Science.gov

Sample records for nuclear level density

  1. Nuclear level density: Shell-model approach

    NASA Astrophysics Data System (ADS)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  2. Shell Model Approach to Nuclear Level Density

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai

    2000-04-01

    Nuclear level densities (NLD) are traditionally estimated using variations of Fermi Gas Formula (FGF) or combinatoric techniques. Recent investigations using Monte Carlo Shell Model (MCSM) techniques indicate that a shell model description of NLD may be an accurate and stable approach. Full shell model calculations of NLD are very difficult. We calculated the NLD for all nuclei in the sd shell and show that the results can be described by a single particle combinatoric model, which depends on two parameters similar to FGF. We further investigated other models and find that a sum of gaussians with means and variances given by French and Ratcliff averages (Phys. Rev. C 3, 94(1971)) is able to accurately describe shell model NLD, even when shell effects are present. The contribution of the spurious center-of-mass motion to the shell model NLD is also discussed.

  3. Nuclear shape evolution based on microscopic level densities

    NASA Astrophysics Data System (ADS)

    Ward, D. E.; Carlsson, B. G.; Døssing, T.; Möller, P.; Randrup, J.; Åberg, S.

    2017-02-01

    By combining microscopically calculated level densities with the Metropolis walk method, we develop a consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution in the fission process. For each nucleus under consideration, the level density is calculated microscopically for each of more than five million shapes with a recently developed combinatorial method. The method employs the same single-particle levels as those used for the extraction of the pairing and shell contributions to the macroscopic-microscopic potential-energy surface. Containing no new parameters, the treatment is suitable for elucidating the energy dependence of the dynamics of warm nuclei on pairing and shell effects. It is illustrated for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.

  4. Effect of collectivity on the nuclear level density

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Gohil, M.; Bhattacharya, C.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Pandey, R.; Pai, H.; Srivastava, V.; Meena, J. K.; Banerjee, S. R.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Bhattacharya, S.

    2013-09-01

    Neutron evaporation spectra at backward angles from 201Tl*, 185Re*, and 169Tm* compound nuclei, having different ground-state deformations, have been measured at two excitation energies (E* ˜ 37 and 26 MeV). The values of the inverse level density parameter (k), extracted at these excitations using statistical model calculations, are observed to decrease substantially at the lower excitation energy (˜26 MeV) for nuclei having large ground-state deformation (residues of 185Re* and 169Tm*), whereas for near-spherical nuclei (residues of 201Tl*), the k value remains unchanged at the two energies. The decrease in k at the lower excitation energy for the deformed systems amounts to a relative increase in nuclear level density, indicating a collective enhancement. The present observation clearly establishes the existence of a strong correlation between collectivity and ground-state deformation.

  5. IAEA advisory group meeting on basic and applied problems of nuclear level densities

    SciTech Connect

    Bhat, M.R.

    1983-06-01

    Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data. (WHK)

  6. Determination of nuclear level densities from experimental information

    SciTech Connect

    Cole, B.J. ); Davidson, N.J. , P.O. Box 88, Manchester M60 1QD ); Miller, H.G. )

    1994-10-01

    A novel information theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval, and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.

  7. The role of the nuclear level density in spallation neutron studies

    SciTech Connect

    Mughabghab, S.F.; Zucker, M.S.

    1998-08-01

    The influence of the nuclear level density parameters of the various nuclides determined recently on the neutron yields, produced by 0.8--1.4 GeV proton bombardments of thick tungsten target, was investigated. The results show that better agreement between measurements and LAHET calculations is achieved on the basis of a new set of level density parameters.

  8. Calculation of Nuclear Level Density Parameters of Some Light Deformed Medical Radionuclides Using Collective Excitation Modes of Observed Nuclear Spectra

    NASA Astrophysics Data System (ADS)

    Okuducu, Ş.; Akti, N. N.; Saraç, H.; Bölükdemir, M. H.; Tel, E.

    In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40

  9. Nuclear level densities and gamma-ray strength functions of 145,149,151Nd isotopes

    NASA Astrophysics Data System (ADS)

    Ay, K. O.; Ozgur, M.; Algin, E.; Guttormsen, M.; Bello Garrote, F. L.; Crespo Campo, L.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Midtbo, J. E.; Modamio, V.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2016-10-01

    The nuclear level densities and gamma-ray strength functions are the key elements for Hauser-Feshbach statistical model calculations to predict reaction cross sections which have many applications including astrophysics. The nuclear level densities and y-ray strength functions have been determined for 145,149,151Nd isotopes below the neutron separation energies using the Oslo method with the 144,148,150Nd(d,p) reactions. The results from the first measurements as well as planned experiments at OCL will be presented.

  10. Non-invasive liquid level and density gauge for nuclear power reactor pressure vessels

    SciTech Connect

    Baratta, A.J.; Jester, W.A.; Kenney, E.S.; Mc Master, I.B.; Schultz, M.A.

    1987-01-27

    A method is described of non-invasively determining the liquid coolant level and density in a nuclear power reactor pressure vessel comprising the steps: positioning at least three neutron detector fission chambers externally of the reactor pressure vessel at multiple spaced positions along the side of the fuel core. One of the neutron detectors is positioned at the side near the bottom of the fuel core. The multiple spaced positions along the side remove any ambiguity as to whether the liquid level is decreasing or increasing: shielding the neutron detector fission chamber from thermal neutrons to avoid the noise associated therewith, and eliminating the effects of gamma radiation from the detected signals; monitoring the detected neutron level signals to determine to coolant liquid level and density in the nuclear power reactor pressure vessel.

  11. The Hagedorn spectrum, nuclear level densities and first order phase transitions

    SciTech Connect

    Moretto, Luciano G.; Larsen, A. C.; Guttormsen, M.; Siem, S.

    2015-10-15

    An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T{sub H} was interpreted as fixing an upper limiting temperature T{sub H} that the system can achieve. However, thermodynamically, such spectrum indicates a 1{sup st} order phase transition at a fixed temperature T{sub H}. A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1{sup st} order phase transition from the pairing superfluid to an ideal gas of quasi particles.

  12. Angular momentum dependence of the nuclear level density in the A ≈170 -200 region

    NASA Astrophysics Data System (ADS)

    Gohil, M.; Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Pandey, R.; Pai, H.; Srivastava, V.; Meena, J. K.; Banerjee, S. R.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Bhattacharya, S.

    2015-01-01

    Neutron evaporation spectra along with γ multiplicity has been measured from 201Tl*,185Re*, and 169Tm* compound nuclei at the excitation energies of ˜27 and 37 MeV. Statistical model analysis of the experimental data has been carried out to extract the value of the inverse level density parameter k at different angular-momentum (J ) regions corresponding to different γ multiplicities. It is observed that, for the present systems the value of k remains almost constant for different J . The present results for the angular-momentum dependence of the nuclear level density (NLD) parameter a ˜(=A /k ) , for nuclei with A ˜180 are quite different from those obtained in earlier measurements in the case of light- and medium-mass systems. The present study provides useful information to understand the angular-momentum dependence of the NLD at different nuclear mass regions.

  13. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  14. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  15. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  16. Nuclear level densities of 64,66 Zn from neutron evaporation

    DOE PAGES

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sectionsmore » have been analyzed with the exciton model of nuclear reaction.« less

  17. Simultaneous Microscopic Description of Nuclear Level Density and Radiative Strength Function

    NASA Astrophysics Data System (ADS)

    Hung, N. Quang; Dang, N. Dinh; Huong, L. T. Quynh

    2017-01-01

    The nuclear level density (NLD) and radiative strength function (RSF) are simultaneously described within a microscopic approach, which takes into account the thermal effects of the exact pairing as well as the giant resonances within the phonon-damping model. The good agreement between the results of calculations and experimental data extracted by the Oslo group for 170,171,172Yb isotopes shows the importance of exact thermal pairing in the description of NLD at low and intermediate excitation energies. It also invalidates the assumption based on the Brink-Axel hypothesis in the description of the RSF.

  18. The role of seniority-zero states in nuclear level densities

    DOE PAGES

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; ...

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  19. Nuclear level densities below 40 MeV excitation energy in the mass region A ≃ 50

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Ivaşcu, M.; Avrigeanu, V.

    1990-09-01

    Consistent pre-equilibrium emission and statistical model calculations of fast neutron induced reaction cross sections are used to validate nuclear level densities for excitation energies up to 40 MeV in the mass region A ≃50. A “composed” level density approach has been employed by using the back-shifted Fermi gas model for excitation energies lower than 12 MeV and a realistic analytical formula for higher excitations. In the transition region from the BSFG model range to that of full applicability of the realistic formula, an interpolation between the predictions of the two models is adopted. The interpolation rule, suggested by microscopic level density calculations, has been validated through the comparison of the calculated and experimental cross sections.

  20. Binomial level densities

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.

    2001-08-01

    It is shown that nuclear level densities in a finite space are described by a continuous binomial function, determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector space. Experimental values for 55Mn, 56Fe, and 60Ni are very well reproduced by the binomial form, which turns out to be almost perfectly approximated by Bethe's formula with backshift. A proof is given for which binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum are examined.

  1. Nuclear level densities in 47V, 48V, 49V, 53Mn, and 54Mn from neutron evaporation spectra

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2011-03-01

    The spectra of neutrons from the ( p, n) reactions on 47Ti, 48Ti, 49Ti, 53Cr, and 54Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for 47V, 48V, 49V, 53Mn, and 54Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.

  2. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE PAGES

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; ...

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  3. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    SciTech Connect

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  4. Experimental level densities of atomic nuclei

    SciTech Connect

    Guttormsen, M.; Aiche, M.; Bernstein, L. A.; Bleuel, D. L.; Byun, Y.; Ducasse, Q.; Giacoppo, F.; Gorgen, A.; Gunsing, F.; Hagen, T. W.; Jurado, B.; Larsen, A. C.; Lebois, L.; Leniau, B.; Nyhus, H. T.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A.; Wiedeking, M.; Wilson, J.

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold.

  5. Nuclear level densities of 64,66 Zn from neutron evaporation

    SciTech Connect

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sections have been analyzed with the exciton model of nuclear reaction.

  6. Nuclear cusps in the HSF electron density

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Challacombe, Matt

    1994-07-01

    The Hiller-Sucher-Feinberg (HSF) identity provides an alternative definition for the electron density. The behavior of the HSF electron density in the vicinity of nuclei is analyzed. It is shown that the HSF density possesses nuclear cusps at which its gradient is discontinuous. The discontinuities in the HSF density gradient satisfy a simple equation analogous to Kato's electron-nuclear cusp condition. However, in contrast to Kato's condition, the electron-nuclear cusp condition is satisfied by HSF densities originating from both exact and approximate electronic wavefunctions. Several numerical examples are presented to illustrate this property of the HSF electron density.

  7. Density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  8. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  9. Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  10. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  11. Nuclear energy density functional and the nuclear α decay

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Oh, Yongseok

    2017-03-01

    The nuclear α decay of heavy nuclei is investigated based on the nuclear energy density functional, which leads to the α potential inside the parent nucleus in terms of the proton and neutron density profiles of the daughter nucleus. We use the Skyrme force model, Gogny force model, and relativistic mean-field model to get the nucleon density profiles inside heavy nuclei. Once the nucleon density profiles are determined, the parameters of the nuclear α potential are fitted to the observed α decay half-lives of heavy nuclei. This approach is then applied to predict unknown α decay half-lives of heavy nuclei. To estimate the Q values of unobserved α decays, we make use of the liquid droplet model.

  12. Spin Density Matrices for Nuclear Density Functionals with Parity Violation

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce; Giraud, Bertrand

    2010-11-01

    Within the context of the radial density functional [1], we apply the spin density matrix (SDM) used in atomic and molecular physics [2] to nuclear physics. The vector part of the SDM defines a ``hedgehog'' situation, which exists only if nuclear states contain some amount of parity violation. Thus, looking for the vector profile of the SDM could be used as a test for parity violation in nuclei. The difference between the scalar profile and the vector profile of the SDM will be illustrated by a toy model. [4pt] [1] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).[0pt] [2] A. Goerling, Phys. Rev. A 47, 2783 (1993).

  13. Uncertainty Quantification for Nuclear Density Functional Theory

    NASA Astrophysics Data System (ADS)

    McDonnell, Jordan; Schunck, Nicolas; Nazarewicz, Witold; Higdon, Dave; Sarich, Jason; Wild, Stefan

    2014-09-01

    Nuclear density functional theory exhibits good overall agreement with measured nuclear masses for medium-mass to heavy nuclei. But the predictions of various models diverge substantially near the neutron and proton drip lines. Quantifying the theory's inherent uncertainty is essential for making reliable predictions. Through a Bayesian analysis, we calculate the theoretical uncertainty for nuclear masses obtained with a Skyrme-class energy density functional. We also assess whether a recent set of mass measurements of neutron-rich nuclei reduces the uncertainty in this model's predictions near the neutron drip line. Nuclear density functional theory exhibits good overall agreement with measured nuclear masses for medium-mass to heavy nuclei. But the predictions of various models diverge substantially near the neutron and proton drip lines. Quantifying the theory's inherent uncertainty is essential for making reliable predictions. Through a Bayesian analysis, we calculate the theoretical uncertainty for nuclear masses obtained with a Skyrme-class energy density functional. We also assess whether a recent set of mass measurements of neutron-rich nuclei reduces the uncertainty in this model's predictions near the neutron drip line. This work was supported by the US Department of Energy under Contracts No. DE-SC0008499 and No. DE-AC52-07NA27344.

  14. Moments Method for the Nuclear Density of States

    NASA Astrophysics Data System (ADS)

    Teran, Edgar; Johnson, Calvin

    2006-04-01

    We utilize statistical spectroscopy to model the nuclear level density in the interacting shell model. Low-lying statistical moments of each configuration of the shell model space are computed. Partial (configuration) densities are generated from the moments, and the sum of all the contributions is the total level density. Modified Breit-Wigner (MBW) distributions are used to model the partial densities. The properties of such functions allow for exact reproduction of the moments at large asymmetries, which are needed to accurately reproduce the overall level density. We work in the sd-shell with USD interaction, and the pf-shell with GXPF1, FPD6G an KB3G interactions. Results from level densities generated with method will be shown in the sd-shell and pf-shell, as well as comparisons to exact calculations and experimental data.

  15. Error analysis in nuclear density functional theory

    NASA Astrophysics Data System (ADS)

    Schunck, Nicolas; McDonnell, Jordan D.; Sarich, Jason; Wild, Stefan M.; Higdon, Dave

    2015-03-01

    Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the Universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.

  16. Central depression of nuclear charge density distribution

    SciTech Connect

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-08-15

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  17. Building a Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  18. Nuclear level densities in {sup 208}Bi and {sup 209}Po from the neutron spectra in the (p, n) reactions on {sup 208}Pb and {sup 209}Bi nuclei

    SciTech Connect

    Zhuravlev, B. V. Lychagin, A. A. Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2010-07-15

    The spectra of neutrons from the (p, n) reactions on the {sup 208}Pb and {sup 209}Bi nuclei were measured in the proton-energy range 8-11 MeV. These measurements were performed by using a time-of-flight spectrometer of fast neutrons on the basis of the pulsed tandem accelerator EGP-15 of the Institute of Physics and Power Engineering (Obninsk, Russian Federation). A high resolution and stability of the time-of-flight spectrometermade it possible to identify reliably low-lying discrete levels alongwith the continuum section of the neutron spectra. The measured data were analyzed on the basis of the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed by using the precise formalism of Hauser-Feshbach statistical theory together with the generalized model of a superfluid nucleus and the back-shifted Fermi gas model for the nuclear-level density. The nuclear-level densities in {sup 208}Bi and {sup 209}Po were determined along with their energy dependencies and model parameters. Our results are discussed together with available experimental data and recommendations of model systematics.

  19. 2004 Progress Report for Grant No. DE-FG03-03NA00076 Nuclear Level Densities and Gamma-ray Strength Functions: Stewardship Sciences Academic Alliances Program

    SciTech Connect

    G. E. Mitchell

    2004-10-18

    To verify the apparent large enhancement of the radiative strength function in light and medium nuclei, the 56Fe(n,2gamma)57Fe reaction was measured. The two-step cascade intensities with soft primary intensities confirm the enhancement. The combined results have been published in Physical Review Letters and featured in the Physics News Update. Data for the Yb isotopes have been combined to examine the systematics of level densities and strength function in three Yb isotopes. A paper on these results have been accepted for publication in Physical Review C. Analysis of the gamma rays from neutron induced reactions on 48Ti have been measured and analyzed for neturon energies from 1 to 250 MeV.

  20. Testing for parity violation in nuclei using spin density matrices for nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Barrett, B. R.; Giraud, B. G.

    2015-06-01

    The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.

  1. Quantification of Uncertainties in Nuclear Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Schunck, N.; McDonnell, J. D.; Higdon, D.; Sarich, J.; Wild, S.

    2015-01-01

    Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.

  2. Mammographic breast density and serum phytoestrogen levels.

    PubMed

    Lowry, Sarah J; Sprague, Brian L; Aiello Bowles, Erin J; Hedman, Curtis J; Hemming, Jocelyn; Hampton, John M; Burnside, Elizabeth S; Sisney, Gale A; Buist, Diana S M; Trentham-Dietz, Amy

    2012-08-01

    Some forms of estrogen are associated with breast cancer risk as well as with mammographic density (MD), a strong marker of breast cancer risk. Whether phytoestrogen intake affects breast density, however, remains unclear. We evaluated the association between serum levels of phytoestrogens and MD in postmenopausal women. We enrolled 269 women, ages 55-70 yr, who received a screening mammogram and had no history of postmenopausal hormone use. Subjects completed a survey on diet and factors related to MD and provided a blood sample for analysis of 3 phytoestrogens: genistein, daidzein, and coumestrol. We examined whether mean percent MD was related to serum level of phytoestrogens, adjusting for age and body mass index. Genistein and daidzein levels correlated with self-reported soy consumption. Mean percent MD did not differ across women with different phytoestrogen levels. For example, women with nondetectable genistein levels had mean density of 11.0% [95% confidence intervals (CI) = 9.9-12.4], compared to 10.5% (95% CI = 8.0-13.7) and 11.2% (95% CI = 8.7-14.6) for < and ≥ median detectable levels, respectively. In a population with relatively low soy intake, serum phytoestrogens were not associated with mammographic density. Additional studies are needed to determine effects of higher levels, particularly given patterns of increasing phytoestrogen intake.

  3. Linear response of homogeneous nuclear matter with energy density functionals

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Davesne, D.; Navarro, J.

    2015-03-01

    Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

  4. Spectral densities and nuclear spin relaxation in solids

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.

    1988-12-01

    We investigate the properties of ten spectral densities relevant for nuclear spin relaxation studies in solids. This is preceded by a brief review of nuclear spin relaxation in solids which includes a discussion of the appropriate spin-dependent interactions and the various relaxation rates which can be measured. Also, the link between nuclear spin relaxation and dielectric relaxation is discussed. Where possible and/or appropriate each of the spectral densities is expressed as a continuous distribution of Bloembergen-Purcell-Pound (or Debye) spectral densities 2ξ /(1 + ξ 2 ω 2) for nuclear Larmor angular frequency ω and correlation time ξ. The spectral densities are named after their originators or the shape of the distributions of correlation times or both and are (1) Bloembergen-Purcell-Pound or δ-function, (2) Havriliak-Negami, (3) Cole-Cole, (4) Davidson-Cole, (5) Fang, (6) Fuoss-Kirkwood, (7) Bryn Mawr, (8) Wagner or log-Gaussian, (9) log-Lorentzian, and (10) Fröhlich or energy box. The Havriliak-Negami spectral density is related to the Dissado-Hill theory for dielectric relaxation. The spectral densities are expressed in a way which makes them easy to compare with each other and with experimental data. Many plots of the distributions of correlation times and of the spectral densities vs. various correlation times characterizing the distributions are given.

  5. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  6. Constraining the nuclear equation of state at subsaturation densities.

    PubMed

    Khan, E; Margueron, J; Vidaña, I

    2012-08-31

    Only one-third of the nucleons in 208Pb occupy the saturation density area. Consequently, nuclear observables related to the average properties of nuclei, such as masses or radii, constrain the equation of state not at the saturation density but rather around the so-called crossing density, localized close to the mean value of the density of nuclei: ρ is approximately equal to 0.11 fm(-3). This provides an explanation for the empirical fact that several equation of state quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy per unit of volume at the crossing density is constrained by the giant monopole resonance measurements in an isotopic chain rather than the incompressibility at saturation density. The giant monopole resonance measurements provide M=1100±70 MeV (6% uncertainty), whose extrapolation gives K(∞)=230±40 MeV (17% uncertainty).

  7. Level densities and thermodynamical properties of Pt and Au isotopes

    NASA Astrophysics Data System (ADS)

    Giacoppo, F.; Bello Garrote, F. L.; Bernstein, L. A.; Bleuel, D. L.; Eriksen, T. K.; Firestone, R. B.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Kheswa, B. V.; Klintefjord, M.; Koehler, P. E.; Larsen, A. C.; Nyhus, H. T.; Renstrøm, T.; Sahin, E.; Siem, S.; Tornyi, T.

    2014-11-01

    The nuclear level densities of Pt-196194 and Au,198197 below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess Δ S =1.9 kB and 1.1 kB is observed in 195Pt and 198Au with respect to 196Pt and 197Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve.

  8. Radiative Strength Functions and Level Densities

    SciTech Connect

    Schiller, A; Becker, J A; Bernstein, L A; Voinov, A; Guttormsen, M; Hjorth-Jensen, M; Rekstad, J; Siem, S; Mitchell, G E; Tavukcu, E

    2002-08-28

    Radiative strength functions and level densities have been extracted from primary {gamma}-ray spectra for {sup 27,28}Si, {sup 56,57}Fe, {sup 96,97}Mo, and several rare earth nuclei. An unexpectedly strong ({approx} 1 mb MeV) resonance at 3 MeV in the radiative strength function has been observed for well-deformed rare earth nuclei. The physical origin of this resonance and its connection to the scissors mode is discussed.

  9. Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory

    SciTech Connect

    Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M

    2012-01-01

    Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.

  10. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  11. Level density parameters from excitation cross sections of isomeric states

    NASA Astrophysics Data System (ADS)

    Skakun, E. A.; Batij, V. G.

    1992-03-01

    Cross section ratios were measured for the production of the isomeric pairs99m,gRh,101m,gRh,102m,gRh,104m,gRh and108m,gIn in the (p,n)-reaction,107m,gIn and109m,gIn in the ( p, γ)-reaction over the energy range up to 9 MeV, and116m,gSb and118m,gSb in the (α, n)-reaction up to 24 MeV. The experimental results for these nuclei as well as for other isometric pairs excited in the ( p, n)-reaction were analysed in the frame of the statistical model for extracting the level density parameter values in the vicinity of closed nucleon shells. The level density parameter behaviour is discussed in the range of nuclear mass numbers under study.

  12. Electronic and nuclear flux densities in the H2 molecule

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.

    2014-05-01

    We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.

  13. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  14. Regulation of high density lipoprotein levels

    SciTech Connect

    Krauss, R.M.

    1982-03-01

    An increasing awareness of the physiologic and pathologic importance of serum high density lipoproteins (HDL) has led to a large number of observations regarding factors which influence their concentrations. HDL consists of a heterogeneous collection of macromolecules with diverse physical properties and chemical constituents. While laboratory techniques have made it possible to measure HDL and their individual components, there are as yet large gaps in our knowledge of the biochemical mechanisms and clinical significance of changes in these laboratory parameters. In this review, current concepts of the structure and metabolism of HDL will be briefly summarized, and the factors influencing their levels in humans will be surveyed. 313 references.

  15. Time-dependent density-functional description of nuclear dynamics

    NASA Astrophysics Data System (ADS)

    Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-10-01

    The basic concepts and recent developments in the time-dependent density-functional theory (TDDFT) for describing nuclear dynamics at low energy are presented. The symmetry breaking is inherent in nuclear energy density functionals, which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in the description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, the quantum fluctuations associated with slow collective motions are explicitly treated assuming that time evolution of densities is determined by a few collective coordinates and momenta. The concept of collective submanifold is introduced in the phase space associated with the TDDFT and used to quantize the collective dynamics. Selected applications are presented to demonstrate the usefulness and quality of the new approaches. Finally, conceptual differences between nuclear and electronic TDDFT are discussed, with some recent applications to studies of electron dynamics in the linear response and under a strong laser field.

  16. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  17. Uncertainty Quantification and Propagation in Nuclear Density Functional Theory

    SciTech Connect

    Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M

    2015-03-17

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

  18. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    SciTech Connect

    Nazarewicz, Witold

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  19. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  20. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  1. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  2. Unified approach to nuclear densities from exotic atoms

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2009-09-01

    Parameters of nuclear density distributions are derived from least-squares fits to strong interaction observables in exotic atoms. Global analyses of antiprotonic and pionic atoms show reasonably good agreement between the two types of probes regarding the average behaviour of root-mean-square radii of the neutron distributions. Apparent conflict regarding the shape of the neutron distribution is attributed to different radial sensitivities of these two probes.

  3. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  4. Building A Universal Nuclear Energy Density Functional (UNEDF)

    SciTech Connect

    Joe Carlson; Dick Furnstahl; Mihai Horoi; Rusty Lusk; Witek Nazarewicz; Esmond Ng; Ian Thompson; James Vary

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  5. "Sloppy" nuclear energy density functionals: Effective model reduction

    NASA Astrophysics Data System (ADS)

    Nikšić, Tamara; Vretenar, Dario

    2016-08-01

    Concepts from information geometry are used to analyze parameter sensitivity for a nuclear energy density functional, representative of a class of semiempirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are "sloppy," namely, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, sloppy functionals exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the range of parameter sensitivity. Using the manifold boundary approximation method, we illustrate how to systematically construct effective nuclear density functionals of successively lower dimension in parameter space until sloppiness is eventually eliminated and the resulting functional contains only stiff combinations of parameters.

  6. Augmented Lagrangian method for constrained nuclear density functional theory

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Stoitsov, M.; Baran, A.; Nazarewicz, W.

    2010-10-01

    The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multi-dimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves the accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.

  7. Augmented Lagrangian Method for Constrained Nuclear Density Functiional Theory

    SciTech Connect

    Staszczak, A.; Stoitsov, Mario; Baran, Andrzej K; Nazarewicz, Witold

    2010-01-01

    The augmented Lagrangian method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia and is well adapted to supercomputer applications.

  8. Nuclear clustering in the energy density functional approach

    SciTech Connect

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2015-10-15

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  9. Fuel areal density distributions derived from nuclear scattering signatures

    NASA Astrophysics Data System (ADS)

    Bionta, R. M.; Casey, D. T.; Cerjan, C. J.; Yeamans, C. B.; Gatu Johnson, M. G.

    2016-10-01

    The spatial variation of activities measured in the array of 20 Nuclear Activation Detectors mounted on the flanges around the NIF target chamber (FNADs) are correlated with asymmetries in the underlying fuel areal density of compressed ICF targets. The asymmetric areal density distributions cause variations in the neutron spectra with direction which are seen in the dsr (down scattered ratio) metric, the ratio of the number of 10-12 MeV neutrons to the number of 13-15 MeV neutrons. We show, using a simple physics based simulation of neutron scattering through an idealized non-uniform DT shell with a realistic neutron source, that for most shots an areal distribution can be found which reproduces both the FNAD activity and the dsr measurements. Furthermore, by linking the simulation to a Marquardt minimizer, we fit the areal distribution to a truncated set of spherical harmonics. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Laboratory tests of low density astrophysical nuclear equations of state.

    PubMed

    Qin, L; Hagel, K; Wada, R; Natowitz, J B; Shlomo, S; Bonasera, A; Röpke, G; Typel, S; Chen, Z; Huang, M; Wang, J; Zheng, H; Kowalski, S; Barbui, M; Rodrigues, M R D; Schmidt, K; Fabris, D; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Rizzi, V; Viesti, G; Cinausero, M; Prete, G; Keutgen, T; El Masri, Y; Majka, Z; Ma, Y G

    2012-04-27

    Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

  11. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  12. The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2017-02-27

    The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS density in cancer and non-cancer cells. For S-NPs, in all cells tested, NLS was unnecessary for nuclear delivery; unmodified S-NPs showed higher nuclear delivery than NLS-S-NPs due to their ability to gain nuclear entry in a passive manner. For L-NPs, L-NLS-L-NPs showed ≈ 8.5, 33, 1.8 and 7.2 fold higher nuclear deliveries than H-NLS-L-NPs in L929 fibroblasts, primary human fibroblasts, HEK 293 and lung cancer cells, respectively. In glioma however, unmodified L-NPs showed highest nuclear delivery, whereas NLS-L-NPs were retained in the cytoplasm. Experiments conducted in the presence of inhibitors of the classical nuclear import pathway indicated that due to overexpression of importin α, classical nuclear import in glioma is impaired leading to aberrant NP intracellular trafficking and nuclear import.

  13. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  14. Parity dependence of level densities in sup 49 V

    SciTech Connect

    York, B.W.

    1991-01-01

    In this research, we have studied {sup 48}Ti(p, p{sub 1}) and {sup 48}(p, p{sub 1}{gamma}) in an effort to determine the dependence of level densities on parity in the compound nucleus {sup 49}V. This nuclide was chosen because of the high level density of the {sup 49}V system (leading to good statistical accuracy) and because the target is zero spin (making the assignment of J easier). 5 refs., 3 figs.

  15. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  16. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  17. Level density of a bose gas and extreme value statistics.

    PubMed

    Comtet, A; Leboeuf, P; Majumdar, Satya N

    2007-02-16

    We establish a connection between the level density of a gas of noninteracting bosons and the theory of extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-particle spectrum, we show that at a given excitation energy the limiting distribution function for the number of excited particles follows the three universal distribution laws of extreme value statistics, namely, the Gumbel, Weibull, and Fréchet distributions. Implications of this result, as well as general properties of the level density at different energies, are discussed.

  18. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  19. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  20. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    SciTech Connect

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  1. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    SciTech Connect

    D. A. Thomas

    1996-01-12

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report.

  2. Covariant energy density functionals: The assessment of global performance across the nuclear landscape

    SciTech Connect

    Afanasjev, A. V.

    2015-10-15

    The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.

  3. The role of ligand density and size in mediating quantum dot nuclear transport.

    PubMed

    Tang, Peter S; Sathiamoorthy, Sarmitha; Lustig, Lindsay C; Ponzielli, Romina; Inamoto, Ichiro; Penn, Linda Z; Shin, Jumi A; Chan, Warren C W

    2014-10-29

    Studying the effects of the physicochemical properties of nanomaterials on cellular uptake, toxicity, and exocytosis can provide the foundation for designing safer and more effective nanoparticles for clinical applications. However, an understanding of the effects of these properties on subcellular transport, accumulation, and distribution remains limited. The present study investigates the effects of surface density and particle size of semiconductor quantum dots on cellular uptake as well as nuclear transport kinetics, retention, and accumulation. The current work illustrates that cellular uptake and nuclear accumulation of nanoparticles depend on surface density of the nuclear localization signal (NLS) peptides with nuclear transport reaching a plateau at 20% surface NLS density in as little as 30 min. These intracellular nanoparticles have no effects on cell viability up to 72 h post treatment. These findings will set a foundation for engineering more sophisticated nanoparticle systems for imaging and manipulating genetic targets in the nucleus.

  4. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  5. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  6. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  7. Competing quantum Hall phases in the second Landau level in low density limit

    NASA Astrophysics Data System (ADS)

    Pan, Wei; Serafin, A.; Xia, J. S.; Yin, L.; Sullivan, N. S.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-01

    We present here the results from two high quality, low density GaAs quantum wells. In sample A of electron density n = 5.0 x 1010 cm-2, anisotropic electronic transport behavior was observed at ν = 7/2 in the second Landau level. We believe that the anisotropy is due to the large Landau level mixing effect in this sample. In sample B of density 4.1 x 1010 cm-2, strong 8/3, 5/2, and 7/3 fractional quantum Hall states were observed. Furthermore, our energy gap data obtained in various samples of different densities suggest that the 5/2 state may be spin unpolarized in the low density limit. The results from both samples show that the strong electron-electron interactions and a large Landau level mixing effect play an import role in the competing ground states in the second landau level. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  9. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  10. Local acceptance of a high-level nuclear waste repository.

    PubMed

    Sjöberg, Lennart

    2004-06-01

    The siting of nuclear waste facilities has been very difficult in all countries. Recent experience in Sweden indicates, however, that it may be possible, under certain circumstances, to gain local support for the siting of a high-level nuclear waste (HLNW) repository. The article reports on a study of attitudes and risk perceptions of people living in four municipalities in Sweden where HLNW siting was being intensely discussed at the political level, in media, and among the public. Data showed a relatively high level of consensus on acceptability of at least further investigation of the issue; in two cases local councils have since voted in favor of a go-ahead, and in one case only a very small majority defeated the issue. Models of policy attitudes showed that these were related to attitude to nuclear power, attributes of the perceived HLNW risk, and trust. Factors responsible for acceptance are discussed at several levels. One is the attitude to nuclear power, which is becoming more positive, probably because no viable alternatives are in sight. Other factors have to do with the extensive information programs conducted in these municipalities, and with the logical nature of the conclusion that they would be good candidates for hosting the national HLNW repository.

  11. Density measurements of road overlays samples with nuclear gauges and a Step Frequency Radar

    NASA Astrophysics Data System (ADS)

    Fauchard, C.; Li, B.; Kadi, M.

    2012-04-01

    The density of Hot-Mix Asphalt layers (HMA) and thin overlays is an important parameter for the pavement quality and its long time performance. In the laboratory, the density could be measured with nuclear gauges based on the gamma rays absorption through cores samples drilled from the pavement. However, it is a destructive testing. For in-place control, the density could be measured with nuclear gauges based on the back-scattered gamma rays. But it is limited to overlays thickness greater than 3 cm. For both cases, nuclear gauges require specific training and certification for users. The use of a nuclear source (generally Cesium 137) is a major constraint for transportation and is a threat for operator safety. This work proposes a laboratory density measurement with an electromagnetic method, the Step Frequency Radar developped in our institute (Fauchard et al, 2009). It is based on the same physical principle than the Ground Penetrating Radar, but the used frequencies allow the study of very thin asphalt overlays less than 3 cm and the possible non-destructive measurement of in-place density with high performance. For this study, the dimensions of the device are designed to measure the density of slab samples (40*60*8 cm) in laboratory. The results are compared to the nuclear density measurement used in French Labs. Three kinds of slabs are implemented with four various degrees of compaction (88, 90, 92 and 94%) according to the French norm. Their composition is known and differs mainly with the nature of the aggregates (basalt, quartzite and limestone) that represent the main part of the mix materials. Then the permittivity of the samples is measured according to the reflected waves on surface and bottom slabs. A Complex Refractive Index Model gives the measured permittivity of the tested mix as a function of the compaction and the content, permittiviy and density of each component (filler, aggregates and bitumen). The obtained density is very closed to the

  12. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  13. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  14. High density multi-level recording for archival data preservation

    NASA Astrophysics Data System (ADS)

    Holzner, F.; Paul, Ph.; Drechsler, U.; Despont, M.; Knoll, A. W.; Duerig, U.

    2011-07-01

    Archival data storage is predominantly based on magnetic tape technology. An alternative probe based multi-level recording scheme is proposed which specifically addresses the issue of long term data preservation. In a first step, the data are written as topographic relief in an organic resist. To achieve long term preservation, the relief structure is transferred in a Si based inorganic carrier by means of reactive ion etching. Thereby, the data are preserved as written in stone. Using 3-level logic, a storage density of 99 Gb/in2 is demonstrated and read-back of the data is accomplished with an error rate of 10-3 based on threshold detection. Exploiting etch anisotropy in layered substrates, logic levels can be physically separated from one another in different layers which enhances tamper resistance and also provides a means for heterogeneous storage concepts.

  15. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  16. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  17. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Sarriguren, P.; Moya de Guerra, E.

    2016-07-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains, studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS), and also with results of other theoretical methods.

  18. Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory

    SciTech Connect

    Staszczak, A,

    2013-01-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.

    Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.

    Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.

    Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.

    Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of

  19. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  20. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  1. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    NASA Astrophysics Data System (ADS)

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-01

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

  2. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  3. Measuring the Nuclear Levels in 19Ne using GODDESS

    NASA Astrophysics Data System (ADS)

    Hall, Matthew; Experiment 1488 Collaboration Collaboration

    2016-09-01

    A direct way to test nova explosion models is to observe gamma rays created in the decay of radioactive isotopes produced in the nova. One such isotope, 18F, is believed to be the main source of observable 511-keV gamma rays. The main destruction mechanism of 18F is thought to be the 18F(p,α)15O reaction, and the uncertainty in the reaction rate is attributed to uncertainties in the energies, spins, and parities of the nuclear levels in 19Ne above the proton threshold. A 3He beam was used at Argonne National Lab in an effort to understand the levels in 19Ne via the 19F(3He,t)19Ne reaction. Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) was used to measure gamma rays from the decay of 19Ne in coincidence with the reaction tritons. Preliminary data from the experiment will be presented. This research was supported by the National Science Foundation, the US DOE Office of Nuclear Physics and the National Nuclear Security Administration.

  4. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  5. Socioeconomic studies of high-level nuclear waste disposal.

    PubMed Central

    White, G F; Bronzini, M S; Colglazier, E W; Dohrenwend, B; Erikson, K; Hansen, R; Kneese, A V; Moore, R; Page, E B; Rappaport, R A

    1994-01-01

    The socioeconomic investigations of possible impacts of the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada, have been unprecedented in several respects. They bear on the public decision that sooner or later will be made as to where and how to dispose permanently of the waste presently at military weapons installations and that continues to accumulate at nuclear power stations. No final decision has yet been made. There is no clear precedent from other countries. The organization of state and federal studies is unique. The state studies involve more disciplines than any previous efforts. They have been carried out in parallel to federal studies and have pioneered in defining some problems and appropriate research methods. A recent annotated bibliography provides interested scientists with a compact guide to the 178 published reports, as well as to relevant journal articles and related documents. PMID:7971963

  6. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    SciTech Connect

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A. Yudin, A. V.

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  7. Possibility of determination of the asymptotic level-density parameter

    SciTech Connect

    Kudyaev, G.A.; Ostapenko, Y.B.; Svirin, M.I.; Smirenkin, G.N.

    1988-02-01

    We investigate the sensitivity of the fissility of nuclei to the parameters of the density of excited levels and conclude that the nuclei in the region of Pb are most favorable for an experimental estimate of the asymptotic parameter a-italic-tilde = ..cap alpha..A. The mean value ..cap alpha.. = 0.086 +- 0.009 MeV/sup -1/ is found from analysis of the fission of seven nuclei from /sup 201/Tl to /sup 213/At. This value is in agreement with the phenomenological description of the energy dependence a(U) (..cap alpha.. = 0.093 MeV/sup -1/) and with the theoretical prediction ..cap alpha.. = 0.09 MeV/sup -1/ obtained for a Woods-Saxon potential.

  8. Mammographic density and serum 25-hydroxyvitamin D levels

    PubMed Central

    2014-01-01

    Background Vitamin D, which influences cellular proliferation and breast tissue characteristics, has been inversely correlated with breast cancer risk. Dietary vitamin D intake has been associated with lower mammographic density (MD), a strong intermediate marker of breast cancer risk. Findings We examined the relationship between MD and serum 25-hydroxyvitamin D [25(OH)D], an integrated measure of vitamin D status from dietary sources and sunlight exposure, in a multi-ethnic cohort of women undergoing screening mammography. We recruited women age 40–60 years without a history of breast cancer at the time of their routine screening mammogram, and conducted in-person interviews and collected blood specimens. We enrolled 195 women from 2007–2008, 120 gave blood, and 114 were evaluable, including 25% white, 41% African American, 18% African Caribbean, and 16% Hispanic. We digitized mammograms and calculated percent density, dense area, and non-dense area on cranial-caudal images. We measured serum 25(OH)D in batched, archived specimens. Median serum 25(OH)D was 22 ng/ml (range, 8–66 ng/ml). In univariable analysis, higher serum 25(OH)D was associated with white race, higher educational level, ever breast feeding, and blood draw during the summer. After adjusting for body mass index and other confounders, we found no association between serum 25(OH)D and different measures of MD. However, when stratified by season, 25(OH)D was inversely associated with dense area during July-December (p = 0.034). Conclusions Overall, our findings suggest that circulating vitamin D, a potentially modifiable breast cancer risk factor, is not associated with MD; the seasonal effects we observed need to be replicated in larger cohorts. PMID:24742098

  9. Accuracy of Determination of the Parameters of Exotic Nuclei Nuclear Density Distributions in the Glauber Model

    NASA Astrophysics Data System (ADS)

    Rueter, Keiti; Novikov, Ivan

    2016-09-01

    Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measure interaction cross-section. In the presented work, to extract parameters for a halo and core, we compare experimental data on interaction cross section with reaction cross-sections calculated using expressions obtained in the Glauber Model and its optical approximation. These calculations are performed using Markov Chain Monte Carlo algorithm. In addition, we discuss the accuracy of the Monte Carlo approach to calculating the interaction and reaction cross-sections. The dependence of the accuracy of the density parameters of various exotic nuclei on the ``quality'' of the random numbers chains (here, ``quality'' is defined by lag-1 autocorrelation time of a sequence of random numbers) is obtained for the Gaussian density distribution for a core and the Gaussian density distribution for a halo. KY NSF EPSCoR Research Scholars Program.

  10. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect

    Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.

    2010-06-15

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}

  11. Fragmentation in isotopic and isobaric systems as probe of density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Gautam, Sakshi; Puri, Rajeev K.

    2016-11-01

    We probe the density-dependent behavior of symmetry energy using the yield of various fragments in central collisions of various isotopic and isobaric colliding pairs. We calculate the yields of free nucleons, light charged particles and intermediate mass fragments in neutron-rich colliding systems as well as the ratio of relative yields of above fragments and free nucleons. Our findings reveal that the ratio of relative yield of light charged particles poses better candidate to probe the density dependence of nuclear symmetry energy.

  12. Level Densities and Radiative Strength Functions in 56FE and 57FE

    SciTech Connect

    Tavukcu, Emel

    2002-12-10

    Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary γ rays after a light-ion reaction. A primary γ-ray spectrum represents the γ-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary γ-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary γ-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei 56Fe and 57Fe. The experimental level densities in 56Fe and 57Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for 56Fe and 57Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in 56Fe and 57Fe have surprisingly high values at low γ-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low γ-ray energy effect remains unknown.

  13. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project

    SciTech Connect

    Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-06-30

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  14. Dose estimation for nuclear power plant 4 accident in Taiwan at Fukushima nuclear meltdown emission level.

    PubMed

    Tang, Mei-Ling; Tsuang, Ben-Jei; Kuo, Pei-Hsuan

    2016-05-01

    An advanced Gaussian trajectory dispersion model is used to evaluate the evacuation zone due to a nuclear meltdown at the Nuclear Power Plant 4 (NPP4) in Taiwan, with the same emission level as that occurred at Fukushima nuclear meltdown (FNM) in 2011. Our study demonstrates that a FNM emission level would pollute 9% of the island's land area with annual effective dose ≥50 mSv using the meteorological data on 11 March 2011 in Taiwan. This high dose area is also called permanent evacuation zone (denoted as PEZ). The PEZ as well as the emergency-planning zone (EPZ) are found to be sensitive to meteorological conditions on the event. In a sunny day under the dominated NE wind conditions, the EPZ can be as far as 100 km with the first 7-day dose ≥20 mSv. Three hundred sixty-five daily events using the meteorological data from 11 March 2011 to 9 March 2012 are evaluated. It is found that the mean land area of Taiwan in becoming the PEZ is 11%. Especially, the probabilities of the northern counties/cities (Keelung, New Taipei, Taipei, Taoyuan, Hsinchu City, Hsinchu County and Ilan County) to be PEZs are high, ranging from 15% in Ilan County to 51% in Keelung City. Note that the total population of the above cities/counties is as high as 10 million people. Moreover, the western valleys of the Central Mountain Range are also found to be probable being PEZs, where all of the reservoirs in western Taiwan are located. For example, the probability can be as high as 3% in the far southern-most tip of Taiwan Island in Pingtung County. This shows that the entire populations in western Taiwan can be at risk due to the shortage of clean water sources under an event at FNM emission level, especially during the NE monsoon period.

  15. Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Karr, William A.

    2011-03-01

    We investigate the level density σ(x) and the level-spacing distribution p(s) of random matrices M=AF≠M†, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix M is self-adjoint with respect to F and thus has purely real eigenvalues. We find that the level density σF(x) is independent of the underlying distribution q(x) and solely characterized by F, and therefore generalizes the Wigner semicircle distribution σW(x). We find that the level-spacing distributions p(s) are independent of q(x), and are dependent upon both the inner product F and whether A is real or complex, and therefore generalize the Wigner surmise for level spacing. Our results suggest F-dependent generalizations of the well-known Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble classes.

  16. Technical basis for staffing levels at nuclear power plants

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.; Morisseau, D.

    1995-04-01

    The objective of this project is to provide a technical basis for the establishment of criteria for minimum staffing levels of licensed and non-licensed NPP shift personnel. Minimum staffing levels for the purpose of this study, are defined as those necessary for successful accomplishment of all safety and additional functions that must be performed in order for the licensee to meet applicable regulatory requirements. This project involves a multi-faceted approach to the investigation of the issue. Relevant NRC documentation was identified and reviewed. Using the information obtained from this documentation review, a test plan was developed to aid in the collection of further information regarding the adequacy of current shift staffing levels. The test plan addresses three different activities to be conducted to provide information to the NRC for use in the assessment of current minimum staffing levels. The first activity is collection of data related to industry shift staffing practices through site visits to seven nuclear power plants. The second activity is a simulator study, which will use licensed operator crews responding to a simulated event, under two different staffing levels. Finally, workload models will be constructed for both licensed and non-licensed personnel, using a priori knowledge of the simulator scenarios with data resulting from one of the staffing levels studied in the simulator, and the data collected from the site visits. The model will then be validated against the data obtained from the second staffing level studied in the simulator. The validated model can then be used to study the impact of changing staffing-related variables on the plant shift crew`s ability to effectively mitigate an event.

  17. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  18. Level density and mechanism of deuteron-induced reactions on Fe54,56,58

    DOE PAGES

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...

    2015-07-06

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced from themore » compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  19. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  20. Complex-energy approach to sum rules within nuclear density functional theory

    SciTech Connect

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

  1. Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein

    SciTech Connect

    Kutty, R. Krishnan . E-mail: kuttyk@nei.nih.gov; Chen, Shanyi; Samuel, William; Vijayasarathy, Camasamudram; Duncan, Todd; Tsai, Jen-Yue; Fariss, Robert N.; Carper, Deborah; Jaworski, Cynthia; Wiggert, Barbara

    2006-07-14

    NORPEG (RAI14), a developmentally regulated gene induced by retinoic acid, encodes a 980 amino acid (aa) residue protein containing six ankyrin repeats and a long coiled-coil domain [Kutty et al., J. Biol. Chem. 276 (2001), pp. 2831-2840]. We have expressed aa residues 1-287 of NORPEG and used the recombinant protein to produce an anti-NORPEG polyclonal antibody. Confocal immunofluorescence analysis showed that the subcellular localization of NORPEG in retinal pigment epithelial (ARPE-19) cells varies with cell density, with predominantly nuclear localization in nonconfluent cells, but a cytoplasmic localization, reminiscent of cytoskeleton, in confluent cultures. Interestingly, an evolutionarily conserved putative monopartite nuclear localization signal (P{sup 27}KKRKAP{sup 276}) was identified by analyzing the sequences of NORPEG and its orthologs. GFP-NORPEG (2-287 aa), a fusion protein containing this signal, was indeed localized to nuclei when expressed in ARPE-19 or COS-7 cells. Deletion and mutation analysis indicated that the identified nuclear localization sequence is indispensable for nuclear targeting.

  2. Corrosion issues in high-level nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  3. [Reducing low density lipoprotein-cholesterol levels by apheresis].

    PubMed

    Reiber, I; Gógl, A

    1994-03-13

    The predominate number of homozygote familial hypercholesterolemic and approximately 20% of heterozygotes are resistant to low cholesterol diet and lipid lowering pharmacological treatment even in combination of 2 or more drugs. In such cases, the selective lipoprotein apheresis has become a promising alternative and indicated absolute (homozygotes) or relative (heterozygotes). The combination of low density lipoprotein apheresis, together with diet and drugs, should allow a maximal lowering of low density lipoprotein-cholesterol (-60-70%). Besides low density lipoprotein, various apheresis procedures may also eliminate other potentially atherogenic factors, such as lipoprotein(a) and fibrinogen and acutely improve the haemo-rheological status of the patient. The authors review several lipoprotein apheresis procedures with varying degrees of selectivity, those have and furthermore analysis the advantages and disadvantages and cost of each procedure.

  4. Nuclear science research with dynamic high energy density plasmas at NIF

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  5. Evidence for in-medium modification of the phi meson at normal nuclear density.

    PubMed

    Muto, R; Chiba, J; En'yo, H; Fukao, Y; Funahashi, H; Hamagaki, H; Ieiri, M; Ishino, M; Kanda, H; Kitaguchi, M; Mihara, S; Miwa, K; Miyashita, T; Murakami, T; Nakura, T; Naruki, M; Ozawa, K; Sakuma, F; Sasaki, O; Sekimoto, M; Tabaru, T; Tanaka, K H; Togawa, M; Yamada, S; Yokkaichi, S; Yoshimura, Y

    2007-01-26

    Invariant mass spectra of e(+) e(-) pairs have been measured in 12 GeV p + A reactions to detect possible in-medium modification of vector mesons. Copper and carbon targets are used to study the nuclear-size dependence of e(+) e(-) invariant mass distributions. A significant excess on the low-mass side of the phi meson peak is observed in the low betagamma(= beta/square root(1-beta(2))) region of phi mesons (betagamma < 1.25) with copper targets. However, in the high betagamma region (betagamma > 1.25), spectral shapes of phi mesons are well described by the Breit-Wigner shape when experimental effects are considered. Thus, in addition to our earlier publications on rho/omega modification, this study has experimentally verified vector meson mass modification at normal nuclear density.

  6. Competition between fermions and bosons in nuclear matter at low densities and finite temperatures

    NASA Astrophysics Data System (ADS)

    Mabiala, J.; Zheng, H.; Bonasera, A.; Kohley, Z.; Yennello, S. J.

    2016-12-01

    We derive the free energy for fermions and bosons from fragmentation data. Inspired by the symmetry and pairing energy of the Weizsäcker mass formula, we obtain the free energy of fermions (nucleons) and bosons (alphas and deuterons) using Landau's free-energy approach. We confirm previously obtained results for fermions and show that the free energy for α particles is negative and close to the free energy for ideal Bose gases and in perfect agreement with the free energy of an interacting Bose gas under the repulsive Coulomb force. Deuterons behave more similarly to fermions (positive free energy) rather than bosons, which is probably due to their low binding energy. We show that the α -particle fraction is dominant at all temperatures and densities explored in this work. This is consistent with their negative free energy, which favors clusterization of nuclear matter into α particles at subsaturation densities and finite temperatures.

  7. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  8. Structural Determination of Biomolecular Interfaces by Nuclear Magnetic Resonance of Proteins with Reduced Proton Density

    PubMed Central

    Ferrage, Fabien; Dutta, Kaushik; Shekhtman, Alexander; Cowburn, David

    2013-01-01

    Protein interactions are important for understanding many molecular mechanisms underlying cellular processes. So far, interfaces between interacting proteins have been characterized by NMR spectroscopy mostly by using chemical shift perturbations and cross-saturation via intermolecular cross-relaxation. Although powerful, these techniques cannot provide unambiguous estimates of intermolecular distances between interacting proteins. Here, we present an alternative approach, called REDSPRINT (REDduced/Standard PRoton density INTerface identification), to map protein interfaces with greater accuracy by using multiple NMR probes. Our approach is based on monitoring the cross-relaxation from a source protein (or from an arbitrary ligand that need not be a protein) with high proton density to a target protein (or other biomolecule) with low proton density using isotope-filtered nuclear Overhauser spectroscopy (NOESY). This methodology uses different isotropic labeling for the source and target proteins to identify the source-target interface and also determine the proton density of the source protein at the interface for protein-protein or protein-ligand docking. The utility of this technique, including a method for direct determination of the protein surface, is demonstrated for two different protein-protein complexes. PMID:20372977

  9. Increase of inherent protection level in spent nuclear fuel

    SciTech Connect

    Krasnobaev, A.; Kryuchkov, E.; Glebov, V.

    2006-07-01

    The paper is devoted to upgrading inherent proliferation protection of fissionable nuclear materials (FNM). Some possibilities were investigated to form high radiation barrier inside spent fuel assemblies (SFA) discharged from power reactors of VVER-1000 type and research reactors of IRT type. The radiation barrier is estimated in the terms of rate of equivalent dose (RED) at 30-cm distance from SFA. The values of RED were calculated with application of the computer code package SCALE 4.3. The paper considers the criteria adopted for estimation of FNM proliferation resistance. The paper presents numerical results on a component-wise analysis of the radiation barrier in SFA from reactors of VVER-1000 and IRT type and on capability of various radionuclides to prolong action of the radiation barrier. Isotopic admixtures were selected and amounts of these admixtures were evaluated for significant prolongation of the radiation barrier action at the levels of the radiation standards used for estimation of FNM proliferation resistance. The paper considers vulnerability of the radiation barriers in respect to thermal processing of spent fuel. (authors)

  10. Nuclear motion effects on the density matrix of crystals: an ab initio Monte Carlo harmonic approach.

    PubMed

    Pisani, Cesare; Erba, Alessandro; Ferrabone, Matteo; Dovesi, Roberto

    2012-07-28

    In the frame of the Born-Oppenheimer approximation, nuclear motions in crystals can be simulated rather accurately using a harmonic model. In turn, the electronic first-order density matrix (DM) can be expressed as the statistically weighted average over all its determinations each resulting from an instantaneous nuclear configuration. This model has been implemented in a computational scheme which adopts an ab initio one-electron (Hartree-Fock or Kohn-Sham) Hamiltonian in the CRYSTAL program. After selecting a supercell of reasonable size and solving the corresponding vibrational problem in the harmonic approximation, a Metropolis algorithm is adopted for generating a sample of nuclear configurations which reflects their probability distribution at a given temperature. For each configuration in the sample the "instantaneous" DM is calculated, and its contribution to the observables of interest is extracted. Translational and point symmetry of the crystal as reflected in its average DM are fully exploited. The influence of zero-point and thermal motion of nuclei on such important first-order observables as x-ray structure factors and Compton profiles can thus be estimated.

  11. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    SciTech Connect

    McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  12. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  13. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  14. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    SciTech Connect

    McDonnell, J. D.; Schunck, N.; Higdon, D.; Sarich, J.; Wild, S. M.; Nazarewicz, W.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  15. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  16. Feasibility study on the development of a non-invasive liquid-level gauge for nuclear power reactors. [PWR

    SciTech Connect

    Baratta, A.J.; Jester, W.A.; Imel, G.R.; Okyere, E.W.; Foderaro, A.H.; Kenney, E.S.; McMaster, I.B.; Gundy, M.L.

    1983-05-01

    During the TMI-2 accident the source range detector exhibited anomalous behavior. Analysis of the detector output by the authors and others attributed this behavior to the density and level changes that occurred in the reactor pressure vessel during the TMI-2 accident. As a result of this analysis, a pressure vessel level and density gauge was proposed which uses a string of neutron detectors external to the vessel. This project investigates the feasibility of such a system. Experiments were conducted using an experimental apparatus and The Pennsylvania State University's Breazeale Nuclear Reactor to simulate a reactor during a LOCA. In addition, analytical studies were performed to explain these experiments and aid in further understanding the TMI-2 detector reading. An analysis of recent LOFT data was also conducted. Each of these confirms the ability of an external string of neutron detectors to sense and unambiguously measure water level and density variations in a reactor pressure vessel.

  17. Spent nuclear fuel project high-level information management plan

    SciTech Connect

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  18. Shampoo, Soy Sauce, and the Prince's Pendant: Density for Middle-Level Students

    ERIC Educational Resources Information Center

    Chandrasekhar, Meera; Litherland, Rebecca

    2006-01-01

    In this article, the authors describe a series of activities they have used with middle-level students. The first set of lessons explores density through the layering of liquids. In the second set, they use some of the same liquids to explore the density of solids. The third set investigates how temperature affects the density of…

  19. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    SciTech Connect

    Apps, J.A.

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.

  20. Density dependence of the nuclear symmetry energy from measurements of neutron radii in nuclei

    SciTech Connect

    Viñas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2014-07-23

    We study the density dependence of the nuclear symmetry energy, characterized by its slope parameter L, by means of the information provided by the neutron radius and the neutron skin thickness in finite nuclei. These quantities are extracted from the analysis of data obtained in antiprotonic atoms, from the parity-violating asymmetry at low-momentum transfer in polarized electron scattering in {sup 208}Pb, and from the electric dipole polarizability obtained via polarized proton inelastic scattering at forward angles in {sup 208}Pb. All these experiments provide different constraints on the slope L of the symmetry energy but the corresponding values have a considerable overlap in a range around 50 MeV ≤ L ≤ 70 MeV, in a reasonable agreement with other estimates that use different observables and methods to extract L.

  1. A journey from nuclear criticality methods to high energy density radflow experiments

    SciTech Connect

    Urbatsch, Todd James

    2016-11-08

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.

  2. Environmental radioactivity levels in the Cumberland River at the Hartsville Nuclear Project site, 1975-1982

    SciTech Connect

    Not Available

    1985-07-01

    Samples of surface water taken from the Cumberland River during the period from 1975 through 1982 exhibited radioactivity levels less than 1% of the maximum permissible concentrations published by the Nuclear Regulatory Commission. Radioactivity concentrations reported herein are typical of natural radioactivity levels with slight indications of influences from fallout of radioactivity from atmospheric nuclear weapons testing.

  3. Fine Structure of the Gamow-Teller Resonance in {sup 90}Nb and Level Density of 1{sup +} States

    SciTech Connect

    Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V.Yu.; Richter, A.; Shevchenko, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Berg, G.P.A.; Fujita, K.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakamoto, N.; Sakemi, Y.; Shimizu, Y.; Wakasa, T.; Fujita, H.; Smit, F.D.

    2006-01-13

    The fine structure of the Gamow-Teller resonance in a medium-heavy nucleus is observed for the first time in a high-resolution {sup 90}Zr({sup 3}He,t){sup 90}Nb experiment at the Research Center for Nuclear Physics, Osaka. Using a novel wavelet analysis technique, it is possible to extract characteristic energy scales and to quantify their relative importance for the generation of the fine structure. This method combined with the selectivity of the reaction permits an extraction of the level density of 1{sup +} states in {sup 90}Nb.

  4. The phonon density of states measured with synchrotron radiation and nuclear resonances.

    SciTech Connect

    Sturhahn, W.; Hu, M.; Shastri, S.; Toellner, T.

    2001-01-26

    In this experiment, we will use synchrotron radiation to measure the density of states of vibrational excitations (phonons.) Each group of students will conduct an experiment at sector 3-ID of the Advanced Photon Source, the nation's premier synchrotron radiation facility. We provide one support staff per group, i.e., Drs. Michael Hu, Sarvjit Shastri, Wolfgang Sturhahn, and Tom Toellner will help their group to perform the experiment and interpret the data. After data collection (1-2 h per group), the remaining time will be spent with evaluation and interpretation. In addition to your own data, we provide similar sets of data. Computer hardware (iMac running as X-terminals) and software for data manipulation will be provided. It is important that you understand the basic principles of the experimental method. Therefore we strongly recommend that you read the next section and the attached article Phonon Density of States Measured by Inelastic Nuclear Resonant Scattering. You are expected to use this description to familiarize yourself with the experimental setup and its individual components before the start of the experiment. You should be able to solve at least 75% of the quiz correctly. If you have particular questions or a general problem in understanding this document, please contact Dr. W. Sturhahn, Bldg. 431, Rm. D007, tel. 0163.

  5. The Effect of the Presence and Density of Shewanella oneidensis on Nuclear Magnetic Relaxation Measurements

    NASA Astrophysics Data System (ADS)

    Keating, K.; Halsey, J.

    2011-12-01

    A recent interest in the use of non-invasive geophysical methods to detect the presence of and measure the growth of microbes in the subsurface has arisen due to the potential use of such methods to monitor the progress of bioremediation. Previous research to this end has focused on electrical measurements, such as complex resistivity, which are sensitive to the presence of microbes but can be difficult to interpret. Nuclear magnetic resonance (NMR), an emerging near-surface geophysical method, is sensitive to the presence and physiochemical environment of hydrogen. Typically, NMR measurements in geophysics are used to detect hydrogen in water or hydrocarbons and to determine its pore environment; however, NMR imaging measurements have shown that NMR can also detect hydrogen in microbes. Geophysical NMR measurements thus have the potential to directly detect microbes in geologic material or indirectly detect the way in which the presence of microbes alters the physical and chemical properties of a water-saturated geologic material. This laboratory-scale study was designed to explore the effect of the presence and density of microbes on NMR relaxation measurements. Measurements were collected on microbial slurries and microbes in porous media both during microbial growth and on samples with known microbial density. Shewanella oneidensis was used as a representative environmental microbe in this study. The research shows that low field NMR measurements are sensitive to the presence and density of microbes and provides fundamental information required to determine if low-field NMR measurements can be used to monitor microbial growth during bioremediation.

  6. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||

    1997-01-01

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  7. Low density instabilities in asymmetric nuclear matter within the quark-meson coupling (QMC) model with the {delta} meson

    SciTech Connect

    Santos, Alexandre M.; Providencia, Constanca; Panda, Prafulla K.

    2009-04-15

    In the present work we include the isovector-scalar {delta} meson in the quark-meson coupling (QMC) model and study the properties of asymmetric nuclear within QMC without and with the {delta} meson. Recent constraints set by isospin diffusion on the slope parameter of the nuclear symmetry energy at saturation density are used to adjust the model parameters. The thermodynamical spinodal surfaces are obtained and the instability region at subsaturation densities within QMC and QMC{delta} models are compared with mean-field relativistic models. The distillation effect in the QMC model is discussed.

  8. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  9. Origin of the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas

    2007-05-01

    There is a measure of debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We briefly outline some of the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently to density dependent effective interactions.

  10. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  11. Density and energy level of a deep-level Mg acceptor in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Morine, Tatsuya; Nagamachi, Shinji

    2015-01-01

    Reliably determining the densities and energy levels of deep-level dominant acceptors in heavily doped wide-band-gap semiconductors has been a topic of recent discussion. In these discussions, the focus is on both Hall scattering factors for holes and distribution functions for acceptors. Mg acceptor levels in 4H-SiC seem to be deep, and so here the electrical properties of Mg-implanted 4H-SiC layers are studied by measuring Hall effects. The obtained Hall scattering factors are not reliable because they drop to less than 0.5 at high measurement temperatures. Moreover, the Fermi-Dirac distribution function is unsuitable for examining Mg acceptors because the obtained acceptor density is much higher than the concentration of implanted Mg atoms. However, by using a distribution function that includes the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be reliably determined.

  12. State-of-the-art of beyond mean field theories with nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Egido, J. Luis

    2016-07-01

    classical β and γ vibrations by considering the quadrupole operators as coordinates. We present pairing fluctuations by considering the pairing gaps as generator coordinates. The combination of quadrupole and pairing fluctuations mirrors the elementary modes of excitation of the atomic nucleus and provides a realistic description of it. Lastly the explicit consideration of the time reversal symmetry breaking in the HFB wave function by the cranking procedure allows the alignment of nucleon pairs opening a new dimension in the BMFT calculations. Abundant calculations with the finite range density dependent Gogny force applied to exotic nuclei illustrate the state-of-the-art of BMFTs with nuclear density functionals. We conclude with a thorough discussion on the potential poles of the theory.

  13. A Method for Determining Bulk Density, Material Density, and Porosity of Melter Feed During Nuclear Waste Vitrification

    SciTech Connect

    Hilliard, Zachary; Hrma, Pavel; Vance, E.

    2015-09-24

    Abstract Glass making efficiency largely depends on heat transfer to reacting glass batch (melter feed), which in turn is influenced by the bulk density (ρb) and porosity (Φ) as functions of temperature (T). Neither b(T) nor Φ(T) functions are readily accessible to direct measurement, but they can be determined based on monitoring the profile area of heated glass batch pellets and material density of batches quenched at various stages of conversion via pycnometry. For the determination of Φb, the bulk volume must be calculated as a function of temperature. This is done via a program constructed in MATLAB which takes an image of a pellet profile at a given temperature and calculates the volume of said pellet. The quenched density measured by pycnometry must be converted to the density at heat treatment temperature. This is done by taking into account the volume change due to thermal expansion/contraction.

  14. ATMS_Phase_II: a standalone code for counting non-overlapping high-density nuclear tracks

    NASA Astrophysics Data System (ADS)

    Khayat, Omid

    2014-02-01

    In this paper we focus on counting and density measurements of non-overlapping high-density nuclear track images. This paper is a continuum of another paper of the author introducing ATMS software which has been particularly developed for overlapping nuclear tracks. Here, as the second phase of the ATMS software, a hybrid algorithm is presented for counting the tracks according to user parameter initialization, template inserting and correlation estimation to initially detect nuclear track candidates, then to evaluate geometrical and contextual features of track candidates and finally a decision-making process according to the user's sensitivity considerations. The presented hybrid algorithm is verified and validated by a database containing 100 randomly selected Alpha track images captured from the surface of CR-39 polycarbonate detectors irradiated by environmental Alpha particles emitted from Rn-222 near a copper mine around Anarak city.

  15. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers.

    PubMed

    Houshmand, M; Azhar, K; Zulkifli, I; Bejo, M H; Kamyab, A

    2012-02-01

    An experiment was conducted to determine the effects of period on the performance, immunity, and some stress indicators of broilers fed 2 levels of protein and stocked at a normal or high stocking density. Experimental treatments consisted of a 2 × 2 × 2 factorial arrangement with 2 levels of prebiotic (with or without prebiotic), 2 levels of dietary CP [NRC-recommended or low CP level (85% of NRC-recommended level)], and 2 levels of stocking density (10 birds/m(2) as the normal density or 16 birds/m(2) as the high density), for a total of 8 treatments. Each treatment had 5 replicates (cages). Birds were reared in 3-tiered battery cages with wire floors in an open-sided housing system under natural tropical conditions. Housing and general management practices were similar for all treatment groups. Starter and finisher diets in mash form were fed from 1 to 21 d and 22 to 42 d of age, respectively. Supplementation with a prebiotic had no significant effect on performance, immunity, and stress indicators (blood glucose, cholesterol, corticosterone, and heterophil:lymphocyte ratio). Protein level significantly influenced broiler performance but did not affect immunity or stress indicators (except for cholesterol level). The normal stocking density resulted in better FCR and also higher antibody titer against Newcastle disease compared with the high stocking density. However, density had no significant effect on blood levels of glucose, cholesterol, corticosterone, and the heterophil:lymphocyte ratio. Significant interactions between protein level and stocking density were observed for BW gain and final BW. The results indicated that, under the conditions of this experiment, dietary addition of a prebiotic had no significant effect on the performance, immunity, and stress indicators of broilers.

  16. Effects of population density on corticosterone levels of prairie voles in the field

    PubMed Central

    Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.

    2015-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968

  17. Effects of population density on corticosterone levels of prairie voles in the field.

    PubMed

    Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M

    2016-01-01

    High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior.

  18. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    SciTech Connect

    Murphy, W.M.; Kovach, L.A.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW.

  19. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Gunsing, F.; Bernstein, L.; Bürger, A.; Görgen, A.; Thompson, I. J.; Guttormssen, M.; Larsen, A.-C.; Mansouri, P.; Renstrøm, T.; Rose, S. J.; Siem, S.; Wiedeking, M.; Wiborg, T.

    2012-02-01

    Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x) and 232Th(3He,x) reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  20. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  1. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  2. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure

    SciTech Connect

    Ludena, E. V.; Echevarria, L.; Lopez, X.; Ugalde, J. M.

    2012-02-28

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

  3. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  4. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  5. Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit

    SciTech Connect

    Pan, Wei; Serafin, A.; Xia, J. S.; Liang, Y.; Sullivan, N. S.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-01

    Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e2/εIB/ℏωe, is large. Here, lB = (ℏe/B)1/2 is the magnetic length and ωc = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].

  6. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

  7. Nuclear reactor with low-level core coolant intake

    DOEpatents

    Challberg, Roy C.; Townsend, Harold E.

    1993-01-01

    A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

  8. Modern Alchemy: Solidifying high-level nuclear waste

    SciTech Connect

    Newton, C.C.

    1997-07-01

    The U.S. Department of Energy is putting a modern version of alchemy to work to produce an answer to a decades-old problem. It is taking place at the Savannah River Site (SRS) in Aiken, South Carolina and at the West Valley Demonstration Project (WVDP) near Buffalo, New York. At both locations, contractor Westinghouse Electric Corporation is applying technology that is turning liquid high-level radioactive waste (HLW) into a stabilized, durable glass for safer and easier management. The process is called vitrification. SRS and WVDP are now operating the nation`s first full-scale HLW vitrification plants.

  9. Temporal and spatial variations of radioactive cesium levels in Northeast Japan following the Fukushima nuclear accident.

    PubMed

    Arai, Takaomi

    2016-10-01

    Radioactive emissions into the environment from the Fukushima Daiichi Nuclear Power Plant accident led to global contamination. Radionuclides such as (131)I, (134)Cs, and (137)Cs were further transported to North America and Europe. Thus, the Fukushima Daiichi Nuclear Power Plant accident is a global concern for both human health and the ecosystem because a number of countries ban or impose restrictions the import of Japanese products. In the present study, three-year (May 2011 to May 2014) fluctuations and accumulations of Cs, (134)Cs, and (137)Cs in two salmonid fish, white-spotted char and masu salmon were examined in Northeast Japan. The total Cs, (134)Cs, and (137)Cs levels in the fish gradually decreased throughout the three-year studied period after the Fukushima Daiichi Nuclear Power Plant accident; however, higher levels (more than 100 Bq kg(-1)) were still detected in the Fukushima prefecture and neighboring prefectures in Japan 3 years after the Fukushima Daiichi Nuclear Power Plant accident. Spatial radiocesium levels gradually decreased with increasing distance from the Fukushima Daiichi Nuclear Power Plant (Fukushima prefecture). The radiocesium levels facing the Pacific Ocean area were generally higher than those facing the Sea of Japan area. These results suggest that radionuclides from Fukushima Daiichi Nuclear Power Plant are still widely distributed and remain in the natural environment in Northeast Japan.

  10. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  11. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  12. Water migration through compacted bentonite backfills for containment of high-level nuclear waste

    SciTech Connect

    Westsik, J.H.; Hodges, F.N.; Kuhn, W.L.; Myers, T.R.

    1983-01-01

    Tests carried out with compacted sodium and calcium bentonites at room temperature indicate that bentonite backfills will effectively control water movement near a high-level nuclear waste package. Saturation tests indicate that water will rapidly diffuse into a dry bentonite backfill, reaching saturation in times on the order of tens of years. The apparent diffusion coefficient for sodium bentonite (about5 wt% initial water content) compacted to 2.1 g/cm/sup 3/ is 1.7 x 10/sup -6/ cm/sup 2//sec. However, the hydraulic conductivities of saturated bentonites are low, ranging from approximately 10/sup -11/ cm/sec to 10/sup -13/ cm/sec over a density range of 1.5 g/cm/sup 3/ to 2.2 g/cm/sup 3/. The hydraulic conductivities of compacted bentonites are at least several orders of magnitude lower than those of candidate-host silicate rocks, indicating that most flowing groundwater contacting a bentonite backfill would be diverted around the backfill rather than flowing through it. In addition, because of the very low hydraulic conductivities of bentonite backfills, the rate of chemical transport between the containerized waste and the surrounding host rock will be effectively controlled by diffusion through the backfill. The formation of a diffusion barrier by the backfill will significantly reduce the long-term rate of radionuclide release from the waste package, an advantage distinct from the delay in release resulting from the sorptive properties of a bentonite backfill.

  13. Correlation between High Density Lipoprotein Cholesterol (HDL) Level and Aerobic Activity Level.

    DTIC Science & Technology

    1987-04-01

    over a 40 day period for HDtJICholesteroll and Total Choleis- added with the "reverse" technique, This technique is only poai- tarot . The results are...Stand- tarot and Total Cholestero levels, it is beat that eet laoatr ard and a control Serum were each analyzed 10 times giving the * determinle its

  14. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    SciTech Connect

    Parker, Robert Y.

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  15. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  16. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections

    NASA Astrophysics Data System (ADS)

    Oprea, Corneliu I.; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2005-07-01

    This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X =C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.

  17. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    PubMed

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  18. Density functional theory computation of Nuclear Magnetic Resonance parameters in light and heavy nuclei

    NASA Astrophysics Data System (ADS)

    Sutter, Kiplangat

    This thesis illustrates the utilization of Density functional theory (DFT) in calculations of gas and solution phase Nuclear Magnetic Resonance (NMR) properties of light and heavy nuclei. Computing NMR properties is still a challenge and there are many unknown factors that are still being explored. For instance, influence of hydrogen-bonding; thermal motion; vibration; rotation and solvent effects. In one of the theoretical studies of 195Pt NMR chemical shift in cisplatin and its derivatives illustrated in Chapter 2 and 3 of this thesis. The importance of representing explicit solvent molecules explicitly around the Pt center in cisplatin complexes was outlined. In the same complexes, solvent effect contributed about half of the J(Pt-N) coupling constant. Indicating the significance of considering the surrounding solvent molecules in elucidating the NMR measurements of cisplatin binding to DNA. In chapter 4, we explore the Spin-Orbit (SO) effects on the 29Si and 13C chemical shifts induced by surrounding metal and ligands. The unusual Ni, Pd, Pt trends in SO effects to the 29Si in metallasilatrane complexes X-Si-(mu-mt)4-M-Y was interpreted based on electronic and relativistic effects rather than by structural differences between the complexes. In addition, we develop a non-linear model for predicting NMR SO effects in a series of organics bonded to heavy nuclei halides. In chapter 5, we extend the idea of "Chemist's orbitals" LMO analysis to the quantum chemical proton NMR computation of systems with internal resonance-assisted hydrogen bonds. Consequently, we explicitly link the relationship between the NMR parameters related to H-bonded systems and intuitive picture of a chemical bond from quantum calculations. The analysis shows how NMR signatures characteristic of H-bond can be explained by local bonding and electron delocalization concepts. One shortcoming of some of the anti-cancer agents like cisplatin is that they are toxic and researchers are looking for

  19. Why consider subseabed disposal of high-level nuclear waste

    SciTech Connect

    Heath, G. R.; Hollister, C. D.; Anderson, D. R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.

  20. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  1. Inspection and evaluation of Nuclear Fuel Services high-level waste storage system, program plan

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Information concerning the condition of the high-level waste tanks at the Western New York State Nuclear Service center near West Valley, New York is presented. This information is to be used in evaluating the safety of continued storage and in the development of alternatives for final disposition of the high-level waste.

  2. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  3. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  4. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  5. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  6. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  7. Effect of medium dependent binding energies on inferring the temperatures and freeze-out density of disassembling hot nuclear matter from cluster yields

    NASA Astrophysics Data System (ADS)

    Shlomo, S.; Röpke, G.; Natowitz, J. B.; Qin, L.; Hagel, K.; Wada, R.; Bonasera, A.

    2009-03-01

    We explore the abundance of light clusters in asymmetric nuclear matter at subsaturation density. With increasing density, binding energies and wave functions are modified due to medium effects. The method of Albergo, Costa, Costanzo, and Rubbino (ACCR) for determining the temperature and free nucleon density of a disassembling hot nuclear source from fragment yields is modified to include, in addition to Coulomb effects and flow, also effects of medium modifications of cluster properties, which become of importance when the nuclear matter density is above 10-3fm-3. We show how the analysis of cluster yields, to infer temperature and nucleon densities, is modified if the shifts in binding energies of in medium clusters are included. Although, at low densities, the temperature calculated from given yields changes only modestly if medium effects are taken into account, larger discrepancies are observed when the nucleon densities are determined from measured yields.

  8. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    SciTech Connect

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L; Roberts, Luke F; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint.

  9. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    PubMed Central

    Park, Jin Hyoung

    2016-01-01

    Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p < 0.01) and nuclear density (R2 = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts. PMID:27651952

  10. Formation of selfbound states in a one-dimensional nuclear model—a renormalization group based density functional study

    NASA Astrophysics Data System (ADS)

    Kemler, Sandra; Pospiech, Martin; Braun, Jens

    2017-01-01

    In nuclear physics, density functional theory (DFT) provides the basis for state-of-the art studies of ground-state properties of heavy nuclei. However, the direct relation of the density functional underlying these calculations and the microscopic nuclear forces is not yet fully understood. We present a combination of DFT and renormalization group (RG) techniques which allows to study selfbound many-body systems from microscopic interactions. We discuss its application with the aid of systems of identical fermions interacting via a long-range attractive and short-range repulsive two-body force in one dimension. We compute ground-state energies, intrinsic densities, and density correlation functions of these systems and compare our results to those obtained from other methods. In particular, we show how energies of excited states as well as the absolute square of the ground-state wave function can be extracted from the correlation functions within our approach. The relation between many-body perturbation theory and our DFT-RG approach is discussed and illustrated with the aid of the calculation of the second-order energy correction for a system of N identical fermions interacting via a general two-body interaction. Moreover, we discuss the control of spuriously emerging fermion self-interactions in DFT studies within our framework. In general, our approach may help to guide the development of energy functionals for future quantitative DFT studies of heavy nuclei from microscopic interactions.

  11. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  12. A high throughput approach for analysis of cell nuclear deformability at single cell level

    PubMed Central

    Ermis, Menekse; Akkaynak, Derya; Chen, Pu; Demirci, Utkan; Hasirci, Vasif

    2016-01-01

    Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation. PMID:27841297

  13. A high throughput approach for analysis of cell nuclear deformability at single cell level

    NASA Astrophysics Data System (ADS)

    Ermis, Menekse; Akkaynak, Derya; Chen, Pu; Demirci, Utkan; Hasirci, Vasif

    2016-11-01

    Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.

  14. High density lipoprotein level is negatively associated with the increase of oxidized low density lipoprotein lipids after a fatty meal.

    PubMed

    Tiainen, Sanna; Ahotupa, Markku; Ylinen, Petteri; Vasankari, Tommi

    2014-12-01

    Recent reports show that a fatty meal can substantially increase the concentration of oxidized lipids in low density lipoprotein (LDL). Knowing the LDL-specific antioxidant effects of high density lipoprotein (HDL), we aimed to investigate whether HDL can modify the postprandial oxidative stress after a fatty meal. Subjects of the study (n = 71) consumed a test meal (a standard hamburger meal) rich in lipid peroxides, and blood samples were taken before, 120, 240, and 360 min after the meal. The study subjects were divided into four subgroups according to the pre-meal HDL cholesterol value (HDL subgroup 1, 0.66-0.91; subgroup 2, 0.93-1.13; subgroup 3, 1.16-1.35; subgroup 4, 1.40-2.65 mmol/L). The test meal induced a marked postprandial increase in the concentration of oxidized LDL lipids in all four subgroups. The pre-meal HDL level was associated with the extent of the postprandial rise in oxidized LDL lipids. From baseline to 6 h after the meal, the concentration of ox-LDL increased by 48, 31, 24, and 16% in the HDL subgroup 1, 2, 3, and 4, respectively, and the increase was higher in subgroup 1 compared to subgroup 3 (p = 0.028) and subgroup 4 (p = 0.0081), respectively. The pre-meal HDL correlated with both the amount and the rate of increase of oxidized LDL lipids. Results of the present study show that HDL is associated with the postprandial appearance of lipid peroxides in LDL. It is therefore likely that the sequestration and transport of atherogenic lipid peroxides is another significant mechanism contributing to cardioprotection by HDL.

  15. A method for estimating the height of a mesospheric density level using meteor radar

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Vincent, R. A.; Murphy, D. J.

    2015-07-01

    A new technique for determining the height of a constant density surface at altitudes of 78-85 km is presented. The first results are derived from a decade of observations by a meteor radar located at Davis Station in Antarctica and are compared with observations from the Microwave Limb Sounder instrument aboard the Aura satellite. The density of the neutral atmosphere in the mesosphere/lower thermosphere region around 70-110 km is an essential parameter for interpreting airglow-derived atmospheric temperatures, planning atmospheric entry maneuvers of returning spacecraft, and understanding the response of climate to different stimuli. This region is not well characterized, however, due to inaccessibility combined with a lack of consistent strong atmospheric radar scattering mechanisms. Recent advances in the analysis of detection records from high-performance meteor radars provide new opportunities to obtain atmospheric density estimates at high time resolutions in the MLT region using the durations and heights of faint radar echoes from meteor trails. Previous studies have indicated that the expected increase in underdense meteor radar echo decay times with decreasing altitude is reversed in the lower part of the meteor ablation region due to the neutralization of meteor plasma. The height at which the gradient of meteor echo decay times reverses is found to occur at a fixed atmospheric density. Thus, the gradient reversal height of meteor radar diffusion coefficient profiles can be used to infer the height of a constant density level, enabling the observation of mesospheric density variations using meteor radar.

  16. French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004-2008 review.

    PubMed

    Roch, P; Aubert, B

    2013-04-01

    After 5 y of collecting data on diagnostic reference levels (DRLs), the Nuclear Safety and Radiation Protection French Institute (IRSN) presents the analyses of this data. The analyses of the collected data for radiology, computed tomography (CT) and nuclear medicine allow IRSN to estimate the level of regulatory application by health professionals and the representativeness of current DRL in terms of relevant examinations, dosimetric quantities, numerical values and patient morphologies. Since 2004, the involvement of professionals has highly increased, especially in nuclear medicine, followed by CT and then by radiology. Analyses show some discordance between regulatory examinations and clinical practice. Some of the dosimetric quantities used for the DRL setting are insufficient or not relevant enough, and some numerical values should also be reviewed. On the basis of these findings, IRSN formulates recommendations to update regulatory DRL with current and relevant examination lists, dosimetric quantities and numerical values.

  17. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    NASA Astrophysics Data System (ADS)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-09-01

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H12C-12CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  18. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    PubMed

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  19. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    SciTech Connect

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  20. Three-dimensional visualization of electron- and nuclear-density distributions in inorganic materials by MEM-based technology

    NASA Astrophysics Data System (ADS)

    Izumi, F.; Momma, K.

    2011-03-01

    The analysis of observed structure factors estimated after Rietveld analysis by the maximum-entropy method (MEM) gives electron or nuclear densities in the unit cell. The resultant densities are, more or less, biased toward a structural model in the Rietveld analysis. To overcome such a problem, we devised a sophisticated technique named MEM-based pattern fitting (MPF). For this purpose, a pattern-fitting system, RIETAN-FP, and a MEM analysis programs, PRIMA or its successor called Dysnomia, were virtually integrated into a structure-refinement system, whereby the pattern calculated from structure factors obtained by MEM is fit to the whole observed pattern. The resulting observed structure factors are analyzed again by MEM. In this way, whole-pattern fitting and MEM analysis are alternately repeated until R factors in the former no longer decrease. MPF virtually represents the crystal structure by electron or nuclear densities. MPF is, therefore, very effective in visualizing positional, occupational, and orientational disorder, chemical bonding, and anharmonic thermal motion. New programs, MPF_multi and VESTA 3, used in MPF are briefly introduced, and two representative applications of MPF to inorganic materials containing highly disordered chemical species are demonstrated.

  1. The novel measurement method of liquid level and density in airtight container

    NASA Astrophysics Data System (ADS)

    Niu, Zhe; Zhao, Yulong; Tian, Bian; Guo, Fangfang

    2012-12-01

    This paper describes a novel method of liquid level and density measurement with application in airtight container such as oil storage tank. In order to prove the method, a multifunctional pressure-type liquidometer (MPTL) was designed. The MPTL comprises two pressure sensors for capturing the underwater pressure accurately, by which the MPTL could calculate the density of the liquid and back-calculate the level of the liquid. A digital temperature sensor was implanted in the MPTL to collect the temperature of the liquid. Series of experiments show a favorable linearity of 0.2% and a high accuracy of 0.27%. Besides, the simple fabrication, low cost and unconstrained conditions guarantee its popularity in the petrochemical industry fields. Overall, the findings of this study confirm the feasibility of the novel liquid level measure method and offer an economical scheme for mass producing.

  2. Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction

    NASA Astrophysics Data System (ADS)

    Dhyani, A.; Rawat, P. S.; Tewari, B. S.

    2016-09-01

    In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  3. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  4. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  5. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  6. Influence of the density of states on the odd-even staggering in the charge distribution of the emitted fragments in nuclear heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Calleya, N. L.; Souza, S. R.; Carlson, B. V.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.; Winkelbauer, J. R.

    2014-11-01

    The fragmentation of thermalized sources is studied using a version of the Statistical Multifragmentation Model which employs state densities that take the pairing gap in the nuclear levels into account. Attention is focused on the properties of the charge distributions observed in the breakup of the source. Since the microcanonical version of the model used in this study provides the primary fragment excitation energy distribution, one may correlate the reduction of the odd-even staggering in the charge distribution with the increasing occupation of high-energy states. Thus, in the framework of this model, such staggering tends to disappear as a function of the total excitation energy of the source, although the energy per particle may be small for large systems. We also find that, although the deexcitation of the primary fragments should, in principle, blur these odd-even effects as the fragments follow their decay chains, the consistent treatment of pairing may significantly enhance these staggering effects on the final yields. In the framework of this model, we find that odd-even effects in the charge distributions should be observed in the fragmentation of relatively light systems at very low excitation energies. Our results also suggest that the odd-even staggering may provide useful information on the nuclear state density.

  7. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  8. Universal Nuclear Energy Density Functional: Tools and Resources from the UNEDF SciDAC Collaboration

    DOE Data Explorer

    UNEDF supports the Low-Energy Nuclear Physics National HPC Initiative. There are approximately 3,000 known nuclei, most of them produced in the laboratory, with an additional 6,000 that could in principle still be created. An understanding of the properties of these elements is crucial for future energy and defense applications. The long-term vision of UNEF is to arrive at a comprehensive and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. It seeks to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties.

  9. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  10. Measurements of nuclear-level lifetimes by the Doppler techniques with large multidetector arrays

    SciTech Connect

    Pasternak, A. A.

    2008-07-15

    This is a brief review of the investigations carried out by scientists from the Ioffe Physical-Technical Institute (St. Petersburg) within the framework of international projects for the study of the structure of high-spin nuclear states using heavy-ion beams and arrays of tens and hundreds of detectors for recording gamma rays and charged particles. The development and results of measurements of nuclear-level lifetime by Doppler techniques in the range 10{sup -14}-10{sup -9} s are discussed.

  11. Probabilistic approach to derive operational intervention levels for nuclear emergency preparedness.

    PubMed

    Lauritzen, B; Bäverstam, U

    1999-08-01

    A probabilistic approach is presented for the derivation of operational intervention levels as guidelines for intervention in a nuclear emergency. The probabilistic approach differs from the standard, deterministic approach in that the many variables needed for a risk and dose estimate are allowed to fluctuate and sampled, rather than using point estimate of key parameters. The fluctuations have a large effect on the operational intervention levels, leading to optimized levels that depend both on the accident scenario and on the distance from the site of the hypothetical accident. The methodology is illustrated for the case of dose rate operational intervention levels for sheltering. At distances larger than a few kilometers, values of dose rate operational intervention levels are obtained that are considerably higher than values developed through deterministic practices. As demonstrated, calculations of site-specific operational intervention levels can augment the emergency preparedness for nuclear facilities. In principle, the approach can be expanded to yield optimized emergency response planning for any nuclear facility subject to various accident conditions.

  12. Level scheme of /sup 148/Pm and the s-process neutron density

    SciTech Connect

    Lesko, K.T.; Norman, E.B.; Larimer, R.; Bacelar, J.C.; Beck, E.M.

    1989-02-01

    A level scheme of /sup 148/Pm up to 800 keV is deduced from gamma-ray coincidence data and published particle transfer data. Approximately 106 gamma-ray transitions have been placed between 36 levels. We have identified three levels below 500 keV in excitation which decay to both the ground state and to the isomeric level at 137 keV. The presence of these levels guarantees that /sup 148/Pm/sup g//sup ,//sup m/ are in thermal equilibrium during the s process. The s-process neutron density inferred from the branch point at /sup 148/Pm is deduced to be 3 x 10/sup 8//cm/sup 3/.

  13. Building a Universal Nuclear Energy Density Functional (UNEDF). SciDAC-2 Project

    SciTech Connect

    Vary, James P.; Carlson, Joe; Furnstahl, Dick; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian

    2012-09-29

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out. The UNEDF SciDAC project has developed several key computational codes and algorithms for reaching the goal of solving the nuclear quantum many-body problem throughout the chart of nuclei. Without such developments, scientific progress would not be possible. In addition the UNEDF SciDAC successfully applied these developments to solve many forefront research problems.

  14. Comparison of algorithms for the calculation of molecular vibrational level densities

    NASA Astrophysics Data System (ADS)

    Hansen, K.

    2008-05-01

    Level densities of vibrational degrees of freedom are calculated numerically with formulas based on the inversion of the canonical vibrational partition function. The calculated level densities are compared with other approximate equations from literature and with the exact Beyer-Swinehart values, for which a simplified but equivalent version is given. All approximate equations agree at high excitation energies, but our results are vastly superior at low energies for large molecules. The results presented here are therefore of particular relevance for thermal processes of very large molecules, e.g., of biological nature, for which the exact state counting can be prohibitively slow. Furthermore, it is valid for situations where anharmonic motion significantly influences the thermal properties.

  15. Gamma Strength Functions and Level Densities from 300 MeV Proton Scatttering at 0°

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk

    The gamma strength function (GSF) as well as total level densities (LDs) in 208Pb and 96Mo were extracted from high-resolution forward angle inelastic proton scattering data taken at RCNP, Osaka, Japan, and compared to experimental results obtained with the Oslo method in order to test the validity of the Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance. The case of 208Pb is inconclusive because of strong fluctuations of the GSF due to the small level density in a doubly closed-shell nucleus. In 96Mo the data are consistent with the BA hypothesis. The good agreement of LDs provides an independent confirmation of the approach underlying the decomposition of GSF and LDs in Oslo-type experiments.

  16. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes

    PubMed Central

    Bennell, Kim L; Brukner, Peter D; Malcolm, Susan A

    1996-01-01

    The effect of intense physical activity on female reproductive hormones is well recognised1–3 and there is evidence that menstrual disturbances associated with hypo-oestrogenism adversely affect bone density especially at the lumbar spine.4 5 Physical activity can also have a range of effects on male reproductive function depending upon the intensity and duration of the activity and the fitness of the individual.6 In particular, endurance training may be associated with reductions in circulating testosterone levels. Since testosterone has important anabolic roles, alterations in reproductive hormone profiles may have detrimental skeletal consequences similar to those seen in females with menstrual disturbances. The aim of this brief review is to present the limited literature on the relation between bone density and testosterone levels in male endurance athletes. PMID:8889111

  17. Shell energy and the level-density parameter of hot nuclei

    SciTech Connect

    Nerlo-Pomorska, Bozena; Pomorski, Krzysztof; Bartel, Johann

    2006-09-15

    Macroscopic-microscopic calculations have been performed with the Yukawa folded mean field for 134 spherical even-even nuclei and 6 deformed ones at temperatures 0{<=}T{<=}5 MeV and elongations ranging from oblate shapes to the scission configuration of fissioning nuclei. The Strutinsky type free-energy shell corrections for this sample of nuclei and their temperature and deformation dependence are found by a folding procedure in particle-number space. The average dependence of the single-particle level-density parameter on mass number A and isospin I is determined and compared with previous estimates obtained using the relativistic mean-field theory, the Hartree-Fock approximation with the Skyrme effective interaction, and the phenomenological Thomas-Fermi approach adjusted to experimental data. The estimates for the level-density parameter obtained for different deformations are fitted by a liquid-drop type expression.

  18. Excitation energy dependence of the level density parameter close to the doubly magic 208Pb

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Pandey, R.; Sen, A.; Manna, S.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Roy, T.; Dhal, A.; Dey, A.; Meena, J. K.; Saha, A. K.; Pandit, Deepak; Mukhopadhyay, S.; Bhattacharya, S.

    2016-12-01

    Neutron evaporation spectra have been measured from 4He+208Pb and 4He+209Bi reactions by using 4He-ion beams of several bombarding energies. Excitation-energy dependence of the level density parameter has been studied for the two systems in the excitation energy range of ˜18 -50 MeV. For both the reactions an overall reduction of the asymptotic level density parameter with increasing excitation energy (temperature) is observed. The trend of the data was compared with the Thomas-Fermi model predictions and found to be in reasonable agreement. The value of the shell damping parameter has been extracted from the lowest-energy data in the case of Po,211210 and At,212211 nuclei close to the Z =82 and N =126 shell closure, and it was found to be consistent with the recent measurement in the vicinity of doubly magic 208Pb nucleus.

  19. Correlation of Friedewald's calculated low-density lipoprotein cholesterol levels with direct low-density lipoprotein cholesterol levels in a tertiary care hospital

    PubMed Central

    Nanda, Sunil Kumar; Bharathy, M; Dinakaran, Asha; Ray, Lopamudra; Ravichandran, K

    2017-01-01

    Background: One of the risk factors for the development of coronary heart disease is high low-density lipoprotein (LDL) cholesterol levels. National Cholesterol Education Program ATP III guidelines suggest drug therapy to be considered at LDL-cholesterol levels >130 mg/dl. This makes accurate reporting of LDL cholesterol crucial in the management of Coronary heart disease. Estimation of LDL cholesterol by direct LDL method is accurate, but it is expensive. Hence, We compared Friedewald's calculated LDL values with direct LDL values. Aim: To evaluate the correlation of Friedewalds calculated LDL with direct LDL method. Materials and Methods: We compared LDL cholesterol measured by Friedewald's formula with direct LDL method in 248 samples between the age group of 20–70 years. Paired t-test was used to test the difference in LDL concentration obtained by a direct method and Friedewald's formula. The level of significance was taken as P < 0.05. Pearsons correlation formula was used to test the correlation between direct LDL values with Friedewald's formula. Results: There was no significant difference between the direct LDL values when compared to calculated LDL by Friedewalds formula (P = 0.140). Pearson correlation showed there exists good correlation between direct LDL versus Friedewalds formula (correlation coefficient = 0.98). The correlation between direct LDL versus Friedewalds calculated LDL was best at triglycerides values between 101 and 200 mg/dl. Conclusion: This study indicates calculated LDL by Friedewalds equation can be used instead of direct LDL in patients who cannot afford direct LDL method. PMID:28251110

  20. Nuclear characteristics of vitrified high-level waste at the West Valley Demonstration Project

    SciTech Connect

    Arakali, V.S.; Barnes, S.M. )

    1991-11-01

    High-level liquid nuclear waste stored in underground tanks at West Valley, New York, will be vitrified as borosilicate glass and stored in stainless steel canisters prior to disposal at a waste repository. The nuclear characteristics of the vitrified waste must meet certain repository design specifications. This paper presents an evaluation of the waste form produced at West Valley with respect to its compliance to the repository specifications of heat and gas generation rates and neutron and gamma dose rates. The method consists of analyzing the composition of liquid nuclear waste in underground tanks and estimating the amount of other chemicals needed to encapsulate radionuclides in glass matrices. The number of waste canisters and the composition of each batch of canistered waste are determined from the vitrification process flow sheet. This data is used in computer codes to evaluate the waste form against repository specifications.

  1. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again.

  2. Ocean Turbulence V: Mesoscale Modeling in Level Coordinates. The Effect of Random Nature of Density

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    1998-01-01

    The main result of this paper is the derivation of a new expression for the tracer subgrid term in level coordinates S(l) to be employed in O-GCM. The novel feature is the proper account of the random nature of the density field which strongly affects the transformation from isopycnal to level coordinates of the variables of interest, velocity and tracer fields, their correlation functions and ultimately the subgrid terms. In deriving our result we made use of measured properties of vertical ocean turbulence. The major new results are: 1) the new subgrid expression is different from that of the heuristic GM model, 2) u++(tracer)=1/2u+(thickness), where u++ and u+ are the tracer and thickness bolus velocities. In previous models, u++ = u+, 2) the subgrid for a tracer tau is not the same as that for the density rho even when one accounts for the obvious absence of a diffusion term in the latter. The difference stems from a new treatment of the stochastic nature of the density, 3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's from the bottom of the ocean to the level z.

  3. Spin- and Parity-Dependent Level Densities in Exotic Calcium Isotopes?

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Carter, J.; Sideras-Haddad, E.; Jingo, M.; Kureba, C. O.; Donaldson, L.; Latif, M.; Neveling, R.; Smit, F. D.; Swartz, C.; Nemulodi, F.; von Neumann-Cosel, P.; Richter, A.; Fearick, R. W.; Fujita, H.; Fulita, Y.; Tamii, A.

    2015-11-01

    Level densities of 2+ and 1- states in 40Ca have been extracted from high energy-resolution (p,p') experiments performed using the K600 magnetic spectrometer at iThemba LABS, South Africa. The success of the method depends on the accurate determination of various background components underneath the giant resonance. It was found that using the nearly model-independent method of Discrete Wavelet Transform (DWT) background determination using bi-orthogonal wavelets of high order of vanishing moments proved sufficient for the extraction of level density in the excitation energy region of the Isoscalar Giant Quadrupole Resonance (ISGQR) and Isovector Giant Dipole Resonance (IVGDR). Comparison of the experimentally extracted 2+ and 1- level densities with Back-Shifted Fermi Gas Model (BSFG), Hartree-Fock Bogoliubov (HFB) and Hartree-Fock-Bardeen-Cooper Schriffer (HF-BCS) theoretical model predictions were made. Future interests in the use of radioactive-ion beams of different intensities will provide opportunities in elucidating this important property experimentally for more exotic calcium isotopes.

  4. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  5. Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei

    SciTech Connect

    Afanasjev, A.V.; Frauendorf, S.

    2005-02-01

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.

  6. Four themes that underlie the high-level nuclear waste management program

    SciTech Connect

    Sprecher, W.M.

    1989-01-01

    In 1982, after years of deliberation and in response to mounting pressures from environmental, industrial, and other groups, the US Congress enacted the Nuclear Waste Policy Act (NWPA) of 1982, which was signed into law by the President in January 1983. That legislation signified a major milestone in the nation's management of high-level nuclear waste, since it represented a consensus among the nation's lawmakers to tackle a problem that had evaded solution for decades. Implementation of the NWPA has proven to be exceedingly difficult, as attested by the discord generated by the US Department of Energy's (DOE's) geologic repository and monitored retrievable storage (MRS) facility siting activities. The vision that motivated the crafters of the 1982 act became blurred as opposition to the law increased. After many hearings that underscored the public's concern with the waste management program, the Congress enacted the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act), which steamlined and focused the program, while establishing three independent bodies: the MRS Review Commission, the Nuclear Waste Technical Review Board, and the Office of the Nuclear Waste Negotiator. Yet, even as the program evolves, several themes characterizing the nation's effort to solve the waste management problem continue to prevail. The first of these themes has to do with social consciousness, and the others that follow deal with technical leadership, public involvement and risk perceptions, and program conservatism.

  7. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  8. Laser-driven target of high-density nuclear-polarized hydrogen gas

    SciTech Connect

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-15

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1x10{sup 18} atoms/s.

  9. Laser-driven target of high-density nuclear-polarized hydrogen gas

    NASA Astrophysics Data System (ADS)

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-01

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1×1018atoms/s .

  10. Evaluation of a Non-Nuclear Soil Density Gauge on Fine-Grained Soils

    DTIC Science & Technology

    2013-05-01

    U.S. STANDARD SIEVE NUMBERS HYDROMETER fY, in o/. in. 318 in #140 6 in. 3 in. 2 in. 1 in. ’A in #4 ’" #20 #30 #40 ឬ #100 #200 100 J I ’ I I I I I...1 3-20 31 C L-2 U.S. SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1Y,in. ’/.in Un~/8 in #140 6 in 3 in. 2 in. 1in. " #4...Particle Size Distribution Reoort Fine PL 14 HYDROMETER %Fines Silt -------,---- PI Project Non-Nuclear Gau_ge Proiect 27 Area Boring No. 3 Date

  11. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    SciTech Connect

    Nikolić, M.; Newton, J.; Sukenik, C. I.; Vušković, L.; Popović, S.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. We also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.

  12. Assessment of thermal comfort level at pedestrian level in high-density urban area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ma, J.; Ng, E.; Yuan, C.; Lai, A.

    2015-12-01

    Hong Kong is a subtropical city which is very hot and humid in the summer. Pedestrians commonly experience thermal discomfort. Various studies have shown that the tall bulky buildings intensify the urban heat island effect and reduce urban air ventilation. However, relatively few studies have focused on modeling the thermal load at pedestrian level (~ 2 m). This study assesses the thermal comfort level, quantified by PET (Physiological Equivalent Temperature), using a GIS - based simulation approach. A thermal comfort level map shows the PET value of a typical summer afternoon in the high building density area. For example, the averaged PET in Sheung Wan is about 41 degree Celsius in a clear day and 38 degree Celsius in a cloudy day. This map shows where the walkways, colonnades, and greening is most needed. In addition, given a start point, a end point, and weather data, we generate the most comfort walking routes weighted by the PET. In the simulation, shortwave irradiance is calculated using the topographic radiation model (Fu and Rich, 1999) under various cloud cover scenarios; longwave irradiance is calculated based the radiative transfer equation (Swinbank, 1963). Combining these two factors, Tmrt (mean radiant temperature) is solved. And in some cases, the Tmrt differ more than 40 degree Celsius between areas under the sun and under the shades. Considering thermal load and wind information, we found that shading from buildings has stronger effect on PET than poor air ventilation resulted from dense buildings. We predict that pedestrians would feel more comfortable (lower PET) in a hot summer afternoon when walking in the higher building density area.

  13. Ettingshausen Effect around a Landau Level Filling Factor ν=3 Studied by Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Komori, Yosuke; Sakuma, Satoru; Okamoto, Tohru

    2007-10-01

    A spin current perpendicular to the electric current is investigated around a Landau level filling factor ν=3 in a GaAs/AlGaAs two-dimensional electron system. Measurements of dynamic nuclear polarization in the vicinity of the edge of a specially designed Hall bar sample indicate that the direction of the spin current with respect to the Hall electric field reverses its polarity at ν=3, where the dissipative current carried by holes in the spin up Landau level is replaced with that by electrons in the spin down Landau level.

  14. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    SciTech Connect

    Marsalek, Ondrej; Markland, Thomas E.

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  15. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  16. Nuclear energy density functionals: What we can learn about/from their global performance?

    SciTech Connect

    Afanasjev, A. V.; Agbemava, S. E.; Ray, D.; Ring, P.

    2014-10-15

    A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on an analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.

  17. Noninvasive method for determining the liquid level and density inside of a container

    DOEpatents

    Sinha, Dipen N.

    2000-01-01

    Noninvasive method for determining the liquid level and density inside of a container having arbitrary dimension and shape. By generating a flexural acoustic wave in the container shell and measuring the phase difference of the detected flexural wave from that of the originally generated wave a small distance from the generated wave, while moving the generation and detection means through the liquid/vapor interface, this interface can be detected. Both the wave generation and wave detection may be achieved by transducers on the surface of the container. A change in the phase difference over the outer surface of the vessel signifies that a liquid/vapor interface has been crossed, while the magnitude of the phase difference can be related to fluid density immediately opposite the measurement position on the surface of the vessel.

  18. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.

  19. Should we take high-density lipoprotein cholesterol levels at face value?

    PubMed

    Leite, Jose Oyama; Fernandez, Maria Luz

    2010-01-01

    The inverse correlation between high-density lipoprotein (HDL) levels and cardiovascular disease has driven several investigators to target the increase in this lipoprotein to prevent atherosclerosis and its complications. However, many reports have demonstrated that the use of HDL cholesterol (HDL-C) levels as a means to prevent and treat atherosclerosis has mainly resulted in negative outcomes. These findings may help to increase our knowledge of HDL metabolism and its protective effect. There is evidence that the mechanism by which HDL-C levels are raised has a great impact on cardiovascular outcomes. When the increase in HDL-C levels is secondary to greater synthesis, a strong beneficial effect in the prevention of cardiovascular diseases is observed. Even small increases in HDL-C levels induce a marked reduction in cardiovascular events; this has been observed during treatment with fibrates. In contrast, when the increase in HDL-C levels is secondary to a reduction in HDL catabolism, unexpectedly, the opposite effects are usually noted. Even dramatic increases in HDL-C levels are not associated with better cardiovascular outcomes. In fact, these increases have been related to a greater number of cardiovascular-related deaths. This became clear from the results of trials that tested inhibitors of cholesteryl ester transfer protein (CETP). We suggest that increases in reverse cholesterol transport are more important than HDL-C levels. Strong evidence is provided by individuals that express apolipoprotein (apo)A-I Milano. These individuals have extremely low HDL-C levels due to greater catabolism of the lipoprotein. However, reverse cholesterol transport is increased in these individuals and, as a consequence, they have a low incidence of cardiovascular diseases. We reinforce that, in clinical practice, the currently recommended levels of HDL-C should still be a major target to be aimed for. However, in the research field, we emphasize the need to look for other

  20. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.

    PubMed

    Guidetti, Paolo

    2007-12-01

    Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.

  1. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice.

    PubMed

    Stranahan, Alexis M; Lee, Kim; Martin, Bronwen; Maudsley, Stuart; Golden, Erin; Cutler, Roy G; Mattson, Mark P

    2009-10-01

    Diabetes may adversely affect cognitive function, but the underlying mechanisms are unknown. To investigate whether manipulations that enhance neurotrophin levels will also restore neuronal structure and function in diabetes, we examined the effects of wheel running and dietary energy restriction on hippocampal neuron morphology and brain-derived neurotrophic factor (BDNF) levels in db/db mice, a model of insulin resistant diabetes. Running wheel activity, caloric restriction, or the combination of the two treatments increased levels of BDNF in the hippocampus of db/db mice. Enhancement of hippocampal BDNF was accompanied by increases in dendritic spine density on the secondary and tertiary dendrites of dentate granule neurons. These studies suggest that diabetes exerts detrimental effects on hippocampal structure, and that this state can be attenuated by increasing energy expenditure and decreasing energy intake.

  2. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    PubMed

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna.

  3. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice

    PubMed Central

    Stranahan, Alexis M.; Lee, Kim; Martin, Bronwen; Maudsley, Stuart; Golden, Erin; Cutler, Roy G.; Mattson, Mark P.

    2009-01-01

    Diabetes may adversely affect cognitive function, but the underlying mechanisms are unknown. To investigate whether manipulations that enhance neurotrophin levels will also restore neuronal structure and function in diabetes, we examined the effects of wheel running and dietary energy restriction on hippocampal neuron morphology and BDNF levels in db/db mice, a model of insulin resistant diabetes. Running wheel activity, caloric restriction, or the combination of the two treatments increased levels of BDNF in the hippocampus of db/db mice. Enhancement of hippocampal BDNF was accompanied by increases in dendritic spine density on the secondary and tertiary dendrites of dentate granule neurons. These studies suggest that diabetes exerts detrimental effects on hippocampal structure, and that this state can be attenuated by increasing energy expenditure and decreasing energy intake. PMID:19280661

  4. Low density lipoprotein levels linkage with the periodontal status patients of coronary heart disease

    NASA Astrophysics Data System (ADS)

    Ahmad, Nafisah Ibrahim; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Studies found an association between periodontitis and coronary heart disease (CHD), but relationship between periodontal status CHD patients with LDL (Low Density Lipoprotein) levels, as risk factors for atherosclerosis, has not been studied. Objective: To analyze relationship between LDL and periodontal status CHD. Methods: Periodontal status of 60 CHD, 40 controls were examined (PBI, PPD, CAL) and their blood was taken to assess levels of LDL. Result: Found significant differences LDL (p=0.005), correlation between LDL with PPD (p=0.003) and CAL CHD (p=0.013), and PPD (p=0.001), CAL (p=0.008) non-CHD, but no significant correlation between LDL with PBI CAD (p=0.689) and PBI non-CHD (p=0.320). Conclusion: There is a correlation between the LDL levels with periodontal status.

  5. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  6. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  7. Improvement of the noise level of the Split Langmuir Probe - a spatial current density meter

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy; Dudkin, Fedor; Shuvalov, Valentyn

    2013-04-01

    One of the main tasks at the experimental investigations of the wave processes in space plasma is the determination of the dispersion relations between their wave vector and frequency. The frequency analysis of the magnetic field fluctuations and the electric current density in plasma is very efficient in this case. It had been shown that the simultaneous measurements of the magnetic field orthogonal components and the spatial current density fluctuations can give the wave vector k values for the plane wave spectra, by which a wave field in a plasma reference frame can be represented. The measurements of the magnetic field fluctuations usually are made by a variety of magnetometers using well developed methods. Unfortunately, up to the moment the methods and instruments for the reliable measurements of the space current density are not so good developed as the magnetic ones. There are three independent techniques to study the spatial current density in plasma: the contactless Rogovsky coil, the Faraday cap and the Split Langmuir Probe (SLP). The attempt to compare the different approaches and instruments was carried out during the experiment "Variant" onboard Ukrainian remote sensing satellite SICH-1M launched 2004. The clear advantages of the SLP over other instruments were revealed and proved. Using whistler as a test signal the very good consistency between the magnetic and electric fields and the spatial electric current density was obtained. However, the signal-to-noise ratio of the current density meters has to be further improved. In this report we analyze the sources of the SLP noises and propose the ways to decrease it. The computer simulation of the improved current density meter reveals that the introduced changes have almost no influence on the sensor matching with the space plasma and, as a result, the minor changes of the transformation factor in operation frequency band are expected. The modernized version of the SLP was successfully tested in the

  8. Robotics and remote handling concepts for disposal of high-level nuclear waste

    SciTech Connect

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-04-27

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies.

  9. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus

    PubMed Central

    Bays, Harold E

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD) risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B) and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy. PMID:25045281

  10. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  11. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  12. Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.

    2016-08-01

    We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.

  13. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect

    Dees, Lawrence A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  14. Optical Pumping and Laser Induced Nuclear Orientation of a Microsecond Isomeric Level in BARIUM-134

    NASA Astrophysics Data System (ADS)

    Bell, Curtis John

    Using optical pumping techniques, on and off-line experiments were performed on a microsecond nuclear isomer (('134m)Ba 10('+) ). Shifts in atomic resonances detected by changes in the angular distribution of characteristic nuclear radiations (expressed as changes in shape and size) yield information on changes in nuclear structure. The 10('+) isomeric state was produced using a 49 MeV pulsed beam of ('13)C on an isotopically enriched ('124)Sn target. The reaction products recoil out of the target and are slowed to thermal velocities in 10 torr of xenon in a region illuminated with circularly polarized light (553.5 nm) from a Coherent 699-21 dye laser. Nuclear parameters measured were the lifetime (3.8(2)(mu)s) and g-factor (g = -.20(1)) of the 10('+) state. Atomic parameters measured for barium were the depolarization cross sections of the ('1)P(,1) atomic level (6.0(6) nm('2)) in xenon, the quenching cross section for hydrogen (0.042(4) nm('2)), and the branching ratio of the metastable (('1,3)D(,1,2,3)) atomic states (0.011(1)). A possible anisotropy signal and the cumulative results (no measurable anisotropy) are presented. Difficulties encountered were insufficient neutralization, and unexpectedly large spatial distribution, and 'trapping' in metastable atomic states.

  15. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository.

    PubMed

    Sureda, Rosa; Martínez-Lladó, Xavier; Rovira, Miquel; de Pablo, Joan; Casas, Ignasi; Giménez, Javier

    2010-09-15

    Strontium-90 is considered the most important radioactive isotope in the environment and one of the most frequently occurring radionuclides in groundwaters at nuclear facilities. The uranyl peroxide studtite (UO2O2 . 4H2O) has been observed to be formed in spent nuclear fuel leaching experiments and seems to have a relatively high sorption capacity for some radionuclides. In this work, the sorption of strontium onto studtite is studied as a function of time, strontium concentration in solution and pH. The main results obtained are (a) sorption is relatively fast although slower than for cesium; (b) strontium seems to be sorbed via a monolayer coverage of the studtite surface, (c) sorption has a strong dependence on ionic strength, is negligible at acidic pH, and increases at neutral to alkaline pH (almost 100% of the strontium in solution is sorbed above pH 10). These results point to uranium secondary solid phase formation on the spent nuclear fuel as an important mechanism for strontium retention in a high-level nuclear waste repository (HLNW).

  16. Effects of long-term exposure of tuffs to high-level nuclear waste repository conditions. Final report

    SciTech Connect

    Blacic, J.D.; Vaniman, D.T.; Bish, D.L.; Duffy, C.J.; Gooley, R.C.

    1986-08-01

    We have performed exploratory tests to investigate the effects of extended exposure of tuffs from Yucca Mountain, Nevada, to temperatures and pressures similar to those that will be encountered in a high-level nuclear waste repository. In a preliminary report we described statistically significant changes in strength properties and generally minor changes in porosity and grain density. In the present report we describe additional measurements that indicate possible changes in permeability (in one tuff type) after exposure for 2 to 6 months at temperatures from 80 to 180 C, confining pressures of 9.7 and 19.7 MPa, and water pore pressures of 0.5 and 19.7 MPa. Mineralogic examinations have established reactions involving dissolution of silica and feldspar minerals and possible conversion of clinoptilolite to mordenite. We conclude that rock properties important to the operation of a nuclear waste repository in tuff are likely to change over time when exposed to simulated repository conditions, and the details of these time-dependent processes should be investigated further.

  17. F-cell levels are altered with erythrocyte density in sickle cell disease.

    PubMed

    Basu, Sumanta; Dash, Bisnu Prasad; Patel, Dilip Kumar; Chakravarty, Sudipa; Chakravarty, Amit; Banerjee, Debashis; Chakrabarti, Abhijit

    2011-08-15

    Lighter cells from density fractionated erythrocytes of sickle cell disease (SCD) patients carry higher amount of externalized phosphatidylserine (PS) and cell surface glycophorins compared to the denser counterparts. Further analysis also revealed that the denser cells contained higher levels of fetal hemoglobin (HbF) compared to the lighter cells, supported by the presence of larger number of F-cells in these populations. In this report, we have found direct evidence on the higher survival of the HbF rich erythrocytes in SCD.

  18. U.S. block-level population density rasters for 1990, 2000, and 2010

    USGS Publications Warehouse

    Falcone, James

    2016-01-01

    This dataset consists of three raster datasets representing population density for the years 1990, 2000, and 2010. All three rasters are based on block-level census geography data. The 1990 and 2000 data are derived from data normalized to 2000 block boundaries, while the 2010 data are based on 2010 block boundaries. The 1990 and 2000 data are rasters at 100-meter (m) resolution, while the 2010 data are at 60-m resolution. See details about each dataset in the specific metadata for each raster.

  19. Error analysis of coefficient-based regularized algorithm for density-level detection.

    PubMed

    Chen, Hong; Pan, Zhibin; Li, Luoqing; Tang, Yuanyan

    2013-04-01

    In this letter, we consider a density-level detection (DLD) problem by a coefficient-based classification framework with [Formula: see text]-regularizer and data-dependent hypothesis spaces. Although the data-dependent characteristic of the algorithm provides flexibility and adaptivity for DLD, it leads to difficulty in generalization error analysis. To overcome this difficulty, an error decomposition is introduced from an established classification framework. On the basis of this decomposition, the estimate of the learning rate is obtained by using Rademacher average and stepping-stone techniques. In particular, the estimate is independent of the capacity assumption used in the previous literature.

  20. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    SciTech Connect

    Kabashi, Skender; Bekteshi, Sadik

    2007-04-23

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model.

  1. High level nuclear waste repository in salt: Sealing systems status and planning report: Draft report

    SciTech Connect

    1985-09-01

    This report documents the initial conceptual design studies for a repository sealing system for a high-level nuclear waste repository in salt. The first step in the initial design studies was to review the current design level, termed schematic designs. This review identified practicality of construction and development of a design methodology as two key issues for the conceptual design. These two issues were then investigated during the initial design studies for seal system materials, seal placement, backfill emplacement, and a testing and monitoring plan. The results of these studies have been used to develop a program plan for completion of the sealing system conceptual design. 60 refs., 26 figs., 18 tabs.

  2. Multiparticle Correlation Functions: A probe for the High Energy Density Nuclear Matter created at RHIC

    NASA Astrophysics Data System (ADS)

    Holzmann, Wolf

    2002-04-01

    In a recent publication [1], the PHENIX collaboration has reported on the transverse momentum spectra for charged hadrons and for neutral pions in the range 1 < pT < 5 GeV/c. The spectra from peripheral nuclear collisions were found to be consistent with a simple scaling of the spectra from p+p collisions by the average number of nucleon-nucleon binary collisions. In contrast, the spectra from central collisions appeared to be significantly suppressed when compared to that from peripheral collisions as well as to the scaled p+p expectation. These observations have been interpreted as an important signature for jet quenching( [1],[2]) in central Au + Au collisions at RHIC. Significant jet production should also lead to discernable multi-particle correlations. Thus, the study of such correlations and their possible modification due to quenching, offers a promising opportunity for the investigation and study of QGP formation at RHIC. The multiparticle correlation analysis technique will be presented in conjunction with possible results for Au + Au data (sqrt(s) = 200GeV/c) obtained with the PHENIX detector at RHIC [1] Adcox et al., Phys. Rev. Lett. 88, 022301 (2001) [2] M. Gyulassy and X.-N. Wang, Nucl. Phys. B420, 583 (1994)X.-N. Wang, M.Gyulassy and M. Pluemer, Phys. Rev. D 51, 3436 (1995)

  3. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    SciTech Connect

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  4. 95Mo nuclear magnetic resonance parameters of molybdenum hexacarbonyl from density functional theory: appraisal of computational and geometrical parameters.

    PubMed

    Cuny, Jérôme; Sykina, Kateryna; Fontaine, Bruno; Le Pollès, Laurent; Pickard, Chris J; Gautier, Régis

    2011-11-21

    Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.e. basis set, exchange-correlation functional, treatment of relativity, have been evaluated. Except for the isotropic parameter of both chemical shift and chemical shielding, computed NMR parameters are more sensitive to geometrical variations than computational details. Relativistic effects do not play a crucial part in the calculations of such parameters for the 4d transition metal, in particular isotropic chemical shift. Periodic DFT calculations were tackled to measure the influence of neighbouring molecules on the crystal structure. These effects have to be taken into account to compute accurate solid-state (95)Mo NMR parameters even for such an inorganic molecular compound.

  5. Non-Nuclear Alternatives to Monitoring Moisture-Density Response in Soils

    DTIC Science & Technology

    2013-03-01

    blends of the loess and concrete sand with some washed rounded gravel introduced for the gravel gradation. These manufactured blends were mixed on... Loess  ‐ ML‐1 ML 1.2 11 78.4 9.4 NP NP 15.8 109.5 2 ASTM Concrete Sand SP 4.9 92 2.3 0.8 NP NP 9.5 109 3 Sandy Silt ‐ ML‐3 ML 2.7 47 43.9 6.4 NP NP 10...5. Soft soils such as loess and concrete sand provided construction platforms where little density change occurred and were sufficiently soft to

  6. Radiation attenuation and nuclear properties of high density concrete made with steel aggregates

    NASA Astrophysics Data System (ADS)

    Bashter, I. I.

    The fast neutron and gamma ray spectra measured behind different thickness of steel scrap concrete with density of 4 g/cm3 have been studied. The mix proportions by weight of this type of concrete were 1 cement: 6.89 steel scrap: 2.9 sand and 0.5 Water. Comparison with a standard ordinary concrete of density 2.3 g/cm3 have been carried out. The measurements were made using a collimated beam of both gamma rays and neutrons emitted from one of the horizontal channel of the Egyptian Research Reactor-1. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectra of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to separate the photon pulses from the electron pulses. The equation due to Schmidt has been modified and applied for determining the neutron effective removal cross sections (˜R) for steel scrap, ordinary, hematite-serpentine, ilmenite-limonite and ilmenite concretes. This equation gives results which are in good agreement with the measured values. The derived empirical equation in a previous work to calculate the neutron integral flux behind different thicknesses of different types of concretes, gives good results for steel scrap concrete under investigation comparing with the corresponding experimental data. Total neutron macroscopic cross sections, linear attenuation coefficients for gamma rays and the half-value layers for both radiations at different energies have been obtained for steel scrap concrete and comparing with the corresponding values of ordinary concrete. The results show that steel scrap concrete is better than ordinary, hematite-serpentine, ilmenite-limonite and ilmenite concretes from the radiation shielding point of view.

  7. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels

    PubMed Central

    Jiang, Xian-cheng; Bruce, Can; Mar, Jefferson; Lin, Min; Ji, Yong; Francone, Omar L.; Tall, Alan R.

    1999-01-01

    It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plasma of F2 homozygous PLTP–/– mice showed complete loss of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and partial loss of free cholesterol transfer activities. Moreover, the in vivo transfer of [3H]phosphatidylcholine ether from very-low-density proteins (VLDL) to HDL was abolished in PLTP–/– mice. On a chow diet, PLTP–/– mice showed marked decreases in HDL phospholipid (60%), cholesterol (65%), and apo AI (85%), but no significant change in non-HDL lipid or apo B levels, compared with wild-type littermates. On a high-fat diet, HDL levels were similarly decreased, but there was also an increase in VLDL and LDL phospholipids (210%), free cholesterol (60%), and cholesteryl ester (40%) without change in apo B levels, suggesting accumulation of surface components of TRL. Vesicular lipoproteins were shown by negative-stain electron microscopy of the free cholesterol– and phospholipid-enriched IDL/LDL fraction. Thus, PLTP is the major factor facilitating transfer of VLDL phospholipid into HDL. Reduced plasma PLTP activity causes markedly decreased HDL lipid and apoprotein, demonstrating the importance of transfer of surface components of TRL in the maintenance of HDL levels. Vesicular lipoproteins accumulating in PLTP–/– mice on a high-fat diet could influence the development of atherosclerosis. PMID:10079112

  8. Parity-projected shell model Monte Carlo level densities for medium-mass nuclei

    SciTech Connect

    Oezen, C.; Langanke, K.; Martinez-Pinedo, G.; Dean, D. J.

    2008-11-11

    We investigate the effects of single-particle structure and pairing on the equilibration of positive and negative-parity level densities for the even-even nuclei {sup 58,62,66}Fe and {sup 58}Ni and the odd-A nuclei {sup 59}Ni and {sup 65}Fe. Calculations are performed using the shell model Monte Carlo method in the complete fp-gds shell-model space using a pairing+quadrupole type residual interaction. We find for the even-even nuclei that the positive-parity states dominate at low excitation energies due to strong pairing correlations. At excitation energies at which pairs are broken, single-particle structure of these nuclei is seen to play the decisive role for the energy dependence of the ratio of negative-to-positive parity level densities. We also find that equilibration energies are noticeably lower for the odd-A nuclei {sup 59}Ni and {sup 65}Fe than for the neighboring even-even nuclei {sup 58}Ni and {sup 66}Fe.

  9. Proliferating cell nuclear antigen, p53 and micro vessel density: Grade II vs. Grade III astrocytoma.

    PubMed

    Malhan, Priya; Husain, Nuzhat; Bhalla, Shalini; Gupta, Rakesh K; Husain, Mazhar

    2010-01-01

    Histological classification and grading are prime procedures in the management of patients with astrocytoma, providing vital data for therapeutic decision making and prognostication. However, it has limitations in assessing biological tumor behavior. This can be overcome by using newer immunohistochemical techniques. This study was carried out to compare proliferative indices using proliferating cell nuclear antigen (PCNA), extent of p53 expression and micro vessel morphometric parameters in patients with low grade and anaplastic astrocytoma. Twenty-five patients, each of grade II and grade III astrocytoma were evaluated using monoclonal antibodies to PCNA, p53 protein and factor VIII related antigen. PCNA, p53-labeling indices were calculated along with micro vessel morphometric analysis using Biovis Image plus Software. Patients with grade III astrocytoma had higher PCNA and p53 labeling indices as compared with grade II astrocytoma (29.14 plus/minus 9.87% vs. 16.84 plus/minus 6.57%, p 0.001; 18.18 plus/minus 6.14% vs. 6.14 plus/minus 7.23%, p 0.001, respectively). Micro vessel percentage area of patients with grade III astrocytoma was also (4.26 plus/minus 3.70 vs. 1.05 plus/minus 0.56, p 0.001), higher along with other micro vessel morphometric parameters. Discordance between histology and one or more IHC parameters was seen in 5/25 (20%) of patients with grade III astrocytoma and 9/25 (36%) of patients with grade II disease. PCNA and p53 labeling indices were positively correlated with Pearson's correlation, p less than 0.001 for both). Increased proliferative fraction, genetic alterations and neovascularization mark biological aggressiveness in astrocytoma. Immunohistochemical evaluation scores over meet the challenge of accurate prognostication of this potentially fatal malignancy.

  10. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  11. Verification of screening level for decontamination implemented after Fukushima nuclear accident

    PubMed Central

    Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi

    2012-01-01

    The screening level for decontamination that has been applied for the surface of the human body and contaminated handled objects after the Fukushima nuclear accident was verified by assessing the doses that arise from external irradiation, ingestion, inhalation and skin contamination. The result shows that the annual effective dose that arises from handled objects contaminated with the screening level for decontamination (i.e. 100 000 counts per minute) is <1 mSv y−1, which can be considered as the intervention exemption level in accordance with the International Commission on Radiological Protection recommendations. Furthermore, the screening level is also found to protect the skin from the incidence of a deterministic effect because the absorbed dose of the skin that arises from direct deposition on the surface of the human body is calculated to be lower than the threshold of the deterministic effect assuming a practical exposure duration. PMID:22228683

  12. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density

    NASA Astrophysics Data System (ADS)

    Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang

    2016-05-01

    The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.

  13. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  14. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  15. Hypo-high-density Lipoprotein Cholesterolemia Caused by Evacuation after the Fukushima Daiichi Nuclear Power Plant Accident: Results from the Fukushima Health Management Survey.

    PubMed

    Satoh, Hiroaki; Ohira, Tetsuya; Nagai, Masato; Hosoya, Mitsuaki; Sakai, Akira; Watanabe, Tsuyoshi; Ohtsuru, Akira; Kawasaki, Yukihiko; Suzuki, Hitoshi; Takahashi, Atsushi; Kobashi, Gen; Ozasa, Kotaro; Yasumura, Seiji; Yamashita, Shunichi; Kamiya, Kenji; Abe, Masafumi

    2016-01-01

    Objective The Great East Japan Earthquake and the Fukushima Daiichi nuclear disaster forced the evacuation of residents and led to many changes in the lifestyle of the evacuees. A comprehensive health check was implemented to support the prevention of lifestyle-related disease, and we analyzed changes in lipid metabolism before and after these disasters. Methods Subjects included Japanese men and women living near the Fukushima Daiichi nuclear power plant in Fukushima Prefecture. Annual health checkups, focusing on metabolic syndromes, were conducted for persons ≥40 years of age by the Heath Care Insures. Results A total of 27,486 subjects underwent a follow-up examination after the disaster, with a mean follow-up of 1.6 years. Following the disaster, the prevalence of hypo-high-density lipoprotein (HDL) cholesterolemia increased significantly from 6.0% to 7.2%. In the hypo-HDL cholesterolemia group, the body mass index (BMI), blood pressure, and LDL-C level increased significantly in men after the disaster. On the other hand, in the normal HDL-C level group, the BMI, blood pressure, glucose and lipid metabolism, and liver function were adversely affected. The decrease in HDL-C was significantly greater in evacuees than non-evacuees in the normal HDL-C level group. Furthermore, a multivariate logistic regression analysis showed that the evacuation was significantly associated with the incidence of hypo-HDL cholesterolemia. Conclusion This is the first study to evaluate how the evacuation affected the incidence of hypo-HDL cholesterolemia and led to an increase in cardiovascular disease. This information may be important in the follow-up and lifestyle change recommendations for evacuees.

  16. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    SciTech Connect

    de Almeida, Valmor F.

    2011-08-15

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  17. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    SciTech Connect

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs.

  18. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  19. Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect

    Simpson, Michael F.; Benedict, Robert W.

    2007-09-01

    The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technology developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.

  20. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  1. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  2. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  3. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients.

    PubMed

    Li, Hongqiu; Wang, Zhe; Fu, Qin; Zhang, Jing

    2014-11-01

    In our study, we detect the levels of three micro-RNAs (miRNAs; miR-21, miR-133a and miR-146a) in the plasma of 120 Chinese postmenopausal women who were divided into three groups (normal, osteopenia and osteoporosis) according to the T-scores. Downregulation of miR-21, as well as upregulation of miR-133a, was validated in the plasma of osteoporosis and osteopenia patients versus the normal group. The difference in expression regarding the miR-146a level in plasma among the three groups was not significant (p > 0.01). The circulating miRNA expression levels and bone mineral density (BMD) were examined during a multiple correlation analysis as a dependent variable after adjusting for age, weight and height. We have demonstrated that specific miRNAs species are significantly changed in the plasma of osteoporosis and osteopenia patients and correlated with the BMD. Our study suggested a potential use of miR-21 and miR-133a as sensitive and plasma biomarkers for postmenopausal osteoporosis.

  4. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  5. Newer therapeutic strategies to alter high-density lipoprotein level and function.

    PubMed

    Bosch, Nicholas; Frishman, William H

    2014-01-01

    Measurements of low levels of high-density lipoprotein (HDL) cholesterol have been identified as a risk factor for premature coronary artery disease, however, to date, current pharmacologic approaches for raising HDL have provided little benefit, if at all, in reducing cardiovascular outcomes. It has been shown that HDL can modify many aspects of plaque pathogenesis. Its most established role is in reverse cholesterol transportation, but HDL can also affect oxidation, inflammation, cellular adhesion, and vasodilatation. Considering these potential benefits of HDL, newer treatments have been developed to modify HDL activity, which include the use of oral cholesteryl ester transfer protein inhibitors, apolipoprotein (apo)A-I infusions, apoA-I mimetics, drugs to increase apoA-I synthesis, and agonists of the liver X receptor. These new therapies are reviewed in this article.

  6. Association between serum 25-hydroxyvitamin D levels and bone mineral density in normal postmenopausal women

    PubMed Central

    Kamineni, Vasundhara; Latha, Akkenapally Prasanna; Ramathulasi, K.

    2016-01-01

    Aim: This study was conducted with the objective of assessing serum 25-hydroxyvitamin D (25(OH)D) in postmenopausal women (PMW), to detect osteopenia or osteoporosis in PMW and to establish a correlation between serum 25(OH)D levels and bone mineral density (BMD). Materials and Methods: A total of 100 healthy PMW were selected, and a prospective observational study was conducted to correlate the BMD with serum 25(OH)D levels. Their laboratory investigations along with serum 25(OH)D levels were done. Their BMD was assessed with dual-energy X-ray absorptiometry at lumbar spine and neck of femur; T-scores were derived. Correlation analysis was done to investigate the relationship between serum 25(OH)D levels and BMD. Results: The proportion of osteoporosis at the hip was 31.9% in deficient group, 16.1% in insufficient, and 18.2% in sufficient group and at lumbar spine, it was 27.7%, 16.1%, and 22.7%, respectively. Forty-seven percent of PMW had deficient (<20 ng/ml) serum 25(OH)D levels and 31% had insufficiency. T-score at hip in deficient group was −2.05 ± 0.25, and in an insufficient group, it was −1.79 ± 0.13; T-score at lumbar spine was −1.92 ± 0.12 and −1.79 ± 0.12, respectively, but both were not statistically significant. Osteoporosis was seen in 24%, osteopenia in 55% at hip level and 23% and 59% respectively at lumbar spine. There was no association between serum 25(OH)D levels and BMD neither at hip nor at lumbar spine (P = 0.51 and P = 0.79 respectively). Conclusion: In this study, among our cohort of patients there was no correlation between serum 25(OH)D levels and BMD. However, Vitamin D deficiency coexists with low BMD. Vitamin D insufficiency is a common risk factor for osteoporosis associated with increased bone remodeling and low bone mass. PMID:28096639

  7. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  8. Serum low-density lipoprotein levels, statin use, and cognition in patients with coronary artery disease

    PubMed Central

    Rej, Soham; Saleem, Mahwesh; Herrmann, Nathan; Stefatos, Anthi; Rau, Allison; Lanctôt, Krista L

    2016-01-01

    Aim Statins have been associated with decreased cognition due to the effects of low concentrations of low-density lipoprotein (LDL) on brain function. This has remained controversial and is particularly relevant to patients with coronary artery disease (CAD), who have an increased risk of cognitive decline and are frequently prescribed statins. This study hypothesized that low concentration of LDL is associated with poor cognition in CAD patients using statins. It also explored the association between high-dose versus low-dose statins on cognition in this population. Patients and methods Baseline cross-sectional data from a longitudinal study of 120 statin-using CAD patients were examined (mean statin duration 25±43 months). The main outcomes were measures of global cognition and cognitive domains, with poor cognition defined as cognitive performance ≤1 standard deviation below the population age and education adjusted means. A battery of cognitive tests was used to assess verbal memory, executive function, speed of processing, visuospatial memory, and global cognition. Adjusting for age, sex, education, and other covariates, multivariable logistic regression analyses assessed associations between low LDL levels (<1.5 mmol/L), statin use, and poor cognition. Results LDL levels were not associated with global cognition or individual cognitive domains. High-dose statin use was associated with higher visuospatial memory (odds ratio, OR [95% confidence interval, CI] =0.12 [0.02–0.66], P=0.01) and executive functioning (OR =0.25 [0.06–0.99], P=0.05). This effect was independent of covariates such as LDL levels. Conclusion Low LDL levels do not appear to be associated with poor cognition in CAD patients using statins. Whether high-dose statin use may have positive effects on cognition in CAD patients could be investigated in future studies. PMID:27877045

  9. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France

    SciTech Connect

    St-Pierre, S.; Chambers, D.B.; Lowe, L.M.; Bontoux, J.G.

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media of both artificial and natural radionuclides and the consequent absorbed dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 {micro}Gy h{sup {minus}1}. These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations, and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations.

  10. γ strength function and level density of 208Pb from forward-angle proton scattering at 295 MeV

    NASA Astrophysics Data System (ADS)

    Bassauer, S.; von Neumann-Cosel, P.; Tamii, A.

    2016-11-01

    Background: γ strength functions (GSFs) and level densities (LDs) are essential ingredients of statistical nuclear reaction theory with many applications in astrophysics, reactor design, and waste transmutation. Purpose: The aim of the present work is a test of systematic parametrizations of the GSF recommended by the RIPL-3 database for the case of 208Pb. The upward GSF and LD in 208Pb are compared to γ decay data from an Oslo-type experiment to examine the validity of the Brink-Axel (BA) hypothesis. Methods: The E 1 and M1 parts of the total GSF are determined from high-resolution forward angle inelastic proton scattering data taken at 295 MeV at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. The total LD in 208Pb is derived from the 1- LD extracted with a fluctuation analysis in the energy region of the isovector giant dipole resonance. Results: The E 1 GSF is compared to parametrizations recommended by the RIPL-3 database showing systematic deficiencies of all models in the energy region around neutron threshold. The new data for the poorly known spin-flip M 1 resonance call for a substantial revision of the model suggested in RIPL-3. The total GSF derived from the present data is larger in the PDR energy region than the Oslo data but the strong fluctuations due to the low LD resulting from the double shell closure of 208Pb prevent a conclusion on a possible violation of the BA hypothesis. Using the parameters suggested by RIPL-3 for a description of the LD in 208Pb with the back-shifted Fermi gas model, remarkable agreement between the two experiments spanning a wide excitation energy range is obtained. Conclusions: Systematic parametrizations of the E 1 and M 1 GSF parts need to be reconsidered at low excitation energies. The good agreement of the LD provides an independent confirmation of the approach underlying the decomposition of GSF and LD in Oslo-type experiments.

  11. Sound velocities of bridgmanite from density of states determined by nuclear inelastic scattering and first-principles calculations

    NASA Astrophysics Data System (ADS)

    McCammon, Catherine; Caracas, Razvan; Glazyrin, Konstantin; Potapkin, Vasily; Kantor, Anastasia; Sinmyo, Ryosuke; Prescher, Clemens; Kupenko, Ilya; Chumakov, Aleksandr; Dubrovinsky, Leonid

    2016-12-01

    Sound velocities of bridgmanite measured in the laboratory are a key to deciphering the composition of the lower mantle. Here, we report Debye sound velocities determined using nuclear inelastic scattering (NIS) for one majorite composition (Mg0.82Fe0.18SiO3) and five bridgmanite compositions (Mg0.82Fe0.18SiO3, Mg0.86Fe0.14Si0.98Al0.02O3, Mg0.88Fe0.12SiO3, Mg0.6Fe0.4Si0.63Al0.37O3, Mg0.83Fe0.15Si0.98Al0.04O3) measured in a diamond anvil cell at pressures up to 89 GPa at room temperature. Debye sound velocities for majorite determined from NIS are consistent with literature data from Brillouin scattering and ultrasonics, while Debye sound velocities for bridgmanite are significantly lower than literature values from the same methods. We calculated partial and total density of states (DOS) for MgSiO3 and FeSiO3 bridgmanite using density functional theory and demonstrate that Debye sound velocities calculated from the reduced DOS using the same approach as for the experimental data (i.e., the limit of D(E)/E2 as energy goes to zero) give the same sound velocities for each phase irrespective of which partial DOS is used. In addition, we show that Debye sound velocities calculated using this approach are consistent with values obtained from the calculation of the full elastic tensor. Comparison of the calculated DOS with the one obtained from NIS indicates that the experimental DOS has enhanced intensity at low energies that leads to a different slope of the DOS and hence a lower sound velocity. This effect is present in all of the bridgmanite samples examined in this study.

  12. Combining enhanced biomass density with reduced lignin level for improved forage quality.

    PubMed

    Gallego-Giraldo, Lina; Shadle, Gail; Shen, Hui; Barros-Rios, Jaime; Fresquet Corrales, Sandra; Wang, Huanzhong; Dixon, Richard A

    2016-03-01

    To generate a forage crop with increased biomass density that retains forage quality, we have genetically transformed lines of alfalfa (Medicago sativa L.) expressing antisense constructs targeting two different lignin pathway biosynthetic genes with a construct for down-regulation of a WRKY family transcription factor that acts as a repressor of secondary cell wall formation in pith tissues. Plants with low-level expression of the WRKY dominant repressor construct produced lignified cell walls in pith tissues and exhibited enhanced biomass and biomass density, with an increase in total sugars in the cell wall fraction; however, lines with high expression of the WRKY dominant repressor construct exhibited a very different phenotype, with loss of interfascicular fibres associated with repression of the NST1 transcription factor. This latter phenotype was not observed in transgenic lines in which the WRKY transcription factor was down-regulated by RNA interference. Enhanced and/or ectopic deposition of secondary cell walls was also seen in corn and switchgrass expressing WRKY dominant repressor constructs, with enhanced biomass in corn but reduced biomass in switchgrass. Neutral detergent fibre digestibility was not impacted by WRKY expression in corn. Cell walls from WRKY-DR-expressing alfalfa plants with enhanced secondary cell wall formation exhibited increased sugar release efficiency, and WRKY dominant repressor expression further increased sugar release in alfalfa down-regulated in the COMT, but not the HCT, genes of lignin biosynthesis. These results suggest that significant enhancements in forage biomass and quality can be achieved through engineering WRKY transcription factors in both monocots and dicots.

  13. Triton-{sup 3}He relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities

    SciTech Connect

    Yong Gaochan; Li Baoan; Chen Liewen; Zhang Xunchao

    2009-10-15

    Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-{sup 3}He (t-{sup 3}He) ratio with both relative and differential transverse flows in semicentral {sup 132}Sn+{sup 124}Sn reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-{sup 3}He pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-{sup 3}He relative and differential flows than the {pi}{sup -}/{pi}{sup +} ratio in the same reaction. The t-{sup 3}He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

  14. Density of steam-flaked sorghum grain, roughage level, and feeding regimen for feedlot steers.

    PubMed

    Xiong, Y; Bartle, S J; Preston, R L

    1991-04-01

    Two hundred fifty-two steers (366 kg) were assigned to a 3 x 2 x 2 factorial arrangement of three densities of steam-flaked sorghum grain (bulk [flake] density of 437, 360, and 283 g/liter, B34, B28, and B22, respectively), two roughage levels (9 [R9] and 18% [R18]) and two feeding strategies (ad libitum [AD] or multiple of maintenance [MM], 2.3, 2.5, and 2.7 MM for wk 1, 2, and 3, and 2.9 MM thereafter). Steers fed R18-AD gained faster than steers fed R18-MM (1.59 vs 1.52 kg/d, P = .10); for R9 diets, no difference (P greater than .25) was found between steers fed AD and MM (interaction, P = .07). Flake density did not affect ADG (1.53 kg, P greater than .2). Dry matter intake decreased (9.8, 9.3, and 9.0 kg/d, linear, P less than .001) and gain efficiency (G/DMI, kg of gain/100 kg of DMI) increased (15.7, 16.5, and 16.9, linear, P less than .001; quadratic, P = .19) as processing degree increased (B34 to B22). Percentage of choice carcasses for B34 (67.0%) was higher (linear, P = .05) than for B28 (51.9%) and B22 (52.3%). Fecal starch and pH were 10.8, 5.7, and 4.0%, and 6.11, 6.23, and 6.37 for B34, B28, and B22, respectively (linear, P less than .001). The correlation between fecal starch and pH was -.51 (P less than .001, n = 252). Enzymatic glucose release, in vitro 6-h gas production, microbial protein synthesis, and protein degradability were 375, 483, and 559 mg/g; 24.7, 28.2, and 31.1 ml/.2 g; 6.15, 6.88, and 7.84 g/100g; and 61.4, 56.6, and 42.2% for B34, B28, and B22, respectively (linear, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Structure and dynamics of [3.3]paracyclophane as studied by nuclear magnetic resonance and density functional theory calculations.

    PubMed

    Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning

    2010-09-30

    Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.

  16. Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes

    PubMed Central

    Hill, Malcolm S.; Hill, April L.; Lopez, Jose; Peterson, Kevin J.; Pomponi, Shirley; Diaz, Maria C.; Thacker, Robert W.; Adamska, Maja; Boury-Esnault, Nicole; Cárdenas, Paco; Chaves-Fonnegra, Andia; Danka, Elizabeth; De Laine, Bre-Onna; Formica, Dawn; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Klontz, Sarah; Morrow, Christine C.; Patel, Jignasa; Picton, Bernard; Pisani, Davide; Pohlmann, Deborah; Redmond, Niamh E.; Reed, John; Richey, Stacy; Riesgo, Ana; Rubin, Ewelina; Russell, Zach; Rützler, Klaus; Sperling, Erik A.; di Stefano, Michael; Tarver, James E.; Collins, Allen G.

    2013-01-01

    Background Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance These results, using an

  17. High-density recording in holographic data storage system by dual 2-level run-length-limited modulation

    NASA Astrophysics Data System (ADS)

    Tajima, Kazuyuki; Nakamura, Yusuke; Hoshizawa, Taku

    2016-09-01

    An angular-multiplexing holographic memory system is one candidate for future optical data storage systems because of capability for abilities of “high-density recording” and “high-speed recording and reproduction”. We have developed a high-density recording method by reducing the hologram size in a disc to half by 2-level run-length-limited (RLL) modulation. In addition, to achieve further high-density recording, we introduce 4-level recording. However, 4-level RLL modulation requires high computational complexity in general. Therefore, we developed the dual 2-level RLL modulation method that can suppress increase in computational complexity and has good compatibility with the conventional holographic data storage system (HDSS). The high-density effect of the method was experimentally confirmed by the Fourier images and SNR of reproduced images. Consequently, the dual 2-level RLL modulation enables a doubling of the recording density, this gave an inspection for realizing a next-generation HDSS with the recording density of 4.8 Tbit/in.2.

  18. Association between Density of Coronary Artery Calcification and Serum Magnesium Levels among Patients with Chronic Kidney Disease

    PubMed Central

    Sakaguchi, Yusuke; Hamano, Takayuki; Nakano, Chikako; Obi, Yoshitsugu; Matsui, Isao; Kusunoki, Yasuo; Mori, Daisuke; Oka, Tatsufumi; Hashimoto, Nobuhiro; Takabatake, Yoshitsugu; Takahashi, Atsushi; Kaimori, Jun-Ya; Moriyama, Toshiki; Yamamoto, Ryohei; Horio, Masaru; Sugimoto, Ken; Yamamoto, Koichi; Rakugi, Hiromi; Isaka, Yoshitaka

    2016-01-01

    Background The Agatston score, commonly used to quantify coronary artery calcification (CAC), is determined by the plaque area and density. Despite an excellent predictability of the Agatston score for cardiovascular events, the density of CAC has never been studied in patients with pre-dialysis chronic kidney disease (CKD). This study aimed to analyze the CAC density and its association with serum mineral levels in CKD. Methods We enrolled patients with pre-dialysis CKD who had diabetes mellitus, prior cardiovascular disease history, elevated low-density lipoprotein cholesterol levels, or smoking history. The average CAC density was calculated by dividing the Agatston score by the total area of CAC. Results The mean estimated glomerular filtration rate (eGFR) of 109 enrolled patients was 35.7 mL/min/1.73 m2. The correlation of the Agatston score with density was much weaker than that with the total area (R2 = 0.19, P < 0.001; and R2 = 0.99, P < 0.001, respectively). Multivariate analyses showed that serum magnesium level was inversely associated with the density, but not with the total area, after adjustment for demographics and clinical factors related to malnutrition-inflammation-atherosclerosis syndrome and mineral and bone disorders including fibroblast growth factor 23 (P = 0.006). This inverse association was pronounced among patients with higher serum phosphate levels (P for interaction = 0.02). Conclusion CAC density was inversely associated with serum magnesium levels, particularly in patients with higher serum phosphate levels. PMID:27662624

  19. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    SciTech Connect

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  20. 129I level in seawater near a nuclear power plant determined by accelerator mass spectrometer

    NASA Astrophysics Data System (ADS)

    He, Chaohui; Hou, Xiaolin; Zhao, Yaolin; Wang, Zhiwen; Li, Huaibin; Chen, Ning; Liu, Qi; Zhang, Luyuan; Luo, Maoyi; Liang, Wangguo; Fan, Yukun; Zhao, Xiaolei

    2011-03-01

    129I concentration in the seawater samples near a nuclear power plant was determined in the Xi'an Accelerator Mass Spectrometer (AMS) Center. Isotope dilution method was used via addition of excessive amount of stable iodine ( 127I) in the sample before separation, and iodine in the seawater was separated by solvent extraction, and the back extracted iodine in iodide form was precipitated as AgI, which was used as AMS target for 129I measurement. 125I tracer was added to monitor the recovery of iodine in the whole separation process. 129I/ 127I ratios in the prepared target were determined by AMS. The concentration of 127I in seawater samples was determined by inductively coupled plasma mass spectrometry. The results show that the 129I/ 127I atomic ratios in the seawater range from 8.29×10 -11 to 9.45×10 -10, approximately one order of magnitude higher than that in seaweed collected in the pre-nuclear era, but fall in the environmental level of global fallout.

  1. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  2. Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole.

    PubMed Central

    Iuliano, L.; Colavita, A. R.; Camastra, C.; Bello, V.; Quintarelli, C.; Alessandroni, M.; Piovella, F.; Violi, F.

    1996-01-01

    1. The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Natural and synthetic antioxidants have been shown to protect LDL from oxidation and to inhibit atherosclerosis development in animals. Synthetic antioxidants are currently being tested, by they are not necessarily safe for human use. 2. We have previously reported that dipyridamole, currently used in clinical practice, is a potent scavenger of free radicals. Thus, we tested whether dipyridamole could affect LDL oxidation at chemical and cellular level. 3. Chemically induced LDL oxidation was made by Cu(II), Cu(II) plus hydrogen peroxide or peroxyl radicals generated by thermolysis of 2,2'-azo-bis(2-amidino propane). Dipyridamole, (1-10 microM), inhibited LDL oxidation as monitored by diene formation, evolution of hydroperoxides and thiobarbituric acid reactive substances, apoprotein modification and by the fluorescence of cis-parinaric acid. 4. The physiological relevance of the antioxidant activity was validated by experiments at the cellular level where dipyridamole inhibited endothelial cell-mediated LDL oxidation, their degradation by monocytes, and cytotoxicity. 5. In comparison with ascorbic acid, alpha-tocopherol and probucol, dipyridamole was the more efficient antioxidant with the following order of activity: dipyridamole > probucol > ascorbic acid > alpha-tocopherol. The present study shows that dipyridamole inhibits oxidation of LDL at pharmacologically relevant concentrations. The inhibition of LDL oxidation is unequivocally confirmed by use of three different methods of chemical oxidation, by several methods of oxidation monitoring, and the pharmacological relevance is demonstrated by the superiority of dipyridamole over the naturally occurring antioxidants, ascorbic acid and alpha-tocopherol and the synthetic antioxidant probucol. Images Figure 6 PMID:8968553

  3. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    SciTech Connect

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  4. Relationship of optical density and skinfold measurements: effects of age and level of body fatness.

    PubMed

    Quatrochi, J A; Hicks, V L; Heyward, V H; Colville, B C; Cook, K L; Jenkins, K A; Wilson, W L

    1992-12-01

    We examined relationships between skinfold (SKF) and optical density (delta OD) measurements across age and levels of body fatness (%BF) for 151 women, 20 to 72 years. There were significant (p < .05) relationships between delta ODs and SKFs at all sites, except the thigh. The interaction (SKF x Age) was significant (p < .05) for pectoral and biceps delta ODs. Slope comparisons indicated the relationships for younger (29 years) and older (59 years) women differed significantly from zero and each other (p < .05). Analysis of SKF x %BF interactions revealed that relationships between SKFs and delta ODs at the pectoral and biceps sites for leaner (22% BF) women differed significantly from zero (p < .05) and were larger than those for obese (39% BF) women (p < or = .05). Thus, the relationship between SKFs and delta ODs is stronger for younger and leaner women compared to older and fatter women. These findings may reflect differences in fat layering due to age or body fatness and provide insight as to why the manufacturer's near-infrared (NIR) equation significantly underestimates the %BF of obese women.

  5. Role of geophysics in identifying and characterizing sites for high-level nuclear waste repositories.

    USGS Publications Warehouse

    Wynn, J.C.; Roseboom, E.H.

    1987-01-01

    Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors

  6. Optically Pumped Nuclear Magnetic Resonance near Landau level filling ν = 1/3

    NASA Astrophysics Data System (ADS)

    Khandelwal, P.; Kuzma, N. N.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level filling ν = 1/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will compare these results to the data obtained near ν = 1 and ν = 2/3.

  7. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  8. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    SciTech Connect

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  9. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    NASA Astrophysics Data System (ADS)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  10. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste.

    PubMed

    Aguila, Briana; Banerjee, Debasis; Nie, Zimin; Shin, Yongsoon; Ma, Shengqian; Thallapally, Praveen K

    2016-05-01

    Efficient and cost-effective removal of radioactive (137)Cs and (90)Sr found in spent fuel is an important step for safe, long-term storage of nuclear waste. Solid-state materials such as resins and titanosilicate zeolites have been assessed for the removal of Cs and Sr from aqueous solutions, but there is room for improvement in terms of capacity and selectivity. Herein, we report the Cs(+) and Sr(2+) exchange potential of an ultra stable MOF, namely, MIL-101-SO3H, as a function of different contact times, concentrations, pH levels, and in the presence of competing ions. Our preliminary results suggest that MOFs with suitable ion exchange groups can be promising alternate materials for cesium and strontium removal.

  11. Secretory IgA, albumin level, and bone density as markers of biostimulatory effects of laser radiation

    NASA Astrophysics Data System (ADS)

    Kucerova, Hana; Dostalova, Tatjana; Himmlova, Lucia; Bartova, Jirina; Mazanek, Jiri

    1998-12-01

    The aim of contribution is to evaluate the effects of low- level laser radiation on healing process after human molars extraction in lower jaw using frequency 5 Hz, 292 Hz and 9000 Hz. Changes in bone density and monitoring of secretory IgA and albumin levels in saliva were used as a marker of biostimulatory effect. Bone density after extraction and 6 month after surgical treatment was examined using the dental digital radiography. Bone healing was followed by osseointegration of bone structure in extraction wound. Changes of bone density, secretory IgA and albumin levels were compared in groups of patients with laser therapy and control group without laser therapy. Differences in levels of the saliva markers (sIgA and albumin) were found to be significant comparing irradiated and non-irradiated groups, as well as comparing groups irradiated by various modulatory frequencies. Density of alveolar bone (histogram) was examined on five slices acquired from every RVG image. Histograms were evaluated with computer program for microscopic image analysis. Differences of density were verified in area of the whole slice. There were no significant differences found between the bone density in irradiated and non irradiated groups perhaps due to our used therapeutical diagram.

  12. Immunoassay and Nb2 lymphoma bioassay prolactin levels and mammographic density in premenopausal and postmenopausal women the Nurses' Health Studies.

    PubMed

    Rice, Megan S; Tworoger, Shelley S; Bertrand, Kimberly A; Hankinson, Susan E; Rosner, Bernard A; Feeney, Yvonne B; Clevenger, Charles V; Tamimi, Rulla M

    2015-01-01

    Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or 1996-1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area. Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.

  13. Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels.

    PubMed

    Baeza, A; Corbacho, J A; Rodríguez, A; Galván, J; García-Tenorio, R; Manjón, G; Mantero, J; Vioque, I; Arnold, D; Grossi, C; Serrano, I; Vallés, I; Vargas, A

    2012-12-01

    This paper presents measurements of the effect of the atmospheric radioactive release from the Fukushima Dai-ichi nuclear power station at three sites belonging to the Spanish environmental monitoring system. Measured values varied depending on the locations of the sites in Spain and their respective climatic characteristics. (134)Cs, (136)Cs, (137)Cs, (131)I, and (132)Te activity concentrations in filter samples were studied and associated levels of (131)I fallout were estimated from wet and dry deposition. Particulate aerosol activity concentrations ranges, in μBq/m(3), were 1.63-3080 ((131)I), 2.8-690 ((137)Cs), 1.3-620 ((134)Cs) and 3.6-330 ((132)Te), while the associated (131)I fallout was roughly estimated to be less than 20 Bq/m(2), Gaseous (131)I was also detected and the (131)I-gaseous/(131)I-total ratio increased at the three stations from approximately 0.75 at the end of March to 0.85-0.9 during the first few days of April. Finally, the presence of (131)I in some crucial parts of the food chain was also studied. (131)I was detected in samples from goat's and cow's milk (maximum levels of 1.11 Bq/L) and in broadleaf plants (maximum level 1.42 Bq/kg).

  14. Star formation history of early-type galaxies in low density environments. I. Nuclear line-strength indices

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Rampazzo, R.; Bressan, A.; Chiosi, C.

    1998-06-01

    This paper is the first of a series \\cite[(Longhetti et al. 1997a,b)]{lon97} dedicated to the study of the star formation history in early-type galaxies which show fine structures and/or signatures of interaction. It presents nuclear line-strength indices for a sample composed of 21 shell galaxies, from the \\cite[Malin & Carter (1983)]{mal83} southern survey, and 30 members of isolated interacting pairs, from the \\cite[Reduzzi & Rampazzo (1995)]{red95} catalogue, located in low density environments. The spectral range covers 3700 Angstroms < lambda < 5700 Angstroms at 2.1 Angstroms FWHM resolution. We measure 16 red (lambda > 4200 Angstroms) indices defined by the Lick Group. Measures have been transformed into the Lick-IDS ``standard'' system. The procedure has been tested on a set of 5 elliptical galaxies selected from the \\cite[Gonzalez (1993)]{gon93} sample. We derive also three blue (lambda < 4200) indices, namely Delta (4000 Angstroms) defined by \\cite[Hamilton (1985)]{ham85}, H+K(CaII) and Hdelta /FeI defined by \\cite[Rose (1984, 1985)]{ros84}. Blue indices are correlated to the age of the last starburst occurred in a galaxy \\cite[(Leonardi & Rose 1996)]{leo96}. The determination of these indices, the estimate of the measurement errors and the correction for the galaxies velocity dispersions are discussed in detail. In the Appendix A we present the indices for a set of hot stars (T> 10000 K) which may be used for extending W92 fitting functions toward high temperatures. Based on observations obtained at ESO, La Silla, Chile. Tables 1-8 are also available in electronic form at CDS and Tables 9-15 are only available in electronic form at CDS: via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  15. Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level.

    PubMed Central

    Schooley, Kenneth; Zhu, Ping; Dower, Steven K; Qwarnström, Eva E

    2003-01-01

    We have analysed activation of nuclear factor-kappaB (NF-kappaB) in response to interleukin-1 (IL-1) in human fibroblasts by tracking intracellular distribution and levels of endogenous relA, NF-kappaB1 and inhibitor of kappaB (I-kappaB) alpha using semi-quantitative confocal microscopy. Nuclear translocation of endogenous relA correlated with I-kappaBalpha degradation during stimulation with IL-1, whereas no effects were seen on levels or localization of NF-kappaB1. During pathway activation, relA was transported up a concentration gradient, resulting in a 3-4-fold increase in nuclear levels, but without any significant decrease in cytoplasmic concentration. IL-1 stimulation caused translocation of only 20% of the relA, but resulted in degradation of up to 70% of the cytoplasmic I-kappaBalpha. RelA nuclear translocation in fibroblasts correlated with DNA-binding activity measured by electrophoretic mobility shift assay (EMSA), both with respect to kinetics and IL-1 concentration-dependence. Clonal populations of cells demonstrated a marked degree of heterogeneity in the response to IL-1. The single-cell assay revealed the presence of responder and non-responder subpopulations, with an enhanced proportion of responder cells, and prolonged responses at higher concentrations of IL-1. Comparing different cell types demonstrated that whereas HepG2 cells, as fibroblasts, showed good correlation between nuclear translocation of relA and activation of DNA binding by relA-containing dimers, EL4 thymoma cells showed no effect on relA localization, even during induction of significant levels NF-kappaB activity, as measured by EMSA. The analysis shows that stimulation by IL-1 results in transient perturbation of the NF-kappaB system, which cycles between the resting and active states with net redistribution of a minor proportion of its DNA-binding component. In addition, it demonstrates significant cell-to-cell variations, as well as cell-type-specific differences in net rel

  16. Preliminary analysis of the relationship between serum lutein and zeaxanthin levels and macular pigment optical density

    PubMed Central

    Fujimura, Shigeto; Ueda, Kohei; Nomura, Yoko; Yanagi, Yasuo

    2016-01-01

    Purpose To assess the relationship between combined serum lutein and zeaxanthin (L+Z) concentration and macular pigment optical density (MPOD), and to investigate the effect of L+Z+docosahexaenoic acid (DHA) dietary supplementation on the spatial distribution of MPOD. Methods Twenty healthy fellow eyes with unilateral wet age-related macular degeneration or chronic central serous chorioretinopathy were included. All participants received a dietary supplement for 6 months that contained 20 mg L, 1 mg Z, and 200 mg DHA. The best-corrected visual acuity and contrast sensitivity (CS) were measured at baseline and at 1, 3, and 6 months. Serum L+Z concentrations were measured at baseline and at 3 months. MPOD was calculated at each time point using fundus autofluorescent images. Results Serum L+Z concentration was correlated with MPOD at 1°–2° eccentricity at baseline (r=0.63, P=0.003) and 3 months (r=0.53, P=0.015). Serum L+Z concentration increased by a factor of 2.3±1.0 (P<0.0001). At 6 months, MPOD was significantly higher compared to the baseline level at 0°–0.25° (P=0.034) and 0.25°–0.5° (P=0.032) eccentricity. CS improved after 3 or 6 months of L+Z+DHA supplementation (P<0.05). Conclusion Juxtafoveal MPOD was associated with serum L+Z concentration. Foveal MPOD was increased by L+Z+DHA dietary supplementation. PMID:27826180

  17. Solution of self-consistent equations for the N 3LO nuclear energy density functional in spherical symmetry. The program HOSPHE (v1.02)

    NASA Astrophysics Data System (ADS)

    Carlsson, B. G.; Dobaczewski, J.; Toivanen, J.; Veselý, P.

    2010-09-01

    We present solution of self-consistent equations for the N 3LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program HOSPHE (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summaryProgram title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 809 No. of bytes in distributed program, including test data, etc.: 290 514 Distribution format: tar.gz Programming language: Fortran-90 Computer: PCs and workstations Operating system: Linux RAM: 50 MB Classification: 17.22 External routines: LAPACK ( http://www.netlib.org/lapack/), BLAS ( http://www.netlib.org/blas/) Nature of problem: The nuclear mean-field methods constitute principal tools of a description of nuclear states in heavy nuclei. Within the Local Density Approximation with gradient corrections up to N 3LO [1], the nuclear mean-field is local and contains derivative operators up to sixth order. The locality allows for an effective and fast solution of the self-consistent equations. Solution method: The program uses the spherical harmonic oscillator basis to expand single-particle wave functions of neutrons and protons for the nuclear state being described by the N 3LO nuclear energy density functional [1]. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonian, which depends non

  18. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer.

    PubMed

    Body, Guillaume; Ferté, Hubert; Gaillard, Jean-Michel; Delorme, Daniel; Klein, François; Gilot-Fromont, Emmanuelle

    2011-11-01

    The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

  19. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-"can ALS now work better on the task of LAI prediction?" As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  20. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ≈ 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ≈ 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  1. A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level

    SciTech Connect

    Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian

    2015-03-07

    An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r{sup −2} instead of r{sup −1}. The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure.

  2. Default operational intervention levels (OILs) for severe nuclear power plant or spent fuel pool emergencies.

    PubMed

    McKenna, T; Kutkov, V; Vilar Welter, P; Dodd, B; Buglova, E

    2013-05-01

    Experience and studies show that for an emergency at a nuclear power plant involving severe core damage or damage to the fuel in spent fuel pools, the following actions may need to be taken in order to prevent severe deterministic health effects and reduce stochastic health effects: (1) precautionary protective actions and other response actions for those near the facility (i.e., within the zones identified by the International Atomic Energy Agency) taken immediately upon detection of facility conditions indicating possible severe damage to the fuel in the core or in the spent fuel pool; and (2) protective actions and other response actions taken based on environmental monitoring and sampling results following a release. This paper addresses the second item by providing default operational intervention levels [OILs, which are similar to the U.S. derived response levels (DRLs)] for promptly assessing radioactive material deposition, as well as skin, food, milk and drinking water contamination, following a major release of fission products from the core or spent fuel pool of a light water reactor (LWR) or a high power channel reactor (RBMK), based on the International Atomic Energy Agency's guidance.

  3. Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature

    SciTech Connect

    Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.

    2013-03-25

    Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

  4. {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange

    SciTech Connect

    Thierfelder, Christian; Schwerdtfeger, Peter; Saue, Trond

    2007-09-15

    The electric field gradient in late transition metal compounds is incorrectly determined by most density functionals. We show that the coupling of short-range density functional based with long-range wave function based methods using a reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-Parr approximation gives reliable results for the electric field gradients of copper and gold for a series of compounds. This results in nuclear quadrupole moments of -0.208 b for {sup 63}Cu and +0.526 b for {sup 197}Au in good agreement with experimental values of -0.220(15) and +0.547(16)b, respectively.

  5. Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.

    2015-12-01

    This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.

  6. High-density lipoprotein-cholesterol levels and risk of cancer in HIV-infected subjects

    PubMed Central

    Squillace, Nicola; Galli, Laura; Bandera, Alessandra; Castagna, Antonella; Madeddu, Giordano; Caramello, Pietro; Antinori, Andrea; Cattelan, Annamaria; Maggiolo, Franco; Cingolani, Antonella; Gori, Andrea; Monforte, Antonella d’Arminio

    2016-01-01

    Abstract Investigation of the relationship between high-density lipoprotein-cholesterol (HDL-c) and the risk of developing cancer in a prospective cohort of human immunodeficiency virus (HIV)-infected patients. The Italian Cohort of Antiretroviral-naïve Patients Foundation Cohort is an Italian multicenter observational study recruiting HIV-positive patients while still antiretroviral treatment-naïve, regardless of the reason since 1997. Patients with at least 1 HDL-c value per year since enrollment and one such value before antiretroviral treatment initiation were included. HDL-c values were categorized as either low (<39 mg/dL in males or <49 mg/dL in females) or normal. Cancer diagnoses were classified as AIDS-defining malignancies (ADMs) or non-AIDS-defining malignancies (NADMs). Kaplan–Meier curves and Cox proportional-hazards regression models were used. Among 4897 patients (13,440 person-years of follow-up [PYFU]), 104 diagnoses of cancer were observed (56 ADMs, 48 NADMs) for an overall incidence rate of 7.7 (95% confidence interval [CI] 6.3–9.2) per 1000 PYFU. Low HDL-c values at enrollment were associated with higher risk both of cancer (crude hazard ratio [HR] 1.72, 95% CI 1.16–2.56, P = 0.007) and of NADM (crude HR 2.50, 95% CI 1.35–4.76, P = 0.003). Multivariate analysis showed that the risk of cancer diagnosis was higher in patients with low HDL-c values (adjusted HR [AHR] 1.87, 95% CI 1.18–2.95, P = 0.007) in older patients, those patients more recently enrolled, and in those with low current cluster of differentiation 4+ levels, and/or high current HIV-ribonucleic acid. The multivariate model confirmed an association between HDL-c (AHR 2.61, 95% CI 1.40–4.89, P = 0.003) and risk of NADM. Low HDL-c is an independent predictor of cancer in HIV-1-infected subjects. PMID:27603338

  7. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  8. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    SciTech Connect

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented.

  9. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints.

    PubMed

    Som, Sanjoy M; Catling, David C; Harnmeijer, Jelte P; Polivka, Peter M; Buick, Roger

    2012-03-28

    According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3 kg m(-3), compared to today's 1.2 kg m(-3), but because such drops rarely occur, air density was more probably below 1.3 kg m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates.

  10. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident

    PubMed Central

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice. PMID:25731663

  11. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M

    2015-03-03

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice.

  12. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    SciTech Connect

    Duignan, M.R.; Weeks, G.E.

    1999-07-01

    may be too labor intensive for practical use.All of the large diameter bubbler tubes tested could be readily cleaned in place by either blowing them down with justhigh pressure air or water (approx. 90 psig). While the use of both air and water produced the cleanest bubbler, using justair removed most of the slurry build-up, and the use of water resulted in basically a slurry free surface. For the smalldiameter bubbler tubes it was necessary to use high pressure air and water (approx. 90 psig) to effectively clean them. The water was only sent through the porous jacket and not introduced down the air line. However, even under these conditions there was one case where a plug was not removed when both air and water were used.Primary recommendation: The large diameter probe is the best choice since none of the three tested plugged during the2-mouth test period to the point which compromised liquid-level measure. However, after a week`s operation at boilingtemperatures several inches of a soft sludge builds up within the tubes. This sludge can be easily removed in place witheither high pressure air or water (approx. 90 psig). A full-scale verifi-cation test should be carried out in S-area to confirm the conclusion.Secondary recommendation: The small-diameter porous tube bubbler is recommended when an access port cannot accommodate thelarger diameter probe. Bubbler {number_sign}1 operated accurately during most of the test period. This probe had the highest water flowrate (approx. 1.6 gallons/day) and had the least distance from the slurry upper surface (37 inches). This probe can be made to accurately operate at lower depths if the 8-inch-long porous tube is made longer and the water flow rate made higher.Substituting the current level and density probes (Holledge) with bubbler probes will result in a significant cost savings (inexpensive materials, less labor to manufacture, less labor to maintain, less down time due to less frequent instrument replacement).

  13. Comparison of TID Response and SEE Characterization of Single and Multi Level High Density NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.; Harboe-Sorensen, Reno; Virtanen, Ari

    2009-01-01

    Heavy ion single-event measurements and TID response for 8Gb commercial NAND flash memories are reported. Radiation results of multi-level flash technology are compared with results from single-level flash technology. In general, these commercial high density memories appear to be much less susceptible to SEE and have better TID response compared to older generations of flash memories. The charge pump survived up to 600 krads.

  14. The Effects of Text Density Levels and the Cognitive Style of Field Dependence on Learning from a CBI Tutorial

    ERIC Educational Resources Information Center

    Ipek, Ismail

    2011-01-01

    The purpose of this study was to investigate the effects of variations in text density levels and the cognitive style of field dependence on learning from a CBI tutorial, based on the dependent measures of achievement, reading comprehension, and reading rate, and of lesson completion time. Eighty college undergraduate students were randomly…

  15. Biological ramifications of the subseabed disposal of high-level nuclear waste

    SciTech Connect

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-01-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes, and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides.

  16. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  17. Biological ramifications of the subseabed disposal of high-level nuclear waste

    SciTech Connect

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-05-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes; and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides.

  18. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    SciTech Connect

    Chung, D.H.; Bernreuter, D.L.

    1984-05-08

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion.

  19. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set.

    PubMed

    Chang, Hang; Wen, Quan; Parvin, Bahram

    2015-03-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance.

  20. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  1. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  2. Direct Low Density Lipoprotein Cholesterol and Glycated Albumin Levels in Type 2 Diabetes Mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) have been associated with a decreased risk of these complications. The aim in this st...

  3. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

  4. Performance of a local electron density trigger to select extensive air showers at sea level

    NASA Technical Reports Server (NTRS)

    Abbas, T.; Madani, J.; Ashton, F.

    1985-01-01

    Time coincident voltage pulses in the two closely space (1.6m) plastic scintillators were recorded. Most of the recorded events are expeted to be due to electrons in cosmic ray showers whose core fall at some distance from the detectors. This result is confirmed from a measurement of the frequency distribution of the recorded density ratios of the two scintillators.

  5. Plant-Level Modeling and Simulation of Used Nuclear Fuel Dissolution

    SciTech Connect

    de Almeida, Valmor F.

    2012-09-07

    Plant-level modeling and simulation of a used nuclear fuel prototype dissolver is presented. Emphasis is given in developing a modeling and simulation approach to be explored by other processes involved in the recycle of used fuel. The commonality concepts presented in a previous communication were used to create a model and realize its software module. An initial model was established based on a theory of chemical thermomechanical network transport outlined previously. A software module prototype was developed with the required external behavior and internal mathematical structure. Results obtained demonstrate the generality of the design approach and establish an extensible mathematical model with its corresponding software module for a wide range of dissolvers. Scale up numerical tests were made varying the type of used fuel (breeder and light-water reactors) and the capacity of dissolution (0.5 t/d to 1.7 t/d). These tests were motivated by user requirements in the area of nuclear materials safeguards. A computer module written in high-level programing languages (MATLAB and Octave) was developed, tested, and provided as open-source code (MATLAB) for integration into the Separations and Safeguards Performance Model application in development at Sandia National Laboratories. The modeling approach presented here is intended to serve as a template for a rational modeling of all plant-level modules. This will facilitate the practical application of the commonality features underlying the unifying network transport theory proposed recently. In addition, by example, this model describes, explicitly, the needed data from sub-scale models, and logical extensions for future model development. For example, from thermodynamics, an off-line simulation of molecular dynamics could quantify partial molar volumes for the species in the liquid phase; this simulation is currently at reach for high-performance computing. From fluid mechanics, a hold-up capacity function is needed

  6. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  7. Nuclear Zero Point Effects as a Function of Density in Ice-like Structures and Liquid Water from vdW-DF Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Allen, Philip B.; Soler, Jose M.; Fernández-Serra, Marivi

    2014-03-01

    The contributions of nuclear zero point vibrations to the structures of liquid water and ice are not negligible. Recently, we have explained the source of an anomalous isotope shift in hexagonal ice, representing itself as an increase in the lattice volume when H is replaced by D, by calculating free energy within the quasiharmonic approximation, with ab initio density functional theory. In this work, we extend our studies to analyze the zero point effect in other ice-like structures under different densities: clathrate hydrates, LDL and HDL-like amorphous ices with different densities, and a highly dense ice phase, ice VIII. We show that there is a transition from anomalous isotope effect to normal isotope effect as the density increases. We also analyze nuclear zero point effects in liquid water using different vdW-DFs and make connections to this anomalous-normal isotope effect transition in ice. This work is supported by DOE Early Career Award No. DE-SC0003871.

  8. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 2, Additional appendices

    SciTech Connect

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. The status of the CDB is summarized in Volume I of this report. Volume II contains appendices that present data from the data base and an evaluation of glass durability models applied to the data base.

  9. High levels of homocysteine downregulate apolipoprotein E expression via nuclear factor kappa B

    PubMed Central

    Trusca, Violeta G; Mihai, Adina D; Fuior, Elena V; Fenyo, Ioana M; Gafencu, Anca V

    2016-01-01

    AIM: To investigate the effect of high homocysteine (Hcy) levels on apolipoprotein E (apoE) expression and the signaling pathways involved in this gene regulation. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to assess apoE expression in cells treated with various concentrations (50-500 μmol/L) of Hcy. Calcium phosphate-transient transfections were performed in HEK-293 and RAW 264.7 cells to evaluate the effect of Hcy on apoE regulatory elements [promoter and distal multienhancer 2 (ME2)]. To this aim, plasmids containing the proximal apoE promoter [(-500/+73)apoE construct] alone or in the presence of ME2 [ME2/(-500/+73)apoE construct] to drive the expression of the reporter luciferase gene were used. Co-transfection experiments were carried out to investigate the downstream effectors of Hcy-mediated regulation of apoE promoter by using specific inhibitors or a dominant negative form of IKβ. In other co-transfections, the luciferase reporter was under the control of synthetic promoters containing multiple specific binding sites for nuclear factor kappa B (NF-κB), activator protein-1 (AP-1) or nuclear factor of activated T cells (NFAT). Chromatin immunoprecipitation (ChIP) assay was accomplished to detect the binding of NF-κB p65 subunit to the apoE promoter in HEK-293 treated with 500 μmol/L Hcy. As control, cells were incubated with similar concentration of cysteine. NF-κB p65 proteins bound to DNA were immunoprecipitated with anti-p65 antibodies and DNA was identified by PCR using primers amplifying the region -100/+4 of the apoE gene. RESULTS: RT-PCR revealed that high levels of Hcy (250-750 μmol/L) induced a 2-3 fold decrease in apoE mRNA levels in HEK-293 cells, while apoE gene expression was not significantly affected by treatment with lower concentrations of Hcy (100 μmol/L). Immunoblotting data provided additional evidence for the negative role of Hcy in apoE expression. Hcy decreased apoE promoter

  10. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment

    PubMed Central

    2010-01-01

    Introduction Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterised by joint inflammation and cartilage degradation. Although mesenchymal stem cell (MSC)-like progenitors are resident in the superficial zone of articular cartilage, damaged tissue does not possess the capacity for regeneration. The high levels of pro-inflammatory cytokines present in OA/RA joints may impede the chondrogenic differentiation of these progenitors. Interleukin (IL)-1β activates the transcription factor nuclear factor-κB (NF-κB), which in turn activates proteins involved in matrix degradation, inflammation and apoptosis. Curcumin is a phytochemical capable of inhibiting IL-1β-induced activation of NF-κB and expression of apoptotic and pro-inflammatory genes in chondrocytes. Therefore, the aim of the present study was to evaluate the influence of curcumin on IL-1β-induced NF-κB signalling pathway in MSCs during chondrogenic differentiation. Methods MSCs were either cultured in a ratio of 1:1 with primary chondrocytes in high-density culture or cultured alone in monolayer with/without curcumin and/or IL-1β. Results We demonstrate that although curcumin alone does not have chondrogenic effects on MSCs, it inhibits IL-1β-induced activation of NF-κB, activation of caspase-3 and cyclooxygenase-2 in MSCs time and concentration dependently, as it does in chondrocytes. In IL-1β stimulated co-cultures, four-hour pre-treatment with curcumin significantly enhanced the production of collagen type II, cartilage specific proteoglycans (CSPGs), β1-integrin, as well as activating MAPKinase signaling and suppressing caspase-3 and cyclooxygenase-2. Conclusions Curcumin treatment may help establish a microenvironment in which the effects of pro-inflammatory cytokines are antagonized, thus facilitating chondrogenesis of MSC-like progenitor cells in vivo. This strategy may support the regeneration of articular cartilage. PMID:20594343

  11. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-12-29

    Targeted delivery to the cell nucleus can enhance the efficiency of drugs with nuclear site of action (some anti-cancer agents, DNA drugs, etc.), and can reduce their toxicity. Such targeting can be attained using nano-drug delivery systems (nano-DDSs) decorated with nuclear targeting sequences (such as nuclear localization sequence peptides, NLS). Several types of nano-DDSs decorated with NLS peptides were designed, but their investigation usually did not include quantitate analysis of the decoration efficiency and its correlation with the nano-DDSs intracellular localization. Thus, the major mechanisms and limiting factors of the nano-DDSs nuclear targeting are largely unknown yet. In this study, we report quantitative data for specific nano-formulation (CdSe-ZnS quantum dots) that include the efficiencies of its decoration with NLS residues and of its nuclear and perinuclear targeting, and demonstrate correlation between these parameters. For instance, QDs decorated with 83, 246, and 265 NLS peptides accumulated efficiently in the nucleus of HeLa cells or its vicinity (an average of 30.4%, 43.3%, and 49.0% of the intracellular QDs, respectively). On the other hand, QDs decorated with 63, 231, and 308 scrambled peptides accumulated in the nucleus of HeLa cells or its vicinity to a much lower extent (an average of 17.3%, 21.1%, and 25.5% of the intracellular QDs, respectively). Thus, results of our study provide important insights into the structure-activity correlations (i.e., the relationships between the formulation properties and the intracellular fate of nano-DDSs) of nuclear-targeted drug delivery. We plan to apply the research tools that were developed in the course of this and our previous studies to investigate the nuclear and perinuclear targeting activities of different NLS sequences, and to investigate the effects of nano-DDSs size, charge, shape, decoration efficiency with nuclear targeting sequences, and other structural factors on nuclear and

  12. Evaluation of New Inorganic Sorbents for Strontium and Actinide Removal from High-Level Nuclear Waste Solutions

    SciTech Connect

    Hobbs, D.T.; Nyman, M.; Medvedev, D.G.; Tripathi, A.; Clearfield, A.

    2004-03-28

    Monosodium titanate (MST), a hydrous metal oxide sorbent, is the baseline material for the removal of 90Sr and alpha-emitting radionuclides (principally 238Pu, 239Pu, 240Pu and 237Np) from alkaline waste solutions generated during the processing of irradiated nuclear materials at the Savannah River Site. This material exhibits excellent performance characteristics for strontium removal. Plutonium removal is also good, but problematic at the estimated bonding concentration. We are currently developing new inorganic materials for improved sorption characteristics. These materials include sodium nonatitanates, pharmacosiderites and heteropolyniobates. We will present results evaluating the performance of these materials with simulated and actual high level nuclear waste solutions.

  13. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  14. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    PubMed

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples.

  15. Kilohertz laser wakefield accelerator using near critical density plasmas and millijoule-level drive pulses

    NASA Astrophysics Data System (ADS)

    Goers, Andy

    2016-10-01

    Laser wakefield accelerators operating in the so-called bubble or blowout regime are typically driven by Joule-class femtosecond laser systems driving plasma waves in highly underdense plasmas (1017 -1019cm-3). While these accelerators are very promising for accelerating GeV scale, low emittance electron beams, the large energy requirements of the laser systems have so far limited them to repetition rates below 10 Hz. However, there are a variety of applications, such as ultrafast electron diffraction or high repetition rate gamma ray sources for materials characterization or medical radiography, which would benefit from lower energy (1-10 MeV) but higher repetition rate ( 1 kHz) sources of relativistic electrons. This talk will describe relativistic wakefield acceleration of electron bunches in the range 1-10 MeV, driven by a 1 kHz, 30 fs, 1-12 mJ laser system. Our results are made possible by the use of very high density cryogenic H2 and He gas jet targets yielding electron densities >1021cm-3 in thin 100 μm gas flows. At these high densities the critical power for relativistic self-focusing and the plasma wave phase velocity are greatly reduced, leading to pulse collapse and self-injection even with 1 mJ drive laser pulses. Applications of this source to ultrafast electron diffraction and gamma ray radiography will be discussed. This research supported by the U.S. Department of Energy, National Science Foundation, and Air Force Office of Scientific Research.

  16. Vitamin B(12) and folic acid levels as therapeutic target in preserving bone mineral density (BMD) of older men.

    PubMed

    Naharci, Ilkin; Bozoglu, Ergun; Karadurmus, Nuri; Emer, Ozdes; Kocak, Necmettin; Kilic, Selim; Doruk, Huseyin; Serdar, Muhittin

    2012-01-01

    The knowledge about vitamin B(12) and folic acid levels in preserving bone mass in older men is limited. In this retrospective study, we aimed to find out whether levels of vitamin B(12) and folic acid are related to BMD in older men. Two hundred and sixty-nine older men were included in the study. Forty-two (15.6%) of them had osteoporotic, 150 (55.8%) had osteopenic, and 77 (28.6%) had normal BMD. Vitamin B(12) and folic acid levels were categorized as indicating normal, borderline, or low vitamin statuses. Femur neck densities showed statistically significant differences in subjects having low, borderline, and normal vitamin B(12), respectively. There were no significant differences between the three tertiles of vitamin B(12) in femur total, trochanteric, and intertrochanteric densities. After adjustment for age, body mass index (BMI), alcohol, smoking, and exercise with analysis of covariance, the difference was still statistically significant between two groups for femur neck density (p=0.011). No significant difference was observed between the groups of folic acid in any femur sites. We found that the normal level of vitamin B(12) in older men may be related to a decrease of femur neck bone loss.

  17. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Pugmire, Dave; Dilts, Gary; Banfield, James E

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  18. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Lansberg, Jean-Philippe; Shao, Hua-Sheng

    2017-01-01

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg → HX} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/ψ , Υ and D^0 as a function of y and P_T at √{s_NN}=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide - for the first time - predictions for the nuclear modification factor for η _c production in pPb collisions at the LHC.

  19. Serum Bone Markers Levels and Bone Mineral Density in Familial Mediterranean Fever

    PubMed Central

    Aydın, Teoman; Taspınar, Ozgur; Akbal, Yildiz; Peru, Celaleddin; Guler, Mustafa; Uysal, Omer; Yakıcıer, M. Cengiz

    2014-01-01

    [Purpose] The aim of this study was to measure bone mineral density, serum and urinary bone turnover parameters, and to evaluate the influence of demographic and genetic factors on these parameters in FMF patients. [Subjects and Methods] Twenty-seven attack-free patients who were diagnosed with FMF (in accordance with Tel Hashomer criteria) were recruited at outpatient rheumatology clinics. We investigated whether there were any differences between the FMF patients and a control group in terms of lumbar and femur bone mineral density (BMD), standard deviation scores (Z scores and T scores) and bone markers. [Results] In terms of the median values of lumbar BMD (p = 0.21), lumbar T (p = 0.098) and Z (p = 0.109) scores, femoral neck BMD, femoral T and Z scores and total femur BMD, T (p = 0.788) and Z scores, there were no significant differences. [Conclusion] In our study, no statistically significant differences were found between FMF patients and a control group in terms of osteoporosis. The 25-OH vitamin D was found to be significantly lower in FMF patients than in the control group. PMID:25276036

  20. Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys with delayed adolescence: correlation with plasma testosterone levels

    SciTech Connect

    Kirkland, R.T.; Keenan, B.S.; Probstfield, J.L.; Patsch, W.; Lin, T.L.; Clayton, G.W.; Insull, W. Jr.

    1987-01-23

    A three-phase study tested the hypothesis that the decrease in the high-density lipoprotein cholesterol (HDL-C) level observed in boys at puberty is related to an increase in the plasma testosterone concentration. In phase I, 57 boys aged 10 to 17 years were categorized into four pubertal stages based on clinical parameters and plasma testosterone levels. These four groups showed increasing plasma testosterone values and decreasing HDL-C levels. In phase II, 14 boys with delayed adolescence were treated with testosterone enanthate. Plasma testosterone levels during therapy were in the adult male range. Levels of HDL-C decreased by a mean of 7.4 mg/dL (0.20 mmol/L) and 13.7 mg/dL (0.35 mmol/L), respectively, after the first two doses. In phase III, 13 boys with delayed adolescence demonstrated increasing plasma testosterone levels and decreasing HDL-C levels during spontaneous puberty. Levels of HDL-C and apolipoprotein A-1 were correlated during induced and spontaneous puberty. Testosterone should be considered a significant determinant of plasma HDL-C levels during pubertal development.

  1. Incidental Intraosseous Pneumatocyst with gas-density-fluid level in an adolescent: a case report and review of the literature

    PubMed Central

    Al-Tarawneh, Emad; AL-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy

    2014-01-01

    Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention. PMID:24967024

  2. Incidental intraosseous pneumatocyst with gas-density-fluid level in an adolescent: a case report and review of the literature.

    PubMed

    Al-Tarawneh, Emad; Al-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy

    2014-03-01

    Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention.

  3. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; ...

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  4. An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities.

    PubMed

    Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A; Zurita, Pía

    2016-01-01

    We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.

  5. An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities

    NASA Astrophysics Data System (ADS)

    Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A.; Zurita, Pía

    2016-04-01

    We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.

  6. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Hamilton, Steven P; Clarno, Kevin T; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The

  7. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  8. Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction

    SciTech Connect

    Roccia, Jerome; Leboeuf, Patricio

    2010-04-15

    We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.

  9. Increased expression of low-density lipoprotein receptors in a Smith-Lemli-Opitz infant with elevated bilirubin levels.

    PubMed

    Ness, G C; Lopez, D; Borrego, O; Gilbert-Barness, E

    1997-01-31

    We report on an infant girl with severe RSH or Smith-Lemli-Opitz syndrome with hyperbilirubinemia. The infant died at age 2 months. Sterol analysis of liver and brain tissues showed marked elevations of 7-dehydrocholesterol with decreased levels of cholesterol. Immunocytochemical analysis demonstrated remarkable increases in low-density lipoprotein (LDL) receptors in these tissues, indicative of a deficiency in available cholesterol for tissue needs.

  10. Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal

    SciTech Connect

    Not Available

    1994-09-01

    Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

  11. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels.

    PubMed

    Kaufman, Becky A; Warren, Michelle P; Dominguez, Jennifer E; Wang, Jack; Heymsfield, Steven B; Pierson, Richard N

    2002-06-01

    Osteopenia, which is correlated with amenorrhea and poor nutritional habits, has been well documented in elite ballet dancers. Estrogen replacement therapy and recovery from amenorrhea have not been associated with normalization of bone density. Thus, the osteopenia may be related to changes brought about by chronic dieting or other factors, such as a hypometabolic state induced by poor nutrition. The purpose of this study was to investigate the relationship of chronic dieting and resting metabolic rate (RMR) to amenorrhea and bone density. RMR, bone density, eating disorder assessments, leptin levels, and complete menstrual and medical histories were determined in 21 elite ballet dancers and in 27 nondancers (age, 20-30 yr). No significant correlations were found between high EAT26 scores, a measure of disordered eating, and RMR, bone densities, body weight, body fat, or fat-free mass. However, when RMR was adjusted for fat-free mass (FFM), a significant positive correlation was found between RMR/FFM and bone density in both the arms (P < 0.001) and spine (P < 0.05) in ballet dancers, but not in the normal controls. The dancers also demonstrated significantly higher EAT scores (22.9 +/- 10.3 vs. 4.1 +/- 2.4; P < 0.001) and lower RMR/FFM ratios (30.0 +/- 2.2 vs. 32.05 +/- 2.8; P < 0.01). The only variable to predict lower RMR/FFM in the entire sample was ever having had amenorrhea; this group had significantly higher EAT scores (18.0 +/- 13.5 vs. 10.3 +/- 10.2; P < 0.05), lower leptin levels (4.03 +/- 0.625 vs. 7.10 +/- 4.052; P < 0.05), and lower bone mineral density in the spine (0.984 +/- 0.11 vs. 1.10 +/- 0.13; P < 0.05) and arm (0.773 +/- 0.99 vs. 0.818 +/- 0.01; P < 0.05). We hypothesize that the correlation between low RMR and lower leptin levels and bone density may be more strongly related to nutritional habits in ballet dancers, causing significant depression of RMR, particularly for those with a history of amenorrhea.

  12. Kondo temperature when the Fermi level is near a step in the conduction density of states

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Aligia, A. A.; Roura-Bas, P.; Andrade, J. A.

    2017-01-01

    The (111) surface of Cu, Ag, and Au is characterized by a band of surface Shockley states with a constant density of states beginning slightly below the Fermi energy. These states as well as bulk states hybridize with magnetic impurities which can be placed above the surface. We calculate the characteristic low-temperature energy scale, the Kondo temperature TK of the impurity Anderson model, as the bottom of the conduction band Ds crosses the Fermi energy ɛF. We find simple power laws TK≃|Ds-ɛF| η , where η depends on the sign of Ds-ɛF , the ratio between surface and bulk hybridizations with the impurity Δs/Δb , and the ratio between on-site and Coulomb energy Ed/U in the model.

  13. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis?

    PubMed

    de Munter, Wouter; van der Kraan, Peter M; van den Berg, Wim B; van Lent, Peter L E M

    2016-01-01

    There is increasing evidence that low-density lipoprotein (LDL) cholesterol plays a role in the pathology of OA. Specifically, oxidized LDL (oxLDL), which has been shown to play an essential role during development of atherosclerosis, could be involved in processes such as synovial inflammation, cartilage destruction and bone deformations. OxLDL can activate synovial cells such as macrophages, endothelial cells and synovial fibroblasts, resulting in release of growth factors, MMP and pro-inflammatory cytokines. In this review article, we discuss the role of LDL and oxLDL in OA joint pathology and share our viewpoint of possible mechanisms by which these proteins could influence the development and progression of OA. The proposed theory could provide insight into the aetiopathology of OA and give rise to new potential treatments.

  14. Alveolar bone level is not associated with vitamin D receptor gene polymorphism and bone density in mandible.

    PubMed

    Mesa, Francisco; Gonzalez, Alejandro; Souki, Nizar; Galindo-Moreno, Pablo; Olmo, Asunción; O'Valle, Francisco; Bravo, Manuel

    2012-04-01

    The objective of this study was to determine, using digital panoramic radiographs, whether the bone level at the alveolar crest is related to the mandibular bone density and/or to vitamin D receptor (VDR) gene polymorphisms. We analyzed 319 digital panoramic radiographs from the same number of patients. Alveolar bone level was expressed as percentage of root length. The mandibular cortical width index was calculated as a measure of mandibular bone density, and, in 72 randomly selected cases, the haplotype of the VDR gene (BsmL) was determined by polymerase chain reaction. Alveolar bone level was not related to the mandibular cortical width index (p = 0.568) or VDR gene expression (p = 0.575). Bone loss was greater in smokers than in non-smokers (p = 0.036), and the mandibular cortical width index was higher in males (p = 0.04), the older age group (p = 0.032), and in those with more teeth (p = 0.01). Multivariate analysis confirmed the association between these variables and alveolar bone loss. Alveolar bone loss showed no significant relationship with the mandibular bone density evaluated on digital panoramic radiographs or with VDR genotype (BsmL) in Caucasian females and males aged under 47 years.

  15. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  16. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  17. Influence of dietary lipids on hepatic mRNA levels of proteins regulating plasma lipoproteins in baboons with high and low levels of large high density lipoproteins.

    PubMed

    Kushwaha, R S; McMahan, C A; Mott, G E; Carey, K D; Reardon, C A; Getz, G S; McGill, H C

    1991-12-01

    Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL

  18. Structure of radical cations of saturated heterocyclic compounds with two heteroatoms as studied by electron paramagnetic resonance, electron-nuclear double resonance, and density functional theory calculations.

    PubMed

    Nuzhdin, Kirill B; Nesterov, Sergej V; Tyurin, Daniil A; Feldman, Vladimir I; Wei, Liu; Lund, Anders

    2005-07-21

    The radical cations of piperazine, morpholine, thiomorpholine, and thioxane were investigated by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy in a solid Freon matrix. Optimized geometry and magnetic parameters of the radical cations were calculated using a density functional theory (DFT)/Perdew-Burke-Ernzerhof (PBE) method. Both experimental and theoretical results suggest that all the studied species adopt chair (or distorted chair) conformations. No evidence for the boat conformers with intramolecular sigma-bonding between heteroatoms were obtained. In the cases of morpholine and thioxane, the oxygen atoms are characterized by relatively small spin populations, whereas a major part of spin density is located at N and S atoms, respectively. The thiomorpholine radical cation exhibits nearly equal spin population of N and S atoms. In most cases (except for thioxane), the calculated magnetic parameters agree with the experimental data reasonably well.

  19. 10 CFR Appendix E to Part 73 - Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1 E Appendix E to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. E Appendix E to Part 73—Levels...

  20. Lower low-density lipoprotein cholesterol levels are associated with Parkinson's disease.

    PubMed

    Huang, Xuemei; Chen, Honglei; Miller, William C; Mailman, Richard B; Woodard, Jennifer L; Chen, Peter C; Xiang, Dong; Murrow, Richard W; Wang, Yi-Zhe; Poole, Charles

    2007-02-15

    The apolipoprotein E (APOE) epsilon2 allele has been associated with both Parkinson's disease (PD) and lower low-density lipoprotein cholesterol (LDL-C). We tested the hypothesis that lower LDL-C may be associated with PD. This case-control study used fasting lipid profiles obtained from 124 PD cases and 112 controls. The PD cases were recruited from consecutive cases presenting at our tertiary Movement Disorder Clinic, and the controls were recruited from the spouse populations of the same clinic. Multivariate odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from unconditional logistic regressions, adjusting for age, gender, smoking status, and use of cholesterol-lowering agents. Lower LDL-C concentrations were associated with a higher occurrence of PD. Compared with participants with the highest LDL-C (> or =138 mg/dL), the OR was 2.2 (95% CI = 0.9-5.1) for participants with LDL-C of 115 to 137, 3.5 (95% CI = 1.6-8.1) for LDL-C of 93 to 114, and 2.6 (95% CI = 1.1-5.9) for LDL-C of < or = 92. Interestingly, use of either cholesterol-lowering drugs, or statins alone, was related to lower PD occurrence. Thus, our data provide preliminary evidence that low LDL-C may be associated with higher occurrence of PD, and/or that statin use may lower PD occurrence, either of which finding warrants further investigation.

  1. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  2. Oxidation state of multivalent elements in high-level nuclear waste glass

    SciTech Connect

    Reynolds, J.G.

    2007-07-01

    Nuclear waste contains many different elements that have more than one oxidation state. When the nuclear waste is treated by vitrification, the behavior of the element in the melter and resulting glass product depends on the stable oxidation state. The stable oxidation state in any medium can be calculated from the standard potential in that medium. Consequently, the standard potential of multi-valent elements has been measured in many silicate-melts, including ones relevant to nuclear waste treatment. In this study, the relationship between the standard potential in molten nuclear waste glass and the standard potential in water will be quantified so that the standard potential of elements that have not been measured in glass can be estimated. The regression equation was found to have an R{sup 2} statistic of 0.96 or 0.83 depending on the number of electrons transferred in the reaction. The Nernst equation was then used to calculate the oxidation state of other relevant multi-valent elements in nuclear waste glass from these standard potentials and the measured ferrous to ferric iron ratio. The calculated oxidation states were consistent with all oxidation state measurements available. The calculated oxidation states were used to rationalize the behavior of many of the multi-valent elements. For instance, chromium increases glass crystallization because it is in the trivalent-state, iodine volatilises from the melter because it is in the volatile zero-valent state, and the leaching behavior of arsenic is driven by its oxidation state. Thus, these thermodynamic calculations explain the behavior of many trace elements during the vitrification process. (authors)

  3. Differential effects of culture and nuclear transfer on relative transcript levels of genes with key roles during preimplantation.

    PubMed

    Moreira, P N; Fernández-Gonzalez, R; Ramirez, M A; Pérez-Crespo, M; Rizos, D; Pintado, B; Gutiérrez-Adán, A

    2006-02-01

    It is well known that the preimplantation culture environment to which embryos are exposed influences the expression of developmentally important genes. Recently, it has been reported that MEMalpha, a culture medium commonly used for somatic cells, allows high rates of preimplantation development and development to term of mouse somatic cell nuclear transfer (SCNT) embryos. The objective of this study was to compare the differential effects of this medium and of the nuclear transfer procedure on the relative mRNA abundance of several genes with key roles during preimplantation. The relative mRNA levels of nine genes (Glut 1, Glut 5, G6PDH, Bax, Survivin, Gpx 1, Oct4, mTert and IGF2bp1) were quantified at blastocyst stage on cumulus cell cloned embryos cultured in MEMalpha, as well as on in vivo cultured and MEMalpha cultured controls. Only three of the nine transcripts analysed (Glut 5, Gpx 1 and Igf2bp1) were significantly down-regulated at blastocyst stage in in vitro produced controls. However, most genes analysed in our MEMalpha cultured cloned embryos showed altered transcription levels. Interestingly, between cloned and in vitro produced controls only the transcription levels measured for Glut 1 were significantly different. This result suggests that Glut 1 may be a good marker for embryo quality after cumulus cell nuclear transfer.

  4. Peer review of the Barselina Level 1 probabilistic safety assessment of the Ignalina Nuclear Power Plant, Unit 2

    SciTech Connect

    McKay, S.L.; Coles, G.A.

    1995-01-01

    The Barselina Project is a Swedish-funded, cooperative effort among Lithuania, Russia and Sweden to transfer Western probabilistic safety assessment (PSA) methodology to the designers/operators of Ignalina Nuclear Power Plant (INPP). The overall goal is to use the PSA as a tool for assessing plant operational safety. The INPP is a two-unit, Former Soviet Union-designed nuclear facility located in Lithuania. The results of this PSA will ultimately be used to identify plant-specific improvements in system design and the conduct of facility operations, allowing improved operational safety. Pacific Northwest Laboratory (PNL) was asked to perform an independent expert peer review of the Barselina PSA. This report documents the findings of this review. This review, financed with nuclear safety assistance funds through the US Agency for International Development (USAID) and the US Department of Energy (DOE), satisfies Task II of the PNL peer review of the Barselina project. The objective is to provide an independent, in-proce ss examination of the Barselina Level 1 PSA of Ignalina Nuclear Power Plant, Unit 2. The review consisted of an investigation of the project documentation, interviews, and extensive discussions with the PSA staff during critical stages of the project. PNL assessed the readability, completeness, consistency, validity, and applicability of the PSA. The major aspects explored were its purpose, major assumptions, analysis/modeling, results, and interpretation. It was not within the scope of this review to perform plant walkdowns or to review material other than the PSA documentation.

  5. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  6. The relationships between two different drinking water fluoride levels, dental fluorosis and bone mineral density of children.

    PubMed

    Grobler, S R; Louw, A J; Chikte, U M E; Rossouw, R J; van W Kotze, T J

    2009-04-03

    This field study included the whole population of children aged 10-15 years (77 from a 0.19 mg/L F area; 89 from a 3.00 mg/L F area), with similar nutritional, dietary habits and similar ethnic and socioeconomic status. The fluoride concentration in the drinking water, the bone mineral content, the bone density and the degree of dental fluorosis were determined. The left radius was measured for bone width, bone mineral content, and bone mineral density. The mean fluorosis score was 1.3 in the low fluoride area and 3,6 in the high fluoride area. More than half the children in the low fluoride area had no fluorosis (scores 0 and 1) while only 5% in the high fluoride area had none. Severe fluorosis (30%) was only observed in the high fluoride area. The Wilcoxon Rank Sum Test indicated that fluorosis levels differed significantly (p < 0.05) between the two areas. No relationships were found between dental fluorosis and bone width or between fluorosis and bone mineral density in the two areas (Spearment Rank correlations). A significant increase in bone width was found with age but no differences amongst and boys and girls. A significant positive correlation was found in the high fluoride area between bone mineral density over age. In the 12-13 and 13-14 year age groups in the high fluoride area, girls had higher bone mineral densities. However, a significant negative correlation (p<0.02) was found for the low fluoride area (0.19 mg/L F) over age.

  7. Low-density lipoprotein cholesterol level in patients with acute myocardial infarction having percutaneous coronary intervention (the cholesterol paradox).

    PubMed

    Cho, Kyung Hoon; Jeong, Myung Ho; Ahn, Youngkeun; Kim, Young Jo; Chae, Shung Chull; Hong, Taek Jong; Seong, In Whan; Chae, Jei Keon; Kim, Chong Jin; Cho, Myeong Chan; Seung, Ki Bae; Park, Seung Jung

    2010-10-15

    The relation between low-density lipoprotein (LDL) cholesterol levels and clinical outcomes after percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has not been described. A total of 9,571 eligible patients (mean age 62.6 ± 12.5 years, 6,967 men) who underwent PCI with a final diagnosis of AMI from the Korea Acute Myocardial Infarction Registry (KAMIR) were divided into 5 groups according to LDL cholesterol level: < 70, 70 to 99, 100 to 129, 130 to 159, and ≥ 160 mg/dl. Clinical outcomes in hospital and 1 and 12 months after PCI in patients with AMI were examined. Age and co-morbidities decreased as LDL cholesterol increased. Patients with higher LDL cholesterol levels had favorable hemodynamic status and laboratory findings. Lifesaving medications, including lipid-lowering drugs, were underused in patients with lower LDL cholesterol levels. Clinical outcomes in hospital and 1 and 12 months after PCI showed better results as LDL cholesterol increased, except for patients with LDL cholesterol levels ≥ 160 mg/dl. In a Cox proportional-hazards model, LDL cholesterol level was not an independent predictor of mortality at 12 months, after adjusting for clinical characteristics including demographics and biologic data. In conclusion, the cholesterol paradox in patients with AMI is related to confounding by baseline characteristics associated with survival. More intensive treatment including lipid-lowering therapy for AMI in patients with lower LDL cholesterol level may result in better clinical outcomes.

  8. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  9. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    SciTech Connect

    Collins, E.; Sauls, M.L.; O`Farrell, T.P.

    1983-12-31

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE`s Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats.

  10. Self-consistent density functional calculations of the crystal field levels in lanthanide and actinide dioxides

    NASA Astrophysics Data System (ADS)

    Zhou, Fei; Ozoliņš, Vidvuds

    2012-02-01

    Using a recently developed method combining a nonspherical self-interaction corrected LDA + U scheme and an on-site multibody Hamiltonian [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.085106 83, 085106 (2011)], we calculate the crystal field parameters and crystal field (CF) excitation levels of f-element dioxides in the fluorite structure with fn electronic configurations, including n=1 (PaO2, PrO2), n=2 (UO2), n=3 (NpO2), and n=4 (PuO2). It is shown that good agreement with experimental data (within approximately 10-20 meV) can be obtained in all cases. The properties of the multielectron CF ground states are analyzed.

  11. Energy-Level Related Nuclear-Spin Effects and Super-Hyperfine Spectral Patterns: how Molecules do Self-Nmr

    NASA Astrophysics Data System (ADS)

    Harter, William; Mitchell, Justin

    2009-06-01

    At several points in his defining works on molecular spectroscopy, Herzberg notes that ``because nuclear moments ldots are so very slight ldots transitions between species ldots are very strictly forbiddenldots '' Herzberg's most recent statement of such selection rules pertained to spherical top spin-species. It has since been shown that spherical top species (as well as those of lower symmetry molecules) converge exponentially with momentum quanta J and K to degenerate level clusters wherein even ``very slight'' nuclear fields and moments cause pervasive resonance and total spin species mixing. Ultra-high resolution spectra of Borde, et .al and Pfister et .al shows how SF_6 and SiF_4 Fluorine nuclear spin levels rearrange from total-spin multiplets to NMR-like patterns as their superfine structure converges. Similar super-hyperfine effects are anticipated for lower symmetry molecules exhibiting converging superfine level-clusters. Examples include PH_3 molecules and asymmetric tops. Following this we consider models that treat nuclear spins as coupled rotors undergoing generalized Hund-case transitions from spin-lab-momentum coupling to various spin-rotor correlations. G. A. Herzberg, Electronic Spectra of Polyatomic Molecules, (Von Norstrand Rheinhold 1966) p. 246. W G. Harter and C. W Patterson, Phys. Rev. A 19, 2277 (1979) W. G. Harter, Phys. Rev. A 24, 192 (1981). Ch. J. Borde, J. Borde, Ch. Breant, Ch. Chardonnet, A. Van Lerberghe, and Ch. Salomon, in Laser Spectroscopy VII, T. W Hensch and Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985). O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, J. Opt. Soc. Am. B 10, 1521 (1993). O. Pfister, Ch. Chardonnet, and Ch. J. Bordè, Phys. Rev. Lett. 76, 4516 (1996) S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen, Phys. Chem. Chem. Phys.7, 573 (2005)

  12. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  13. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    NASA Technical Reports Server (NTRS)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  14. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases.

    PubMed

    Bártová, Eva; Pacherník, Jirí; Harnicarová, Andrea; Kovarík, Ales; Kovaríková, Martina; Hofmanová, Jirina; Skalníková, Magdalena; Kozubek, Michal; Kozubek, Stanislav

    2005-11-01

    The effects of the histone deacetylase inhibitors (HDACi) trichostatin A (TSA) and sodium butyrate (NaBt) were studied in A549, HT29 and FHC human cell lines. Global histone hyperacetylation, leading to decondensation of interphase chromatin, was characterized by an increase in H3(K9) and H3(K4) dimethylation and H3(K9) acetylation. The levels of all isoforms of heterochromatin protein, HP1, were reduced after HDAC inhibition. The observed changes in the protein levels were accompanied by changes in their interphase patterns. In control cells, H3(K9) acetylation and H3(K4) dimethylation were substantially reduced to a thin layer at the nuclear periphery, whereas TSA and NaBt caused the peripheral regions to become intensely acetylated at H3(K9) and dimethylated at H3(K4). The dispersed pattern of H3(K9) dimethylation was stable even at the nuclear periphery of HDACi-treated cells. After TSA and NaBt treatment, the HP1 proteins were repositioned more internally in the nucleus, being closely associated with interchromatin compartments, while centromeric heterochromatin was relocated closer to the nuclear periphery. These findings strongly suggest dissociation of HP1 proteins from peripherally located centromeres in a hyperacetylated and H3(K4) dimethylated environment. We conclude that inhibition of histone deacetylases caused dynamic reorganization of chromatin in parallel with changes in its epigenetic modifications.

  15. Substituting water for chlorofluorocarbon liquid in density measuring baths for nuclear weapon components on non-fissile alloys

    SciTech Connect

    Beitscher, S.; Palachek, A.D.

    1991-09-23

    This project was part of a Rocky Flats Plant and Department of Energy weapons complex effort to reduce release of hazardous materials to the atmosphere. Experiments were performed to determine whether deionized water could be substituted for trichlorotrifluoroethane (CFC 113) in the bath of a density measuring system. In the first experiment, 14 parts of seven types were tested: They included shells of beryllium, vanadium, titanium, stainless steel, uranium, a uranium alloy, and casting feed strips of a uranium alloy. Each part was measured for density five times in each medium. The entire experiment was repeated -- the only change being addition of a wetting agent to the water. Two additional experiments were confided to the uranium alloy casting feed strips. As a result of this study, it is recommended that CFC be discontinued as a bath medium for the part types studied in this investigation and that deionized water be substituted.

  16. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    SciTech Connect

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.

  17. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  18. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    SciTech Connect

    Slovic, P.; Layman, M.; Kraus, N.N.; Chalmers, J.; Gesel, G.; Flynn, J.

    1989-07-01

    This paper describes a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to ``unfortunate events`` associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is that of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigmatization are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development.

  19. Dedicated-site, interim storage of high-level nuclear waste as part of the management system

    PubMed Central

    Zen, E-an

    1980-01-01

    Dedicated-site interim storage of high-level reprocessed nuclear waste and of spent fuel rods is proposed as a long-term integral part of the systems approach of the national nuclear waste isolation program. Separation of interim sites for retrievable storage from permanent-disposal repositories should enhance ensurance of the performance of the latter; maintenance of retrievability at separate sites also has many advantages in both safety and possible use of waste as resources. Interim storage sites probably will not be needed beyond about 100 years from now, so the institutional and technical considerations involved in their choice should be much less stringent than those for the selection of permanent sites. Development of interim sites must be concurrent with unabated effort to identify and to develop permanent repositories. PMID:16592904

  20. Iso standardization of theoretical activity evaluation method for low and intermediate level activated waste generated at nuclear power plants

    SciTech Connect

    Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand; Bonne, Sebastien; Pillette-Cousin, Lucien; Leganes, Jose Luis; Volmert, Ben; James, David W.

    2013-07-01

    Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied as an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of

  1. Operational level for unconditional release of contaminated property from affected areas around Fukushima Daiichi nuclear power plant.

    PubMed

    Ogino, Haruyuki; Hattori, Takatoshi

    2013-12-01

    This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm(-2) for (134)Cs and (137)Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement.

  2. Operational level for unconditional release of contaminated property from affected areas around Fukushima Daiichi nuclear power plant

    PubMed Central

    Ogino, Haruyuki; Hattori, Takatoshi

    2013-01-01

    This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575

  3. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells.

    PubMed

    Kim, Nam Hee; Cha, Yong Hoon; Kang, Shi Eun; Lee, Yoonmi; Lee, Inhan; Cha, So Young; Ryu, Joo Kyung; Na, Jung Min; Park, Changbum; Yoon, Ho-Geun; Park, Gyeong-Ju; Yook, Jong In; Kim, Hyun Sil

    2013-05-15

    p53 is a bona fide tumor suppressor gene whose loss of function marks the most common genetic alteration in human malignancy. Although the causal link between loss of p53 function and tumorigenesis has been clearly demonstrated, the mechanistic links by which loss of p53 potentiates oncogenic signaling are not fully understood. Recent evidence indicates that the microRNA-34 (miR-34) family, a transcriptional target of the p53, directly suppresses a set of canonical Wnt genes and Snail, resulting in p53-mediated suppression of Wnt signaling and the EMT process. In this study, we report that p53 regulates GSK-3β nuclear localization via miR-34-mediated suppression of Axin2 in colorectal cancer. Exogenous miR-34a decreases Axin2 UTR-reporter activity through multiple binding sites within the 5' and 3' UTR of Axin2. Suppression of Axin2 by p53 or miR-34 increases nuclear GSK-3β abundance and leads to decreased Snail expression in colorectal cancer cells. Conversely, expression of the non-coding UTR of Axin2 causes depletion of endogenous miR-34 via the miR-sponge effect together with increased Axin2 function, supporting that the RNA-RNA interactions with Axin2 transcripts act as an endogenous decoy for miR-34. Further, RNA transcripts of miR-34 target were correlated with Axin2 in clinical data set of colorectal cancer patients. Although the biological relevance of nuclear GSK-3 level has not been fully studied, our results demonstrate that the tumor suppressor p53/miR-34 axis plays a role in regulating nuclear GSK-3 levels and Wnt signaling through the non-coding UTR of Axin2 in colorectal cancer.

  4. An international initiative on long-term behavior of high-level nuclear waste glass

    SciTech Connect

    Gin, Stephane; Criscenti, Louise J.; Ebert, W. L.; Ferrand, Karine; Geisler, Thorsten; Harrison, Mike T.; Inagaki, Yaohiro; Mitsui, Seiichiro; Mueller, Karl T.; Marra, James C.; Pantano, Carlo G.; Pierce, Eric M.; Ryan, Joseph V.; Schofield, James M.; Steefel, Carl I.; Vienna, John D.

    2013-06-01

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  5. Thoron activity level and radon measurement by a nuclear track detector.

    PubMed

    Planinić, J; Faj, Z; Vuković, B

    1993-03-01

    Radon activity concentrations in the air were measured with LR-115 nuclear track detectors at three locations in Osijek. The respective equilibrium factors and the effective dose equivalents were determined. Indoor concentrations were from 9.8 to 58.2 Bq m-3 and relative errors of the track etching method were near 19 per cent. The indoor alpha potential energy of the radon and thoron progenies was measured with an ISD detector. Independent measurements, performed with a Radhome semiconductor detector, showed that the indoor thoron concentration was nearly 20 per cent of the radon one.

  6. Serum Preadipocyte Factor 1 Levels Are Not Associated with Bone Mineral Density among Healthy Postmenopausal Korean Women

    PubMed Central

    Choi, Hoon Sung; Kim, Sang-Wook

    2017-01-01

    Background Multipotent mesenchymal stem cells can differentiate into adipocytes or osteoblasts through closely regulated lineage-control processes. However, adipocyte precursor cells release preadipocyte factor 1 (Pref-1), which inhibits the differentiation of mesenchymal stem cells into mature adipocytes and osteoblasts. Previous studies have also reported an inverse association between Pref-1 levels and bone mineral density (BMD) among patients with anorexia nervosa. Methods In this retrospective study, we examined the correlations between Pref-1 levels and BMD among 124 healthy postmenopausal women (>50 years old). The patients had provided information regarding their clinical characteristics, and underwent blood testing and serum Pref-1 testing. Results The subjects' mean age was 59.9±7.1 years and the median time since menopause onset was 9.1 years. A history of osteoporotic fracture was identified in 23 subjects (19%). Serum Pref-1 levels were not significantly correlated with BMD values at the lumbar spine (R2=0.038, P=0.109), femur neck (R2=0.017, P=0.869), and total hip (R2=0.041, P=0.09), and multivariate analyses with adjustment for age and body mass index also did not detect any significant correlations. Subgroup analyses according to a history of fracture also did not detect significant associations between Pref-1 levels and BMD values. Conclusion In our study population, it does not appear that serum Pref-1 levels are significantly associated with BMD values and osteoporosis. PMID:28256115

  7. Are plant-based diets efficacious in lowering total serum cholesterol and low-density lipoprotein levels?

    PubMed

    Ware, Kathrine M

    2014-06-01

    Cardiovascular disease is a leading cause of morbidity and mortality in the U.S. and around the globe. A large body of literature accumulated over the past several decades has shown the benefit of lowering serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels to reduce cardiovascular risk. National guidelines suggest therapeutic lifestyle changes, beginning with diet, as a first step toward lowering TC and LDL-C. It has been suggested a plant-based, low fat diet can substantially reduce TC and LDL- C and thereby reduce risk of cardiovascular disease. The purpose of this review is to examine the state of the science regarding the efficacy of plant-based diets in reducing serum TC and LDL-C levels. While results of the research review indicate some benefit, strong evidence supporting the efficacy of plant-based diet in reducing atherogenic lipids is lacking.

  8. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    SciTech Connect

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  9. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  10. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  11. Weyl fermions with arbitrary monopoles in magnetic fields: Landau levels, longitudinal magnetotransport, and density-wave ordering

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Roy, Bitan; Das Sarma, S.

    2016-11-01

    We theoretically address the effects of strong magnetic fields in three-dimensional Weyl semimetals (WSMs) built out of Weyl nodes with a monopole charge n . For n =1 , 2, and 3 we realize single, double, and triple WSM, respectively, and the monopole charge n determines the integer topological invariant of the WSM. Within the linearized continuum description, the quasiparticle spectrum is then composed of Landau levels (LLs), containing exactly n number of chiral zeroth Landau levels (ZLLs), irrespective of the orientation of the magnetic field. In the presence of strong backscattering, for example (due to quenched disorder associated with random impurities), these systems generically give rise to longitudinal magnetotransport. Restricting ourselves to the quantum limit (and assuming only the subspace of the ZLLs to be partially filled) and mainly accounting for Gaussian impurities, we show that the longitudinal magnetoconductivity (LMC) in all members of the Weyl family displays a positive linear-B scaling when the field is applied along the axis that separates the Weyl nodes. But, in double and triple WSM, LMC displays a smooth crossover to a nonlinear B dependence as the field is tilted away from such a high-symmetry direction. In addition, due to the enhanced density of states, the LL quantization can trigger instabilities toward the formation of translational symmetry-breaking density-wave orderings for sufficiently weak interaction (BCS instability), which gaps out the ZLLs. Concomitantly as the temperature (magnetic field) is gradually decreased (increased) the LMC becomes negative. Thus WSMs with arbitrary monopole charge (n ) can host an intriguing interplay of LL quantization, longitudinal magnetotransport (a possible manifestation of one-dimensional chiral or axial anomaly), and density-wave ordering, when placed in a strong magnetic field.

  12. Estimation of Ground-Level Radioisotope Distributions for Underground Nuclear Test Leakage

    SciTech Connect

    Ely, James H.; Fast, James E.; Seifert, Carolyn E.; Warren, Glen A.

    2009-06-19

    On-site inspections (OSI) will be an important process to deter and help verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An important tool in narrowing the possible locations to collect evidence of a nuclear test during an on-site inspection may be over-flights of the general area using aerial gamma spectroscopy which can measure the energy and intensity of gamma radiation and help identify areas that may warrant further investigation of areas of high concentrations of radioactivity. This paper will investigate the capabilities of gamma ray detectors that are typically used in aerial searches. Modeling and simulation results of the detector response for radionuclide species for an OSI will be presented for a variety of assumed releases, depositions on the ground, and times after a suspected Treaty violation for typical over flight heights and speeds. This data will provide information on the possible applicability for airborne spectroscopy and the challenges and limitations of this tool for OSI. Of particular interest will be analysis of the data for gross count, regions of interest, and isotope identification types of algorithms and the characteristics of each.

  13. Validity of a Novel Method for Estimation of Low-Density Lipoprotein Cholesterol Levels in Diabetic Patients

    PubMed Central

    Chaen, Hideto; Kinchiku, Shigesumi; Kajiya, Shoko; Uenomachi, Hitoshi; Yuasa, Toshinori; Takasaki, Kunitsugu; Ohishi, Mitsuru

    2016-01-01

    Aim: Low-density lipoprotein cholesterol (LDL-C) is routinely estimated using the Friedewald equation [LDL-C(F)]. A novel method for LDL-C [LDL-C(M)] estimation recently proposed by Martin et al. was reported to be more accurate than the Friedewald formula in subjects in the United States. The validity of LDL-C(M) in different races and patients with diabetes mellitus (DM) has not been elucidated. The purpose of this study was to validate the LDL-C(M) estimates in Japanese population with type 2 DM by comparing with LDL-C(F) and directly measured LDL-C [LDL-C(D)]. Methods: Both LDL-C(M) and LDL-C(F) levels were compared against LDL-C(D) measured by selective solubilization method in 1,828 Japanese patients with type 2 DM. Results: On linear regression analysis, LDL-C(M) showed a stronger correlation than that shown by LDL-C(F) (R = 0.979 vs. R = 0.953, respectively) with LDL-C(D). We further analyzed the effect of serum triglyceride (TG) concentrations on the accuracy of LDL-C(F) and LDL-C(M). Although LDL-C levels showed a positive correlation with TG levels, the LDL-C(F) levels tended to show a greater divergence from LDL-C(D) levels than that shown by LDL-C(M) with changes in TG levels. Conclusion: We for the first time demonstrated a more useful measurement of LDL-C levels estimated by Martin's method than that estimated by the Friedewald equation in Japanese patients with DM. PMID:27592628

  14. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    SciTech Connect

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

  15. [Transport processes of low-level radioactive liquid effluent of nuclear power station in closed water body].

    PubMed

    Wu, Guo-Zheng; Xu, Zong-Xue

    2012-07-01

    The transport processes of low-level radioactive liquid effluent of Xianning nuclear power station in the closed water body Fushui Reservoir are simulated using the EFDC model. Six nuclides concentration distribution with different half-lives in the reservoir are analyzed under the condition of 97% guarantee rate incoming water and four-running nuclear power units. The results show that the nuclides concentration distribution is mainly affected by the flow field of the reservoir and the concentration is decided by the half-lives of nuclide and the volume of incoming water. In addition, the influence region is enlarged as increasing of half-life and tends to be stable when the half-life is longer than 5 years. Moreover, the waste water discharged from the outlet of the nuclear power plant has no effect on the water-intake for the outlet located at the upstream of the water-intake and the flow field flows to the dam of the reservoir.

  16. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels

    PubMed Central

    Schraivogel, Daniel; Schindler, Susann G.; Danner, Johannes; Kremmer, Elisabeth; Pfaff, Janina; Hannus, Stefan; Depping, Reinhard; Meister, Gunter

    2015-01-01

    MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to distinct target mRNAs leading to translational repression and mRNA decay. Ago proteins interact with a member of the GW protein family, referred to as TNRC6A-C in mammals, which coordinate downstream gene-silencing processes. The cytoplasmic functions of TNRC6 and Ago proteins are reasonably well established. Both protein families are found in the nucleus as well. Their detailed nuclear functions, however, remain elusive. Furthermore, it is not clear which import routes Ago and TNRC6 proteins take into the nucleus. Using different nuclear transport assays, we find that Ago as well as TNRC6 proteins shuttle between the cytoplasm and the nucleus. While import receptors might function redundantly to transport Ago2, we demonstrate that TNRC6 proteins are imported by the Importin-β pathway. Finally, we show that nuclear localization of both Ago2 and TNRC6 proteins can depend on each other suggesting actively balanced cytoplasmic Ago – TNRC6 levels. PMID:26170235

  17. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    SciTech Connect

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S.; Strange, Mikkel; Solomon, Gemma C.

    2013-11-14

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  18. Sulfate radical oxidation of aromatic contaminants: a detailed assessment of density functional theory and high-level quantum chemical methods.

    PubMed

    Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M

    2017-03-22

    Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO4˙(-)) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO4˙(-) in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO4˙(-)-driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO4˙(-)-driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH(-) additions than for SO4˙(-) reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO4˙(-) and other inorganic species.

  19. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels

    PubMed Central

    Cohen, Jonathan C.; Pertsemlidis, Alexander; Fahmi, Saleemah; Esmail, Sophie; Vega, Gloria L.; Grundy, Scott M.; Hobbs, Helen H.

    2006-01-01

    An approach to understand quantitative traits was recently proposed based on the finding that nonsynonymous (NS) sequence variants in certain genes are preferentially enriched at one extreme of the population distribution. The NS variants, although individually rare, are cumulatively frequent and influence quantitative traits, such as plasma lipoprotein levels. Here, we use the NS variant technique to demonstrate that genetic variation in NPC1L1 contributes to variability in cholesterol absorption and plasma levels of low-density lipoproteins (LDLs). The ratio of plasma campesterol (a plant sterol) to lathosterol (a cholesterol precursor) was used to estimate relative cholesterol absorption in a population-based study. Nonsynonymous sequence variations in NPC1L1 were five times more common in low absorbers (n = 26 of 256) than in high absorbers (n = 5 of 256) (P < 0.001). The rare variants identified in low absorbers were found in 6% of 1,832 African-Americans and were associated with lower plasma levels of LDL cholesterol (LDL-C) (96 ± 36 mg/dl vs. 105 ± 36 mg/dl; P = 0.005). These data, together with prior findings, reveal a genetic architecture for LDL-C levels that does not conform to current models for quantitative traits and indicate that a significant fraction of genetic variance in LDL-C is due to multiple alleles with modest effects that are present at low frequencies in the population. PMID:16449388

  20. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  1. Geotechnical modeling of high-level nuclear waste disposal by rock melting

    SciTech Connect

    Heuze, F.E.

    1981-12-01

    A new strategy has been developed for the geotechnical modeling of nuclear waste disposal by rock melting (DRM). Three seeparate tasks were performed to reach this objective: a review of the four scenarios which have been proposed for DRM, to date; an evaluation of computer-based numerical models which could be used to analyze the mechanical, thermal, and hydraulic processes involved in DRM; and a critical review of rock mass properties which are relevant to the design and safety of waste disposal by rock melting. It is concluded that several geotechnical aspects of DRM can be studied realistically with current state-of-the-art model capabilities and knowledge of material properties. The next step in the feasibility study of DRM should be a best-estimate calculation of the four cavity-melt and canister-burial concepts. These new analyses will indicate the most critical areas for subsequent research.

  2. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  3. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  4. Levels of tritium in soils and vegetation near Canadian nuclear facilities releasing tritium to the atmosphere: implications for environmental models.

    PubMed

    Thompson, P A; Kwamena, N-O A; Ilin, M; Wilk, M; Clark, I D

    2015-02-01

    Concentrations of organically bound tritium (OBT) and tritiated water (HTO) were measured over two growing seasons in vegetation and soil samples obtained in the vicinity of four nuclear facilities and two background locations in Canada. At the background locations, with few exceptions, OBT concentrations were higher than HTO concentrations: OBT/HTO ratios in vegetation varied between 0.3 and 20 and values in soil varied between 2.7 and 15. In the vicinity of the four nuclear facilities OBT/HTO ratios in vegetation and soils deviated from the expected mean value of 0.7, which is used as a default value in environmental transfer models. Ratios of the OBT activity concentration in plants ([OBT]plant) to the OBT activity concentration in soils ([OBT]soil) appear to be a good indicator of the long-term behaviour of tritium in soil and vegetation. In general, OBT activity concentrations in soils were nearly equal to OBT activity concentrations in plants in the vicinity of the two nuclear power plants. [OBT]plant/[OBT]soil ratios considerably below unity observed at one nuclear processing facility represents historically higher levels of tritium in the environment. The results of our study reflect the dynamic nature of HTO retention and OBT formation in vegetation and soil during the growing season. Our data support the mounting evidence suggesting that some parameters used in environmental transfer models approved for regulatory assessments should be revisited to better account for the behavior of HTO and OBT in the environment and to ensure that modelled estimates (e.g., plant OBT) are appropriately conservative.

  5. Non-high-density lipoprotein cholesterol (non-HDL-C) levels in children with nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Alkhouri, Naim; Eng, Katharien; Lopez, Rocio; Nobili, Valerio

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with increased cardiovascular disease (CVD) risk in children. Non-high density lipoprotein-cholesterol (non-HDL-C) has been shown to be a good predictor of cardiovascular events. Recent data in adults found non-alcoholic steatohepatitis (NASH) to be associated with significantly higher levels of non-HDL-C than simple steatosis, suggestive it might be used as a non-invasive tool to diagnose NASH. The goal of our study was to assess non-HDL-C levels in children with NAFLD. Our cohort consisted of pediatric patients with biopsy-proven NAFLD. Anthropometric, laboratory, and histologic data were obtained on all patients. Univariable analysis was performed to assess differences in clinical characteristics between groups. Spearman rank correlation coefficients were calculated to assess the correlation between non-HDL-C levels and clinical variables. ANCOVA was used to adjust for possible confounders. 302 subjects with NAFLD were included in our study; 203 with NASH and 99 without NASH. Subjects with NASH had significantly higher non-HDL-C levels than those without (p = 0.004). Histologic features of NASH, including ballooning, inflammation, and fibrosis were found to be weakly correlated with non-HDL-C levels, (p < 0.05 for all). After adjusting for the presence of metabolic syndrome (MetS), ALT, and GGT, the association between non-HDL-C and NASH was not significant (p = 0.66). In Conclusion, non-HDL-C levels are higher in children with NASH than those with simple steatosis, suggesting increased CVD risk. This may be a reflection of the higher prevalence of MetS. Non-HDL-C had a positive association with histologic features of NASH.

  6. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  7. Using secondary nuclear products for inferring the fuel areal density, convergence, and electron temperatures of deuterium filled implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Kabadi, N. V.; Sutcliffe, G.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Rinderknecht, H. G.; Sayre, D. B.; Yeamans, C. B.; Khan, S. F.; Kyrala, G. A.; Lepape, S.; Berzak-Hopkins, L.; Meezan, N.; Bionta, R.; Ma, T.

    2016-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T born from the primary DD reaction branches can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence, and an electron temperature (Te) simultaneously. This technique has been used on a myriad of deuterium filled implosion experiments on the NIF using the nuclear time of flight (NTOF) diagnostics to measure the secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the secondary D3He protons. Additionally, a comparative study is conducted between the nuclear inferred convergence and x-ray inferred convergence obtained on these experiments. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  8. Relationship between serum leptin levels and bone mineral density and bone metabolic markers in patients on hemodialysis.

    PubMed

    Ahmadi, Farokhlagha; Salari, Sina; Maziar, Sima; Esfahanian, Fateme; Khazaeipour, Zahra; Ranjbarnovin, Neda

    2013-01-01

    Leptin is the protein product of the obesity gene, which is produced in fat tissue. It was originally thought to be involved only in the regulation of food intake and energy balance. We aimed to investigate the relationship of serum leptin levels with bone mineral density (BMD) and biochemical markers of bone turnover in patients on hemodialysis (HD). This study included 72 patients (43 males and 29 females), whose mean age was 55.1 ± 11.4 years, mean body mass index was 23.13 ± 2.75 kg/m 2 and mean duration on HD was 5 ± 3.4 years. The BMD values were calculated using dual-energy X-ray absorptiometry (DEXA) at the femoral neck and lumbar spine. Blood samples were taken for leptin, intact parathyroid hormone (I-PTH), bone alkaline phosphatase (BAP), calcium (Ca), phosphate (P) and albumin. The leptin levels were higher in females than in males (22.3 ± 19.6 vs 20.8 ± 23), but this difference was not significant. The serum leptin level had a strong positive correlation with Ca levels in the female patients (r = 0.659 and P = 0.01) and a negative correlation with albumin levels (r = -0.461 and P = 0.01). No correlation was found with age, BMI, duration on dialysis, BMD and serum levels of PTH, BAP and P for the entire patient group or either gender separately. The serum leptin level was significantly lower in females with PTH >300 pg/mL when compared with patients with PTH = 100-300 pg/mL (86 ± 85 vs 47 ± 48) (P = 0.011).Women with BAP <300 IU/L had significantly higher serum leptin than those with BAP 300-600 IU/L (P = 0.024). Women with Ca <8.5 mg/dL had significantly lower serum leptin levels compared with those with Ca levels of 8.5-10.5 mg/dL (P = 0.011). There was no significant difference between the two genders among variables such as age, BMI, duration on dialysis, serum leptin, I-PTH, Ca, P, BAP, albumin and BMD of the femoral neck and lumbar spine.

  9. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    PubMed Central

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors. PMID:27611778

  10. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  11. Tobacco outlet density and demographics at the tract level of analysis in Iowa: implications for environmentally based prevention initiatives.

    PubMed

    Schneider, John E; Reid, Robert J; Peterson, N Andrew; Lowe, John B; Hughey, Joseph

    2005-12-01

    This study assessed the geographic association between tobacco outlet density and three demographic correlates-income, race, and ethnicity-at the tract level of analysis for one county in the Midwestern United States. Data for residential census tracts in a Midwestern U.S. county were derived from year 2003 licenses for 474 tobacco outlets. Demographic variables were based on 2000 census data. Census tracts with lower median household income, higher percent of African American residents, and higher percent of Latinos residents had greater density of tobacco selling retail outlets. Areas characterized by lower income and disproportionately more African Americans and Latinos have greater physical access to tobacco products. Physical access to tobacco is a critical public-health issue because, given that smokers have been shown to be price sensitive, lowering access costs (e.g., reduced travel time) is likely to increase consumption. Findings also suggest the need for structural or environmental interventions, i.e., tobacco outlet zoning laws, to mitigate the health consequences associated with tobacco use in certain populations and geographic regions.

  12. Evaluation of training programs and entry-level qualifications for nuclear-power-plant control-room personnel based on the systems approach to training

    SciTech Connect

    Haas, P M; Selby, D L; Hanley, M J; Mercer, R T

    1983-09-01

    This report summarizes results of research sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to initiate the use of the Systems Approach to Training in the evaluation of training programs and entry level qualifications for nuclear power plant (NPP) personnel. Variables (performance shaping factors) of potential importance to personnel selection and training are identified, and research to more rigorously define an operationally useful taxonomy of those variables is recommended. A high-level model of the Systems Approach to Training for use in the nuclear industry, which could serve as a model for NRC evaluation of industry programs, is presented. The model is consistent with current publically stated NRC policy, with the approach being followed by the Institute for Nuclear Power Operations, and with current training technology. Checklists to be used by NRC evaluators to assess training programs for NPP control-room personnel are proposed which are based on this model.

  13. Pigeons: A Novel GUI Software for Analysing and Parsing High Density Heterologous Oligonucleotide Microarray Probe Level Data

    PubMed Central

    Lai, Hung-Ming; May, Sean T.; Mayes, Sean

    2014-01-01

    Genomic DNA-based probe selection by using high density oligonucleotide arrays has recently been applied to heterologous species (Xspecies). With the advent of this new approach, researchers are able to study the genome and transcriptome of a non-model or an underutilised crop species through current state-of-the-art microarray platforms. However, a software package with a graphical user interface (GUI) to analyse and parse the oligonucleotide probe pair level data is still lacking when an experiment is designed on the basis of this cross species approach. A novel computer program called Pigeons has been developed for customised array data analysis to allow the user to import and analyse Affymetrix GeneChip® probe level data through XSpecies. One can determine empirical boundaries for removing poor probes based on genomic hybridisation of the test species to the Xspecies array, followed by making a species-specific Chip Description File (CDF) file for transcriptomics in the heterologous species, or Pigeons can be used to examine an experimental design to identify potential Single-Feature Polymorphisms (SFPs) at the DNA or RNA level. Pigeons is also focused around visualization and interactive analysis of the datasets. The software with its manual (the current release number version 1.2.1) is freely available at the website of the Nottingham Arabidopsis Stock Centre (NASC). PMID:27605027

  14. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans.

    PubMed

    Yukawa, G S; Mune, M; Otani, H; Tone, Y; Liang, X-M; Iwahashi, H; Sakamoto, W

    2004-01-01

    Since little is known about how coffee intake affects low-density lipoprotein (LDL) oxidative susceptibility and serum lipid levels, we conducted an in vivo study in 11 healthy male students of Wakayama Medical University aged between 20 and 31 years fed an average Japanese diet. On days 1-7 of the study, the subjects drank mineral water. On day 7, the subjects began drinking coffee, 24 g total per day, for one week. This was followed by a one week "washout period" during which mineral water was consumed. Fasting peripheral venous blood samples were taken at the end of each one-week period. LDL oxidation lag time was approximately 8% greater (p < 0.01) after the coffee drinking period than the other periods. Serum levels of total cholesterol and LDL-cholesterol (LDL-C) and malondialdehyde (MDA) as thiobarbituric acid reactive substances (TBARS) were significantly decreased after the coffee drinking period. Finally, regular coffee ingestion may favorably affect cardiovascular risk status by modestly reducing LDL oxidation susceptibility and decreasing LDL-cholesterol and MDA levels.

  15. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women

    PubMed Central

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47–78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  16. Design of a Particle Shadow-graph Velocimetry and Size (PSVS) System to Determine Particle Size and Density Distributions in Hanford Nuclear Tank Wastes - 12280

    SciTech Connect

    Fountain, M.S.; Blanchard, J.; Erikson, R.L.; Kurath, D.E.; Howe, D.T.; Adkins, H.; Jenks, J.

    2012-07-01

    Accurate particle size and density distributions for nuclear tank waste materials are essential information that helps determine the engineering requirements for a host of waste management unit operations (e.g., tank mixing, pipeline transport, and filtration). The most prevalent approach for determining particle size and density distribution is highly laborious and involves identifying individual particles using scanning electron microscope/x-ray diffraction and then acquiring the density of the materials from the technical literature. Other methods simply approximate individual particle densities by assuming chemical composition, rather than obtaining actual measurements of particle density. To overcome these limitations, a Particle Shadow-graph Velocimetry and Size (PSVS) system has been designed to simultaneously obtain particle size and density distributions for a broad range of Hanford tank waste materials existing as both individual particles and agglomerates. The PSVS system uses optical hardware, a temperature-controlled settling column, and particle introduction chamber to accurately and reproducibly obtain images of settling particles. Image analysis software provides a highly accurate determination of both particle terminal velocity and equivalent spherical particle diameter. The particle density is then calculated from Newton's terminal settling theory. The PSVS system was designed to accurately image particle/agglomerate sizes between 10 and 1000 μm and particle/agglomerate densities ranging from 1.4 to 11.5 g/cm{sup 3}, where the maximum terminal velocity does not exceed 10 cm/s. Preliminary testing was completed with standard materials and results were in good agreement with terminal settling theory. Recent results of this method development are presented, as well as experimental design. The primary goal of these PSVS system tests was to obtain accurate and reproducible particle size and velocity measurements to estimate particle densities within

  17. Open-beauty production in pPb collisions at √{sNN}=5 TeV: Effect of the gluon nuclear densities

    NASA Astrophysics Data System (ADS)

    Conesa del Valle, Z.; Ferreiro, E. G.; Fleuret, F.; Lansberg, J. P.; Rakotozafindrabe, A.

    2014-06-01

    We present our results on open-beauty production in proton-nucleus collisions for the recent LHC pPb run at √{sNN}=5 TeV. We have analyzed the effect of the modification of the gluon PDFs in a nucleus at the level of the nuclear modification factor. Because of the absence of measurements in pp collisions at the same collision energy, √{sNN}, we also propose the study of the forward-to-backward yield ratio in which the unknown proton-proton yield cancels. Our results are compared with the data obtained by the LHCb collaboration and show a good agreement.

  18. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    SciTech Connect

    Skacel, S. T.; Kaiser, Ch.; Wuensch, S.; Siegel, M.; Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G.; Ustinov, A. V.

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  19. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    SciTech Connect

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC

  20. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. From charged particle density to jet quenching

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    2016-03-01

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- pT hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central Au+Au collisions at sqrt{s_{NN}} = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at sqrt{s_{NN}} = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, η/s≈ 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p+A, d+ Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both

  1. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE PAGES

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and

  2. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease

    PubMed Central

    2010-01-01

    Background The search for sickle cell disease (SCD) prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C) in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P < 0.001), hematocrit (P < 0.001) and total cholesterol (P < 0.001) and a negative significant association with reticulocytes (P = 0.046), leukocytes (P = 0.015), monocytes (P = 0.004) and platelets (P = 0.005), bilirubins [total bilirubin (P < 0.001), direct bilirubin (P < 0.001) and indirect bilirubin (P < 0.001], iron (P < 0.001), aminotransferases [aspartate aminotransferase (P = 0.004), alanine aminotransferase (P = 0.035)], lactate dehydrogenase (P < 0.001), urea (P = 0.030), alpha 1-antitrypsin (P < 0.001), very low-density lipoprotein cholesterol (P = 0.003), triglycerides (P = 0.005) and hemoglobin S (P = 0.002). Low high-density lipoprotein cholesterol concentration was associated with the history of cardiac abnormalities (P = 0.025), pneumonia (P = 0.033) and blood transfusion use (P = 0.025). Lipids and inflammatory markers were associated with the presence of cholelithiasis. Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic

  3. Effect of tomato consumption on high-density lipoprotein cholesterol level: a randomized, single-blinded, controlled clinical trial

    PubMed Central

    Cuevas-Ramos, Daniel; Almeda-Valdés, Paloma; Chávez-Manzanera, Emma; Meza-Arana, Clara Elena; Brito-Córdova, Griselda; Mehta, Roopa; Pérez-Méndez, Oscar; Gómez-Pérez, Francisco J

    2013-01-01

    Introduction Epidemiologic evidence suggests that tomato-based products could reduce the risk of cardiovascular diseases. One of the main cardiovascular risk factors is low levels of high-density lipoprotein cholesterol (HDL-C). This study aimed to prospectively evaluate the effect of tomato consumption on HDL-C levels. Subject and methods We conducted a randomized, single-blinded, controlled clinical trial. We screened 432 subjects with a complete lipid profile. Those individuals with low HDL-C (men <40 mg/dL and women <50 mg/dL) but normal triglyceride levels (<150 mg/dL) were included. Selected participants completed a 2-week run-in period on an isocaloric diet and then were randomized to receive 300 g of cucumber (control group) or two uncooked Roma tomatoes a day for 4 weeks. Results A total of 50 individuals (women = 41; 82%) with a mean age of 42 ± 15.5 years and a mean body mass index of 27.6 ± 5.0 kg/m2 completed the study. A significant increase in HDL-C levels was observed in the tomato group (from 36.5 ± 7.5 mg/dL to 41.6 ± 6.9 mg/dL, P < 0.0001 versus the control group). After stratification by gender, the difference in HDL-C levels was only significant in women. The mean HDL-C increase was 5.0 ± 2.8 mg/dL (range 1–12 mg/dL). Twenty patients (40%) finished the study with levels >40 mg/dL. A linear regression model that adjusted for those parameters that impact HDL-C levels (age, gender, waist-to-hip ratio, body mass index, fasting triglyceride concentration, simple sugars, alcohol, physical activity, and omega-3 consumption) showed an independent association between tomato consumption and the increase in HDL-C (r2 = 0.69; P < 0.0001). Conclusion Raw tomato consumption produced a favorable effect on HDL-C levels in overweight women. PMID:23935376

  4. A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts

    NASA Astrophysics Data System (ADS)

    Mason, Lee S.

    2001-02-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kilowatts, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kilowatts. Finally, reactor power systems in the range from 100 kilowatts to 10 megawatts were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution. .

  5. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    SciTech Connect

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    1984-09-01

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management of vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.

  6. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  7. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs, D

    2007-11-15

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for {sup 137}Cs removal. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  8. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs D. T.; Poirier, M. R.; Barnes, M. J.; Stallings, M. E.; Nyman, M. D.

    2005-11-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST material.

  9. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    SciTech Connect

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-12-31

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur.

  10. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer.

    PubMed

    Santagata, Sandro; Hu, Rong; Lin, Nancy U; Mendillo, Marc L; Collins, Laura C; Hankinson, Susan E; Schnitt, Stuart J; Whitesell, Luke; Tamimi, Rulla M; Lindquist, Susan; Ince, Tan A

    2011-11-08

    Heat-shock factor 1 (HSF1) is the master transcriptional regulator of the cellular response to heat and a wide variety of other stressors. We previously reported that HSF1 promotes the survival and proliferation of malignant cells. At this time, however, the clinical and prognostic significance of HSF1 in cancer is unknown. To address this issue breast cancer samples from 1,841 participants in the Nurses' Health Study were scored for levels of nuclear HSF1. Associations of HSF1 status with clinical parameters and survival outcomes were investigated by Kaplan-Meier analysis and Cox proportional hazard models. The associations were further delineated by Kaplan-Meier analysis using publicly available mRNA expression data. Our results show that nuclear HSF1 levels were elevated in ∼80% of in situ and invasive breast carcinomas. In invasive carcinomas, HSF1 expression was associated with high histologic grade, larger tumor size, and nodal involvement at diagnosis (P < 0.0001). By using multivariate analysis to account for the effects of covariates, high HSF1 levels were found to be independently associated with increased mortality (hazards ratio: 1.62; 95% confidence interval: 1.21-2.17; P < 0.0013). This association was seen in the estrogen receptor (ER)-positive population (hazards ratio: 2.10; 95% confidence interval: 1.45-3.03; P < 0.0001). In public expression profiling data, high HSF1 mRNA levels were also associated with an increase in ER-positive breast cancer-specific mortality. We conclude that increased HSF1 is associated with reduced breast cancer survival. The findings indicate that HSF1 should be evaluated prospectively as an independent prognostic indicator in ER-positive breast cancer. HSF1 may ultimately be a useful therapeutic target in cancer.

  11. Relation between bone mineral density and IL-17 serum levels in Serbian patients with early Rheumatoid arthritis

    PubMed Central

    Dimic, Aleksandar; Milenkovic, Sasa; Krtinic, Dane; Aleksic, Ivana

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation and destruction of joint cartilage and bone. Different cytokines play important role in the processes that cause articular destruction and extra-articular manifestations in RA. The contribution of cytokines representing the Th1 (INF-γ), Th2 (IL-4) and IL-17A to the pathogenesis of early RA and bone mineral density (BMD) loss in still poorly understood. Serum samples of 38 early RA patients were evaluated for erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP) and for the tested cytokines (IL-17A, IL-4 and INF-γ). BMD was evaluated by dualenergy X-ray absorptiometry (DXA). Disease activity score (DAS28) calculation was assessed for all patients. Control serum samples were obtained from 34 healthy volunteers. The levels of tested cytokines were significantly higher (IL-17A, p<0.001; INF-γ, P<0.001; IL-4, P<0.01) in patients with early RA, compared to the healthy controls. In early RA patients, strong correlation of serum IL-17A was found with DAS28, ESR and CRP. Also, a significant negative correlation was found between serum INF-γ levels and the DAS28 score. Significantly positive correlation of BMD values and CRP, DAS28 IL-17A were also demonstrated. DXA analysis revealed that the most common site for osteoporosis was the lumbar spine followed by the femoral neck. BMD values significantly correlated with CRP, DAS28 score and IL-17A serum levels. The mean serum IL-17A levels, in patients with early RA, corresponded with disease activity, severity and BMD loss, indicating the potential usefulness of serum IL-17A in defining the disease activity and bone remodeling. PMID:28352685

  12. Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities.

    PubMed

    Schütt, Janin; Falley, Katrin; Richter, Dietmar; Kreienkamp, Hans-Jürgen; Kindler, Stefan

    2009-09-18

    Functional absence of fragile X mental retardation protein (FMRP) causes the fragile X syndrome, a hereditary form of mental retardation characterized by a change in dendritic spine morphology. The RNA-binding protein FMRP has been implicated in regulating postsynaptic protein synthesis. Here we have analyzed whether the abundance of scaffold proteins and neurotransmitter receptor subunits in postsynaptic densities (PSDs) is altered in the neocortex and hippocampus of FMRP-deficient mice. Whereas the levels of several PSD components are unchanged, concentrations of Shank1 and SAPAP scaffold proteins and various glutamate receptor subunits are altered in both adult and juvenile knock-out mice. With the exception of slightly increased hippocampal SAPAP2 mRNA levels in adult animals, altered postsynaptic protein concentrations do not correlate with similar changes in total and synaptic levels of corresponding mRNAs. Thus, loss of FMRP in neurons appears to mainly affect the translation and not the abundance of particular brain transcripts. Semi-quantitative analysis of RNA levels in FMRP immunoprecipitates showed that in the mouse brain mRNAs encoding PSD components, such as Shank1, SAPAP1-3, PSD-95, and the glutamate receptor subunits NR1 and NR2B, are associated with FMRP. Luciferase reporter assays performed in primary cortical neurons from knock-out and wild-type mice indicate that FMRP silences translation of Shank1 mRNAs via their 3'-untranslated region. Activation of metabotropic glutamate receptors relieves translational suppression. As Shank1 controls dendritic spine morphology, our data suggest that dysregulation of Shank1 synthesis may significantly contribute to the abnormal spine development and function observed in brains of fragile X syndrome patients.

  13. WDR1 and CLNK gene polymorphisms correlate with serum glucose and high-density lipoprotein levels in Tibetan gout patients.

    PubMed

    Lan, Bing; Chen, Peng; Jiri, Mutu; He, Na; Feng, Tian; Liu, Kai; Jin, Tianbo; Kang, Longli

    2016-03-01

    Current evidence suggests heredity and metabolic syndrome contributes to gout progression. Specifically, the WDR1 and CLNK genes may play a role in gout progression in European ancestry populations. However, no studies have focused on Chinese populations, especially Tibetan individuals. This study aims to determine whether variations in these two genes correlate with gout-related indices in Chinese-Tibetan gout patients. Eleven single-nucleotide polymorphisms in the WDR1 and CLNK genes were detected in 319 Chinese-Tibetan gout patients and 318 controls. We used one-way analysis of variance to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators, such as albumin, glucose (GLU), triglycerides, cholesterol, high-density lipoproteins (HDL-C), creatinine, and uric acid, from fasting venous blood samples. All p values were Bonferroni corrected. Polymorphisms of the WDR1 and CLNK genes affected multiple risk factors for gout development. Significant differences in serum GLU levels were detected between different genotypic groups with WDRI polymorphisms rs4604059 (p = 0.005) and rs12498927 (p = 0.005). In addition, significant differences in serum HDL-C levels were detected between different genotypic groups with the CLNK polymorphism rs2041215 (p = 0.001). Polymorphisms of CLNK also affected levels of albumin, triglycerides, and creatinine. This study is the first to investigate and identify positive correlations between WDR1 and CLNK gene polymorphisms in Chinese-Tibetan populations. Our findings provide significant evidence for the effect of genetic polymorphisms on gout-related factors in Chinese-Tibetan populations.

  14. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} -{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a viable

  15. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOEpatents

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  16. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  17. Nuclear phenotype evaluation in skeletal muscle from Wistar rats exposed to low-level lasers

    NASA Astrophysics Data System (ADS)

    Almeida, L. G.; Sergio, L. P. S.; Vicentini, S. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2017-03-01

    Low-level laser therapy includes devices emitting red and near-infrared radiation with output power below 100 mW. These devices are successfully used for the treatment of injuries and to improve exercise performance based on their biomodulatory effect. Despite the wide use of clinical protocols based on these lasers, the laser-induced effects on DNA are still disputed. Thus, the objective of this study was to investigate chromatin organization, ploidy degrees, and DNA fragmentation in skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. Wistar rats were exposed to low-level red and infrared lasers (25, 50, and 100 J cm‑2, 100 mW, continuous-wave emission mode) and, after 24h, samples of this tissue were withdrawn for the analysis of chromatin organization, ploidy degrees, and DNA fragmentation by Feulgen reaction detection of micronucleus, and apoptosis by TUNEL assay. Data obtained show that low-level red and infrared lasers alter geometric and densitometric parameters as well ploidy degree in muscle nuclei from Wistar rats, but do not induce DNA fragmentation, chromatin loss, and apoptosis at fluences taken out from clinical protocols.

  18. Cooper pairs in the Borromean nuclei 6He and 11Li using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.

    2017-03-01

    A Borromean nucleus is a bound three-body system which is pairwise unbound because none of the two-body subsystem interactions are strong enough to bind them in pairs. As a consequence, the single-particle spectrum of a neutron in the core of a Borromean nucleus is purely continuum, similarly to the spectrum of a free neutron, but two valence neutrons are bound up in such a core. Most of the usual approaches do not use the true continuum to solve the three-body problem but use a discrete basis, like for example, wave functions in a finite box. In this paper the proper continuum is used to solve the pairing Hamiltonian in the continuum spectrum of energy by using the single particle level density devoid of the free gas. It is shown that the density defined in this way modulates the pairing in the continuum. The partial-wave occupation probabilities for the Borromean nuclei 6He and 11Li are calculated as a function of the pairing strength. While at the threshold strength the (s1/2) 2 and (p3/2) 2 configurations are equally important in 6He, the (s1/2) 2 configuration is the main one in 11Li. For very small strength the (s1/2) 2 configuration becomes the dominant in both Borromean nuclei. At the physical strength, the calculated wave function amplitudes show a good agreement with other methods and experimental data which indicates that this simple model grasps the essence of the pairing in the continuum.

  19. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  20. Correlating the Local Defect-Level Density with the Macroscopic Composition and Energetics of Chalcopyrite Thin-Film Surfaces.

    PubMed

    Bröker, Sebastian; Kück, Dennis; Timmer, Alexander; Lauermann, Iver; Ümsür, Bünyamin; Greiner, Dieter; Kaufmann, Christian A; Mönig, Harry

    2015-06-17

    The unusual defect chemistry of polycrystalline Cu(In,Ga)Se2 (CIGSe) thin films is a main issue for a profound understanding of recombination losses in chalcopyrite thin-film solar cells. Especially, impurity-driven passivation of electronic levels due to point defects segregating at the surface and at grain boundaries is extensively debated. By combining current imaging tunneling spectroscopy with photoelectron spectroscopy, the local defect-level density and unusual optoelectronic grain-boundary properties of this material are correlated with the macroscopic energy levels and surface composition. Vacuum annealing of different CIGSe materials provides evidence that Na diffusion from the glass substrate does not affect the surface defect passivation or grain-boundary properties of standard Cu-poor materials. Furthermore, we find no major impact on the observed thermally activated dipole compensation or the accompanying change in surface band bending (up to 0.6 eV) due to Na. In contrast, Cu-rich CIGSe shows an opposing surface defect chemistry with only minor heat-induced band bending. Our results lead to a comprehensive picture, where the highly desirable type inversion at the p/n interface in standard chalcopyrite thin-film solar cells is dominated by band bending within the CIGSe absorber rather than the result of Na impurities or an n-type defect phase segregating at the interface. This is in accordance with recent studies suggesting a surface reconstruction as the origin for Cu depletion and band-gap widening at the surface of chalcopyrite thin films.

  1. Spectroscopy of low-lying levels in 81Br and its nuclear-structure interpretation

    NASA Astrophysics Data System (ADS)

    Jakob, G.; Speidel, K.-H.; Kremeyer, S.; Busch, H.; Grabowy, U.; Gohla, A.; Cub, J.; Gerber, J.; Oros, A.-M.; Heyde, K.; Rikovska, J.

    1996-02-01

    Magnetic moments of low-lying levels in 81Br have been measured using Coulomb excitation of 81Br beams and the technique of transient magnetic fields with Gd as ferromagnet. In addition, lifetimes have been redetermined for several states employing the Doppler-shift attenuation method and mixing ratios of γ-transitions were deduced from angular correlations. The data are discussed in the framework of the particle-vibrator and the particle-rotor coupling models.

  2. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  3. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    SciTech Connect

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.

  4. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    SciTech Connect

    Celis, J.E.; Madsen, P.; Nielsen, S.; Ratz, G.P.; Lauridsen, J.B.; Celis, A.

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of (/sup 35/S)methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  5. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan

    PubMed Central

    Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-01-01

    Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m2 increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m2 compared to those <25 kBq/m2, RR=1.75, p value <0.01; model 3: levels above 63 kBq/m2 compared to those <11 kBq/m2, RR=1.45, p value <0.05). Conclusions Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual

  6. Hot-wall corrosion testing of simulated high level nuclear waste

    SciTech Connect

    Chandler, G.T.; Zapp, P.E.; Mickalonis, J.I.

    1995-01-01

    Three materials of construction for steam tubes used in the evaporation of high level radioactive waste were tested under heat flux conditions, referred to as hot-wall tests. The materials were type 304L stainless steel alloy C276, and alloy G3. Non-radioactive acidic and alkaline salt solutions containing halides and mercury simulated different high level waste solutions stored or processed at the United States Department of Energy`s Savannah River Site. Alloy C276 was also tested for corrosion susceptibility under steady-state conditions. The nickel-based alloys C276 and G3 exhibited excellent corrosion resistance under the conditions studied. Alloy C276 was not susceptible to localized corrosion and had a corrosion rate of 0.01 mpy (0.25 {mu}m/y) when exposed to acidic waste sludge and precipitate slurry at a hot-wall temperature of 150{degrees}C. Type 304L was susceptible to localized corrosion under the same conditions. Alloy G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) when exposed to caustic high level waste evaporator solution at a hot-wall temperature of 220{degrees}C compared to 1.1 mpy (28.0 {mu}/y) for type 304L. Under extreme caustic conditions (45 weight percent sodium hydroxide) G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) at a hot-wall temperature of 180{degrees}C while type 304L had a high corrosion rate of 69.4 mpy (1.8 mm/y).

  7. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  8. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    SciTech Connect

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program.

  9. Nuclear levels and structure from the decays of 213Bi and 209Tl

    NASA Astrophysics Data System (ADS)

    Ardisson, G.; Barci, V.; El Samad, O.

    1998-02-01

    Direct γ and γ-γ coincidence spectra of pure 209Tl and 213Bi sources obtained by radiochemical continuous separation were measured with coaxial and planar HPGe detectors. In 209Tl the half-life was measured, the β-decay energies and intensities of 11 γ transitions were reported, and a new decay scheme was proposed. In 213Bi β decay 22 transitions were observed, of which 18 were assigned to a new 213Po level scheme accounting for 9 excited states.

  10. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  11. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  12. The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms

    PubMed Central

    Pourcet, Benoit; Gage, Matthew C.; León, Theresa E.; Waddington, Kirsty E.; Pello, Oscar M.; Steffensen, Knut R.; Castrillo, Antonio; Valledor, Annabel F.; Pineda-Torra, Inés

    2016-01-01

    IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases, yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process, inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally, IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally, LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP, a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8, thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion, LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders. PMID:27149934

  13. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix--present status and future challenges.

    PubMed

    Sengupta, Pranesh

    2012-10-15

    Immobilization of phosphate containing high level nuclear wastes within commonly used silicate glasses is difficult due to restricted solubility of P(2)O(5) within such melts and its tendency to promote crystallization. The situation becomes more adverse when sulfate, chromate, etc. are also present within the waste. To solve this problem waste developers have carried out significant laboratory scale research works in various phosphate based glass systems and successfully identified few formulations which apparently look very promising as they are chemically durable, thermally stable and can be processed at moderate temperatures. However, in the absence of required plant scale manufacturing experiences it is not possible to replace existing silicate based vitrification processes by the phosphate based ones. A review on phosphate glass based wasteforms is presented here.

  14. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    SciTech Connect

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs.

  15. Optically Pumped Nuclear Magnetic Resonance near Landau level fillings ν = 1/2 and ν = 2/3

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Khandelwal, P.; Barrett, S. E.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shift (K_S)footnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation time (T_1)footnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. In this talk will present our recent measurements of KS and T1 near Landau level fillings ν = 1/2 and ν = 2/3, which were carried out in high magnetic fields (up to 12 Tesla) and at low temperatures (T < 1 Kelvin). We will discuss these results in light of our current understanding of the data obtained near ν = 1.

  16. The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    SciTech Connect

    Britton, J. |

    1993-05-01

    Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time.

  17. Numerical modeling of gas migration at a proposed repository for low and intermediate level nuclear wastes at Oberbauenstock, Switzerland

    SciTech Connect

    Pruess, K.

    1990-03-01

    Hydrologic impacts of corrosive gas release from a hypothetical L/ILW nuclear waste repository at Oberbauenstock are explored by means of numerical simulation. A schematic two dimensional vertical section through the mountain is modeled with the simulator TOUGH, which describes two-phase flow of water and gas in porous and fractured media. Two reference cases are considered which represent the formations as a porous and as a fractured-porous (dual permeability) medium, respectively. Both cases predict similar and rather modest pressure increases, from ambient 10 bars to near 25 bars at the repository level. These results are to be considered preliminary because important parameters affecting two-phase flow, such as relative permeabilities of a fractured medium, are not well known at present. 24 refs., 15 figs., 5 tabs.

  18. Sources of Signal in 62 Protein-Coding Nuclear Genes for Higher-Level Phylogenetics of Arthropods

    PubMed Central

    Regier, Jerome C.; Zwick, Andreas

    2011-01-01

    Background This study aims to investigate the strength of various sources of phylogenetic information that led to recent seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or downweighting synonymous change for arriving at those conclusions. Methodology/Principal Findings The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level nodes with bootstrap values in the 80% – 99% range for the complete data matrix are markedly more sensitive to substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set partitioning of total data by (mostly) synonymous and (mostly) nonsynonymous change improves overall node support, but the result remains much inferior to analysis of (unpartitioned) nonsynonymous change alone. Clusters of genes with similar nonsynonymous rate properties (e.g., faster vs. slower) show some distinct patterns of node support but few conflicts. Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis of seemingly conservative indels does not prove useful. Conclusions Generating a robust molecular higher-level phylogeny of Arthropoda is currently possible

  19. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOEpatents

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  20. Incorporation of simulated high-level nuclear waste in gel spheres

    SciTech Connect

    Arnold, W.D.; Bond, W.D.; Robinson, S.M.

    1982-12-01

    Gel sphere technology developed for reactor fuel fabrication was applied to the fixation of simulated high-level radioactive waste in crystalline ceramic form for permanent disposal. Gel spheres containing simulated alkaline defense waste sludges and ceramic matrix materials were prepared by internal gelation at waste loadings as high as 90%. The gel spheres were amenable to subsequent drying, sintering, and coating procedures to produce crystalline waste forms with extremely high leach resistances. Potential application of this technique to the processing of commercial power reactor waste was demonstrated by incorporating simulated Purex solvent extraction waste in gel spheres with up to 20% waste loading. Cesium present in the simulated waste was adsorbed on zeolite and immobilized by coating with carbon.

  1. The Effects of Dietary Supplements of Calcium, Vitamin D and Estrogen Hormone on Serum Levels of OPG and RANKL Cytokines and their Relationship with Increased Bone Density in Rats

    PubMed Central

    Piri, Fatemeh; Moayeri, Ardeshir; Moradipour, Ayat; Derakhshan, Siamak

    2016-01-01

    Introduction Osteoprotegerin (OPG)-Receptor activator of nuclear factor kappa-B ligand (RANKL) pathway is one of the contributing factors in the regulation of osteogenesis and bone resorption routes. Aim The purpose of this study was to evaluate the effects of various dietary supplements on this pathway. Materials and Methods The samples for this study (24 newborn rats) were divided in three groups according to the experiment applied for each group. Rats were given special diet according to their group plan for six weeks. Blood samples were collected to measure their serum levels of OPG and RANKL and all organs of rats were used to measure their bone density too. The results were analysed using appropriate statistical analysing tests. Results Levels of whole-body bone mineral density in calcium plus vitamin D plus Estrogen (Ca + D + E) group and calcium plus vitamin D (Ca + D) group were significantly increased compared to control group. Mineral density was highest in calcium plus vitamin D plus Estrogen group and was about 0.1357 g/cm2. RANKL had a significant decrease in calcium plus vitamin D plus Estrogen group compared to control and calcium plus vitamin D groups. There was a significant increase in the mean calcium and OPG in both experimental groups rather than control. Also, significant increase in estrogen was observed in Ca + D group than the control group. Conclusion The results showed that intake of calcium and vitamin D and estrogen at determined dose led to an increase in OPG and RANKL cytokines reduction which ultimately led to an increase in bone mineral density. But Ca, D and E synergies were more effective in increasing bone mineral density compared to only the use of Ca and D. PMID:27790417

  2. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding.

  3. Consequences of seasonal variation in reservoir water level for predatory fishes: linking visual foraging and prey densities

    USGS Publications Warehouse

    Klobucar, Stephen L.; Budy, Phaedra

    2016-01-01

    In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.

  4. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine

    2013-08-01

    High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.

  5. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    PubMed

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals.

  6. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  7. Carbon-14 in low-level radioactive waste from two nuclear power plants

    SciTech Connect

    Martin, J.E.

    1986-01-01

    The amount of 14C in low-level radioactive wastes is important for determining the future impacts of their disposal. New regulations in the Code of Federal Regulations, Title 10, Part 61 (10 CFR 61) require quantitation of 14C and other radionuclides in such wastes not amenable to measurement by gamma spectroscopy. Sampling was done of major waste streams at the Palisades pressurized water reactor (PWR) and the Big Rock Point boiling water reactor (BWR) to determine quantities of 14C in the waste streams for comparison with other reported studies. Analyses were performed by releasing all 14C constituents in the waste samples in the form of 14CO2 by chemical processing or by heating the samples in a tube furnace containing CuO2 catalyst and trapping the evolved gas in a liquid scintillator for counting. The largest amounts of 14C were found in the resins and filters used for reactor water cleanup, a result which is similar to those of the available studies. From these data, the annual amounts of 14C in wastes from nominal PWRs and BWRs were estimated to be 4.7 and 0.5 Ci/GW(e)-yr, respectively.

  8. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  9. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  10. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    SciTech Connect

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  11. Energy dependence and systematics of level-density parameters in nuclei of mass number in the range of A = 20–60

    SciTech Connect

    Grudzevich, O. T.

    2015-12-15

    Existing direct and indirect experimental data on level densities in excited nuclei of mass and charge number in the ranges of A = 20–60 and Z = 11–27, respectively, were compiled and analyzed. Contradictions between values extracted from the results of measurements performed by different methods were revealed. Consistent input data were selected, and a systematics of level-density parameters was created on this basis within the generalized model of superfluid nuclei. The effect of the first discrete vibrational levels on extracted parameters was studied.

  12. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides.

  13. Star formation history of early-type galaxies in low density environments. V. Blue line-strength indices for the nuclear region

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Bressan, A.; Chiosi, C.; Rampazzo, R.

    1999-05-01

    We analyze the star formation properties of a sample of 21 shell galaxies and 30 early-type galaxies members of interacting pairs, located in low density environments (Longhetti et al. 1998a, 1998b). The study is based on new models developed to interpret the information coming from `blue' Hdelta /FeI, H+K(CaII) and Delta 4000 line-strength indices proposed by Rose (1984; 1985) and Hamilton (1985). We find that the last star forming event that occurred in the nuclear region of shell galaxies is statistically old (from 0.1 up to several Gyr) with respect to the corresponding one in the sub-sample of pair galaxies (<0.1 Gyr or even ongoing star formation). If the stellar activity is somehow related to the formation of shells, as predicted by several dynamical models of galaxy interaction, shells have to be considered long lasting structures. Since pair members show evidence of very recent star formation, we suggest that either large reservoirs of gas have to be present to maintain active star formation, if these galaxies are on periodic orbits, or most of the pair members in the present sample are experiencing unbound encounters. Table~2 is available in electronic form only, at CDS: via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  14. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  15. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    SciTech Connect

    Kapil, V.; Ceriotti, M.; VandeVondele, J.

    2016-02-07

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  16. Effect of olive and sunflower oils on low density lipoprotein level, composition, size, oxidation and interaction with arterial proteoglycans.

    PubMed

    Carmena, R; Ascaso, J F; Camejo, G; Varela, G; Hurt-Camejo, E; Ordovas, J M; Martinez-Valls, J; Bergstöm, M; Wallin, B

    1996-09-06

    The atherogenicity of low density lipoproteins (LDL) may be modulated by its serum levels, structure and affinity for components of the intima, all properties that can be altered by diet. Linoleic acid-rich diets (n-G, 18:2) reduce the levels of LDL whereas those rich in oleic (n-9,18:1) are considered 'neutral'. However, LDL enriched in linoleic acid have been reported to be more vulnerable to free radical-mediated oxidation than those enriched in oleic, a potentially atherogenic property. The effect of dietary fats on other properties of LDL that may also modulate atherogenesis, such as size and capacity to interact with intima components, are not well established. We explored here how a change from an olive oil-rich diet (OO) to a sunflower oil-rich one (SFO) affects these parameters in a community with a traditional Mediterranean diet. Eighteen free-living volunteers were placed for 3 weeks on a diet with 31% of caloric intake as sunflower oil and then shifted for an additional 3 weeks to a diet in which OO provided 30.5% of the calories. The LDL after SFO had a fatty acids ratio of (18:2 + 18:3 + 20:4) to (16:0 + 16:1 + 18:0 + 18:1) of 1.06 +/- 0.11 compared to 0.73 +/- 0.06 after the OO period. Serum LDL was significantly lower after SFO than after OO. Unexpectedly, copper-catalyzed oxidation of LDL from the SFO period was significantly less than that of the particles from the OO period. The resistance to oxidation of LDL of the SFO and OO period related to alterations in content of the antioxidants alpha-tocopherol, beta-carotene and retinol, in addition to changes in size and fatty acids composition. In vitro binding of LDL to human arterial proteoglycans was also significantly lower for the SFO-LDL than the OO-LDL, a result that can also be attributed to the larger size of the SFO-LDL. Therefore, three properties of LDL: circulating levels, oxidizability, and affinity with intima proteoglycans, that may modulate its atherogenicity, were shifted in a

  17. THREE-DIMENSIONAL STELLAR KINEMATICS AT THE GALACTIC CENTER: MEASURING THE NUCLEAR STAR CLUSTER SPATIAL DENSITY PROFILE, BLACK HOLE MASS, AND DISTANCE

    SciTech Connect

    Do, T.; Martinez, G. D.; Bullock, J.; Kaplinghat, M.; Peter, A. H. G.; Yelda, S.; Ghez, A.; Phifer, K.; Lu, J. R.

    2013-12-10

    We present three-dimensional (3D) kinematic observations of stars within the central 0.5 pc of the Milky Way (MW) nuclear star cluster (NSC) using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true 3D profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain, for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass (M {sub BH}), and distance to the Galactic center (R {sub 0}) simultaneously. We find that the inner stellar density profile of the late-type stars, ρ(r)∝r {sup –γ}, have a power law slope γ=0.05{sub −0.60}{sup +0.29}, much more shallow than the frequently assumed Bahcall-Wolf slope of γ = 7/4. The measured slope will significantly affect dynamical predictions involving the cluster, such as the dynamical friction time scale. The cluster core must be larger than 0.5 pc, which disfavors some scenarios for its origin. Our measurement of M{sub BH}=5.76{sub −1.26}{sup +1.76}×10{sup 6} M {sub ☉} and R{sub 0}=8.92{sub −0.55}{sup +0.58} kpc is consistent with that derived from stellar orbits within 1'' of Sgr A*. When combined with the orbit of S0-2, the uncertainty on R {sub 0} is reduced by 30% (8.46{sub −0.38}{sup +0.42} kpc). We suggest that the MW NSC can be used in the future in combination with stellar orbits to significantly improve constraints on R {sub 0}.

  18. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma.

    PubMed Central

    Fan, J; Ji, Z S; Huang, Y; de Silva, H; Sanan, D; Mahley, R W; Innerarity, T L; Taylor, J M

    1998-01-01

    Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma. PMID:9593771

  19. Characterization of high level nuclear waste glass samples following extended melter idling

    SciTech Connect

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high-level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  20. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    NASA Astrophysics Data System (ADS)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.