Carter, D.; Heinen, Z.; Jacobs, D.; Massey, T. N.; O'Donnell, J.

    2009-07-01

    The reactions of 6Li on 58Fe and 7Li on 57Fe have been studied at beam energy 15 MeV. These two reactions produce the same compound nucleus, 64Cu. The neutron, proton, and alpha spectra were measured at backward angles. The data obtained have been compared with Hauser Fesh-bach model calculations. The level density parameters of the residual nuclei have been obtained from the particle evaporation spectra.

  4. Experimental Determination of η/s for Finite Nuclear Matter.

    PubMed

    Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S; Pal, Surajit; Dey, Balaram; Bhattacharya, Srijit; De, A; Bhattacharya, Soumik; Bhattacharyya, S; Roy, Pratap; Banerjee, K; Banerjee, S R

    2017-05-12

    We present, for the first time, simultaneous determination of shear viscosity (η) and entropy density (s) and thus, η/s for equilibrated nuclear systems from A∼30 to A∼208 at different temperatures. At finite temperature, η is estimated by utilizing the γ decay of the isovector giant dipole resonance populated via fusion evaporation reaction, while s is evaluated from the nuclear level density parameter (a) and nuclear temperature (T), determined precisely by the simultaneous measurements of the evaporated neutron energy spectra and the compound nuclear angular momenta. The transport parameter η and the thermodynamic parameter s both increase with temperature, resulting in a mild decrease of η/s with temperature. The extracted η/s is also found to be independent of the neutron-proton asymmetry at a given temperature. Interestingly, the measured η/s values are comparable to that of the high-temperature quark-gluon plasma, pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of many-body quantum systems.

  5. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction

    PubMed Central

    Hughes, Colin E; Eastwood, Ruth J; Donovan Bailey, C

    2005-01-01

    Phylogenetic analyses of DNA sequences have prompted spectacular progress in assembling the Tree of Life. However, progress in constructing phylogenies among closely related species, at least for plants, has been less encouraging. We show that for plants, the rapid accumulation of DNA characters at higher taxonomic levels has not been matched by conventional sequence loci at the species level, leaving a lack of well-resolved gene trees that is hindering investigations of many fundamental questions in plant evolutionary biology. The most popular approach to address this problem has been to use low-copy nuclear genes as a source of DNA sequence data. However, this has had limited success because levels of variation among nuclear intron sequences across groups of closely related species are extremely variable and generally lower than conventionally used loci, and because no universally useful low-copy nuclear DNA sequence loci have been developed. This suggests that solutions will, for the most part, be lineage-specific, prompting a move away from ‘universal’ gene thinking for species-level phylogenetics. The benefits and limitations of alternative approaches to locate more variable nuclear loci are discussed and the potential of anonymous non-genic nuclear loci is highlighted. Given the virtually unlimited number of loci that can be generated using these new approaches, it is clear that effective screening will be critical for efficient selection of the most informative loci. Strategies for screening are outlined. PMID:16553318

  6. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  7. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors.

    PubMed

    Ponce-Ruiz, N; Murillo-González, F E; Rojas-García, A E; Mackness, Mike; Bernal-Hernández, Y Y; Barrón-Vivanco, B S; González-Arias, C A; Medina-Díaz, I M

    2017-04-25

    Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  9. Photoproduction of light vector mesons in Xe-Xe ultraperipheral collisions at the LHC and the nuclear density of Xe-129

    NASA Astrophysics Data System (ADS)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2018-07-01

    We make predictions for cross sections of ρ and ϕ vector meson photoproduction in ultraperipheral Xe-Xe collisions at √{sNN } = 5.44TeV. Analyzing the momentum transfer distribution of ρ mesons in this process, we explore the feasibility of extracting the nuclear density of 129Xe, which is needed in searches for dark matter with Xenon-based detectors.

  10. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  11. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  12. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

    PubMed

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  13. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  14. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Immunoassay and Nb2 lymphoma bioassay prolactin levels and mammographic density in premenopausal and postmenopausal women the Nurses' Health Studies.

    PubMed

    Rice, Megan S; Tworoger, Shelley S; Bertrand, Kimberly A; Hankinson, Susan E; Rosner, Bernard A; Feeney, Yvonne B; Clevenger, Charles V; Tamimi, Rulla M

    2015-01-01

    Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or 1996-1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area. Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.

  16. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  17. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  18. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities

    PubMed Central

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    Purpose: To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Methods: Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Results: Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye. PMID:26425316

  19. Gamma Strength Functions and Level Densities from 300 MeV Proton Scatttering at 0°

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk

    The gamma strength function (GSF) as well as total level densities (LDs) in 208Pb and 96Mo were extracted from high-resolution forward angle inelastic proton scattering data taken at RCNP, Osaka, Japan, and compared to experimental results obtained with the Oslo method in order to test the validity of the Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance. The case of 208Pb is inconclusive because of strong fluctuations of the GSF due to the small level density in a doubly closed-shell nucleus. In 96Mo the data are consistent with the BA hypothesis. The good agreement of LDs provides an independent confirmation of the approach underlying the decomposition of GSF and LDs in Oslo-type experiments.

  20. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...

  1. Does alcohol outlet density differ by area-level disadvantage in metropolitan Perth?

    PubMed

    Foster, Sarah; Hooper, Paula; Knuiman, Matthew; Trapp, Georgina; Wood, Lisa

    2017-09-01

    Research suggests that there are area-level disparities in alcohol outlets, with greater density in disadvantaged areas. In part, this might be explained by the inequitable distribution of retail, attracted by lower rents to disadvantaged neighbourhoods. This ecological study examines the distribution of liquor licences in Perth, Australia, and whether discrepancies in the distribution of retail land-uses could account for a socio-economic gradient. Area disadvantage was determined for each Statistical Area 1 (SA1) using the Australian Bureau of Statistics Index of Relative Socio-economic Disadvantage, and licence locations were mapped in GIS. Negative binomial loglinear models examined whether licence densities within SA1s differed by area disadvantage, controlling for demographics and spatial correlation. Models included an offset term, so the estimated effects of area-level disadvantage were on licences per km 2 , or licences per retail destination. In the area-based analyses, for every unit increase in disadvantage decile (i.e. a reduction in relative disadvantage), general licences reduced by 15% (P = 0.000) and liquor stores reduced by 7% (P = 0.004). These gradients were not apparent when licences were examined as a function of retail; however, for every unit increase in disadvantage decile, the density of on-premise licences per retail destination increased by 14% (P = 0.000). The direction of the socio-economic gradient for general licences and liquor stores in Perth is concerning, as all licences selling packaged alcohol were more abundant in disadvantaged areas. However, the over-representation of packaged liquor in disadvantaged areas may relate to the increased provision of retail. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  2. Dose estimation for nuclear power plant 4 accident in Taiwan at Fukushima nuclear meltdown emission level.

    PubMed

    Tang, Mei-Ling; Tsuang, Ben-Jei; Kuo, Pei-Hsuan

    2016-05-01

    An advanced Gaussian trajectory dispersion model is used to evaluate the evacuation zone due to a nuclear meltdown at the Nuclear Power Plant 4 (NPP4) in Taiwan, with the same emission level as that occurred at Fukushima nuclear meltdown (FNM) in 2011. Our study demonstrates that a FNM emission level would pollute 9% of the island's land area with annual effective dose ≥50 mSv using the meteorological data on 11 March 2011 in Taiwan. This high dose area is also called permanent evacuation zone (denoted as PEZ). The PEZ as well as the emergency-planning zone (EPZ) are found to be sensitive to meteorological conditions on the event. In a sunny day under the dominated NE wind conditions, the EPZ can be as far as 100 km with the first 7-day dose ≥20 mSv. Three hundred sixty-five daily events using the meteorological data from 11 March 2011 to 9 March 2012 are evaluated. It is found that the mean land area of Taiwan in becoming the PEZ is 11%. Especially, the probabilities of the northern counties/cities (Keelung, New Taipei, Taipei, Taoyuan, Hsinchu City, Hsinchu County and Ilan County) to be PEZs are high, ranging from 15% in Ilan County to 51% in Keelung City. Note that the total population of the above cities/counties is as high as 10 million people. Moreover, the western valleys of the Central Mountain Range are also found to be probable being PEZs, where all of the reservoirs in western Taiwan are located. For example, the probability can be as high as 3% in the far southern-most tip of Taiwan Island in Pingtung County. This shows that the entire populations in western Taiwan can be at risk due to the shortage of clean water sources under an event at FNM emission level, especially during the NE monsoon period. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Three Gorges Dam: polynomial regression modeling of water level and the density of schistosome-transmitting snails Oncomelania hupensis.

    PubMed

    Yang, Ya; Gao, Jianchuan; Cheng, Wanting; Pan, Xiang; Yang, Yu; Chen, Yue; Dai, Qingqing; Zhu, Lan; Zhou, Yibiao; Jiang, Qingwu

    2018-03-14

    Schistosomiasis remains a major public health concern in China. Oncomelania hupensis (O. hupensis) is the sole intermediate host of Schistosoma japonicum, and its change in distribution and density influences the endemic S. japonicum. The Three Gorges Dam (TGD) has substantially changed the downstream water levels of the dam. This study investigated the quantitative relationship between flooding duration and the density of the snail population. Two bottomlands without any control measures for snails were selected in Yueyang City, Hunan Province. Data for the density of the snail population and water level in both spring and autumn were collected for the period 2009-2015. Polynomial regression analysis was applied to explore the relationship between flooding duration and the density of the snail population. Data showed a convex relationship between spring snail density and flooding duration of the previous year (adjusted R 2 , aR 2  = 0.61). The spring snail density remained low when the flooding duration was fewer than 50 days in the previous year, was the highest when the flooding duration was 123 days, and decreased thereafter. There was a similar convex relationship between autumn snail density and flooding duration of the current year (aR 2  = 0.77). The snail density was low when the flooding duration was fewer than 50 days and was the highest when the flooding duration was 139 days. There was a convex relationship between flooding duration and the spring or autumn snail density. The snail density was the highest when flooding lasted about four to 5 months.

  4. Systematic theoretical study of non-nuclear electron density maxima in some diatomic molecules.

    PubMed

    Terrabuio, Luiz A; Teodoro, Tiago Q; Rachid, Marina G; Haiduke, Roberto L A

    2013-10-10

    First, exploratory calculations were performed to investigate the presence of non-nuclear maxima (NNMs) in ground-state electron densities of homonuclear diatomic molecules from hydrogen up to calcium at their equilibrium geometries. In a second stage, only for the cases in which these features were previously detected, a rigorous analysis was carried out by several combinations of theoretical methods and basis sets in order to ensure that they are not only calculation artifacts. Our best results support that Li2, B2, C2, and P2 are molecules that possess true NNMs. A NNM was found in values obtained from the largest basis sets for Na2, but it disappeared at the experimental geometry because optimized bond lengths are significantly inaccurate for this case (deviations of 0.10 Å). Two of these maxima are also observed in Si2 with CCSD and large basis sets, but they are no longer detected as core-valence correlation or multiconfigurational wave functions are taken into account. Therefore, the NNMs in Si2 can be considered unphysical features due to an incomplete treatment of electron correlation. Finally, we show that a NNM is encountered in LiNa, representing the first discovery of such electron density maxima in a heteronuclear diatomic system at its equilibrium geometry, to our knowledge. Some results for LiNa, found in variations in internuclear distances, suggest that molecular electric moments, such as dipole and quadrupole, are sensitive to the presence of NNMs.

  5. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  6. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-;can ALS now work better on the task of LAI prediction?; As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  7. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.

    2017-05-01

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  8. Associations of Education Level and Bone Density Tests among Cognitively Intact Elderly White Women in Managed Medicare

    PubMed Central

    Shi, Di; Yin, Michael T.; Shi, Qiuhu; Hoover, Donald R.

    2012-01-01

    Objectives. To examine associations between having bone density tests and level of education among white elderly women in managed Medicare. Method. Data from the ninth through twelfth cohort (2006–2009) of the Medicare Health Outcome Survey (HOS) of managed Medicare plans were analyzed; 239331 white elderly women were included. Respondents were grouped by education level and the percentages of respondents who had lifetime bone density testing done among each group were analyzed. Results. 62.7% of respondents with less than a high school education reported previously taking a bone density test. This was lower than the 73.8% for respondents who completed high school and the 81.0% for respondents with more than a high school education. When potential confounding factors such as age, body mass index, marital status, smoking history, year of HOS survey, and region were factored in, the odds ratios of having a bone density test when compared to respondents with less than a high school education were 1.61 and 2.39, respectively, for those with just a high school education and more than a high school education (P < 0.001). Conclusion. Higher education was independently associated with greater use of bone density test in these elderly white women. PMID:23056041

  9. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  10. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  11. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  12. Myocardial signal density levels and beam-hardening artifact attenuation using dual-energy computed tomography.

    PubMed

    Rodriguez-Granillo, Gaston A; Carrascosa, Patricia; Cipriano, Silvina; de Zan, Macarena; Deviggiano, Alejandro; Capunay, Carlos; Cury, Ricardo C

    2015-01-01

    The assessment of myocardial perfusion using single-energy (SE) imaging is influenced by beam-hardening artifacts (BHA). We sought to explore the ability of dual-energy (DE) imaging to attenuate the presence of BHA. Myocardial signal density (SD) was evaluated in 2240 myocardial segments (112 for each energy level) and in 320 American Heart Association segments among the SE group. Compared to DE reconstructions at the best energy level, SE acquisitions showed no significant differences overall regarding myocardial SD or signal-to-noise ratio. The segments most commonly affected by BHA showed significantly lower myocardial SD at the lowest energy levels, progressively normalizing at higher energy levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Noninvasive method for determining the liquid level and density inside of a container

    DOEpatents

    Sinha, Dipen N.

    2000-01-01

    Noninvasive method for determining the liquid level and density inside of a container having arbitrary dimension and shape. By generating a flexural acoustic wave in the container shell and measuring the phase difference of the detected flexural wave from that of the originally generated wave a small distance from the generated wave, while moving the generation and detection means through the liquid/vapor interface, this interface can be detected. Both the wave generation and wave detection may be achieved by transducers on the surface of the container. A change in the phase difference over the outer surface of the vessel signifies that a liquid/vapor interface has been crossed, while the magnitude of the phase difference can be related to fluid density immediately opposite the measurement position on the surface of the vessel.

  14. Combined effects of endogenous sex hormone levels and mammographic density on postmenopausal breast cancer risk: results from the Breakthrough Generations Study

    PubMed Central

    Schoemaker, M J; Folkerd, E J; Jones, M E; Rae, M; Allen, S; Ashworth, A; Dowsett, M; Swerdlow, A J

    2014-01-01

    Background: Mammographic density and sex hormone levels are strong risk factors for breast cancer, but it is unclear whether they represent the same aetiological entity or are independent risk factors. Methods: Within the Breakthrough Generations Study cohort, we conducted a case–control study of 265 postmenopausal breast cancer cases and 343 controls with prediagnostic mammograms and blood samples. Plasma was assayed for oestradiol, testosterone and sex hormone-binding globulin (SHBG) concentrations and mammographic density assessed by Cumulus. Results: Oestradiol and testosterone were negatively and SHBG positively associated with percentage density and absolute dense area, but after adjusting for body mass index the associations remained significant only for SHBG. Breast cancer risk was independently and significantly positively associated with percentage density (P=0.002), oestradiol (P=0.002) and testosterone (P=0.007) levels. Women in the highest tertile of both density and sex hormone level were at greatest risk, with an odds ratio of 7.81 (95% confidence interval (CI): 2.89–21.1) for oestradiol and 4.57 (95% CI: 1.75–11.9) for testosterone and high density compared with those who were in the lowest tertiles. The cumulative risk of breast cancer in the highest oestradiol and density tertiles, representing 8% of controls, was estimated as 12.8% at ages 50–69 years and 19.4% at ages 20–79 years, and in the lowest tertiles was 1.7% and 4.3%, respectively. Associations of breast cancer risk with tertiles of mammographic dense area were less strong than for percentage density. Conclusions: Endogenous sex hormone levels and mammographic density are independent risk factors for postmenopausal breast cancer, which in combination can identify women who might benefit from increased frequency of screening and chemoprophylaxis. PMID:24518596

  15. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, W.M.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less

  16. Influence of the Level Density Parametrization on the Effective GDR Width at High Spins

    NASA Astrophysics Data System (ADS)

    Mazurek, K.; Matejska, M.; Kmiecik, M.; Maj, A.; Dudek, J.

    Parameterizations of the nucleonic level densities are tested by computing the effective GDR strength-functions and GDR widths at high spins. Calculations are based on the thermal shape fluctuation method with the Lublin-Strasbourg Drop (LSD) model. Results for 106Sn, 147Eu, 176W, 194Hg are compared to the experimental data.

  17. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  18. The Ultimate Experiment Proving the Beneficial Effect of Low Level Radiation and Safety of Nuclear Power Plant: Serendipity of the Airborne Nuclear Weapons Test

    NASA Astrophysics Data System (ADS)

    Fong, Peter

    1997-11-01

    The cancer deaths per 100,000 U.S. population plotted as a function of time (year) over the past 60 years can be represented by a smooth curve except the years 1952-1978 where the data points fall below the smooth curve indicating a reduction of cancer ceaths of a total of 418,000. This anormaly is traced, through the space-time correlation of the mortalities with the 48 States, to the airborne nuclear weapons tests (mostly in Nevada) during that period when 500 nuclear bombs were exploded in air, generating an extra amount of radiation of 30 mrem/year. From this serendipitous experiment we deduce the law of the beneficial effect of low level radiation that a doubling of the background radiation (as in Colorado) will reduce cancer death rate by 24.3%. The actual rate of reduction in Colorado is 25% lower than the national average. Thus the law is verified. In another aspect Kerala,India has a background radiation 20 times higher than normal and it has a life expectancy 10.7 years longer than average India, thus showing the great beneficial affect of low level radiation. Concerning the nuclear power plant safety, the 500 bombs exploded are equivalent to 50 Chernobyl type nuclear plant explosions, the results of which are the reduction of 418,000 cancer deaths. Thus the nuclear industry is absolutely safe under any catastrophic disasters that may befall on the 414 nuclear plant now operating on the earth. The beneficial effects of radiation have been taken advantage of in folklores and health practices in Brazil, Chekoslovakia, Germany and Colorado. These health practices can benefit from the radiation generated from nuclear power and the nuclear waste disposal problem can be solved by turning trashes into treasures.

  19. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers.

    PubMed

    Tabara, Yasuharu; Ueshima, Hirotsugu; Takashima, Naoyuki; Hisamatsu, Takashi; Fujiyoshi, Akira; Zaid, Maryam; Sumi, Masaki; Kohara, Katsuhiko; Miki, Tetsuro; Miura, Katsuyuki

    2016-11-01

    While alcohol consumption is known to increase plasma high-density lipoprotein (HDL) cholesterol levels, its relationship with low-density lipoprotein (LDL) cholesterol levels is unclear. Aldehyde dehydrogenase 2 (ALDH2) is a rate-controlling enzyme in alcohol metabolism, but a large number of Japanese people have the inactive allele. Here, we conducted a Mendelian randomization analysis using the ALDH2 genotype to clarify a causal role of alcohol on circulating cholesterol levels and lipoprotein particle numbers. This study was conducted in three independent general Japanese populations (men, n = 2289; women, n = 1940; mean age 63.3 ± 11.2 years). Alcohol consumption was assessed using a questionnaire. Lipoprotein particle numbers were determined by nuclear magnetic resonance spectroscopy. Alcohol consumption increased linearly in proportion to the number of subjects carrying the enzymatically active *1 allele in men (p < 0.001). The *1 allele was also positively associated with HDL cholesterol level (adjusted mean ± standard error, *1*1: 60 ± 0.5, *1*2: 56 ± 0.6, *2*2: 55 ± 1.3 mg/dl, p < 0.001) and inversely associated with LDL cholesterol level (116 ± 0.9, 124 ± 1.1, 130 ± 2.6 mg/dl, p < 0.001). The *1 allele was also positively associated with HDL particle numbers (per-allele: 2.60 ± 0.32 μmol/l, p < 0.001) and inversely associated with LDL particle numbers (-67.8 ± 19.6 nmol/l, p = 0.001). Additional Mendelian randomization analysis failed to clarify the involvement of cholesteryl ester transfer protein in alcohol-related changes in lipoprotein cholesterol levels. No significant association was observed in women, presumably due to their small amount of alcohol intake. Alcohol consumption has a causal role in not only increasing HDL cholesterol levels but also decreasing LDL cholesterol levels and particle numbers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Double Trouble at High Density: Cross-Level Test of Resource-Related Adaptive Plasticity and Crowding-Related Fitness

    PubMed Central

    Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette

    2014-01-01

    Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation

  1. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  2. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  3. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    PubMed

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Understanding the effect of ethnic density on mental health: multi-level investigation of survey data from England.

    PubMed

    Das-Munshi, Jayati; Becares, Laia; Dewey, Michael E; Stansfeld, Stephen A; Prince, Martin J

    2010-10-21

    To determine if living in areas where higher proportions of people of the same ethnicity reside is protective for common mental disorders, and associated with a reduced exposure to discrimination and improved social support. Finally, to determine if any protective ethnic density effects are mediated by reduced exposure to racism and improved social support. Multi-level logistic regression analysis of national survey data, with area-level, own-group ethnic density modelled as the main exposure. Participants and setting 4281 participants of Irish, black Caribbean, Indian, Pakistani, Bangladeshi, and white British ethnicity, aged 16-74 years, randomly sampled from 892 "middle layer super output areas" in England. Common mental disorders (assessed via structured interviews); discrimination (assessed via structured questionnaire); and social support and social networks (assessed via structured questionnaire). Although the most ethnically dense areas were also the poorest, for each 10 percentage point increase in own-group ethnic density, there was evidence of a decreased risk of common mental disorders, for the full ethnic minority sample (odds ratio 0.94 (95% confidence interval 0.89 to 0.99); P=0.02, trend), for the Irish group (odds ratio 0.21 (0.06 to 0.74); P=0.01, trend), and for the Bangladeshi group (odds ratio 0.75 (0.62 to 0.91); P=0.005, trend), after adjusting for a priori confounders. For some groups, living in areas of higher own-group density was associated with a reduction in the reporting of discrimination and with improved social support and improved social networks. However, none of these factors mediated ethnic density effects. A protective effect of living in areas of higher own-group ethnic density was present for common mental disorders for some minority groups. People living in areas of higher own-group density may report improved social support and less discrimination, but these associations did not fully account for density effects.

  5. Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.; Benedict, Robert W.

    The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less

  6. Particle decay of proton-unbound levels in N 12

    DOE PAGES

    Chipps, K. A.; Pain, S. D.; Greife, U.; ...

    2017-04-24

    Transfer reactions are a useful tool for studying nuclear structure, particularly in the regime of low level densities and strong single-particle strengths. Additionally, transfer reactions can populate levels above particle decay thresholds, allowing for the possibility of studying the subsequent decays and furthering our understanding of the nuclei being probed. In particular, the decay of loosely bound nuclei such as 12 N can help inform and improve structure models.The purpose of this paper is to learn about the decay of excited states in 12 N , to more generally inform nuclear structure models, particularly in the case of particle-unbound levelsmore » in low-mass systems which are within the reach of state-of-the-art ab initio calculations.« less

  7. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stránský, Pavel; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, México, D.F.; Macek, Michal

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. --more » Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.« less

  8. Quartetting in Nuclear Matter and α Particle Condensation in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Schuck, P.; Horiuchi, H.; Tohsaki, A.; Funaki, Y.; Yamada, T.

    2008-02-01

    Alternatively to pairing, four-particle correlations may become of importance for the formation of quantum condensates in nuclear matter. With increasing density, four-particle correlations are suppressed because of Pauli blocking. Signatures of α-like clusters are expected to occur in low-density nuclear systems. The famous Hoyle state (02+ at 7.654 MeV in 12C) is identified as being an almost ideal condensate of three α-particles, hold together only by the Coulomb barrier. It, therefore, has a 8Be-α structure of low density. Transition probability and inelastic form factor together with position and other physical quantities are correctly reproduced without any adjustable parameter from our two parameter wave function of α-particle condensate type. The possibility of the existence of α-particle condensed states in heavier nα nuclei is also discussed.

  9. Fluctuations and symmetry energy in nuclear fragmentation dynamics.

    PubMed

    Colonna, M

    2013-01-25

    Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.

  10. Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana

    2016-09-01

    Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.

  11. Obesity and Regional Immigrant Density.

    PubMed

    Emerson, Scott D; Carbert, Nicole S

    2017-11-24

    Canada has an increasingly large immigrant population. Areas of higher immigrant density, may relate to immigrants' health through reduced acculturation to Western foods, greater access to cultural foods, and/or promotion of salubrious values/practices. It is unclear, however, whether an association exists between Canada-wide regional immigrant density and obesity among immigrants. Thus, we examined whether regional immigrant density was related to obesity, among immigrants. Adult immigrant respondents (n = 15,595) to a national population-level health survey were merged with region-level immigrant density data. Multi-level logistic regression was used to model the odds of obesity associated with increased immigrant density. The prevalence of obesity among the analytic sample was 16%. Increasing regional immigrant density was associated with lower odds of obesity among minority immigrants and long-term white immigrants. Immigrant density at the region-level in Canada may be an important contextual factor to consider when examining obesity among immigrants.

  12. Torsional ultrasonic technique for reactor vessel liquid level measurement

    NASA Astrophysics Data System (ADS)

    Dress, W. B.

    A detailed study of an ultrasonic waveguide employed as a level, density, and temperature sensor was undertaken. The purpose was to show how such a device might be used in the nuclear power industry to provide reliable level information with a multifunction sensor, thus overcoming several of the errors that led to the accident at Three Mile Island. Some additional work is needed to answer the question raised by the current study, most noticably the damping effects of flowing water.

  13. Verification of screening level for decontamination implemented after Fukushima nuclear accident

    PubMed Central

    Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi

    2012-01-01

    The screening level for decontamination that has been applied for the surface of the human body and contaminated handled objects after the Fukushima nuclear accident was verified by assessing the doses that arise from external irradiation, ingestion, inhalation and skin contamination. The result shows that the annual effective dose that arises from handled objects contaminated with the screening level for decontamination (i.e. 100 000 counts per minute) is <1 mSv y−1, which can be considered as the intervention exemption level in accordance with the International Commission on Radiological Protection recommendations. Furthermore, the screening level is also found to protect the skin from the incidence of a deterministic effect because the absorbed dose of the skin that arises from direct deposition on the surface of the human body is calculated to be lower than the threshold of the deterministic effect assuming a practical exposure duration. PMID:22228683

  14. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  15. The neutron skin thickness in nuclei with clustering at low densities

    NASA Astrophysics Data System (ADS)

    Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.

    2016-11-01

    This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.

  16. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    NASA Astrophysics Data System (ADS)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the

  17. The association of very-low-density lipoprotein with ankle-brachial index in peritoneal dialysis patients with controlled serum low-density lipoprotein cholesterol level

    PubMed Central

    2013-01-01

    Background Peripheral artery disease (PAD) represents atherosclerotic disease and is a risk factor for death in peritoneal dialysis (PD) patients, who tend to show an atherogenic lipid profile. In this study, we investigated the relationship between lipid profile and ankle-brachial index (ABI) as an index of atherosclerosis in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level. Methods Thirty-five PD patients, whose serum LDL cholesterol level was controlled at less than 120mg/dl, were enrolled in this cross-sectional study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions and the mean size of lipoprotein particles were measured using an improved method, namely, high-performance gel permeation chromatography. Multivariate linear regression analysis was adjusted for diabetes mellitus and cardiovascular and/or cerebrovascular diseases. Results The mean (standard deviation) age was 61.6 (10.5) years; PD vintage, 38.5 (28.1) months; ABI, 1.07 (0.22). A low ABI (0.9 or lower) was observed in 7 patients (low-ABI group). The low-ABI group showed significantly higher cholesterol proportions in the chylomicron fraction and large very-low-density lipoproteins (VLDLs) (Fractions 3–5) than the high-ABI group (ABI>0.9). Adjusted multivariate linear regression analysis showed that ABI was negatively associated with serum VLDL cholesterol level (parameter estimate=-0.00566, p=0.0074); the cholesterol proportions in large VLDLs (Fraction 4, parameter estimate=-3.82, p=0.038; Fraction 5, parameter estimate=-3.62, p=0.0039) and medium VLDL (Fraction 6, parameter estimate=-3.25, p=0.014); and the size of VLDL particles (parameter estimate=-0.0352, p=0.032). Conclusions This study showed that the characteristics of VLDL particles were associated with ABI among PD patients. Lowering serum VLDL level may be an effective therapy against atherosclerosis in PD patients after the

  18. Nuclear ``pasta'' phase within density dependent hadronic models

    NASA Astrophysics Data System (ADS)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  19. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident

    PubMed Central

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice. PMID:25731663

  20. Three Gorges Dam: Impact of Water Level Changes on the Density of Schistosome-Transmitting Snail Oncomelania hupensis in Dongting Lake Area, China

    PubMed Central

    Wu, Jin-Yi; Zhou, Yi-Biao; Chen, Yue; Liang, Song; Li, Lin-Han; Zheng, Sheng-Bang; Zhu, Shao-ping; Ren, Guang-Hui; Song, Xiu-Xia; Jiang, Qing-Wu

    2015-01-01

    Background Schistosomiasis remains an important public health issue in China and worldwide. Oncomelania hupensis is the unique intermediate host of schistosoma japonicum, and its change influences the distribution of S. japonica. The Three Gorges Dam (TGD) has substantially changed the ecology and environment in the Dongting Lake region. This study investigated the impact of water level and elevation on the survival and habitat of the snails. Methods Data were collected for 16 bottomlands around 4 hydrological stations, which included water, density of living snails (form the Anxiang Station for Schistosomiasis Control) and elevation (from Google Earth). Based on the elevation, sixteen bottomlands were divided into 3 groups. ARIMA models were built to predict the density of living snails in different elevation areas. Results Before closure of TGD, 7 out of 9 years had a water level beyond the warning level at least once at Anxiang hydrological station, compared with only 3 out of 10 years after closure of TGD. There were two severe droughts that happened in 2006 and 2011, with much fewer number of flooding per year compared with other study years. Overall, there was a correlation between water level changing and density of living snails variation in all the elevations areas. The density of living snails in all elevations areas was decreasing after the TGD was built. The relationship between number of flooding per year and the density of living snails was more pronounced in the medium and high elevation areas; the density of living snails kept decreasing from 2003 to 2014. In low elevation area however, the density of living snails decreased after 2003 first and turned to increase after 2011. Our ARIMA prediction models indicated that the snails would not disappear in the Dongting Lake region in the next 7 years. In the low elevation area, the density of living snails would increase slightly, and then stabilize after the year 2017. In the medium elevation region

  1. Nuclear field shift in natural environments

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Brennecka, Gregory A.; Nielsen, Sune G.

    2013-03-01

    The nuclear field shift (NFS) is an isotope shift in atomic energy levels caused by a combination of differences in nuclear size and shape and electron densities at the nucleus. The effect of NFS in isotope fractionation was theoretically established by Bigeleisen in 1996 [Bigeleisen J. (1996) J. Am. Chem. Soc. 118:3676-3680] and has been analytically measured in laboratory chemical exchange reactions. More recently, some isotopic variations of heavy elements (Hg, Tl, U) measured in natural systems as well as isotopic anomalies measured for lower-mass elements in meteorites have been attributed to the NFS effect. These isotopic variations open up new and exciting fields of investigations in Earth sciences. In this paper, we review the different natural systems in which NFS has been proposed to be the origin of isotopic variations.

  2. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOEpatents

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  3. Nuclear technologies for explosives detection

    NASA Astrophysics Data System (ADS)

    Bell, Curtis J.

    1992-12-01

    This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.

  4. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de; Lenske, H.

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capturemore » reaction rates of astrophysical importance. A comparison to available experimental data is discussed.« less

  5. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  6. Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.

    2010-11-01

    In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  7. Phase transitions in core-collapse supernova matter at sub-saturation densities

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Newton, William G.; Stone, Jirina R.

    2014-12-01

    Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.

  8. A population-based tissue probability map-driven level set method for fully automated mammographic density estimations.

    PubMed

    Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo

    2014-07-01

    A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts

  9. Embedded random matrix ensembles from nuclear structure and their recent applications

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  10. The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC

    NASA Astrophysics Data System (ADS)

    Tafrihi, Azar

    2018-05-01

    The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.

  11. Solving the Nose-Hoover thermostat for Nuclear Pasta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez Garcia, M. Angeles

    2006-06-19

    At densities just below nuclear saturation density, there may be possible non-uniform spatial configurations of neutron rich matter. In this work we present a calculation using molecular dynamics techniques for a nuclear system interacting via a semiclassical potential depending on both positions and momenta and kept at fixed temperature by using the Nose-Hoover Thermostat.

  12. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolić, M.; Newton, J.; Sukenik, C. I.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. Wemore » also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.« less

  13. Nuclear gauge application in road industry

    NASA Astrophysics Data System (ADS)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  14. Low density lipoprotein levels linkage with the periodontal status patients of coronary heart disease

    NASA Astrophysics Data System (ADS)

    Ahmad, Nafisah Ibrahim; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Studies found an association between periodontitis and coronary heart disease (CHD), but relationship between periodontal status CHD patients with LDL (Low Density Lipoprotein) levels, as risk factors for atherosclerosis, has not been studied. Objective: To analyze relationship between LDL and periodontal status CHD. Methods: Periodontal status of 60 CHD, 40 controls were examined (PBI, PPD, CAL) and their blood was taken to assess levels of LDL. Result: Found significant differences LDL (p=0.005), correlation between LDL with PPD (p=0.003) and CAL CHD (p=0.013), and PPD (p=0.001), CAL (p=0.008) non-CHD, but no significant correlation between LDL with PBI CAD (p=0.689) and PBI non-CHD (p=0.320). Conclusion: There is a correlation between the LDL levels with periodontal status.

  15. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  16. Spectral density of mixtures of random density matrices for qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wang, Jiamei; Chen, Zhihua

    2018-06-01

    We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.

  17. Combining the modified Skyrme-like model and the local density approximation to determine the symmetry energy of nuclear matter

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang

    2018-07-01

    Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV < L < 62 MeV. The validity of this method is examined by the properties of finite nuclei. Results show that reasonable descriptions on the properties of finite nuclei and nuclear matter can be obtained together.

  18. The triglyceride to high-density lipoprotein-cholesterol ratio in adolescence and subsequent weight gain predict nuclear magnetic resonance-measured lipoprotein subclasses in adulthood.

    PubMed

    Weiss, Ram; Otvos, James D; Sinnreich, Ronit; Miserez, Andre R; Kark, Jeremy D

    2011-01-01

    To assess whether the fasting triglyceride-to-high-density lipoprotein (HDL)-cholesterol (TG/HDL) ratio in adolescence is predictive of a proatherogenic lipid profile in adulthood. A longitudinal follow-up of 770 Israeli adolescents 16 to 17 years of age who participated in the Jerusalem Lipid Research Clinic study and were reevaluated 13 years later. Lipoprotein particle size was assessed at the follow-up with proton nuclear magnetic resonance. The TG/HDL ratio measured in adolescence was strongly associated with low-density lipoprotein, very low-density lipoprotein (VLDL), and HDL mean particle size in young adulthood in both sexes, even after adjustment for baseline body mass index and body mass index change. The TG/HDL ratio measured in adolescence and subsequent weight gain independently predicted atherogenic small low-density lipoprotein and large VLDL particle concentrations (P < .001 in both sexes). Baseline TG/HDL and weight gain interacted to increase large VLDL concentration in men (P < .001). Adolescents with an elevated TG/HDL ratio are prone to express a proatherogenic lipid profile in adulthood. This profile is additionally worsened by weight gain. Copyright © 2011 Mosby, Inc. All rights reserved.

  19. Minimal color-flavor-locked-nuclear interface

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank

    2001-10-01

    At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.

  20. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  1. Trial densities for the extended Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Yu, An; Jimin, Hu

    1996-02-01

    A new and simplified form of nuclear densities is proposed for the extended Thomas-Fermi method (ETF) and applied to calculate the ground-state properties of several spherical nuclei, with results comparable or even better than other conventional density profiles. With the expectation value method (EVM) for microscopic corrections we checked our new densities for spherical nuclei. The binding energies of ground states almost reproduce the Hartree-Fock (HF) calculations exactly. Further applications to nuclei far away from the β-stability line are discussed.

  2. Visualized kinematics code for two-body nuclear reactions

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  3. Road density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  4. Genome-wide analysis of nuclear magnetic resonance metabolites revealed parent-of-origin effect on triglycerides in medium very low-density lipoprotein in PTPRD gene.

    PubMed

    Pervjakova, N; Kukushkina, V; Haller, T; Kasela, S; Joensuu, A; Kristiansson, K; Annilo, T; Perola, M; Salomaa, V; Jousilahti, P; Metspalu, A; Mägi, R

    2018-05-01

    The aim of the study was to explore the parent-of-origin effects (POEs) on a range of human nuclear magnetic resonance metabolites. We search for POEs in 14,815 unrelated individuals from Estonian and Finnish cohorts using POE method for the genotype data imputed with 1000 G reference panel and 82 nuclear magnetic resonance metabolites. Meta-analysis revealed the evidence of POE for the variant rs1412727 in PTPRD gene for the metabolite: triglycerides in medium very low-density lipoprotein. No POEs were detected for genetic variants that were previously known to have main effect on circulating metabolites. We demonstrated possibility to detect POEs for human metabolites, but the POEs are weak, and therefore it is hard to detect those using currently available sample sizes.

  5. Evaluation of new asphalt concrete density specification.

    DOT National Transportation Integrated Search

    1988-01-01

    The purpose of this investigation was to evaluate a new asphalt concrete density specification that utilizes a nuclear gauge and a control strip technique. The specification was studied on two field projects, and recommendations were made to improve ...

  6. [Studies on the relationship between beta-adrenergic receptor density on cell wall lymphocytes, total serum catecholamine level and heart rate in patients with hyperthyroidism].

    PubMed

    Gajek, J; Zieba, I; Zyśko, D

    2000-08-01

    Hyperthyreosis mimics the hyperadrenergic state and its symptoms were though to be dependent on increased level of catecholamines. Another reason for the symptoms could be the increased density or affinity of beta-adrenergic receptors to catecholamines. The aim of the study was to examine the elements of sympathetic nervous system, thyroid hormones level and their influence on heart rate control in patients with hyperthyreosis. The study was carried out in 18 women, mean age 48.9 +/- 8.7 yrs and 6 men, mean age 54.2 +/- 8.7 yrs. The control group consisted of 30 healthy persons matched for age and sex. We examined the density of beta-adrenergic receptors using radioligand labelling method with 125I-cyanopindolol, serum total catecholamines level with radioenzymatic assay kit, the levels of free thyroid hormones using radioimmunoassays and thyreotropine level with immunoradiometric assay. Maximal, minimal and mean heart rate were studied using Holter monitoring system. The density of beta-adrenergic receptors in hyperthyreosis was 37.3 +/- 21.7 vs 37.2 +/- 18.1 fmol/mg in the control group (p = NS). Total catecholamines level was significantly decreased in hyperthyreosis group: 1.5 +/- 0.89 vs 1.9 +/- 0.73 pmol/ml (p < 0.05). There was significantly higher minimal, maximal and mean heart rate in hyperthyreosis group (p < 0.0001, p < 0.0001 and p < 0.05 respectively). There was a weak inverse correlation between minimum heart rate and triiodothyronine level (r = -0.38, p < 0.05). An inverse correlation between triiodothyronine and catecholamines level (r = -0.49, p < 0.05) was observed. Beta-adrenergic receptors density is unchanged and catecholamines level is decreased in hyperthyreosis when compared to normal subjects. There is no correlation between minimal heart rate and adrenergic receptors density or catecholamines level in hyperthyreosis.

  7. Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Kaplan, M. F.; Koplik, C. M.; Klett, R. D.

    1984-09-01

    The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.

  8. Mapping auditory nerve firing density using high-level compound action potentials and high-pass noise masking a

    PubMed Central

    Earl, Brian R.; Chertoff, Mark E.

    2012-01-01

    Future implementation of regenerative treatments for sensorineural hearing loss may be hindered by the lack of diagnostic tools that specify the target(s) within the cochlea and auditory nerve for delivery of therapeutic agents. Recent research has indicated that the amplitude of high-level compound action potentials (CAPs) is a good predictor of overall auditory nerve survival, but does not pinpoint the location of neural damage. A location-specific estimate of nerve pathology may be possible by using a masking paradigm and high-level CAPs to map auditory nerve firing density throughout the cochlea. This initial study in gerbil utilized a high-pass masking paradigm to determine normative ranges for CAP-derived neural firing density functions using broadband chirp stimuli and low-frequency tonebursts, and to determine if cochlear outer hair cell (OHC) pathology alters the distribution of neural firing in the cochlea. Neural firing distributions for moderate-intensity (60 dB pSPL) chirps were affected by OHC pathology whereas those derived with high-level (90 dB pSPL) chirps were not. These results suggest that CAP-derived neural firing distributions for high-level chirps may provide an estimate of auditory nerve survival that is independent of OHC pathology. PMID:22280596

  9. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  10. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  11. High levels of Porphyromonas gingivalis-induced immunoglobulin G2 are associated with lower high-density lipoprotein levels in chronic periodontitis.

    PubMed

    Ardila, Carlos M; Guzmán, Isabel C

    2016-11-01

    To investigate the association between the presence of Porphyromonas gingivalis-induced immunoglobulin G antibodies and the high-density lipoprotein (HDL) level. A total of 108 individuals were examined. The presence of P. gingivalis was detected using primers designed to target the 16S rRNA gene sequence. Peripheral blood was collected from each subject to determine the levels of P. gingivalis-induced IgG1 and IgG2 serum antibodies. The HDL levels were determined using fully enzymatic methods. A higher proportion of periodontitis patients had high levels of P. gingivalis-induced IgG1 and IgG2, and the proportion of subjects with a HDL level of < 35 md/dL was higher in the group of chronic periodontitis patients. In the unadjusted regression model, the presence of high levels of P. gingivalis-induced IgG2 was associated with a HDL level of < 35 md/dL. The adjusted model indicated that periodontitis patients with high levels of P. gingivalis-induced IgG2 showed 3.2 more chances of having pathological HDL levels (odds ratio = 3.2, 95% confidence interval = 1.2-9.8). High levels of P. gingivalis-induced IgG2 were associated with low HDL concentrations in patients with periodontitis, which suggests that the response of the host to periodontal infection may play an important role in the pathogenesis of cardiovascular diseases. © 2015 Wiley Publishing Asia Pty Ltd.

  12. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    NASA Astrophysics Data System (ADS)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  13. The acoustic field in the ionosphere caused by an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  14. Combined effects between temporal heterogeneity of water supply, nutrient level, and population density on biomass of four broadly distributed herbaceous species.

    PubMed

    Hagiwara, Yousuke; Kachi, Naoki; Suzuki, Jun-Ichirou

    2012-01-01

    Temporal heterogeneity of water supply affects grassland community productivity and it can interact with nutrient level and intraspecific competition. To understand community responses, the responses of individual species to water heterogeneity must be evaluated while considering the interactions of this heterogeneity with nutrient levels and population density. We compared responses of four herbaceous species grown in monocultures to various combinations of water heterogeneity, nutrient level, and population density: two grasses (Cynodon dactylon and Lolium perenne), a forb (Artemisia princeps), and a legume (Trifolium repens). Treatment effects on shoot and root biomass were analyzed. In all four species, shoot biomass was larger under homogeneous than under heterogeneous water supply. Shoot responses of L. perenne tended to be greater at high nutrient levels. Although root biomass was also larger under homogeneous water supply, effects of water heterogeneity on root biomass were not significant in the grasses. Trifolium repens showed marked root responses, particularly at high population density. Although greater shoot and root growth under homogeneous water supply appears to be a general trend among herbaceous species, our results suggested differences among species could be found in the degree of response to water heterogeneity and its interactions with nutrient level and intraspecific competition.

  15. Anti-levitation of Landau levels in vanishing magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  17. Quark-level analogue of nuclear fusion with doubly heavy baryons.

    PubMed

    Karliner, Marek; Rosner, Jonathan L

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  18. Quark-level analogue of nuclear fusion with doubly heavy baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  19. The development of Operational Intervention Levels (OILs) for Soils - A decision support tool in nuclear and radiological emergency response

    NASA Astrophysics Data System (ADS)

    Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee

    2017-04-01

    decision making in agricultural sites: (2) creating a system that is adaptable to different countries, and; (3) developing a framework to calculate default values of OILs for Soils for application during an emergency. The OILs for Soils reference levels are calculated using a mathematical model. Empirical equations, paired with radionuclide data (e.g. Cs-134, Cs-137 and I-131) from the ICRU 53 report, are utilized to determine soil contamination from aerial monitoring air dose rate data. Modelling allows soil contamination values to be readily approximated and this is used to prioritize soil and food sampling sites. Reference levels are based on a model that considers radionuclide transfer factors for up-take into plants, soil density, and soil sampling depth. Decision actions for determined reference levels are suggested for processed foods, animal products, animal feed and crop products (including plants at the growing stage, mature stage, fallow farmland, and forestry products). With these steps, OILs for Soils provide practical guidance that will equip authorities to respond efficiently and help maintain the safety of the food supply during large-scale nuclear or radiological emergency situations.

  20. Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    NASA Astrophysics Data System (ADS)

    Guttormsen, M.; Larsen, A. C.; Midtbø, J. E.; Crespo Campo, L.; Görgen, A.; Ingeberg, V. W.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Zeiser, F.; Kirsch, L. E.

    2018-05-01

    Statistical γ-decay from highly excited states is determined by the nuclear level density (NLD) and the γ-ray strength function (γSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γSF to evaluate the γ-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.

  1. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  2. The Relationship between 25 (OH) D Levels (Vitamin D) and Bone Mineral Density (BMD) in a Saudi Population in a Community-Based Setting.

    PubMed

    Alkhenizan, Abdullah; Mahmoud, Ahmed; Hussain, Aneela; Gabr, Alia; Alsoghayer, Suad; Eldali, Abdelmoneim

    2017-01-01

    Vitamin D deficiency has been linked to an increased risk of osteoporosis. Vitamin D deficiency has reached high levels in the Saudi population, but there is conflicting evidence both in the Saudi population, and worldwide, regarding the existence of a correlation between these low vitamin D levels and reduced BMD (bone mineral density), or osteoporosis. The objective of this study was primarily to determine whether there was a correlation between vitamin D deficiency and osteoporosis in the Saudi population. We aimed to investigate whether the high levels of vitamin D deficiency and insufficiency would translate to higher prevalence of osteoporosis, and whether there is a correlation between vitamin D levels and bone mineral density. This was a community based cross sectional study conducted in the Family Medicine Clinics at King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia. Electronic records of 1723 patients were reviewed. Laboratory and radiology results were collected, including vitamin D levels, calcium levels, and bone mineral density scan results. Among the whole population, 61.5% had moderate to severe vitamin D deficiency with levels less than 50nmol/L. 9.1% of the population had osteoporosis, and 38.6% had osteopenia. Among the whole population, there was no significant correlation between spine or total femoral BMD and serum 25(OH) D. Vitamin D deficiency is prevalent in the Saudi population. However, no correlation has been found between vitamin D deficiency and reduced bone mineral density in any age group, in males or females, Saudis or Non-Saudis, in our population in Riyadh, Saudi Arabia.

  3. Exploring for oil with nuclear physics

    NASA Astrophysics Data System (ADS)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  4. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*

    PubMed Central

    Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.

    2015-01-01

    A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910

  5. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  6. Skyrme interaction to second order in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  7. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

    NASA Astrophysics Data System (ADS)

    Li, Chen; Requist, Ryan; Gross, E. K. U.

    2018-02-01

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  8. Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Matsuo, Masayuki

    We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.

  9. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

    2018-02-01

    Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

  10. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  11. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD.

    PubMed

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin-low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin(®), a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. This is a randomized, double-blind, parallel-group study. Subjects with stages I-II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin(®) or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. There were no differences between the Theracurmin(®) and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin(®) group compared with the placebo group. Theracurmin(®) reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects.

  12. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  13. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  14. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  15. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  16. Daily Consumption of Virgin Coconut Oil Increases High-Density Lipoprotein Cholesterol Levels in Healthy Volunteers: A Randomized Crossover Trial.

    PubMed

    Chinwong, Surarong; Chinwong, Dujrudee; Mangklabruks, Ampica

    2017-01-01

    This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18-25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results . Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL ( p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion . Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported.

  17. Daily Consumption of Virgin Coconut Oil Increases High-Density Lipoprotein Cholesterol Levels in Healthy Volunteers: A Randomized Crossover Trial

    PubMed Central

    2017-01-01

    This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18–25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results. Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL (p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion. Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported. PMID:29387131

  18. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  19. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats.

    PubMed

    Türk, Gaffari; Sönmez, Mustafa; Aydin, Muhterem; Yüce, Abdurrauf; Gür, Seyfettin; Yüksel, Murat; Aksu, Emrah Hicazi; Aksoy, Hakan

    2008-04-01

    Pomegranate fruit is inescapably linked with fertility, birth and eternal life because of its many seeds. The aim of this study was to investigate the effects of pomegranate juice (PJ) consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level of male healthy rats. Twenty-eight healthy adult male Wistar rats were divided into four groups; each group containing seven rats. One milliliter distilled water, 0.25 mL PJ plus 0.75 mL distilled water, 0.50 mL PJ plus 0.50 mL distilled water and 1 mL PJ were given daily for seven weeks by gavage to rats in the first, second, third and fourth groups, respectively. Body and reproductive organ weights, spermatogenic cell density, sperm characteristics, levels of antioxidant vitamins, testosterone, and lipid peroxidation and, antioxidant enzyme activities were investigated. All analyses were done only once at the end of the seven week study period. Data were compared by analysis of variance (ANOVA) and the degree of significance was set at P<0.05. A significant decrease in malondialdehyde (MDA) level and marked increases in glutathione (GSH), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and vitamin C level were observed in rats treated with different doses of PJ. PJ consumption provided an increase in epididymal sperm concentration, sperm motility, spermatogenic cell density and diameter of seminiferous tubules and germinal cell layer thickness, and it decreased abnormal sperm rate when compared to the control group. The results suggest that PJ consumption improves sperm quality and antioxidant activity of rats.

  20. The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer.

    PubMed

    Li, Xing; Tang, Hailin; Wang, Jin; Xie, Xinhua; Liu, Peng; Kong, Yanan; Ye, Feng; Shuang, Zeyu; Xie, Zeming; Xie, Xiaoming

    2017-04-01

    Although dyslipidemia has been documented to be associated with several types of cancer including breast cancer, it remains uncertainty the prognostic value of serum lipid in breast cancer. The purpose of this study is to evaluate the association between the preoperative plasma lipid profile and the prognostic of breast cancer patients. The levels of preoperative serum lipid profile (including cholesterol [CHO], Triglycerides [TG], high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], apolipoprotein A-I [ApoAI], and apolipoprotein B [ApoB]) and the clinical data were retrospectively collected and reviewed in 1044 breast cancer patients undergoing operation. Kaplan-Meier method and the Cox proportional hazards regression model were used in analyzing the overall survival [OS] and disease-free survival [DFS]. Combining the receiver-operating characteristic and Kaplan-Meier analysis, we found that preoperative lower TG and HDL-C level were risk factors of breast cancer patients. In multivariate analyses, a decreased HDL-C level showed significant association with worse OS (HR: 0.528; 95% CI: 0.302-0.923; P = 0.025), whereas a decreased TG level showed significant association with worse DFS (HR: 0.569; 95% CI: 0.370-0.873; P = 0.010). Preoperative serum levels of TG and HDL-C may be independent factor to predict outcome in breast cancer patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  2. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  3. Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers.

    PubMed

    Horiguchi, Hyogo; Oguma, Etsuko; Sasaki, Satoshi; Miyamoto, Kayoko; Ikeda, Yoko; Machida, Munehito; Kayama, Fujio

    2005-01-01

    Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect.

  4. PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES

    DOEpatents

    McNees, R.A. Jr.; Taylor, A.J.

    1963-12-31

    A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

  5. Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; da Silva Schneider, Andre; Berry, Donald

    2014-09-01

    We simulate the decompression of cold dense nuclear matter, near the nuclear saturation density, in order to study the role of nuclear pasta in r-process nucleosynthesis in neutron star mergers. Our simulations are performed using a classical molecular dynamics model with 51 200 and 409 600 nucleons, and are run on GPUs. We expand our simulation region to decompress systems from initial densities of 0.080 fm-3 down to 0.00125 fm-3. We study proton fractions of YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at T = 0.5, 0.75, and 1 MeV. We calculate the composition of the resulting systems using a cluster algorithm. This composition is in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than YP = 0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  6. Using secondary nuclear products for inferring the fuel areal density, convergence, and electron temperatures of deuterium filled implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Kabadi, N. V.; Sutcliffe, G.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Rinderknecht, H. G.; Sayre, D. B.; Yeamans, C. B.; Khan, S. F.; Kyrala, G. A.; Lepape, S.; Berzak-Hopkins, L.; Meezan, N.; Bionta, R.; Ma, T.

    2016-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T born from the primary DD reaction branches can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence, and an electron temperature (Te) simultaneously. This technique has been used on a myriad of deuterium filled implosion experiments on the NIF using the nuclear time of flight (NTOF) diagnostics to measure the secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the secondary D3He protons. Additionally, a comparative study is conducted between the nuclear inferred convergence and x-ray inferred convergence obtained on these experiments. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  7. Incidental Intraosseous Pneumatocyst with gas-density-fluid level in an adolescent: a case report and review of the literature

    PubMed Central

    Al-Tarawneh, Emad; AL-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy

    2014-01-01

    Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention. PMID:24967024

  8. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    PubMed

    Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor

    2015-04-08

    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.

  9. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  10. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter

    2009-07-01

    The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

  11. Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.

    2017-04-01

    Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.

  12. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Auria, F; Rohatgi, Upendra S.

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  13. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  14. All-electric control of donor nuclear spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  15. [Nutritional status, body composition and bone mineral density in gastric bypass females: impact of socioeconomic level].

    PubMed

    de la Maza, María Pía; Leiva, Laura; Barrera, Gladys; Boggiano, Carolina; Herrera, Tomás; Pérez, Yanet; Gattás, Vivien; Bunout, Daniel; Hirsch, Sandra

    2008-11-01

    Roux-en-Y gastric bypass (RYGBP) has had a posilive impact on co-mobidities associated with obesity. However, in the long-term it can induce micronutrient deficiencies. To petform a complete nutritional assessment in a group of women previously operated of RYGBP from different socioeconomic levels (SEL). Thirtyy three women (19 high SEL and 14 low SEL), were assessed by dietary recalls, anthropometric measurements, muscle strength, bone mineral density, routine clinical laboratory, semm leeds of vitamin B12, 25OH-vitamin D, folate, calcium, ferritine ceruloplasmin and indicators of bone tutnoter (paratbohormone, osteocalcin and urinary pyridinolines). Their values were compared to those of 30 control women (18 high SEL and 12 low SEL). Low SEL operated women consumed fewer vitamin and mineral supplements compared with their high SEL pairs. No cases of vitamin B12, folic acid or copper deficiencies were detected. Frequency of iron deficiency was similar in patients and controls. Vitamin D insufficiency was higher among patients than in controls (p = 0.047), regardless SEL. Patients had also a higher frequency of high senum P771 and osteocakin and urinary pyridinoline levels. However, no differences in bone mineral density were obseived between operated women and controls. Vitamin and mineral deficiencies were lower than expected among operated women. However problems associated with vitamin D deficiency were highly prevalent among patients operated of RYGBP, irrespective SEL. These alterations were only detectable through specific markers at this stage, because they did not translate into lower bone mineral density (BMD) of sutgical patients, probably due to the higher pre-operative BMD of these moibid obese patients

  16. Future Road Density

    EPA Pesticide Factsheets

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  17. NMR imaging of density distributions in tablets.

    PubMed

    Djemai, A; Sinka, I C

    2006-08-17

    This paper describes the use of (1)H nuclear magnetic resonance (NMR) for 3D mapping of the relative density distribution in pharmaceutical tablets manufactured under controlled conditions. The tablets are impregnated with a compatible liquid. The technique involves imaging of the presence of liquid which occupies the open pore space. The method does not require special calibration as the signal is directly proportional to the porosity for the imaging conditions used. The NMR imaging method is validated using uniform density flat faced tablets and also by direct comparison with X-ray computed tomography. The results illustrate (1) the effect of die wall friction on density distribution by compressing round, curved faced tablets using clean and pre-lubricated tooling, (2) the evolution of density distribution during compaction for both clean and pre-lubricated die wall conditions, by imaging tablets compressed to different compaction forces, and (3) the effect of tablet image on density distribution by compressing two complex shape tablets in identical dies to the same average density using punches with different geometries.

  18. Growth of western larch after thinning from above and below to several density levels: 10-year results.

    Treesearch

    K.W. Seidel

    1980-01-01

    The 10-year growth of a 55-year-old, even-aged western larch (Larix occidentalis Nutt.) stand after it was thinned from above and below to a wide range of stocking levels was measured in eastern Oregon. Basal area and volume growth increased as stand density increased for both thinning methods. Despite heavy infestations of the larch casebearer...

  19. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF.

    PubMed

    Li, Chen; Requist, Ryan; Gross, E K U

    2018-02-28

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  20. Toward more efficient fabrication of high-density 2-D VCSEL arrays for spatial redundancy and/or multi-level signal communication

    NASA Astrophysics Data System (ADS)

    Roscher, Hendrik; Gerlach, Philipp; Khan, Faisal Nadeem; Kroner, Andrea; Stach, Martin; Weigl, Alexander; Michalzik, Rainer

    2006-04-01

    We present flip-chip attached high-speed VCSELs in 2-D arrays with record-high intra-cell packing densities. The advances of VCSEL array technology toward improved thermal performance and more efficient fabrication are reviewed, and the introduction of self-aligned features to these devices is pointed out. The structure of close-spaced wedge-shaped VCSELs is discussed and their static and dynamic characteristics are presented including an examination of the modal structure by near-field measurements. The lasers flip-chip bonded to a silicon-based test platform exhibit 3-dB and 10-dB bandwidths of 7.7 GHz and 9.8 GHz, respectively. Open 12.5 Gbit/s two-level eye patterns are demonstrated. We discuss the uses of high packing densities for the increase of the total amount of data throughput an array can deliver in the course of its life. One such approach is to provide up to two backup VCSELs per fiber channel that can extend the lifetimes of parallel transmitters through redundancy of light sources. Another is to increase the information density by using multiple VCSELs per 50 μm core diameter multimode fiber to generate more complex signals. A novel scheme using three butt-coupled VCSELs per fiber for the generation of four-level signals in the optical domain is proposed. First experiments are demonstrated using two VCSELs butt-coupled to the same standard glass fiber, each modulated with two-level signals to produce four-level signals at the photoreceiver. A four-level direct modulation of one VCSEL within a triple of devices produced first 20.6 Gbit/s (10.3 Gsymbols/s) four-level eyes, leaving two VCSELs as backup sources.

  1. The nuclear Thomas-Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less

  2. The Nuclear Thomas-Fermi Model

    DOE R&D Accomplishments Database

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  3. Evaluation of training programs and entry-level qualifications for nuclear-power-plant control-room personnel based on the systems approach to training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, P M; Selby, D L; Hanley, M J

    1983-09-01

    This report summarizes results of research sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to initiate the use of the Systems Approach to Training in the evaluation of training programs and entry level qualifications for nuclear power plant (NPP) personnel. Variables (performance shaping factors) of potential importance to personnel selection and training are identified, and research to more rigorously define an operationally useful taxonomy of those variables is recommended. A high-level model of the Systems Approach to Training for use in the nuclear industry, which could serve as a model for NRC evaluation of industrymore » programs, is presented. The model is consistent with current publically stated NRC policy, with the approach being followed by the Institute for Nuclear Power Operations, and with current training technology. Checklists to be used by NRC evaluators to assess training programs for NPP control-room personnel are proposed which are based on this model.« less

  4. Increased serum cartilage oligomeric matrix protein levels and decreased patellar bone mineral density in patients with chondromalacia patellae

    PubMed Central

    Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B

    2002-01-01

    Background: Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. Objective: To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. Methods: 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). Results: s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Conclusions: Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms. PMID:12379520

  5. Increased serum cartilage oligomeric matrix protein levels and decreased patellar bone mineral density in patients with chondromalacia patellae.

    PubMed

    Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B

    2002-11-01

    Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms.

  6. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  7. Si--Au Schottky barrier nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, Anthony N.

    1972-11-01

    A long-life, high-power-density, high-reliability, compact microwatt battery is needed in many applications. In the field of medicine, for example, such a battery could power an artificial pacemaker which would greatly extend the residence time of the device. Various alternatives are analyzed and discussed. Betavoltaic conversion systems with Si-Au Schottky barrier cells coupled with 147Pm metal foil were selected for investigation. Characterization experiments were performed to obtain optimized silicon resistivity and promethium metal foil thickness. Radiation dose rates were measured and the safety aspects of the battery were analyzed. A prototype battery was assembled and tested. The economics of the batterymore » were demonstrated for special applications. It is concluded that a microwatt nuclear battery can be built with a conversion efficiency of 1 to 2%, a power density of 60 to 300 pW/cm 3 depending on the power level, and a useful life of 5 to 10 years. Further research areas are recommended.« less

  8. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in experimental autoimmune encephalomyelitis.

    PubMed

    Medina-Fernández, Francisco J; Luque, Evelio; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijóo, Montserrat; García-Maceira, Fe I; Escribano, Begoña M; Pascual-Leone, Álvaro; Drucker-Colín, René; Túnez, Isaac

    2017-01-15

    Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect. Therefore, we aimed to assess the effect of TMS on the neuroinflammation occurring in EAE. A total of 44 male Dark Agouti rats were used. EAE induction was performed administering subcutaneously at the dorsal base of the tail a single dose of myelin oligodendrocyte glycoprotein. Clinical evaluation of motor symptoms was performed. Brain and spinal cord were collected and analyzed for nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein. We also carried out a histologic exam, which included an astrocyte immunostaining and Nissl staining for the assessment of brain cell density and pyknotic nuclei. TMS effectively ameliorated motor impairment secondary to EAE. This form of magnetic field was capable of decreasing the proliferation of astrocytes as a response to the autoimmune attack, reducing the content of nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein in central nervous system. Moreover, in treated animals, brain cell density was improved and the number of pyknotic nuclei was decreased. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in EAE. These results suggest that TMS could be a promising treatment for neuroinflammatory conditions such as multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  10. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    DOE PAGES

    Egger, David A.; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...

    2015-03-05

    We report a key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways:more » first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.« less

  11. Factor levels for density comparisons in the split-block spacing design

    Treesearch

    Kurt H. Riitters; Brian J. Stanton; Robbert H. Walkup

    1989-01-01

    The split-block spacing design is a compact test of the effects of within-row and between-row spacings. But the sometimes awkward analysis of density (i.e., trees/ha) effects may deter use of the design. The analysis is simpler if the row spacings are chosen to obtain a balanced set of equally spaced density and rectangularity treatments. A spacing study in poplar (...

  12. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  13. Relationship between bone mineral density, weight, and estrogen levels in pre and postmenopausal women.

    PubMed

    Corina, Morcov; Vulpoi, Carmen; Brănişteanu, D

    2012-01-01

    Bone loss in postmenopausal women is mainly due to estrogen deficiency affecting the balance between osteoclast resorption and bone formation controlled by osteoblasts. To determine the relationship between bone mineral density (BMD) in pre and postmenopausal Caucasian women, and estrogen levels. Cross-sectional study including six groups of 8 to 15 pre- and postmenopausal healthy volunteers with different weights, body mass index (BMI) (normal or underweight < 25 kg/m2, overweight 25-30 kg/m2, and obese > 30 kg/m2), not exposed to antiosteoporotic therapy. Lumbar bone mineral density (BMD) and body composition (BC) were evaluated by dual X ray absorptiometry (DXA, Hologic), while serum estradiol and estrone were measured by ELISA. BMD in postmenopausal women is lower than in premenopausal women irrespective of body weight (p<0.05). Estradiol and estrone are positively correlate with bone mass in premenopausal women, but not in postmenopausal women (R2 0.3209, R2 0.2579, respectively). It is very important to identify the risk factors for osteoporosis, especially in postmenopausal women, as we will show that aromatization of androgens into estrogens in adipose tissue appears not to have a significant role in postmenopausal women bone protection. Key-

  14. The Relationships between Two Different Drinking Water Fluoride Levels, Dental Fluorosis and Bone Mineral Density of Children

    PubMed Central

    Grobler, S.R; Louw, A.J; Chikte, U.M.E; Rossouw, R.J; van W Kotze, T.J.

    2009-01-01

    This field study included the whole population of children aged 10–15 years (77 from a 0.19 mg/L F area; 89 from a 3.00 mg/L F area), with similar nutritional, dietary habits and similar ethnic and socioeconomic status. The fluoride concentration in the drinking water, the bone mineral content, the bone density and the degree of dental fluorosis were determined. The left radius was measured for bone width, bone mineral content, and bone mineral density. The mean fluorosis score was 1.3 in the low fluoride area and 3,6 in the high fluoride area. More than half the children in the low fluoride area had no fluorosis (scores 0 and 1) while only 5% in the high fluoride area had none. Severe fluorosis (30%) was only observed in the high fluoride area. The Wilcoxon Rank Sum Test indicated that fluorosis levels differed significantly (p < 0.05) between the two areas. No relationships were found between dental fluorosis and bone width or between fluorosis and bone mineral density in the two areas (Spearment Rank correlations). A significant increase in bone width was found with age but no differences amongst and boys and girls. A significant positive correlation was found in the high fluoride area between bone mineral density over age. In the 12-13 and 13-14 year age groups in the high fluoride area, girls had higher bone mineral densities. However, a significant negative correlation (p<0.02) was found for the low fluoride area (0.19 mg/L F) over age. PMID:19444344

  15. Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring.

    PubMed

    Haas, Derek A; Eslinger, Paul W; Bowyer, Theodore W; Cameron, Ian M; Hayes, James C; Lowrey, Justin D; Miley, Harry S

    2017-11-01

    The Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes. Radioxenon systems with lower detection limits are currently in development. Historically, the sensitivity of radioxenon systems was measured by the minimum detectable concentration for each isotope. In this paper we analyze the response of radioxenon systems using rigorous metrics in conjunction with hypothetical representative releases indicative of an underground nuclear explosion instead of using only minimum detectable concentrations. Our analyses incorporate the impact of potential spectral interferences on detection limits and the importance of measuring isotopic ratios of the relevant radioxenon isotopes in order to improve discrimination from background sources particularly for low-level releases. To provide a sufficient data set for analysis, hypothetical representative releases are simulated every day from the same location for an entire year. The performance of three types of samplers are evaluated assuming they are located at 15 IMS radionuclide stations in the region of the release point. The performance of two IMS-deployed samplers and a next-generation system is compared with proposed metrics for detection and discrimination using representative releases from the nuclear test site used by the Democratic People's Republic of Korea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nuclear data activities at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  17. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  18. Effect of ultra-low doses, ASIR and MBIR on density and noise levels of MDCT images of dental implant sites.

    PubMed

    Widmann, Gerlig; Al-Shawaf, Reema; Schullian, Peter; Al-Sadhan, Ra'ed; Hörmann, Romed; Al-Ekrish, Asma'a A

    2017-05-01

    Differences in noise and density values in MDCT images obtained using ultra-low doses with FBP, ASIR, and MBIR may possibly affect implant site density analysis. The aim of this study was to compare density and noise measurements recorded from dental implant sites using ultra-low doses combined with FBP, ASIR, and MBIR. Cadavers were scanned using a standard protocol and four low-dose protocols. Scans were reconstructed using FBP, ASIR-50, ASIR-100, and MBIR, and either a bone or standard reconstruction kernel. Density (mean Hounsfield units [HUs]) of alveolar bone and noise levels (mean standard deviation of HUs) was recorded from all datasets and measurements were compared by paired t tests and two-way ANOVA with repeated measures. Significant differences in density and noise were found between the reference dose/FBP protocol and almost all test combinations. Maximum mean differences in HU were 178.35 (bone kernel) and 273.74 (standard kernel), and in noise, were 243.73 (bone kernel) and 153.88 (standard kernel). Decreasing radiation dose increased density and noise regardless of reconstruction technique and kernel. The effect of reconstruction technique on density and noise depends on the reconstruction kernel used. • Ultra-low-dose MDCT protocols allowed more than 90 % reductions in dose. • Decreasing the dose generally increased density and noise. • Effect of IRT on density and noise varies with reconstruction kernel. • Accuracy of low-dose protocols for interpretation of bony anatomy not known. • Effect of low doses on accuracy of computer-aided design models unknown.

  19. Circulating levels of IGF-1 directly regulate bone growth and density

    PubMed Central

    Yakar, Shoshana; Rosen, Clifford J.; Beamer, Wesley G.; Ackert-Bicknell, Cheryl L.; Wu, Yiping; Liu, Jun-Li; Ooi, Guck T.; Setser, Jennifer; Frystyk, Jan; Boisclair, Yves R.; LeRoith, Derek

    2002-01-01

    IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1–deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis. PMID:12235108

  20. Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia

    Treesearch

    Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones

    2005-01-01

    A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...

  1. Reduction in postoperative high-density lipoprotein cholesterol levels in children undergoing the Fontan operation.

    PubMed

    Zyblewski, Sinai C; Argraves, W Scott; Graham, Eric M; Slate, Elizabeth H; Atz, Andrew M; Bradley, Scott M; McQuinn, Tim C; Wilkerson, Brent A; Wing, Shane B; Argraves, Kelley M

    2012-10-01

    Despite the emerging relevance of high-density lipoprotein (HDL) in the inflammatory cascade and vascular barrier integrity, HDL levels in children undergoing cardiac surgery are unexplored. As a measure of HDL levels, the HDL-cholesterol (HDL-C) in single-ventricle patients was quantified before and after the Fontan operation, and it was determined whether relationships existed between the duration and the type of postoperative pleural effusions. The study prospectively enrolled 12 children undergoing the Fontan operation. Plasma HDL-C levels were measured before and after cardiopulmonary bypass. The outcome variables of interest were the duration and type of chest tube drainage (chylous vs. nonchylous). The Kendall rank correlation coefficient and the Wilcoxon rank sum test were used. There were 11 complete observations. The median preoperative HDL-C level for all the subjects was 30 mg/dl (range, 24-53 mg/dl), and the median postcardiopulmonary bypass level was 21 mg/dl (range, 14-46 mg/dl) (p = 0.004). There was a tendency toward a moderate inverse correlation (-0.42) between the postcardiopulmonary bypass HDL-C level and the duration of chest tube drainage, but the result was not statistically significant (p = 0.07). In the chylous effusion group, the median postcardiopulmonary bypass HDL-C tended to be lower (16 vs. 23 mg/dl; p = 0.09). After the Fontan operation, the plasma HDL-C levels in children are significantly reduced. It is reasonable to conclude that the reduction in HDL-C reflects reduced plasma levels of HDL particles, which may have pertinent implications in postoperative pleural effusions given the antiinflammatory and endothelial barrier functions of HDL.

  2. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    PubMed

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Effects of Nativity, Length of Residence, and County-Level Foreign-Born Density on Mental Health Among Older Adults in the U.S

    PubMed Central

    Choi, Sunha; Kim, Giyeon

    2016-01-01

    Using the 2004–2007 Medical Expenditure Panel Survey data that are linked to county-level data from the Area Health Resources Files, this study examined whether the healthy immigrant effect applies to mental health of foreign-born older adults. Additionally, testing a protective ethnic density effect on older foreign-born individuals’ mental health, this study examined how the percentage of foreign-born population in the county affected the relationship between older adults’ immigration status (U.S.-nativity and length of residence in the U.S.) and their mental health status. The sample included 29,011 individuals (level-1) from 920 counties (level-2) across 50 states and D.C. Using the Mental Component Summary of the Short-Form 12, the Kessler Index (K-6), and the Patient Health Questionnaire (PHQ-2), U.S.-born individuals (n = 24,225), earlier immigrants (≥15 years in the U.S.; n = 3866), and recent immigrants (<15 years in the U.S.; n = 920) were compared. The results indicate that recent immigrants showed worse mental health on all three measures compared with U.S.-born individuals and on the K-6 and PHQ-2 compared with earlier immigrants. Higher county-level foreign-born densities were associated with worse mental health status of individuals. However, the significant interactions found in the full conditional multilevel models indicated that the high foreign-born density functioned as a risk factor for worse mental health only among recent immigrants but not among the U.S.-born. In conclusion, the results revealed the vulnerability of older recent immigrants, especially those living in the counties with high foreign-born densities. PMID:26910461

  4. Effects of Nativity, Length of Residence, and County-Level Foreign-Born Density on Mental Health Among Older Adults in the U.S.

    PubMed

    Choi, Sunha; Kim, Giyeon; Lee, Sungkyu

    2016-12-01

    Using the 2004-2007 Medical Expenditure Panel Survey data that are linked to county-level data from the Area Health Resources Files, this study examined whether the healthy immigrant effect applies to mental health of foreign-born older adults. Additionally, testing a protective ethnic density effect on older foreign-born individuals' mental health, this study examined how the percentage of foreign-born population in the county affected the relationship between older adults' immigration status (U.S.-nativity and length of residence in the U.S.) and their mental health status. The sample included 29,011 individuals (level-1) from 920 counties (level-2) across 50 states and D.C. Using the Mental Component Summary of the Short-Form 12, the Kessler Index (K-6), and the Patient Health Questionnaire (PHQ-2), U.S.-born individuals (n = 24,225), earlier immigrants (≥15 years in the U.S.; n = 3866), and recent immigrants (<15 years in the U.S.; n = 920) were compared. The results indicate that recent immigrants showed worse mental health on all three measures compared with U.S.-born individuals and on the K-6 and PHQ-2 compared with earlier immigrants. Higher county-level foreign-born densities were associated with worse mental health status of individuals. However, the significant interactions found in the full conditional multilevel models indicated that the high foreign-born density functioned as a risk factor for worse mental health only among recent immigrants but not among the U.S.-born. In conclusion, the results revealed the vulnerability of older recent immigrants, especially those living in the counties with high foreign-born densities.

  5. Apolipoprotein C-III Levels and Incident Coronary Artery Disease Risk: The EPIC-Norfolk Prospective Population Study.

    PubMed

    van Capelleveen, Julian C; Bernelot Moens, Sophie J; Yang, Xiaohong; Kastelein, John J P; Wareham, Nicholas J; Zwinderman, Aeilko H; Stroes, Erik S G; Witztum, Joseph L; Hovingh, G Kees; Khaw, Kay-Tee; Boekholdt, S Matthijs; Tsimikas, Sotirios

    2017-06-01

    Apolipoprotein C-III (apoC-III) is a key regulator of triglyceride metabolism. Elevated triglyceride-rich lipoproteins and apoC-III levels are causally linked to coronary artery disease (CAD) risk. The mechanism(s) through which apoC-III increases CAD risk remains largely unknown. The aim was to confirm the association between apoC-III plasma levels and CAD risk and to explore which lipoprotein subfractions contribute to this relationship between apoC-III and CAD risk. Plasma apoC-III levels were measured in baseline samples from a nested case-control study in the European Prospective Investigation of Cancer (EPIC)-Norfolk study. The study comprised 2711 apparently healthy study participants, of whom 832 subsequently developed CAD. We studied the association of baseline apoC-III levels with incident CAD risk, lipoprotein subfractions measured by nuclear magnetic resonance spectroscopy and inflammatory biomarkers. ApoC-III levels were significantly associated with CAD risk (odds ratio, 1.91; 95% confidence interval, 1.48-2.48 for highest compared with lowest quintile), retaining significance after adjustment for traditional CAD risk factors (odds ratio, 1.47; 95% confidence interval, 1.11-1.94). ApoC-III levels were positively correlated with triglyceride levels, ( r =0.39), particle numbers of very-low-density lipoprotein ( r =0.25), intermediate-density lipoprotein ( r =0.23), small dense low-density lipoprotein ( r =0.26), and high-sensitivity C-reactive protein ( r =0.15), whereas an inverse correlation was observed with large low-density lipoprotein particle number ( r =-0.11), P <0.001 for each. Mediation analysis indicated that the association between apoC-III and CAD risk could be explained by triglyceride elevation (triglyceride, very-low-density lipoprotein, and intermediate-density lipoprotein particles), small low-density lipoprotein particle size, and high-sensitivity C-reactive protein. ApoC-III levels are significantly associated with incident CAD

  6. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  7. Plant-Level Modeling and Simulation of Used Nuclear Fuel Dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.

    2012-09-07

    Plant-level modeling and simulation of a used nuclear fuel prototype dissolver is presented. Emphasis is given in developing a modeling and simulation approach to be explored by other processes involved in the recycle of used fuel. The commonality concepts presented in a previous communication were used to create a model and realize its software module. An initial model was established based on a theory of chemical thermomechanical network transport outlined previously. A software module prototype was developed with the required external behavior and internal mathematical structure. Results obtained demonstrate the generality of the design approach and establish an extensible mathematicalmore » model with its corresponding software module for a wide range of dissolvers. Scale up numerical tests were made varying the type of used fuel (breeder and light-water reactors) and the capacity of dissolution (0.5 t/d to 1.7 t/d). These tests were motivated by user requirements in the area of nuclear materials safeguards. A computer module written in high-level programing languages (MATLAB and Octave) was developed, tested, and provided as open-source code (MATLAB) for integration into the Separations and Safeguards Performance Model application in development at Sandia National Laboratories. The modeling approach presented here is intended to serve as a template for a rational modeling of all plant-level modules. This will facilitate the practical application of the commonality features underlying the unifying network transport theory proposed recently. In addition, by example, this model describes, explicitly, the needed data from sub-scale models, and logical extensions for future model development. For example, from thermodynamics, an off-line simulation of molecular dynamics could quantify partial molar volumes for the species in the liquid phase; this simulation is currently at reach for high-performance computing. From fluid mechanics, a hold-up capacity function is

  8. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.; Capote, R.; Carlson, B.V.

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approachmore » (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6

  9. Correlation of mammographic density and serum calcium levels in patients with primary breast cancer.

    PubMed

    Hack, Carolin C; Stoll, Martin J; Jud, Sebastian M; Heusinger, Katharina; Adler, Werner; Haeberle, Lothar; Ganslandt, Thomas; Heindl, Felix; Schulz-Wendtland, Rüdiger; Cavallaro, Alexander; Uder, Michael; Beckmann, Matthias W; Fasching, Peter A; Bayer, Christian M

    2017-06-01

    Percentage mammographic breast density (PMD) is one of the most important risk factors for breast cancer (BC). Calcium, vitamin D, bisphosphonates, and denosumab have been considered and partly confirmed as factors potentially influencing the risk of BC. This retrospective observational study investigated the association between serum calcium level and PMD. A total of 982 BC patients identified in the research database at the University Breast Center for Franconia with unilateral BC, calcium and albumin values, and mammogram at the time of first diagnosis were included. PMD was assessed, using a semiautomated method by two readers. Linear regression analyses were conducted to investigate the impact on PMD of the parameters of serum calcium level adjusted for albumin level, and well-known clinical predictors such as age, body mass index (BMI), menopausal status and confounder for serum calcium like season in which the BC was diagnosed. Increased calcium levels were associated with reduced PMD (P = 0.024). Furthermore, PMD was inversely associated with BMI (P < 0.001) and age (P < 0.001). There was also an association between PMD and menopausal status (P < 0.001). The goodness-of-fit of the regression model was moderate. This is the first study assessing the association between serum calcium level and PMD. An inverse association with adjusted serum calcium levels was observed. These findings add to previously published data relating to vitamin D, bisphosphonates, denosumab, and the RANK/RANKL signaling pathway in breast cancer risk and prevention. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  11. An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.

    2011-10-01

    We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.

  12. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3.

    PubMed

    Lou, Bibo; Jing, Weiguo; Lou, Liren; Zhang, Yongfan; Yin, Min; Duan, Chang-Kui

    2018-05-03

    First-principles calculations were carried out for the electronic structures of Ce 3+ in calcium aluminate phosphors, CaAl 2 O 4 , and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce 3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce 3+ activated luminescent materials with a moderate computing requirement.

  13. Level of education associated with ophthalmic diseases. The Beijing Eye Study.

    PubMed

    Xu, Liang; Wang, Ya Xing; Jonas, Jost B

    2010-01-01

    To determine associations between educational level and ophthalmic diseases in Chinese. The population-based Beijing Eye Study, performed in 2006, enrolled 3,251 participants (age: 45+ years) out of 4,439 subjects invited to participate (response rate: 73.2%). The participants underwent an interview including questions concerning their educational level, and a detailed ophthalmic examination. Data on the level of education were available for 3,221 (99.1%) subjects, with 1,484 (46.1%) subjects living in the rural region. The mean age was 60.4 +/- 10.1 years (range: 45-89 years). In a multivariate analysis, a higher level of education was significantly associated with myopic refractive error, higher best-corrected visual acuity, lower degree of nuclear cataract, and lower prevalence of angle-closure glaucoma, and with the systemic parameters of lower age, male gender, urban region, taller body height, and lower body mass index. It was not significantly associated with intraocular pressure, amount of subcapsular cataract and cortical cataract, cataract surgery, and the prevalences of diabetes mellitus, retinal vein occlusions, chronic open-angle glaucoma, and age-related macular degeneration, and with the systemic parameters of fasting serum concentrations of glucose, high-density lipoproteins, low-density lipoproteins, cholesterol and triglycerides, systolic and diastolic blood pressure. In the Greater Beijing area, a higher level of education was associated with myopic refractive error, higher best-corrected visual acuity, and lower prevalence of nuclear cataract and angle-closure glaucoma, after adjusting for the systemic parameters of younger age, male gender, urban region, taller body height, lower body mass index less smoking and less alcohol consumption. Educational level was not significantly associated with intraocular pressure, cortical cataract, blood pressure, and frequencies of age-related macular degeneration, retinal vein occlusions and chronic open

  14. Polyunsaturated fatty acids reduce insulin and very low density lipoprotein levels in broiler chickens.

    PubMed

    Crespo, N; Esteve-Garcia, E

    2003-07-01

    An experiment was conducted to study the effect of different dietary fatty acid profiles on plasma levels of insulin, very low density lipoproteins (VLDL), cholesterol, and glucose. Diets with four types of fat (tallow, olive, sunflower, and linseed oils) at an inclusion level of 10% and a basal diet without additional fat were administered to female broiler chickens. Serum insulin, cholesterol, and plasma VLDL were affected by the different treatments; however, glucose concentrations were similar among treatments. In the fasted state, broilers fed diets with sunflower or linseed oil presented lower levels of insulin and cholesterol with respect to those fed tallow or olive oil (P < 0.05). VLDL in the fasted state was reduced in broilers fed sunflower and linseed oils (P < 0.05) with respect to those fed tallow, olive oil, or the basal diet. Plasma levels of VLDL were only significantly correlated with abdominal fat in birds fed the basal diet, in the fed and in the fasted state, and in those fed linseed oil in the fed state (P < 0.05). Results of this experiment suggest that higher insulin levels in broilers fed diets rich in saturated fatty acids could be related to higher fat deposition. Fat deposition in birds fed high fat diets was not correlated with circulating VLDL, which suggested direct dietary fat deposition, except for birds fed linseed oil diets. Although birds fed linseed oil diets presented lower levels of VLDL than those fed tallow, olive oil, or the basal diet, the higher correlation with abdominal fat suggests that in these birds, fat deposition is more dependent on hepatic VLDL secretion, despite the high dietary fat level.

  15. Packing microstructure and local density variations of experimental and computational pebble beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less

  16. Core Versus Nuclear Gauge Methods of Determining Soil Bulk Density and Moisture Content

    Treesearch

    Jacqueline G. Steele; Jerry L. Koger; Albert C. Trouse; Donald L. Sirois

    1983-01-01

    Soil bulk and moisture content measurements were obtained using two nuclear gauge systems and those compared to those obtained from soil cores. The soils, a Hiwassee sandy loam, a Lakeland loamy sand, and a Loyd clay, were free of organic matter and uniform in mechanical composition. The regression equations developed for the nuclear guages for the first phase of the...

  17. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  19. Nuclear option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, P.S.

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% frommore » the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.« less

  20. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  1. Completing the nuclear reaction puzzle of the nucleosynthesis of Mo 92

    DOE PAGES

    Tveten, G. M.; Spyrou, A.; Schwengner, R.; ...

    2016-08-22

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. Here, the lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of 92Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of thismore » isotope. Our data provide stringent constraints on the 91Nb(p,γ) 92Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92Mo. Based on our results, we conclude that the 92Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.« less

  2. On the way to a microscopic derivation of covariant density functionals in nuclei

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  3. Bed structure (frond bleaching, density and biomass) of the red alga Gelidium corneum under different irradiance levels

    NASA Astrophysics Data System (ADS)

    Quintano, E.; Díez, I.; Muguerza, N.; Figueroa, F. L.; Gorostiaga, J. M.

    2017-12-01

    In recent decades a decline in the foundation species Gelidium corneum (Hudson) J. V. Lamouroux has been detected along the Basque coast (northern Spain). This decline has been attributed to several factors, but recent studies have found a relationship between high irradiance and the biochemical and physiological stress of G. corneum. Since physiological responses to changes in light occur well before variations in morphology, the present study seeks to use a size-class demographic approach to investigate whether shallow subtidal populations of G. corneum off the Basque coast show different frond bleaching, density and biomass under different irradiance conditions. The results revealed that the bleaching incidence and cover were positively related to irradiance, whereas biomass was negatively related. The effect of the irradiance level on frond density was found to vary with size-class, i.e. fronds up to 15 cm showed greater densities under high light conditions (126.6 to 262.2 W m- 2) whereas the number of larger fronds (> 20 cm) per unit area was lower. In conclusion, the results of the present study suggest that irradiance might be a key factor for controlling along-shore bleaching, frond density and biomass in G. corneum. Further research should be carried out on the physiology of this canopy species in relation to its bed structure and on the interaction of irradiance and other abiotic (nutrients, temperature, wave energy) and biotic factors (grazing pressure).

  4. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  5. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients.

    PubMed

    Li, Hongqiu; Wang, Zhe; Fu, Qin; Zhang, Jing

    2014-11-01

    In our study, we detect the levels of three micro-RNAs (miRNAs; miR-21, miR-133a and miR-146a) in the plasma of 120 Chinese postmenopausal women who were divided into three groups (normal, osteopenia and osteoporosis) according to the T-scores. Downregulation of miR-21, as well as upregulation of miR-133a, was validated in the plasma of osteoporosis and osteopenia patients versus the normal group. The difference in expression regarding the miR-146a level in plasma among the three groups was not significant (p > 0.01). The circulating miRNA expression levels and bone mineral density (BMD) were examined during a multiple correlation analysis as a dependent variable after adjusting for age, weight and height. We have demonstrated that specific miRNAs species are significantly changed in the plasma of osteoporosis and osteopenia patients and correlated with the BMD. Our study suggested a potential use of miR-21 and miR-133a as sensitive and plasma biomarkers for postmenopausal osteoporosis.

  6. Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I Caroline; Twisk, Jos W R; Curfs, Leopold M G; Lips, Paul; Drent, Madeleine L

    2018-01-01

    In patients with Prader-Willi syndrome (PWS) body composition is abnormal and alterations in appetite regulating factors, bone mineral density and insulin-like growth factor-1 (IGF-1) levels have been described. Studies in PWS adults are limited. In this study, we investigated body composition, appetite regulating peptides, bone mineral density and markers of bone remodeling in an adult PWS population. Furthermore, we investigated the association between these different parameters and IGF-1 levels because of the described similarities with growth hormone deficient patients. In this cross-sectional observational cohort study in a university hospital setting we studied fifteen adult PWS patients. Anthropometric and metabolic parameters, IGF-1 levels, bone mineral density and bone metabolism were evaluated. The homeostasis model assessment of insulin resistance (HOMA2-IR) was calculated. Fourteen healthy siblings served as a control group for part of the measurements. In the adult PWS patients, height, fat free mass, IGF-1 and bone mineral content were significantly lower when compared to controls; body mass index (BMI), waist, waist-to-hip ratio and fat mass were higher. There was a high prevalence of osteopenia and osteoporosis in the PWS patients. Also, appetite regulating peptides and bone remodelling markers were aberrant when compared to reference values. Measurements of body composition were significantly correlated to appetite regulating peptides and high-sensitive C-reactive protein (hs-CRP), furthermore HOMA was correlated to BMI and adipokines. In adults with Prader-Willi syndrome alterations in body composition, adipokines, hs-CRP and bone mineral density were demonstrated but these were not associated with IGF-1 levels. Further investigations are warranted to gain more insight into the exact pathophysiology and the role of these alterations in the metabolic and cardiovascular complications seen in PWS, so these complications can be prevented or treated as

  7. Hemoglobin level and lipoprotein particle size.

    PubMed

    Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno

    2018-01-10

    Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.

  8. Effects of medium on nuclear properties in multifragmentation

    NASA Astrophysics Data System (ADS)

    De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.

    2012-08-01

    In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.

  9. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  10. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  11. Relationship between Icodextrin use and decreased level of small low-density lipoprotein cholesterol fractioned by high-performance gel permeation chromatography

    PubMed Central

    2013-01-01

    Background Because of the absorption of glucose in peritoneal dialysis (PD) solution, PD patients show an atherogenic lipid profile, which is predictive of poor survival in PD patients. Lipoprotein subclasses consist of a continuous spectrum of particles of different sizes and densities (fraction). In this study, we investigated the lipoprotein fractions in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level, and evaluated the effects of icodextrin on lipid metabolism. Methods Forty-nine PD patients were enrolled in this cross-sectional study in Japan. The proportions of cholesterol levels to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions were measured using an improved method of high-performance gel permeation chromatography (HPGPC). Results Twenty-six patients used icodextrin. Although no significant differences in cholesterol levels in LDL and high-density lipoprotein (HDL) were observed between the patients using icodextrin (icodextrin group) and control groups, HPGPC showed that the icodextrin group had significantly lower cholesterol proportions in the small LDL (t-test, p=0.053) and very small LDL (p=0.019), and significantly higher cholesterol proportions in the very large HDL and large HDL than the control group (p=0.037; p=0.066, respectively). Multivariate analysis adjusted for patient characteristics and statin use showed that icodextrin use was negatively associated with the cholesterol proportions in the small LDL (p=0.037) and very small LDL (p=0.026), and positively with those in the very large HDL (p=0.040), large HDL (p=0.047), and medium HDL (p=0.009). Conclusions HPGPC showed the relationship between icodextrin use and the cholesterol proportions in lipoprotein fractions in PD patients. These results suggest that icodextrin may improve atherogenic lipid profiles in a manner different from statin. PMID:24161017

  12. Potential misuse of avian density as a conservation metric

    USGS Publications Warehouse

    Skagen, Susan K.; Yackel Adams, Amy A.

    2011-01-01

    Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. ?? 2010 Society for

  13. Potential misuse of avian density as a conservation metric.

    PubMed

    Skagen, Susan K; Yackel Adams, Amy A

    2011-02-01

    Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. Journal compilation

  14. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    PubMed

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna.

  16. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  17. The Effects of Text Density Levels and the Cognitive Style of Field Dependence on Learning from a CBI Tutorial

    ERIC Educational Resources Information Center

    Ipek, Ismail

    2011-01-01

    The purpose of this study was to investigate the effects of variations in text density levels and the cognitive style of field dependence on learning from a CBI tutorial, based on the dependent measures of achievement, reading comprehension, and reading rate, and of lesson completion time. Eighty college undergraduate students were randomly…

  18. Correlation of serum levels of fibroblast growth factor 23 and Klotho protein levels with bone mineral density in maintenance hemodialysis patients.

    PubMed

    Zheng, Shubei; Chen, Yan; Zheng, Yu; Zhou, Zhihong; Li, Zhanyuan

    2018-04-17

    The correlation of serum fibroblast growth factor 23 (FGF-23) and Klotho protein levels with bone mineral density (BMD) in maintenance hemodialysis (MHD) patients was analyzed. Between January 2015 and November 2015, 125 MHD patients in our hospital were enrolled. Dual-energy X-ray absorptiometry was used to examine the BMD in the femoral neck and lumbar spine of MHD patients. The patients were divided into three groups: a normal bone mass group, an osteopenia group, and an osteoporosis group. An ELISA was performed to measure serum FGF-23, Klotho protein, and 1,25(OH) 2 VitD 3 levels. Other parameters, including calcium (Ca), phosphorus (P), and parathyroid hormone, were also measured. Of the 125 MHD patients, 82.40% of patients had femoral neck osteopenia, and 56.00% of patients had lumbar spinal osteopenia. The serum FGF-23 level was highest in the osteoporosis group. However, there was no significant difference in serum FGF-23 levels among the three groups, depending on femoral neck and lumbar spinal BMD (P > 0.05). Spearman's correlation analysis also pointed to a lack of correlation between serum FGF-23 levels and BMD. Among the three groups, there were significant differences in serum Klotho protein levels and femoral neck BMD (P < 0.05). Serum Klotho protein levels in the osteoporosis group were clearly lower than those in the normal bone mass group and osteopenia group (P < 0.05). Similarly, serum Klotho protein levels were significantly lower in those with lumbar spinal osteopenia as compared with those in the normal group. There was a positive correlation between serum Klotho protein levels and BMD and T values for the femoral neck and lumbar spine. The results of a multiple linear regression analysis revealed that the serum Klotho protein level was one of the main factors affecting BMD in MHD patients. The serum level of FGF-23 was not correlated with a change in BMD of MHD patients, whereas the serum Klotho protein level was associated with

  19. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2015-10-21

    Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less

  20. Small, qualitative changes in fatty acid intake decrease plasma low-density lipoprotein-cholesterol levels in mildly hypercholesterolemic outpatients on their usual high-fat diets.

    PubMed

    Lecerf, Jean-Michel; Luc, Gérald; Marécaux, Nadine; Bal, Sylvie; Bonte, Jean-Paul; Lacroix, Brigitte; Cayzeele, Amélie

    2009-01-01

    The diet is the first step in managing hypercholesterolemia. The objective of the present study is to assess whether moderate changes in dietary fatty acids improve plasma lipid parameters in mildly hypercholesterolemic outpatients. Using a randomized double-blind study, 121 outpatients within two groups received an isocaloric amount of unsaturated margarine or butter. Clinical and anthropometric measurements and a 3-day food record were made. Chi-square and Fisher's tests were used to compare qualitative variables and the general linear procedure was used to compare the groups. Additional analyses were performed after adjustment. There was a significant difference (P <0.03) in low-density lipoprotein-cholesterol levels between the groups. Total cholesterol, low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol and apolipoprotein B values decreased in the unsaturated group in comparison with the saturated group. Low-density lipoprotein-cholesterol changes were correlated with the variation in polyunsaturated fatty acid intake and with plasma phospholipid linoleic acid levels. A small change in saturated by polyunsaturated fatty acid intake may improve plasma lipid parameters in mildly hypercholesterolemic subjects.

  1. Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect.

    PubMed

    Cairoli, E; Rebella, M; Danese, N; Garra, V; Borba, E F

    2012-10-01

    The influence of antimalarials on lipids in systemic lupus erythematosus (SLE) has been identified in several studies but not in many prospective cohorts. The aim of this study was to longitudinally determine the effect of antimalarials on the lipoprotein profile in SLE. Fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol (LDL) plasma levels were determined at entry and after 3 months of hydroxychloroquine (HCQ) treatment in a longitudinal evaluation of 24 patients with SLE. a significant decrease in TC (198 ± 33.7 vs. 183 ± 30.3 mg/dl, p = 0.023) and LDL levels (117 ± 31.3 vs. 101 ± 26.2 mg/dl, p = 0.023) were detected after the 3 months of HCQ therapy. The reduction of 7.6% in TC (p = 0.055) and 13.7% in LDL levels (p = 0.036) determined a significant decrease in the frequency of dyslipidemia (26% vs. 12.5%, p = 0.013) after HCQ therapy. This longitudinal study demonstrated the beneficial effect of antimalarials on lipids in SLE since this therapy induced a reduction of atherogenic lipoproteins.

  2. Electron density and gas density measurements in a millimeter-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less

  3. Is nuclear matter a quantum crystal?

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1973-01-01

    A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.

  4. NMR study of B-2p Fermi-level density of states in the transition metal diborides

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Lai, W. J.

    2005-04-01

    We present a systematic study of the AlB2-type transition metal diborides by measuring the 11B NMR spin-lattice relaxation rate on TiB2, VB2, ZrB2, NbB2, HfB2, as well as TaB2. For all studied materials, the observed relaxation at B nuclei is mainly due to the p-electrons. The comparison with theoretical calculations allows the experimental determination of the partial B-2p Fermi-level density of states (DOS). In addition, the extracted B-2p Fermi-level DOS values in TiB2, ZrB2, and HfB are consistently smaller than in VB2, NbB2, and TaB2. We connect this trend to the rigid-band scenario raised by band structure calculations.

  5. Density-dependent adjustment of inducible defenses.

    PubMed

    Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C; Laforsch, Christian; Kopp, Michael

    2015-08-03

    Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators' densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems.

  6. Density-dependent adjustment of inducible defenses

    PubMed Central

    Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C.; Laforsch, Christian; Kopp, Michael

    2015-01-01

    Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators’ densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems. PMID:26235428

  7. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis.

    PubMed

    Stats, Miriam A; Stone, James R

    2016-01-01

    Recently, there has been much interest in using nuclear medicine studies to noninvasively identify and subtype cardiac amyloidosis. In particular, modified bone scans using (99m)Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ((99m)Tc-DPD) and (99m)Tc-pyrophosphate ((99m)Tc-PYP) are being used to selectively identify patients with ATTR amyloidosis rather than AL amyloidosis. The morphologic basis underlying the selectivity of these imaging modalities for ATTR amyloidosis has been unclear. To determine if variations in microcalcifications and/or macrophages within ATTR and AL amyloidosis might be responsible for the selectivity for these imaging modalities, 8 endomyocardial biopsies of ATTR amyloidosis and 7 endomyocardial biopsies of AL amyloidosis were stained with von Kossa calcium stains and with immunohistochemistry for the macrophage marker CD68. Compared with AL amyloidosis, there was a greater density of small microcalcifications in cases of ATTR amyloidosis (mean=16.8 vs. 6.5 per 200× field, P=.008). In contrast, there were fewer macrophages in ATTR amyloidosis compared with AL amyloidosis (mean=2.5 vs. 11.7 per 200× field, P=.0004). The density of microcalcifications within each group was not related to patient age, echocardiographic features of cardiac function, or serum levels of calcium and creatinine. These data suggest that microcalcifications but not macrophages likely underlie the selectivity of modified bone scans for ATTR amyloidosis and suggest that other pathologic entities containing microcalcifications might also result in positive scans with these imaging modalities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: the impact of vegetarian diet.

    PubMed

    Krivosíková, Zora; Krajcovicová-Kudlácková, Marica; Spustová, Viera; Stefíková, Kornélia; Valachovicová, Martina; Blazícek, Pavel; Nĕmcová, Tatiana

    2010-04-01

    A long-term vegetarian diet is generally poor in vitamin B group. The lack of vitamin B(12) together with vitamin B(6) and folate deficiency is closely related to homocysteine metabolism. Hyperhomocysteinemia was found to be associated with increased bone turnover markers and increased fracture risk. Thus, hyperhomocysteinemia, vitamin B(12) and folate deficiency may be regarded as novel risk factors for micronutrient deficiency-related osteoporosis. To assess the possible impact of a vegetarian diet on bone mineral density in cohort of Slovak vegetarian women. Fasting serum glucose, albumin, calcium, phosphorous and creatinine as well as bone markers, serum vitamin B(12), folate and plasma levels of total homocysteine were assessed in two nutritional groups (vegetarians vs. nonvegetarians) of apparently healthy women (age range 20-70 years). Bone mineral density of the femoral neck, trochanter, total femur and lumbar spine was measured in all subjects. Vegetarians had a significantly lower weight (p < 0.05), higher PTH (p < 0.01) and homocysteine (p < 0.001). Vitamin B(12) was significantly higher in nonvegetarians (p < 0.001). No differences were observed in folate levels. Univariate analysis showed significant association between homocysteine and B(12) (p < 0.01), folate (p < 0.001), creatinine (p < 0.001), total proteins (p < 0.049), age (p < 0.001) and vegetarian food intake (p < 0.001). Vegetarians had a significantly lower TrFBMD (p < 0.05) and ToFBMD (p < 0.05). Age and CTx were significant predictors in all sites of measured BMD and PTH. A strong correlation between homocysteine and FNBMD (r = -0.2009, p < 0.002), TrFBMD (r = -0.1810, p < 0.004) and ToFBMD (r = -0.2225, p < 0.001) was found in all subjects. Homocysteine is one of the predictors of bone mineral density, and hyperhomocysteinemia is associated with lower bone mineral density. In healthy adults, homocysteine levels are dependent on age as well as on nutritional habits. Thus, elderly women on a

  9. Scalar relativistic computations of nuclear magnetic shielding and g-shifts with the zeroth-order regular approximation and range-separated hybrid density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen

    2011-10-01

    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less

  10. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  11. Interface effects on calculated defect levels for oxide defects

    NASA Astrophysics Data System (ADS)

    Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew

    2014-03-01

    Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.

  12. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  13. Geometric model for nuclear absorption from microscopic theory

    NASA Technical Reports Server (NTRS)

    John, S.; Townsend, L. W.; Wilson, J. W.; Tripathi, R. K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results are obtained.

  14. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  15. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.

  16. Nuclear winter or nuclear fall?

    NASA Astrophysics Data System (ADS)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  17. Growth and yield of western larch in response to several density levels and two thinning methods: 15-year results.

    Treesearch

    K.W. Seidel

    1986-01-01

    The 15-year growth response from a levels-of-growing-stock study in an even-aged western larch (Larix occidentalis Nutt.) stand, first thinned from above and below at age 55, was measured in northeastern Oregon. Basal area and volume growth increased with stand density for both thinning methods, whereas diameter growth decreased. Attacks of the...

  18. Community Alcohol Outlet Density and Underage Drinking

    PubMed Central

    Chen, Meng-Jinn; Grube, Joel W.; Gruenewald, Paul J.

    2009-01-01

    Aim This study examined how community alcohol outlet density may be associated with drinking among youths. Methods Longitudinal data were collected from 1091 adolescents (aged 14–16 at baseline) recruited from 50 zip codes in California with varying levels of alcohol outlet density and median household income. Hierarchical linear models were used to examine the associations between zip code alcohol outlet density and frequency rates of general alcohol use and excessive drinking, taking into account zip code median household income and individual-level variables (age, gender, race/ethnicity, personal income, mobility, and perceived drinking by parents and peers). Findings When all other factors were controlled, higher initial levels of drinking and excessive drinking were observed among youths residing in zip codes with higher alcohol outlet densities. Growth in drinking and excessive drinking was on average more rapid in zip codes with lower alcohol outlet densities. The relation of zip code alcohol outlet density with drinking appeared to be mitigated by having friends with access to a car. Conclusion Alcohol outlet density may play a significant role in initiation of underage drinking during early teen ages, especially when youths have limited mobility. Youth who reside in areas with low alcohol outlet density may overcome geographic constraints through social networks that increase their mobility and the ability to seek alcohol and drinking opportunities beyond the local community. PMID:20078485

  19. Topics in QCD at Nonzero Temperature and Density

    NASA Astrophysics Data System (ADS)

    Pangeni, Kamal

    fundamental four dimensional field theory turns out to be complex but CK symmetric. The existence of CK symmetry results in complex mass eigenvalues, which in turn leads to damped oscillatory behavior of the density-density correlation function. In the last part of this thesis, we study the effect of large amplitude density oscillations on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-star densities and temperature, Cooper pairing leads to the formations of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing beta processes via the mechanism of "gap-bridging". We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with 3 P2 neutron pairing.

  20. Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Adlard, Paul A.; Bica, Laura; White, Anthony R.; Nurjono, Milawaty; Filiz, Gulay; Crouch, Peter J.; Donnelly, Paul S.; Cappai, Roberto

    2011-01-01

    We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function. PMID:21412423

  1. Knowledge-Driven Analysis Identifies a Gene–Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Populations

    PubMed Central

    Ma, Li; Brautbar, Ariel; Boerwinkle, Eric; Sing, Charles F.

    2012-01-01

    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene–gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein–protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected P c = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene–gene interaction in the European American cohorts from the Framingham Heart Study (P c = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; P c = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (P c = 0.004) and in the Hispanic American sample from MESA (P c = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene–gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations. PMID:22654671

  2. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  3. Density Functionals of Chemical Bonding

    PubMed Central

    Putz, Mihai V.

    2008-01-01

    The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846

  4. A Spectrum of PCSK9 Alleles Contributes to Plasma Levels of Low-Density Lipoprotein Cholesterol

    PubMed Central

    Kotowski, Ingrid K.; Pertsemlidis, Alexander; Luke, Amy; Cooper, Richard S.; Vega, Gloria L.; Cohen, Jonathan C.; Hobbs, Helen H.

    2006-01-01

    Selected missense mutations in the proprotein convertase subtilisin/kexin type 9 serine protease gene (PCSK9) cause autosomal dominant hypercholesterolemia, whereas nonsense mutations in the same gene are associated with low plasma levels of low-density lipoprotein cholesterol (LDL-C). Here, DNA sequencing and chip-based oligonucleotide hybridization were used to determine whether other sequence variations in PCSK9 contribute to differences in LDL-C levels. The coding regions of PCSK9 were sequenced in the blacks and whites from the Dallas Heart Study (n=3,543) who had the lowest (<5th percentile) and highest (>95th percentile) plasma levels of LDL-C. Of the 17 missense variants identified, 3 (R46L, L253F, and A443T) were significantly and reproducibly associated with lower plasma levels of LDL-C (reductions ranging from 3.5% to 30%). None of the low–LDL-C variants were associated with increased hepatic triglyceride content, as measured by proton magnetic resonance spectroscopy. This finding is most consistent with the reduction in LDL-C being caused primarily by accelerating LDL clearance, rather than by reduced lipoprotein production. Association studies with 93 noncoding single-nucleotide polymorphisms (SNPs) at the PCSK9 locus identified 3 SNPs associated with modest differences in plasma LDL-C levels. Thus, a spectrum of sequence variations ranging in frequency (from 0.2% to 34%) and magnitude of effect (from a 3% increase to a 49% decrease) contribute to interindividual differences in LDL-C levels. These findings reveal that PCSK9 activity is a major determinant of plasma levels of LDL-C in humans and make it an attractive therapeutic target for LDL-C lowering. PMID:16465619

  5. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  6. Comparison of different statin therapy to change low-density lipoprotein cholesterol and high-density lipoprotein cholesterol level in Korean patients with and without diabetes.

    PubMed

    Khang, Ah Reum; Song, Young Shin; Kim, Kyoung Min; Moon, Jae Hoon; Lim, Soo; Park, Kyong Soo; Jang, Hak Chul; Choi, Sung Hee

    2016-01-01

    It is difficult to apply the proper intensity of statin for new treatment guidelines in clinical settings because of few data about the statin efficacy in Asians. We conducted a retrospective, observational study to estimate the percentage changes in lipid parameters and glucose induced by different statins. We analyzed 3854 patients including those with nondiabetes and diabetes treated at the outpatient clinic between 2003 and 2013 who were statin-naïve and maintained fixed-dose of statin for at least 18 months. Moderate- and low-intensity statin therapy was effective in reducing low-density lipoprotein cholesterol (LDL-C) to <100 mg/dL (70.3%, 83.0%, and 87.2% of diabetic patients in the low-, moderate-, and high-intensity therapy groups, respectively). The rapid decrease of LDL-C was observed in the first 8 months, and LDL-C-lowering effect was maintained throughout the observation period in even the low-intensity statin group. The effects of statins in elevating high-density lipoprotein cholesterol were similar in each statin groups, except the ezetimibe-simvastatin group (4.5 ± 2.1%) and high-dose atorvastatin groups (9.7 ± 3.3% and 8.7 ± 2.4% for 40 mg and 80 mg of atorvastatin/day, respectively). High-density lipoprotein cholesterol increased less and LDL-C decreased more in diabetes than in nondiabetes. There were no significant changes of fasting glucose after statin use in nondiabetic patients. Moderate- or low-intensity statin was effective enough in reaching National Cholesterol Education Program Adult Treatment Panel III LDL-C target goals in Koreans. Low-intensity statin showed around 30% LDL-C reduction from the baseline level in Koreans, which is comparable to moderate-intensity statin in new guideline. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  7. Global analysis of Skyrme forces with higher-order density dependencies

    NASA Astrophysics Data System (ADS)

    Zuo, Zhi-Wei; Pei, Jun-Chen; Xiong, Xue-Yu; Zhu, Yi

    2018-05-01

    The density-dependent term in Skyrme forces is essential to simulate three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density dependent term is added. The present work investigates the influence of higher-order density dependencies based on extended UNEDF0 and SkM* forces. Global descriptions of nuclear masses and charge radii are presented. The extended UNEDF0 force gives a global rms error on binding energies of 1.29 MeV. The influence on fission barriers and equation of state are also investigated. Perspectives to improve Skyrme forces are discussed, including global center-of-mass corrections and Lipkin-Nogami pairing corrections. Supported by National Natural Science Foundation of China (11522538)

  8. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

    PubMed Central

    Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan

    2016-01-01

    The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123

  9. Fascin regulates nuclear actin during Drosophila oogenesis

    PubMed Central

    Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.

    2016-01-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  10. GaAsSb bandgap, surface fermi level, and surface state density studied by photoreflectance modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Tsai, J. T.; Su, I. C.; Lin, H. C.; Lu, Y. T.; Chiu, P. C.; Chyi, J. I.

    2012-05-01

    The bandgap, surface Fermi level, and surface state density of a series of GaAs1-xSbx surface intrinsic-n+ structures with GaAs as substrate are determined for various Sb mole fractions x by the photoreflectance modulation spectroscopy. The dependence of the bandgap on the mole composition x is in good agreement with previous measurements as well as predictions calculated using the dielectric model of Van Vechten and Bergstresser in Phys. Rev. B 1, 3551 (1970). For a particular composition x, the surface Fermi level is always strongly pinned within the bandgap of GaAs1-xSbx and we find its variation with composition x is well described by a function EF = 0.70 - 0.192 x for 0 ≦ x ≦ 0.35, a result which is notably different from that reported by Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]. Our results suggest that the surface Fermi level is pinned at the midgap of GaAs and near the valence band of the GaSb.

  11. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer.

    PubMed

    Body, Guillaume; Ferté, Hubert; Gaillard, Jean-Michel; Delorme, Daniel; Klein, François; Gilot-Fromont, Emmanuelle

    2011-11-01

    The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

  12. Sensitivity of the fusion cross section to the density dependence of the symmetry energy

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.

    2016-04-01

    Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion

  13. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  14. Measurement of internal radiation exposure among decontamination workers in villages near the crippled Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Tsubokura, Masaharu; Nihei, Masahiko; Sato, Katsumi; Masaki, Shin; Sakuma, Yu; Kato, Shigeaki; Sugimoto, Amina; Nomura, Shuhei; Matsumura, Tomoko; Miyazaki, Makoto; Hayano, Ryugo; Shibuya, Kenji; Kami, Masahiro; Sasaki, Taro

    2013-10-01

    Decontamination workers may face a high risk of exposure to internal irradiation through inhalation during decontamination activities; there is, however, little previous research on the levels of internal contamination during decontamination procedures. The authors reviewed the medical records, including whole body counter measurements, of decontamination workers in villages near the crippled Fukushima Daiichi Nuclear Power Plant to assess their levels of internal radiation exposure. In total, 83 decontamination workers were enrolled in this study. They were regularly engaged in decontamination activities in highly contaminated areas where surface 137Cs deposition density was over 100 kBq m-2. The present study showed low levels of internal exposure among the decontamination workers near the Fukushima Daiichi nuclear plant. The cesium burdens of all the decontamination workers were below detection limits. They had reported no acute health problems. The resuspension of radioactive materials may cause minimal internal contamination during decontamination activities.

  15. Density of steam-flaked sorghum grain, roughage level, and feeding regimen for feedlot steers.

    PubMed

    Xiong, Y; Bartle, S J; Preston, R L

    1991-04-01

    Two hundred fifty-two steers (366 kg) were assigned to a 3 x 2 x 2 factorial arrangement of three densities of steam-flaked sorghum grain (bulk [flake] density of 437, 360, and 283 g/liter, B34, B28, and B22, respectively), two roughage levels (9 [R9] and 18% [R18]) and two feeding strategies (ad libitum [AD] or multiple of maintenance [MM], 2.3, 2.5, and 2.7 MM for wk 1, 2, and 3, and 2.9 MM thereafter). Steers fed R18-AD gained faster than steers fed R18-MM (1.59 vs 1.52 kg/d, P = .10); for R9 diets, no difference (P greater than .25) was found between steers fed AD and MM (interaction, P = .07). Flake density did not affect ADG (1.53 kg, P greater than .2). Dry matter intake decreased (9.8, 9.3, and 9.0 kg/d, linear, P less than .001) and gain efficiency (G/DMI, kg of gain/100 kg of DMI) increased (15.7, 16.5, and 16.9, linear, P less than .001; quadratic, P = .19) as processing degree increased (B34 to B22). Percentage of choice carcasses for B34 (67.0%) was higher (linear, P = .05) than for B28 (51.9%) and B22 (52.3%). Fecal starch and pH were 10.8, 5.7, and 4.0%, and 6.11, 6.23, and 6.37 for B34, B28, and B22, respectively (linear, P less than .001). The correlation between fecal starch and pH was -.51 (P less than .001, n = 252). Enzymatic glucose release, in vitro 6-h gas production, microbial protein synthesis, and protein degradability were 375, 483, and 559 mg/g; 24.7, 28.2, and 31.1 ml/.2 g; 6.15, 6.88, and 7.84 g/100g; and 61.4, 56.6, and 42.2% for B34, B28, and B22, respectively (linear, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Reliability and precision of pellet-group counts for estimating landscape-level deer density

    Treesearch

    David S. deCalesta

    2013-01-01

    This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...

  17. Nuclear fluxes during coherent tunnelling in asymmetric double well potentials

    NASA Astrophysics Data System (ADS)

    Liu, ChunMei; Manz, Jörn; Yang, Yonggang

    2015-08-01

    Previous results for nuclear fluxes during coherent tunnelling of molecules with symmetric double well potentials are extended to fluxes in asymmetric double well potentials. The theory is derived using the two-state approximation (TSA). The symmetric system serves as a reference. As an example, we consider the one-dimensional model of the tunnelling inversion of oriented ammonia, with semiclassical dipole coupling to an electric field. The tunnelling splitting increases with the dipole coupling by a factor f≥slant 1. The tunnelling time decreases by 1/f. The nuclear density appears as the sum of two parts: The tunnelling part decreases as {1/f}2 times the density of the symmetric reference, whereas the non-tunnelling part is the initial density times ≤ft({{1-1}/f}2\\right). Likewise, the nuclear flux decreases by 1/f, with essentially the same shape as for the symmetric reference, with maximum value at the potential barrier. Coherent nuclear tunnellings starting from the upper or lower wells of the asymmetric potential are equivalent. The results are universal, in the frame of the TSA, hence they allow straightforward extrapolations from one system to others. This is demonstrated by the prediction of isotope effects for five isotopomers of ammonia.

  18. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    USGS Publications Warehouse

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-01-01

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s

  19. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome.

    PubMed

    Casella-Filho, Antonio; Chagas, Antonio Carlos P; Maranhão, Raul C; Trombetta, Ivani C; Cesena, Fernando H Y; Silva, Vanessa M; Tanus-Santos, Jose Eduardo; Negrão, Carlos E; da Luz, Protasio L

    2011-04-15

    Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions' antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  1. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  2. Physics through the 1990s: Nuclear physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.

  3. Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia.

    PubMed

    Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon

    2015-01-01

    There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. We found a 20% decrease in NR1 protein (t(66)=-2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=-2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.

  4. Non-Strategic Nuclear Targeting in a Non-Nuclear Army

    DTIC Science & Technology

    1994-06-03

    their needs. After all, the nucler planners and target analysts at corps level must surely consider their preparedness an important issue. Also...controlled escalation (the nuclear signal) and its ability to apply nuclear power in a decisive manner. A hedge against the emergence of an overwhelming...manuals envision NSNF as powerful yet flexible alternatives to the more destabilizing strategic nuclear weapons. NSNF could be used as a show of

  5. Quantum effects of nuclear motion in three-particle diatomic ions

    NASA Astrophysics Data System (ADS)

    Baskerville, Adam L.; King, Andrew W.; Cox, Hazel

    2016-10-01

    A high-accuracy, nonrelativistic wave function is used to study nuclear motion in the ground state of three-particle {a1+a2+a3-} electronic and muonic molecular systems without assuming the Born-Oppenheimer approximation. Intracule densities and center-of-mass particle densities show that as the mass ratio mai/ma3 , i =1 ,2 , becomes smaller, the localization of the like-charged particles (nuclei) a1 and a2 decreases. A coordinate system is presented to calculate center-of-mass particle densities for systems where a1≠a2 . It is shown that the nuclear motion is strongly correlated and depends on the relative masses of the nuclei a1 and a2 rather than just their absolute mass. The heavier particle is always more localized and the lighter the partner mass, the greater the localization. It is shown, for systems with ma1density maximum and (ii) the FWHM of the radial distribution of each nucleus from the center of mass is directly proportional to the mass ratio of the nuclei: ma1/ma2 for the former and ma2/ma1 for the latter, thus quantifying a quantum effect of nuclear correlation.

  6. On the scaling of avaloids and turbulence with the average density approaching the density limit

    NASA Astrophysics Data System (ADS)

    Antar, G. Y.; Counsell, G.; Ahn, J.-W.

    2005-08-01

    This article is dedicated to the characterization of turbulent transport in the scrape-off layer of the Mega Ampère Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8, 2101 (2001)] as a function of the average density (nL). The aim is to answer a renewed interest in this subject since the bursty character of turbulence in the scrape-off layer was shown to be caused by large-scale events with high radial velocity reaching about 1/10th of the sound speed called avaloids [G. Antar et al., Phys. Rev. Lett 87, 065001 (2001)]. With increasing density, turbulence and transport increase nonlinearly at the midplane while remaining almost unchanged in the target region. Using various and complementary statistical analyses, the existence of a "critical" density, at nL/nG≃0.35 is emphasized; nG is the Greenwald density. Both above and below this density, intermittency decreases and avaloids play a decreasing role in the particle radial transport. This is interpreted as caused by the interplay between avaloids and the surrounding turbulent structures which mix them more efficiently with increasing density as the level of the background turbulence increases. The scaling of the different quantities with respect to the normalized density is obtained. It reveals that not only the level of turbulence and transport increase, but also the radial velocity and length scales. This increases the coupling between the hot plasma edge and the cold scrape-off layer that may explain the disruptive instability occurring at high densities.

  7. Optical potentials for nuclear level structures and nucleon interactions data of tin isotopes based on the soft-rotator model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong-Yeon; Hahn, Insik; Kim, Yeongduk

    2009-06-15

    The soft-rotator model is applied to self-consistent analyses of the nuclear level structures and the nucleon interaction data of the even-even Sn isotopes, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, and {sup 122}Sn. The model successfully describes low-lying collective levels of these isotopes, which exhibit neither typical rotational nor harmonic vibrational structures. The experimental nucleon interaction data--total neutron cross sections, proton reaction cross sections, and nucleon elastic and inelastic scattering data--are well described up to 200 MeV in a coupled-channels optical model approach. For the calculations, nuclear wave functions for the Sn isotopes are taken from the nonaxial soft-rotator model withmore » the model parameters adjusted to fit the measured low-lying collective level structures. We find that the {beta}{sub 2} and {beta}{sub 3} deformations for incident protons are larger than those for incident neutrons by {approx}15%, which is clear evidence of the deviation from the pure collective model for these isotopes.« less

  8. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    NASA Astrophysics Data System (ADS)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  9. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE PAGES

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and

  10. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. From charged particle density to jet quenching

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    2016-03-01

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- pT hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central Au+Au collisions at sqrt{s_{NN}} = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at sqrt{s_{NN}} = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, η/s≈ 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p+A, d+ Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both

  11. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouicer, R.

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and

  12. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    PubMed Central

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  13. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  14. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

    PubMed

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-09

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  15. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  16. The level of serum lipids, vitamin E and low density lipoprotein oxidation in Wilson's disease patients.

    PubMed

    Rodo, M; Czonkowska, A; Pulawska, M; Swiderska, M; Tarnacka, B; Wehr, H

    2000-09-01

    The aim of this study was to estimate the level of lipids and of the main serum antioxidant, alpha-tocopherol (vitamin E), and to evaluate the susceptibility of low density lipoprotein (LDL) to oxidation in Wilson's disease patients. It was assumed that enhanced LDL peroxidation caused by high copper levels could contribute to the injury of liver and other tissues. The group investigated comprised 45 individuals with Wilson's disease treated with penicillamine or zinc salts and a control group of 36 healthy individuals. Lipids were determined by enzymatic methods, alpha-tocopherol by high performance liquid chromatography, the susceptibility of LDL to oxidation in vitro by absorption changes at 234 nm during 5 h and end-products of LDL lipid oxidation as thiobarbituric acid reacting substances. In Wilson's disease patients total cholesterol, LDL cholesterol and alpha-tocopherol levels were significantly lower compared with the control group. No difference in LDL oxidation in vitro between the patients and the controls was stated. enhanced susceptibility of isolated LDL for lipid peroxidation in vitro was not observed in Wilson's disease patients. One cannot exclude, however, that because of low alpha-tocopherol level lipid peroxidation in the tissues can play a role in the pathogenesis of tissue injury in this disease.

  17. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  18. Implementation of nuclear gage moisture standards.

    DOT National Transportation Integrated Search

    1976-01-01

    A prepared dry sand standard representing zero moisture content was found to yield nuclear moisture readings similar to those obtained on a magnesium density block. Therefore, the magnesium block was adopted in place of the sand standard for use as a...

  19. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  20. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice.

    PubMed

    Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya

    2016-04-01

    To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.

  1. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from

  2. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  3. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    PubMed

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are themore » same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR

  5. Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia

    PubMed Central

    Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon

    2015-01-01

    Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient. PMID:27336043

  6. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    PubMed

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p < 0.001), and implant costs ($10,191.0 vs. $13,577.3, p = 0.003) in the LD group. Both low density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  7. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  8. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-01

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  9. Seasonal and cumulative loblolly pine development under two stand density and fertility levels

    Treesearch

    James D. Haywood

    1992-01-01

    An 8 year-old loblolly pine (Pinus taeda L.) stand was subjected to two cultural treatments for examination of seasonal and cumulative pine development. In the first treatment, pine density was either reduced by removal cutting to 2% trees per acre, at a 12- by 124 spacing, or left uncut with an original density of 1,210 trees per acre at a 6- by 6-...

  10. Nuclear light bulb

    NASA Technical Reports Server (NTRS)

    Latham, Tom

    1991-01-01

    The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.

  11. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  12. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift.

    PubMed

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  13. Knowledge of and Attitude to Nuclear Power among Residents around Tianwan Nuclear Power Plant in Jiangsu of China

    PubMed Central

    Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu

    2012-01-01

    Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. Design: A descriptive, cross-sectional design was adopted. Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Methods: Data were collected through self-administered questionnaires consisting of a socio-demographic sheet. Inferential statistics, t-test, ANOVA test and multivariate regression analysis were used to compare the differences between each subgroup and correlation analysis was conducted to understand the relationship between different factors and dependent variables. Results: Our investigation found that the level of awareness and acceptance of nuclear power was generally not high. Respondents' gender, age, marital status, residence, educational level, family income and the distance away from the nuclear power plant are important effect factors to the knowledge of and attitude to nuclear power. Conclusions: The public concerns about nuclear energy's impact are widespread. The level of awareness and acceptance of nuclear power needs to be improved urgently. PMID:22811610

  14. Landau parameters for energy density functionals generated by local finite-range pseudopotentials

    NASA Astrophysics Data System (ADS)

    Idini, A.; Bennaceur, K.; Dobaczewski, J.

    2017-06-01

    In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.

  15. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling

    2014-09-01

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.

  16. Computational nuclear quantum many-body problem: The UNEDF project

    NASA Astrophysics Data System (ADS)

    Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2013-10-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  17. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less

  18. Urban renewal based wind environment at pedestrian level in high-density and high-rise urban areas in Sai Ying Pun, Hong Kong

    NASA Astrophysics Data System (ADS)

    Yao, J. W.; Zheng, J. Y.; Zhao, Y.; Shao, Y. H.; Yuan, F.

    2017-11-01

    In high-density and high-rise urban areas, pedestrian level winds contribute to improve comfort, safety and diffusion of heat in urban areas. Outdoor wind study is extremely vital and a prerequisite in high-density cities considering that the immediate pedestrian level wind environment is fundamentally impacted by the presence of a series of high-rise buildings. In this paper, the research site of Sai Ying Pun in Hong Kong will be analysed in terms of geography, climate and urban morphology, while the surrounding natural ventilation has also been simulated by the wind tunnel experiment Computational Fluid Dynamics (CFD). It has found that, the existing problems in this district are the contradiction between planning control and commercial interests, which means some areas around tall buildings are not benefit to the residents because of the unhealthy wind environment. Therefore, some recommendation of urban renewal strategy has been provided.

  19. Evaluation of Troxler model 3411 nuclear gage.

    DOT National Transportation Integrated Search

    1978-01-01

    The performance of the Troxler Electronics Laboratory Model 3411 nuclear gage was evaluated through laboratory tests on the Department's density and moisture standards and field tests on various soils, base courses, and bituminous concrete overlays t...

  20. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  1. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  2. Non-plane-wave Hartree-Fock states and nuclear homework potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.; de Llano, M.

    1979-12-01

    It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.

  3. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  4. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less

  5. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  6. Equilibrium nuclear ensembles taking into account vaporization of hot nuclei in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2018-02-01

    We investigate the high-temperature effect on the nuclear matter that consists of mixture of nucleons and all nuclei in the dense and hot stellar environment. The individual nuclei are described within the compressible-liquid-drop model that is based on Skyrme interactions for bulk energies and that takes into account modifications of the surface and Coulomb energies at finite temperatures and densities. The free-energy density is minimized with respect to the individual equilibrium densities of all heavy nuclei and the nuclear composition. We find that their optimized equilibrium densities become smaller and smaller at high temperatures because of the increase in thermal contributions to bulk free energies and the reduction of surface energies. The neutron-rich nuclei become unstable and disappear one after another at given temperatures. The calculations are performed for two sets of model parameters leading to different values of the slope parameter in the nuclear-symmetry energy. It is found that the larger slope parameter reduces the equilibrium densities and the melting temperatures. We also compare the proposed model with some other approaches and find that the mass fractions of heavy nuclei in the previous calculations that omit vaporization are underestimated at T ≲10 MeV and overestimated at T ≳10 MeV. The further sophistication of calculations of nuclear vaporization and of light clusters would be required to construct the equation of state for explosive astrophysical phenomena.

  7. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  8. The area level association between suicide, deprivation, social fragmentation and population density in the Republic of Ireland: a national study.

    PubMed

    O'Farrell, I B; Corcoran, P; Perry, I J

    2016-06-01

    Numerous studies have examined the ecological relationship between suicide and area level determinants such as deprivation and social fragmentation. In Ireland, there is considerable geographic variation in the rates of suicide. However, there is a dearth of Irish studies investigating the geographic variability of suicide. The Irish Central Statistics Office (CSO) provided data relating to all deaths by suicide and deaths of undetermined intent that occurred from 2009 to 2011. Negative binomial regression was used to examine the relationship between area level suicide rates and measures of deprivation, social fragmentation and population density that were taken from the 2011 National Census. Overall deprivation had the strongest independent effect on small-area rates of suicide, with the most deprived areas showing the greatest risk of suicide (risk ratio = 2.1; 95 % CI 1.70-2.52). Low population density (rurality) was associated with an increased risk suicide in males across both age groups and among females in the older 40-64-year age group. Conversely, a weak association between high population density (urbanicity) and increased suicide risk was found among females in the 15-39-year age group. Associations with social fragmentation only became apparent in the sub group analysis. Social fragmentation was associated with an elevated risk of suicide in the older 40-64 age group, with this effect being most pronounced among females. The findings of this study demonstrate marked geographical inequalities in the distribution of suicide in Ireland and highlight the importance of targeting suicide prevention resources in the most deprived areas.

  9. Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers

    NASA Astrophysics Data System (ADS)

    Fusco, Michael

    Corrosion-based failures of high-level nuclear waste (HLW) storage containers are potentially hazardous due to a possible release of radionuclides through cracks in the canister due to corrosion, especially for above-ground storage (i.e. dry casks). Protective coatings have been proposed to combat these premature failures, which include stress-corrosion cracking and hydrogen-diffusion cracking, among others. The coatings are to be deposited in multiple thin layers as thin films on the outer surface of the stainless steel waste basket canister. Coating materials include: TiN, ZrO2, TiO2, Al 2O3, and MoS2, which together may provide increased resistances to corrosion and mechanical wear, as well as act as a barrier to hydrogen diffusion. The focus of this research is on the corrosion resistance and characterization of single layer coatings to determine the possible benefit from the use of the proposed coating materials. Experimental methods involve electrochemical polarization, both DC and AC techniques, and corrosion in circulating salt brines of varying pH. DC polarization allows for estimation of corrosion rates, passivation behavior, and a qualitative survey of localized corrosion, whereas AC electrochemistry has the benefit of revealing information about kinetics and interfacial reactions that is not obtainable using DC techniques. Circulation in salt brines for nearly 150 days revealed sustained adhesion of the coatings and minimal weight change of the steel samples. One-inch diameter steel coupons composed of stainless steel types 304 and 316 and A36 low alloy carbon steel were coated with single layers using magnetron sputtering with compound targets in an inert argon atmosphere. This resulted in very thin films for the metal-oxides based on low sputter rates. DC polarization showed that corrosion rates were very similar between bare and coated stainless steel samples, whereas a statistically significant decrease in uniform corrosion was measured on coated

  10. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  11. Evidence for low high-density lipoprotein cholesterol levels in Australian indigenous peoples: a systematic review.

    PubMed

    Lyons, Jasmine G; O'Dea, Kerin; Walker, Karen Z

    2014-06-02

    Low plasma high-density lipoprotein cholesterol (HDL-C) levels are a strong, independent, but poorly understood risk factor for cardiovascular disease (CVD). Although this atherogenic lipid abnormality has been widely reported in Australia's Indigenous peoples, Aboriginal and Torres Strait Islanders, the evidence has not come under systematic review. This review therefore examines published data for Indigenous Australians reporting 1) mean HDL-C levels for both sexes and 2) factors associated with low HDL-C. PubMed, Medline and Informit ATSI Health databases were systematically searched between 1950 and 2012 for studies on Indigenous Australians reporting mean HDL-C levels in both sexes. Retrieved studies were evaluated by standard criteria. Low HDL-C was defined as: <1.0 mmol/L. Analyses of primary data associating measures of HDL-C with other CVD risk factors were also performed. Fifteen of 93 retrieved studies were identified for inclusion. These provided 58 mean HDL-C levels; 29 for each sex, most obtained in rural/regional (20%) or remote settings (60%) and including 51-1641 participants. For Australian Aborigines, mean HDL-C values ranged between 0.81-1.50 mmol/L in females and 0.76-1.60 mmol/L in males. Two of 15 studies reported HDL-C levels for Torres Strait Islander populations, mean HDL-C: 1.00 or 1.11 mmol/L for females and 1.01 or 1.13 mmol/L for males. Low HDL-C was observed only in rural/regional and remote settings--not in national or urban studies (n = 3) in either gender. Diabetes prevalence, mean/median waist-to-hip ratio and circulating C-reactive protein levels were negatively associated with HDL-C levels (all P < 0.05). Thirty-four per cent of studies reported lower mean HDL-C levels in females than in males. Very low mean HDL-C levels are common in Australian Indigenous populations living in rural and remote communities. Inverse associations between HDL-C and central obesity, diabetes prevalence and inflammatory markers suggest a

  12. Examination of psychological variables related to nuclear attitudes and nuclear activism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, P.J.

    1985-01-01

    It was hypothesized that knowledge about nuclear arms developments would not be correlated with nuclear attitudes, that sense of efficacy would be positively correlated with magnitude of nuclear activism, and that death anxiety would be correlated with high level of nuclear knowledge and anti-nuclear attitudes, but not with sense of power. It was also hypothesized that positive correlations would be found between nuclear activism and political activism, knowledge of nuclear facts, and degree of adherence to anti-nuclear attitudes. One hundred and forty three women and 90 men participated in this questionnaire study. Major findings are as follows. In general, themore » more people knew about nuclear developments, the more anti-nuclear were their attitudes. Also, regardless of nuclear attitudes, a positive correlation was found between knowledge of nuclear facts and nuclear activism. Death anxiety and powerlessness were not correlated. There was a positive correlation between anxiety and both nuclear knowledge and anti-nuclear attitudes. A strong positive correlation was found between nuclear activism and anti-nuclear attitudes, and between political activism and nuclear activism. Internal locus of control did not correlate significantly with high sense of power or with high degree of nuclear activism.« less

  13. Further developments in orbit ephemeris derived neutral density

    NASA Astrophysics Data System (ADS)

    Locke, Travis

    . However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.

  14. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    PubMed

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  15. Structure and dynamics of [3.3]paracyclophane as studied by nuclear magnetic resonance and density functional theory calculations.

    PubMed

    Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning

    2010-09-30

    Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.

  16. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less

  17. Myopic refractive shift represents dense nuclear sclerosis and thin lens in lenticular myopia.

    PubMed

    Cho, Yang Kyung; Huang, Wei; Nishimura, Eiichi

    2013-09-01

    It is not rare to meet unilateral nuclear sclerotic cataracts with myopic refractive changes (lenticular myopia) compared with the fellow eye in the ophthalmic examination of patients with decreased visual acuity. To determine the relationship between the myopic refractive changes and interocular differences of parameters, we investigated the interocular differences of ocular parameters between a lenticular myopic eye and the fellow eye. This retrospective study included 68 eyes of 34 patients, who showed unilateral lenticular myopia. We compared the dimensions of ocular component, such as anterior chamber depth, anterior chamber volume, lens thickness, vitreous chamber depth, lens position, lens density of nuclear sclerosis, anterior lens curvature and myopic refractive changes (spherical equivalent refraction) between the lenticular myopic eye and the myopic refractive change were examined. Statistically significant differences were found between the lenticular myopic eye and the fellow eye for anterior chamber depth (p = 0.015) anterior chamber volume (p = 0.031), lens thickness (p < 0.001), lens density of the nuclear sclerosis (p < 0.001) and the spherical equivalent myopic refractive changes (p < 0.001). Based on univariate analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of the density of the nuclear sclerosis (r = 0.79, p < 0.001), lens thickness (r = -0.70, p < 0.001) and vitreous chamber depth (r = 0.43, p = 0.012). Based on multiple regression analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of density of nuclear sclerosis (p < 0.001) and lens thickness (p = 0.007). The difference in myopic spherical change reflects the differences in the severity of nuclear sclerosis and lens thickness between the lenticular myopic eye and the fellow eye. © 2013 The Authors. Clinical and Experimental Optometry

  18. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    PubMed Central

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P < 0.05. Results: Mean RANKL concentration showed no statistically significant differences between groups (P = 0.58). There were also no significant differences between mean OPG concentration in the five groups (P = 0.0.56). Moreover, relative RANKL/OPG ratio did not reveal a significant difference between the three study group subjects: healthy, chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in

  19. Study of Electron Gas on a Neutron-Rich Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Ramirez-Homs, Enrique

    This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.

  20. Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line

    NASA Astrophysics Data System (ADS)

    Dickhoff, Willem

    2012-10-01

    The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.

  1. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  2. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae.

    PubMed

    Kramer, Emily B; Hopper, Anita K

    2013-12-24

    In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional--from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5', 3' end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs.

  3. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae

    PubMed Central

    Kramer, Emily B.; Hopper, Anita K.

    2013-01-01

    In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional—from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5′, 3′ end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs. PMID:24297920

  4. Serum sclerostin levels associated with lumbar spine bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis.

    PubMed

    Xu, Xiao-juan; Shen, Lin; Yang, Yan-ping; Lu, Fu-rong; Zhu, Rui; Shuai, Bo; Li, Cheng-gang; Wu, Man-xiang

    2013-07-01

    Sclerostin, expressed exclusively by osteocytes, is a negative regulator of bone formation. To gain insights into the action of sclerostin in postmenopausal osteoporosis, we evaluated serum sclerostin levels in postmenopausal women and investigated its possible associations with bone turnover markers in patients with postmenopausal osteoporosis. We detected serum sclerostin, and measured lumbar spine bone mineral density in 650 Chinese postmenopausal women. We also assessed serum levels of β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin, 25-hydroxyvitamin D, and estradiol. Serum sclerostin levels were lower in postmenopausal osteoporotic women compared with non-osteoporotic postmenopausal women ((38.79 ± 7.43) vs. (52.86 ± 6.69) pmol/L, P < 0.001). Serum sclerostin was positively correlated with lumbar spine bone mineral density (r = 0.391, P < 0.001) and weakly negatively correlated with β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin (r = -0.225, P < 0.001; r = -0.091, P = 0.046; r = -0.108, P = 0.018; respectively) in postmenopausal osteoporosis. There was no significant association of serum sclerostin with age, body mass index, 25-hydroxyvitamin D, and estradiol (r = -0.004, P = 0.926; r = 0.067, P = 0.143; r = 0.063, P = 0.165; r = -0.045, P = 0.324; respectively). Sclerostin may be involved in the pathogenesis of postmenopausal osteoporosis and may play a role in bone turnover.

  5. Density Functional Theory Calculations of Activation Energies for Non-radiative Carrier Capture by Deep Defect Levels in Semiconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modine, Normand Arthur; Wright, Alan F.; Lee, Stephen R.

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activationmore » energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.« less

  6. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease

    PubMed Central

    2010-01-01

    Background The search for sickle cell disease (SCD) prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C) in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P < 0.001), hematocrit (P < 0.001) and total cholesterol (P < 0.001) and a negative significant association with reticulocytes (P = 0.046), leukocytes (P = 0.015), monocytes (P = 0.004) and platelets (P = 0.005), bilirubins [total bilirubin (P < 0.001), direct bilirubin (P < 0.001) and indirect bilirubin (P < 0.001], iron (P < 0.001), aminotransferases [aspartate aminotransferase (P = 0.004), alanine aminotransferase (P = 0.035)], lactate dehydrogenase (P < 0.001), urea (P = 0.030), alpha 1-antitrypsin (P < 0.001), very low-density lipoprotein cholesterol (P = 0.003), triglycerides (P = 0.005) and hemoglobin S (P = 0.002). Low high-density lipoprotein cholesterol concentration was associated with the history of cardiac abnormalities (P = 0.025), pneumonia (P = 0.033) and blood transfusion use (P = 0.025). Lipids and inflammatory markers were associated with the presence of cholelithiasis. Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic

  7. Effect of POU5F1 Expression Level in Clonal Subpopulations of Bovine Fibroblasts Used as Nuclear Donors for Somatic Cell Nuclear Transfer.

    PubMed

    Sá, André Luiz; Sampaio, Rafael V; da Costa Almeida, Nathália Nogueira; Sangalli, Juliano Rodrigues; Brito, Karynne Nazaré Lins; Bressan, Fabiana Fernandes; Rissino, Joirge Dores; do Socorro Damasceno Santos, Simone; Meirelles, Flavio Vieira; Ohashi, Otávio Mitio; Dos Santos Miranda, Moysés

    2017-10-01

    Somatic cell nuclear transfer (SCNT) success is partially hindered by the low epigenetic reprogramming efficiency of the donor cell. Previous studies suggest cellular heterogeneity among donor nuclei in regard to reprogramming potential, which precludes comparison among different strategies to increase cloning success. In this context, we evaluated the effect of using clonal cell populations (CPs) of bovine adult fibroblasts established by single-cell plating in SCNT. Different CPs were evaluated in regard to proliferation rate, senescence level, and chromosome stability, as well as for POU5F1 (POU class 5 homeobox 1) mRNA expression levels. In total, 9 of 24 CPs (37.5%) were successfully expanded in vitro up to the fourth passage and shown to proliferate following cryopreservation, at which time cell analyses were performed. The use of a CP with low senescence level, normal karyotype, and highest POU5F1 expression levels did not improve embryo development rates or quality following SCNT. As previously suggested, this study supports the notion that levels of POU5F1 expression in the donor nucleus do not impact the SCNT results. Notably, the single-cell seeding approach used herein to isolate CPs may be extended to the evaluation of additional predictor markers of reprogrammability success for SCNT in future experiments.

  8. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    NASA Astrophysics Data System (ADS)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  9. Features of Electron Density Distribution in Delafossite Cualo2

    NASA Astrophysics Data System (ADS)

    Pogoreltsev, A. I.; Schmidt, S. V.; Gavrilenko, A. N.; Shulgin, D. A.; Korzun, B. V.; Matukhin, V. L.

    2015-07-01

    We have used pulsed 63,65Cu nuclear quadrupole resonance at room temperature to study the semiconductor compound CuAlO2 with a delafossite crystal structure, and we have determined the quadrupole frequency νQ = 28.12 MHz and the asymmetry parameter η ~ 0, which we used to study the features of the electron density distribution in the vicinity of the quadrupolar nucleus. In order to take into account the influence of correlation effects on the electric field gradient, we carried out ab initio calculations within the density functional theory (DFT) approximation using a set of correlation functionals VWN1RPA, VWN5, PW91LDA, CPW91, and B3LYP1. We mapped the electron density distribution in the vicinity of the quadrupolar copper nucleus for the Cu7Al6o{14/- 1} cluster and we calculated the size of the LUMO-HOMO gap, Δ ~ 3.33 eV. We established the anisotropy of the spatial electron density distribution. Based on analysis of the electron density distribution obtained, we suggest that the bond in CuAlO2 is not purely covalent.

  10. Density in Liquids.

    ERIC Educational Resources Information Center

    Nesin, Gert; Barrow, Lloyd H.

    1984-01-01

    Describes a fourth-grade unit on density which introduces a concept useful in the study of chemistry and procedures appropriate to the chemistry laboratory. The hands-on activities, which use simple equipment and household substances, are at the level of thinking Piaget describes as concrete operational. (BC)

  11. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  12. Dapagliflozin in patients with type II diabetes mellitus, with and without elevated triglyceride and reduced high-density lipoprotein cholesterol levels.

    PubMed

    Bays, Harold E; Sartipy, Peter; Xu, John; Sjöström, Carl David; Underberg, James A

    Dapagliflozin is a selective sodium-glucose cotransporter 2 inhibitor that improves glycemic control in patients with type II diabetes mellitus (T2DM) by reducing renal glucose reabsorption. The aim was to evaluate the lipid effects of dapagliflozin 10 mg or placebo in patients with T2DM with/without baseline elevated triglyceride and reduced high-density lipoprotein (HDL) cholesterol levels. This was a post hoc analysis of 10 phase 3, placebo-controlled studies of dapagliflozin 10 mg (N = 2237) or placebo (N = 2164) administered for 24 weeks in patients with T2DM. Patients with elevated triglyceride (≥150 mg/dL [1.69 mmol/L]) and reduced HDL cholesterol levels (<40 mg/dL [1.04 mmol/L] in men; <50 mg/dL [1.29 mmol/L] in women) were included (group A). The reference group (group B) included patients who did not meet the defined lipid criteria. The effects of dapagliflozin on fasting lipid profiles were generally similar in the 2 lipid groups (ie, groups A and B) and, compared with placebo, were associated with minor increases in non-HDL cholesterol, low-density lipoprotein, and HDL cholesterol levels. The effects on triglyceride levels were inconsistent. The incidence of adverse events (AEs)/serious AEs, and AEs of genital infection, urinary tract infection, volume reduction, renal function, and hypoglycemia were similar in the 2 lipid groups. Patients with T2DM treated with dapagliflozin experienced minor changes in lipid levels; the changes were generally similar in the 2 lipid groups. The clinical significance of these changes in lipids is unclear, especially in view of the positive effects of dapagliflozin on other cardiovascular disease risk factors. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  13. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papersmore » also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.« less

  14. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovic, P.; Layman, M.; Kraus, N.N.

    1989-07-01

    This paper describes a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to ``unfortunate events`` associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is thatmore » of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigmatization are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development.« less

  15. Use of surfactants to control island size and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  16. The density dilemma: limitations on juvenile production in threatened salmon populations

    USGS Publications Warehouse

    Walters, Annika W.; Copeland, Timothy; Venditti, David A.

    2013-01-01

    Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.

  17. Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, J.M.

    1982-10-01

    The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less

  18. Exploring the relationship between population density and maternal health coverage.

    PubMed

    Hanlon, Michael; Burstein, Roy; Masters, Samuel H; Zhang, Raymond

    2012-11-21

    Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score's calculation discounts a nation's uninhabited territory under the assumption those areas are irrelevant to service delivery. We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations' Millennial Development Goals.

  19. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1988-06-03

    arranged according to degree of severity, and action plans will be developed for necessary measures appropriate to each level. Nuclear Disaster Chief...For the purpose of shielding the country as much as possible from the damages of nuclear accidents, first, a " Nuclear Disaster Headquarters" will be...formed within TAEC to oversee operations called for by the " Nuclear Disaster Guidelines," and coordination of the activities designed to meet an

  20. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    PubMed Central

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395