Sample records for nuclear material control

  1. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  2. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  3. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  4. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  5. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  6. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  7. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  8. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  9. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  10. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  11. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  12. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  13. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  14. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  15. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  16. Taking Steps to Protect Against the Insider Threat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Noah Gale; Williams, Martha; Lewis, Joel

    2015-10-16

    Research reactors are required (in accordance with the Safeguards Agreement between the State and the IAEA) to maintain a system of nuclear material accounting and control for reporting quantities of nuclear material received, shipped, and held on inventory. Enhancements to the existing accounting and control system can be made at little additional cost to the facility, and these enhancements can make nuclear material accounting and control useful for nuclear security. In particular, nuclear material accounting and control measures can be useful in protecting against an insider who is intent on unauthorized removal or misuse of nuclear material or misuse ofmore » equipment. An enhanced nuclear material accounting and control system that responds to nuclear security is described in NSS-25G, Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities, which is scheduled for distribution by the IAEA Department of Nuclear Security later this year. Accounting and control measures that respond to the insider threat are also described in NSS-33, Establishing a System for Control of Nuclear Material for Nuclear Security Purposes at a Facility During Storage, Use and Movement, and in NSS-41, Preventive and Protective Measures against Insider Threats (originally issued as NSS-08), which are available in draft form. This paper describes enhancements to existing material control and accounting systems that are specific to research reactors, and shows how they are important to nuclear security and protecting against an insider.« less

  17. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...

  18. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  19. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  20. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  1. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  2. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  3. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  4. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  5. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  6. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  7. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  8. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  9. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  10. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  11. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  12. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  13. 77 FR 42973 - Export and Reexport Controls to Rwanda and United Nations Sanctions Under the Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...

  14. 10 CFR 74.45 - Measurements and measurement control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Measurements and measurement control. 74.45 Section 74.45 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.45 Measurements and measurement...

  15. 10 CFR 74.43 - Internal controls, inventory, and records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Internal controls, inventory, and records. 74.43 Section 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.43 Internal controls, inventory, and records. (a) General. Licensees...

  16. 10 CFR 74.43 - Internal controls, inventory, and records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Internal controls, inventory, and records. 74.43 Section 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.43 Internal controls, inventory, and records. (a) General. Licensees...

  17. 10 CFR 74.43 - Internal controls, inventory, and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Internal controls, inventory, and records. 74.43 Section 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.43 Internal controls, inventory, and records. (a) General. Licensees...

  18. 10 CFR 74.43 - Internal controls, inventory, and records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Internal controls, inventory, and records. 74.43 Section 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.43 Internal controls, inventory, and records. (a) General. Licensees...

  19. 78 FR 67225 - Amendments to Material Control and Accounting Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... added to designate material balance areas, item control areas, and custodians? N. Why would calendar...

  20. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  1. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  2. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  3. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  4. Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, T.D.; Williams, A.R.

    1995-06-01

    The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less

  5. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  6. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  7. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  8. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  9. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  10. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material hasmore » been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.« less

  11. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  12. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  13. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  14. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  15. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  16. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  17. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  18. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  19. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  20. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  1. 48 CFR 904.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for access to, or control over, special nuclear material. Applicant means an individual who has... facility is eligible to access, produce, use or store classified information, or special nuclear material... of special nuclear material; or use of special nuclear material in the production of energy, but...

  2. Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.

  3. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  4. Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.

    Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.

  5. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  6. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...

    2015-12-24

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  7. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  8. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  9. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  10. Leo Szilard Lectureship Award Talk: Controlling and eliminating nuclear-weapon materials

    NASA Astrophysics Data System (ADS)

    von Hippel, Frank

    2010-02-01

    Fissile material -- in practice plutonium and highly enriched uranium (HEU) -- is the essential ingredient in nuclear weapons. Controlling and eliminating fissile material and the means of its production is therefore the common denominator for nuclear disarmament, nuclear non-proliferation and the prevention of nuclear terrorism. From a fundamentalist anti-nuclear-weapon perspective, the less fissile material there is and the fewer locations where it can be found, the safer a world we will have. A comprehensive fissile-material policy therefore would have the following elements: *Consolidation of all nuclear-weapon-usable materials at a minimum number of high-security sites; *A verified ban on the production of HEU and plutonium for weapons; *Minimization of non-weapon uses of HEU and plutonium; and *Elimination of all excess stocks of plutonium and HEU. There is activity on all these fronts but it is not comprehensive and not all aspects are being pursued vigorously or competently. It is therefore worthwhile to review the situation. )

  11. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, J. M.; Marsden, O.; Reilly, D.

    Abstract The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise.

  12. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    DOE PAGES

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...

    2016-05-11

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less

  13. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  14. US-Russian Cooperation in Upgrading MC&A System at Rosatom Facilities: Measurement of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Jensen, Bruce A

    2011-01-01

    Improve protection of weapons-usable nuclear material from theft or diversion through the development and support of a nationwide sustainable and effective Material Control and Accountability (MC&A) program based on material measurement. The material protection, control, and accountability (MPC&A) cooperation has yielded significant results in implementing MC&A measurements at Russian nuclear facilities: (1) Establishment of MEM WG and MEMS SP; (2) Infrastructure for development, certification, and distribution of RMs; and (3) Coordination on development and implementation of MMs.

  15. Nuclear Forensics. Chapter 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Klaus; Glaser, Alexander

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Here, analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realisticallymore » achieve. Lastly, it also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  16. Nuclear Forensics

    DOE PAGES

    Glaser, Alexander; Mayer, Klaus

    2016-06-01

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realistically achieve.more » It also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  17. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. 10 CFR 74.57 - Alarm resolution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Alarm resolution. 74.57 Section 74.57 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula... unresolved beyond the time period specified for its resolution in the licensee's fundamental nuclear material...

  20. Management of Naturally Occurring Radioactive Materials (NORM) in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baweja, Anar S.; Tracy, Bliss L.

    2008-08-07

    In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is thatmore » the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.« less

  1. 10 CFR 74.81 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Inspections. 74.81 Section 74.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.81..., import, export, or transfer of special nuclear material. (c)(1) In the case of fuel cycle facilities...

  2. 10 CFR 74.53 - Process monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Process monitoring. 74.53 Section 74.53 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.53 Process monitoring. (a) Licensees subject to § 74.51...

  3. 10 CFR 74.53 - Process monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Process monitoring. 74.53 Section 74.53 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.53 Process monitoring. (a) Licensees subject to § 74.51...

  4. 10 CFR 74.53 - Process monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Process monitoring. 74.53 Section 74.53 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.53 Process monitoring. (a) Licensees subject to § 74.51...

  5. 10 CFR 74.53 - Process monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Process monitoring. 74.53 Section 74.53 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.53 Process monitoring. (a) Licensees subject to § 74.51...

  6. 10 CFR 74.55 - Item monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Item monitoring. 74.55 Section 74.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.55 Item monitoring. (a) Licensees subject to § 74.51...

  7. 10 CFR 74.55 - Item monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Item monitoring. 74.55 Section 74.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.55 Item monitoring. (a) Licensees subject to § 74.51...

  8. 10 CFR 74.55 - Item monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Item monitoring. 74.55 Section 74.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.55 Item monitoring. (a) Licensees subject to § 74.51...

  9. 10 CFR 74.55 - Item monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Item monitoring. 74.55 Section 74.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear Material § 74.55 Item monitoring. (a) Licensees subject to § 74.51...

  10. Measurement control workshop instructional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Harvel, Charles; Clark, John

    2012-09-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the accounting values.

  11. 10 CFR 70.55 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the case of fuel cycle facilities where nuclear reactor fuel is fabricated or processed each licensee... 10 Energy 2 2011-01-01 2011-01-01 false Inspections. 70.55 Section 70.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material Control...

  12. 10 CFR 70.55 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the case of fuel cycle facilities where nuclear reactor fuel is fabricated or processed each licensee... 10 Energy 2 2012-01-01 2012-01-01 false Inspections. 70.55 Section 70.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material Control...

  13. 10 CFR 70.55 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the case of fuel cycle facilities where nuclear reactor fuel is fabricated or processed each licensee... 10 Energy 2 2013-01-01 2013-01-01 false Inspections. 70.55 Section 70.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material Control...

  14. 10 CFR 70.55 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the case of fuel cycle facilities where nuclear reactor fuel is fabricated or processed each licensee... 10 Energy 2 2010-01-01 2010-01-01 false Inspections. 70.55 Section 70.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material Control...

  15. 10 CFR 70.55 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the case of fuel cycle facilities where nuclear reactor fuel is fabricated or processed each licensee... 10 Energy 2 2014-01-01 2014-01-01 false Inspections. 70.55 Section 70.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material Control...

  16. Advanced insider threat mitigation workshop instructional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Larsen, Robert; O Brien, Mike

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  17. Advanced Insider Threat Mitigation Workshop Instructional Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing theirmore » effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.« less

  18. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  19. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...

  20. Studies and research concerning BNFP: computerized nuclear materials control and accounting system development evaluation report, FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, J M; Ehinger, M H; Joseph, C

    1978-10-01

    Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.

  1. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, Jerry; Dion, Heather; LaMont, Stephen

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  4. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE PAGES

    Davydov, Jerry; Dion, Heather; LaMont, Stephen; ...

    2015-12-16

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  5. Nuclear Technology Series. Course 14: Introduction to Quality Assurance/Quality Control.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 6: Instrumentation and Control of Reactors and Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. International training course on nuclear materials accountability for safeguards purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the firstmore » week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.« less

  8. Defense Threat Reduction Agency Radiochemical Needs

    NASA Astrophysics Data System (ADS)

    Walsh, Michael A. R.; Velazquez, Daniel L.

    2009-08-01

    The United States Government (USG) first developed nuclear forensics-related capabilities to analyze radiological and nuclear materials, including underground nuclear test debris and interdicted materials. Nuclear forensics is not a new mission for Department of Defense (DoD). The department's existing nuclear forensics capability is the result of programs that span six (6) decades and includes activities to assess foreign nuclear weapons testing activities, monitor and verify nuclear arms control treaties, and to support intelligence and law enforcement activities. Today, nuclear forensics must support not only weapons programs and nuclear smuggling incidents, but also the scientific analysis and subsequent attribution of terrorists' use of radiological or nuclear materials/devices. Nuclear forensics can help divulge the source of origin of nuclear materials, the type of design for an interdicted or detonated device, as well as the pathway of the materials or device to the incident. To accomplish this mission, the USG will need trained radiochemists and nuclear scientists to fill new positions and replace the retiring staff.

  9. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  10. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  11. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  12. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  13. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  14. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguardsmore » System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.« less

  15. 78 FR 71532 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance...

  16. Resource Letter PSNAC-1: Physics and society: Nuclear arms control

    NASA Astrophysics Data System (ADS)

    Glaser, Alexander; Mian, Zia

    2008-01-01

    This Resource Letter provides a guide to the literature on nuclear arms control for the nonspecialist. Journal articles and books are cited for the following topics: nuclear weapons, fissile materials, nonproliferation, missiles and missile defenses, verification, disarmament, and the role of scientists in arms control.

  17. Nuclear forensics of a non-traditional sample: Neptunium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  18. Nuclear forensics of a non-traditional sample: Neptunium

    DOE PAGES

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-05-16

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  19. 10 CFR 74.81 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... where nuclear reactor fuel is fabricated or processed, each licensee shall upon request by the Director... 10 Energy 2 2014-01-01 2014-01-01 false Inspections. 74.81 Section 74.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.81...

  20. 10 CFR 74.81 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... where nuclear reactor fuel is fabricated or processed, each licensee shall upon request by the Director... 10 Energy 2 2011-01-01 2011-01-01 false Inspections. 74.81 Section 74.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.81...

  1. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weise, Rachel A.; Hund, Gretchen

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seekingmore » to limit proliferation.« less

  2. Insider Threat - Material Control and Accountability Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur bymore » an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.« less

  3. 76 FR 68792 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory... Control and Accounting of Special Nuclear Material. 3. Current OMB approval number: 3150-0123. 4. The form... requirements for material control and accounting of SNM, and specific performance-based regulations for...

  4. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  5. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  6. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations ...

  7. Materials Coating Techniques

    DTIC Science & Technology

    1980-03-01

    applications from decorative to utilitarian over significant segments of the engineering, chemical, nuclear , microelectronics, and related Industries. PVD...Thermal-control coating. Boron 2430 Cermet component, nuclear shielding and controlrod material; Carbide wear- and temperature-resistant. Calcium...Zirconium Oxide (Hafnia-Pree � Thermal-barrier coatings for nuclear applications. Lime Stabi!Aed) Zirconium 2563 Resistant to high-temperature

  8. 10 CFR 20.1802 - Control of material not in storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Control of material not in storage. 20.1802 Section 20.1802 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1802 Control of material not in storage. The licensee shall control and...

  9. 10 CFR 20.1802 - Control of material not in storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Control of material not in storage. 20.1802 Section 20.1802 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1802 Control of material not in storage. The licensee shall control and...

  10. 10 CFR 20.1802 - Control of material not in storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Control of material not in storage. 20.1802 Section 20.1802 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1802 Control of material not in storage. The licensee shall control and...

  11. 10 CFR 20.1802 - Control of material not in storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Control of material not in storage. 20.1802 Section 20.1802 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1802 Control of material not in storage. The licensee shall control and...

  12. 10 CFR 20.1802 - Control of material not in storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Control of material not in storage. 20.1802 Section 20.1802 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1802 Control of material not in storage. The licensee shall control and...

  13. Proliferation risks from nuclear power infrastructure

    NASA Astrophysics Data System (ADS)

    Squassoni, Sharon

    2017-11-01

    Certain elements of nuclear energy infrastructure are inherently dual-use, which makes the promotion of nuclear energy fraught with uncertainty. Are current restraints on the materials, equipment, and technology that can be used either to produce fuel for nuclear electricity generation or material for nuclear explosive devices adequate? Technology controls, supply side restrictions, and fuel market assurances have been used to dissuade countries from developing sensitive technologies but the lack of legal restrictions is a continued barrier to permanent reduction of nuclear proliferation risks.

  14. 76 FR 28193 - Amendments to Material Control and Accounting Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ...] Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... amendments to the material control and accounting (MC&A) regulations. These regulations apply to NRC... performance objectives, and most of these facilities must meet item control requirements. B. Discussion The MC...

  15. 10 CFR 63.78 - Material control and accounting records and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Material control and accounting records and reports. 63.78 Section 63.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... Material control and accounting records and reports. DOE shall implement a program of material control and...

  16. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Material Control and Accounting (MC&A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) VNIIEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material controlmore » and accounting (MC&A) system upgrades and the preliminary results from a pilot program on the MC&A system performance testing that was recently conducted at one technical area.« less

  18. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. George Kuzmycz Training Center : 5 years of American-Ukrainian efforts in the field of material control and accounting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilyuk, V. I.; Gavrylyuk, A. V.; Kirischuk, V. I.

    2004-01-01

    The George Kuzmycz Training Center for Physical Protection, Control and Accounting of Nuclear Material (GKTC) was established in October 1998 at the Kiev Institute for Nuclear Research. During the past six years, about 700 professionals from all Ukrainian nuclear installations, executive and regulatory bodies were trained at the GKTC. Future Material Control and Accounting (MC&A) training courses are going to be held even more frequently because Ukraine has already signed the Additional Model Protocol and its ratification by Ukrainian Parliament is expected to happen very soon. Additionally, a number of new training courses will be developed. US DOE trough Argonnemore » National Laboratory has made significant efforts to transfer Automated Inventory/Material Accounting System (AIMAS) software to Ukraine. As a result, AIMAS software can be used as a basic code for the development of the Computerized MC&A System for all Ukrainian nuclear facilities despite their differences. In 2003, a new laboratory for Nondestructive Assay (NDA) was established with assistance from the U.S. Department of Energy. As a result, GKTC training capabilities will increase substantially. Furthermore, in order to increase the efficiency of NDA laboratory, it is planned to use the NDA equipment for a program of interdiction of illicit traffic of nuclear materials in Ukraine. American-Ukrainian MC&A efforts for the last 6 years, the problems encountered and the solutions to these problems, as well as comments, suggestions and recommendations for future activity at GKTC to promote and improve the nuclear material management culture in Ukraine are discussed in detail.« less

  1. Anomaly detection applied to a materials control and accounting database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Spanks, L.; Yarbro, T.

    An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less

  2. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinman, William Scott; Steiner, Robert Ernest; Lamont, Stephen Philip

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  4. Reactivity control assembly for nuclear reactor. [LMFBR

    DOEpatents

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  5. Controlling Weapons-Grade Fissile Material

    ERIC Educational Resources Information Center

    Rotblat, J.

    1977-01-01

    Discusses the problems of controlling weapons-grade fissionable material. Projections of the growth of fission nuclear reactors indicates sufficient materials will be available to construct 300,000 atomic bombs each containing 10 kilograms of plutonium by 1990. (SL)

  6. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Evaluation of the automatic optical authentication technologies for control systems of objects

    NASA Astrophysics Data System (ADS)

    Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.

    2000-03-01

    The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.

  4. Insider Threat Mitigation Workshop Instructional Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt theft of nuclear materials. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat.

  5. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset of the materials involved in illicit trafficking in nuclear and radioactive materials, that of radioactive sealed sources. The focus on radioactive sealed sources is based on our belief that insufficient attention has been paid to trafficking incidents involving such sources which constitute the majority of trafficking cases. According to the IAEA's Illicit Trafficking Data Base, as of December 31 2005 there were 827 confirmed cases reporting by the participating states, including 250 incidents (or 30%) involved nuclear and other radioactive materials and 566 (or 68%) involved other radioactive materials, mostly radioactive sources, and radioactively contaminated materials. Experts in the Lugar Survey on Proliferation Threat and Response (June 2005) agreed that an attack with a Radiological Dispersion Device (RDD) was the most probable form of nuclear terrorism the world could expect over the next decade. At the same time radiological materials are used in wide a variety of applications, located in virtually every country and in general, radiological materials are far easier to access than nuclear materials. It has become increasingly obvious that the lack of a cradle-to-grave approach for sealed radioactive sources that have reached the end of their useful life is the main reason that sources are abandoned. It appears that the questions will ultimately become whether industry will impose additional regulations upon itself and become self-regulating with respect to repatriating radioactive material at the end of service life, or whether national authorities at some point will take actions and regulate the industry. Argentina, which is one of the most advanced countries regarding control of radiological sources adopted additional measures to safeguard its radiological materials to a level comparable to that proscribed for nuclear materials. This approach, while highly successful, has led to some minor unforeseen consequences, namely insufficient funds to implement all regulations in full and a lack of inspectors and appropriate equipment to assure compliance This is not an unusual outcome. Regulations imposed by a national regulatory authority may be technically excellent, but their implementation may provide a funding challenge. A more practical approach may be to have the industry to impose regulations upon itself, which could be accomplished within the economics of the industries involved. (authors)« less

  14. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachner, Katherine M.; Mladineo, Stephen V.

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support themore » Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.« less

  15. MHSS: a material handling system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less

  16. The role of science in treaty verification.

    PubMed

    Gavron, Avigdor

    2005-01-01

    Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.

  17. 10 CFR 74.55 - Item monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Item monitoring. 74.55 Section 74.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula... quantitatively measured, the validity of that measurement independently confirmed, and that additionally have...

  18. 10 CFR 71.1 - Communications and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communications and records. 71.1 Section 71.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL General... addressed: ATTN: Document Control Desk, Director, Spent Fuel Project Office, Office of Nuclear Material...

  19. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. 2: Extension to additional facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-12-31

    During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less

  20. 78 FR 79328 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... accounting (MC&A) of special nuclear material (SNM). The public meeting has been rescheduled for January 9...

  1. 10 CFR 74.6 - Communications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Communications. 74.6 Section 74.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Provisions § 74.6 Communications. Any communication or report concerning the regulations in this part and any...

  2. 10 CFR 74.6 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Communications. 74.6 Section 74.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Provisions § 74.6 Communications. Any communication or report concerning the regulations in this part and any...

  3. 10 CFR 74.6 - Communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communications. 74.6 Section 74.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Provisions § 74.6 Communications. Any communication or report concerning the regulations in this part and any...

  4. 10 CFR 60.78 - Material control and accounting records and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Material control and accounting records and reports. 60.78 Section 60.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Records, Reports, Tests, and Inspections § 60.78 Material control and...

  5. The Role of the George Kuzmycz Training Center in Improving the Nuclear Material Management Culture in Ukraine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrylyuk, V. I.; Scherbachenko, A. M.; Bazavov, D. A.

    2001-01-01

    The George Kuzmycz Training Center for Physical Protection, Control and Accounting (GKTC) was established in 1998 in a collaborative endeavor of the State Nuclear Regulatory Administration of Ukraine, the Ukrainian Academy of Sciences, and the U.S. Department of Energy. Located at the Institute for Nuclear Research in Kyiv, the GKTC provides theoretical and practical training in physical protection, control, and accounting techniques and systems that are employed to reduce the risk of unauthorized use, theft, or diversion of weapons-usable nuclear material. Participants in GKTC workshops and courses include nuclear facility specialists as well as officials of the State's regulatory authorities.more » Recently, the training scope has been broadened to include students from other nations in the region.« less

  6. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Nuclear Security in the 21^st Century

    NASA Astrophysics Data System (ADS)

    Archer, Daniel E.

    2006-10-01

    Nuclear security has been a priority for the United States, starting in the 1940s with the secret cities of the Manhattan Project. In the 1970s, the United States placed radiation monitoring equipment at nuclear facilities to detect nuclear material diversion. Following the breakup of the Soviet Union, cooperative Russian/U.S. programs were launched in Russia to secure the estimated 600+ metric tons of fissionable materials against diversion (Materials Protection, Control, and Accountability -- MPC&A). Furthermore, separate programs were initiated to detect nuclear materials at the country's borders in the event that these materials had been stolen (Second Line of Defense - SLD). In the 2000s, new programs have been put in place in the United States for radiation detection, and research is being funded for more advanced systems. This talk will briefly touch on the history of nuclear security and then focus on some recent research efforts in radiation detection. Specifically, a new breed of radiation monitors will be examined along with the concept of sensor networks.

  8. 10 CFR 74.43 - Internal controls, inventory, and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...: (i) Clear overall responsibility for material control and accounting (MC&A) functions; (ii... measurements for the licensee. (c) Inventory control and physical inventories. The licensee shall: (1) Provide...

  9. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1: Missile Technology reasons 2: Nuclear Nonproliferation reasons 3: Chemical & Biological Weapons...) Categories. The CCL is divided into 10 categories, numbered as follows: 0—Nuclear Materials, Facilities and... and Production Equipment C—Materials D—Software E—Technology (c) Order of review. In order to classify...

  10. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1: Missile Technology reasons 2: Nuclear Nonproliferation reasons 3: Chemical & Biological Weapons...) Categories. The CCL is divided into 10 categories, numbered as follows: 0—Nuclear Materials, Facilities and... and Production Equipment C—Materials D—Software E—Technology (c) Order of review. In order to classify...

  11. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  12. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  13. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  14. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  15. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  16. 10 CFR 75.21 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General requirements. 75.21 Section 75.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.21 General requirements. (a) Each licensee or certificate holder...

  17. 10 CFR 74.7 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 74.7 Section 74.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General... determines are authorized by law and will not endanger life or property or the common defense and security...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less

  19. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schachowskoj, S.; Smith, H.A. Jr.

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguardsmore » and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.« less

  20. 10 CFR 75.22 - Accounting records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accounting records. 75.22 Section 75.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.22 Accounting records. (a) The accounting records required by § 75...

  1. 10 CFR 75.23 - Operating records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Operating records. 75.23 Section 75.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.23 Operating records. The operating records required by § 75.21...

  2. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...

  3. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...

  4. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...

  5. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.111 Physical security, material control...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without themore » use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.« less

  7. Measurement control workshop instructional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Crawford, Cary; McGinnis, Brent

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  8. Review of nuclear pharmacy practice in hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawada, T.K.; Tubis, M.; Ebenkamp, T.

    1982-02-01

    An operational profile for nuclear pharmacy practice is presented, and the technical and professional role of nuclear pharmacists is reviewed. Key aspects of nuclear pharmacy practice in hospitals discussed are the basic facilities and equipment for the preparation, quality control, and distribution of radioactive drug products. Standards for receiving, storing, and processing radioactive material are described. The elements of a radiopharmaceutical quality assurance program, including the working procedures, documentation systems, data analysis, and specific control tests, are presented. Details of dose preparation and administration and systems of inventory control for radioactive products are outlined.

  9. U.S. and Russian Collaboration in the Area of Nuclear Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristo, M J

    2007-10-22

    Nuclear forensics has become increasingly important in the fight against illicit trafficking in nuclear and other radioactive materials. The illicit trafficking of nuclear materials is, of course, an international problem; nuclear materials may be mined and milled in one country, manufactured in a second country, diverted at a third location, and detected at a fourth. There have been a number of articles in public policy journals in the past year that call for greater interaction between the U. S. and the rest of the world on the topic of nuclear forensics. Some believe that such international cooperation would help providemore » a more certain capability to identify the source of the nuclear material used in a terrorist event. An improved international nuclear forensics capability would also be important as part of the IAEA verification toolkit, particularly linked to increased access provided by the additional protocol. A recent study has found that, although international progress has been made in securing weapons-usable HEU and Pu, the effort is still insufficient. They found that nuclear material, located in 40 countries, could be obtained by terrorists and criminals and used for a crude nuclear weapon. Through 2006, the IAEA Illicit Trafficking Database had recorded a total of 607 confirmed events involving illegal possession, theft, or loss of nuclear and other radioactive materials. Although it is difficult to predict the future course of such illicit trafficking, increasingly such activities are viewed as significant threats that merit the development of special capabilities. As early as April, 1996, nuclear forensics was recognized at the G-8 Summit in Moscow as an important element of an illicit nuclear trafficking program. Given international events over the past several years, the value and need for nuclear forensics seems greater than ever. Determining how and where legitimate control of nuclear material was lost and tracing the route of the material from diversion through interdiction are important goals for nuclear forensics and attribution. It is equally important to determine whether additional devices or materials that pose a threat to public safety are also available. Finding the answer to these questions depends on determining the source of the material and its method of production. Nuclear forensics analysis and interpretation provide essential insights into methods of production and sources of illicit radioactive materials. However, they are most powerful when combined with other sources of information, including intelligence and traditional detective work. The certainty of detection and punishment for those who remove nuclear materials from legitimate control provides the ultimate deterrent for such diversion and, ultimately, for the intended goal of such diversion, including nuclear terrorism or proliferation. Consequently, nuclear forensics is an integral part of 'nuclear deterrence' in the 21st century. Nuclear forensics will always be limited by the diagnostic information inherent in the interdicted material. Important markers for traditional forensics (fingerprints, stray material, etc.) can be eliminated or obscured, but many nuclear materials have inherent isotopic or chemical characteristics that serve as unequivocal markers of specific sources, production processes, or transit routes. The information needed for nuclear forensics goes beyond that collected for most commercial and international verification activities. Fortunately, the international nuclear engineering enterprise has a restricted number of conspicuous process steps that makes the interpretation process easier. Ultimately, though, it will always be difficult to distinguish between materials that reflect similar source or production histories, but are derived from disparate sites. Due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. There are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Therefore, a knowledge management system that utilizes information resources relevant to nuclear forensic and attribution signatures, processes, origins, and pathways, allowing subject matter experts to access the right information in order to interpret forensics data and draw appropriate conclusions, is essential. In order to determine the origin, point of diversion of the nuclear material, and those responsible for the unauthorized transfer, close relationships are required between governments who maintain inventories and data of fissile or other radioactive materials. Numerous databases exist in many countries and organizations that could be valuable for the future development and application of nuclear forensics.« less

  10. Nuclear materials stewardship: Our enduring mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.« less

  11. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    NASA Astrophysics Data System (ADS)

    Bakalyarov, A. M.; Karetnikov, M. D.; Kozlov, K. N.; Lebedev, V. I.; Meleshko, E. A.; Obinyakov, B. A.; Ostashev, I. E.; Tupikin, N. A.; Yakovlev, G. V.

    2007-08-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed.

  12. 10 CFR 75.24 - Retention of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Retention of records. 75.24 Section 75.24 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.24 Retention of records. The records referred to in §§ 75.22 and...

  13. 10 CFR 75.24 - Retention of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Retention of records. 75.24 Section 75.24 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material Accounting and Control for Facilities § 75.24 Retention of records. The records referred to in §§ 75.22 and...

  14. Application of the Monte Carlo method to estimate doses due to neutron activation of different materials in a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Ródenas, José

    2017-11-01

    All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.

  15. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  16. MEANS FOR CONTROLLING REACTIONS

    DOEpatents

    Nordheim, L.W.; Wigner, E.P.

    1961-06-27

    The patented means is described for controlling a nuclear reactor which comprises a tank containing a dispersion of a thermally fissionable material in a liquid moderator and a material convertible to a thermally fissionable material in a container disposed about the tank. The control means comprises a control rod chamber, containing only a liquid moderator, disposed within the container and adjacent to the tank and a control rod designed to be inserted into the chamber.

  17. 10 CFR 73.4 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or Director, Division of Security Policy... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 73.4 Section 73.4 Energy NUCLEAR...

  18. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2010-01-01 2010-01-01 false Conduct resulting in termination of nuclear exports. 110...

  19. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2011-01-01 2011-01-01 false Conduct resulting in termination of nuclear exports. 110...

  20. Nuclear energy and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less

  1. Is it necessary to raise awareness about technologically enhanced naturally occurring radioactive materials?

    PubMed

    Michalik, Bogusław

    2009-10-01

    Since radiation risks are usually considered to be related to nuclear energy, the majority of research on radiation protection has focused on artificial radionuclides in radioactive wastes, spent nuclear fuel or global fallout caused by A-bomb tests and nuclear power plant failures. Far less attention has been paid to the radiation risk caused by exposure to ionizing radiation originating from natural radioactivity enhanced due to human activity, despite the fact that technologically enhanced naturally occurring radioactive materials are common in many branches of the non-nuclear industry. They differ significantly from "classical" nuclear materials and usually look like other industrial waste. The derived radiation risk is usually associated with risk caused by other pollutants and can not be controlled by applying rules designed for pure radioactive waste. Existing data have pointed out a strong need to take into account the non-nuclear industry where materials containing enhanced natural radioactivity occur as a special case of radiation risk and enclose them in the frame of the formal control. But up to now there are no reasonable and clear regulations in this matter. As a result, the non-nuclear industries of concern are not aware of problems connected with natural radioactivity or they would expect negative consequences in the case of implementing radiation protection measures. The modification of widely comprehended environmental legislation with requirements taken from radiation protection seems to be the first step to solve this problem and raise awareness about enhanced natural radioactivity for all stakeholders of concern.

  2. Arms Control and Nonproliferation: A Catalog of Treaties and Agreements

    DTIC Science & Technology

    2007-08-09

    security and control over nuclear weapons and fissile materials. These projects provided Russia with bullet-proof Kevlar blankets, secure canisters ...U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early...U.S.-Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and

  3. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaltzgraff, Robert L

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration’s “Atoms for Peace” concept, the current and future rolemore » of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.« less

  4. The Tripartite Seminars at the Russian Methodological and Training Center: An Overview of Progress in Nuclear Materials Control and Accounting in the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshakin, Gennady; Dickman, Deborah A.; Ryazanov, Boris

    2003-09-16

    The development of the Russian Methodological and Training Center (RMTC) has been an important element of collaboration between the Russian Federation (RF), the European Union and the US. The RMTC, located at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia has been designated by the Russian Ministry of Atomic Energy (Minatom) to provide nuclear materials protection, control and Accounting training to Minatom and the Federal Nuclear and Radiation Safety Authority (Gosatomnadzor) personnel. In addition, the RMTC was chartered with the responsibility of providing a venue for exchange of experiences and information between Russian and international specialists.

  5. Nuclear Security Objectives of an NMAC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Rebecca Lynn

    After completing this module, you should be able to: Describe the role of Nuclear Material Accounting and Control (NMAC) in comprehensive nuclear security at a facility; Describe purpose of NMAC; Identify differences between the use of NMAC for IAEA safeguards and for facility nuclear security; List NMAC elements and measures; and Describe process for resolution of irregularities

  6. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less

  7. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  8. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  9. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  10. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  11. Toward the framework and implementation for clearance of materials from regulated facilities.

    PubMed

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.

  12. Intelligence briefing on smuggling of nuclear material and the role of international crime organizations, and on the proliferation of cruise and ballistic missiles. Hearing before the Committee on Armed Services, United States Senate, One Hundred Fourth Congress, First Session, January 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The hearing addresses nuclear smuggling and the role of international crime organizations in the proliferation of cruise and ballistic missiles. The demise of the Soviet Union has weakened the control in Russia over nuclear materials. Statements of government officials are included along with documents submitted for the record.

  13. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  14. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  15. 10 CFR 74.6 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: ATTN: Document Control Desk, Director of Nuclear Material Safety and Safeguards, U.S. Nuclear... visiting the NRC's Web site at http://www.nrc.gov/site-help/e-submittals.html; by e-mail to MSHD.Resource...

  16. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  17. Continuous Efforts to Develop the National System for Material Control and Accounting Training at the George Kuzmycz Training Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Romanova, Olena

    2011-10-01

    The George Kuzmycz Training Center (GKTC) for Physical Protection, Control and Accounting of Nuclear Materials was established in 1998 at the Kyiv Institute of Nuclear Research of the Ukrainian Academy of Sciences through the collaborative efforts of the United States and Ukraine. Later the European Commission (EC) joined the US in assisting with the Material Control and Accounting (MC&A) part of the GKTC training program. The Government of Ukraine designated the GKTC as the National Center responsible for providing training and methodological support for nuclear facilities and nuclear specialists in the Material Protection, Control and Accounting (MPC&A) area. To increasemore » the efficiency of the State MC&A system an essential number of new regulations, norms and rules have been developed; some of them mandate regular and more intensive training of MC&A specialists in the industry - from those working at the Nuclear Regulatory Authority of Ukraine to the personnel of nuclear facilities. To meet such regulations GKTC plans to develop next year a number of training courses under the EC contract; such courses will reflect both the specifics of Ukrainian nuclear facilities and the level of expertise of the facilities’ personnel. The NDA training laboratory, established in 2003 with US DOE financial support and technical and methodological assistance, considerably expanded the GKTC’s training capabilities for MC&A programs. Next year that lab will be supplemented with a new NM Surveillance and Containment laboratory as current plans call for under the EC contract. The US DOE is also providing funding to support that project. Under the EC contract the laboratory will be equipped with state-of-the-art, advanced surveillance and containment equipment which will strengthen and expand even further the GKTC’s training capabilities and potential. This will allow GKTC to train Ukrainian nuclear industry specialists in practically all MC&A topics. Furthermore, GKTC is planning to offer already this year and to continue offering in the future, on a regular basis, the courses that have already been developed, while continuing to develop new ones. This paper briefly describes the work done to upgrade the Ukrainian MC&A system, both at the State and at the facilities’ levels, as well as the results of efforts to develop the National System for training MC&A personnel at the GKTC. It also describes problems encountered and their solution; it includes comments, suggestions and recommendations for future activities to promote and improve the nuclear material management culture in Ukraine.« less

  18. 76 FR 15001 - Entergy Nuclear Operations, Inc,. Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... understand VY's design, layout, and construction. This failure to comprehend and understand the layout... Facilities,'' and General Design Criteria 60, ``Control of Releases of Radioactive Materials to the Environment,'' and 64, ``Monitoring Radioactivity Releases,'' of Appendix A, ``General Design Criteria for...

  19. After Action Report - Kazakhstan NSDD July 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Caterina; Eppich, Gary; Kips, Ruth

    On Monday 20 July, Caterina Fox, Ruth Kips and Kim Knight were invited to participate in Kazakhstan's nuclear material inventory management working group meeting coordinated by Alexander Vasilliev as nuclear forensics subject matter experts. The meeting included participants from Kazakhstan's nuclear regulatory agency (CAESC, the Committee on Atomic and Energetic Supervision and Control) and 3 institutes 1. Institute of Nuclear Physics, INP (Almaty), 2. National Nuclear Center, NNC (Kurchatov), and 3. Ulba Metallurgical Plant, UMP (Oskemen). CAESC requested attendance of an MC&A expert, an IT Specialist, and a Physical Security Specialist from each site. The general meeting concerned considerations formore » creating unified or compatible systems for nuclear material inventory management. NSDD representatives provided an overview of nuclear forensics and presented considerations for developments of inventory management that might be synergistic with future consideration of development of a National Nuclear Forensics Library to support nuclear forensics investigations.« less

  20. The role of accelerators in the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the usemore » of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.« less

  1. Report on {open_quotes}audit of internal controls over special nuclear materials{close_quotes}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The Department of Energy (Department) is responsible for safeguarding a significant amount of plutonium, uranium-233 and enriched uranium - collectively referred to as special nuclear materials - stored in the United States. The Department`s office of Nonproliferation and National Security has overall management cognizance for developing policies for safeguarding these materials, while other Headquarters program offices have {open_quotes}landlord{close_quotes} responsibilities for the sites where the materials are stored, and the Department`s operations and field offices provide onsite management of contractor operations. The Department`s management and operating contractors, under the direction of the Department, safeguard and account for the special nuclear materialmore » stored at Department sites.« less

  2. DYNSYL: a general-purpose dynamic simulator for chemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.K.; Rozsa, R.B.

    1978-09-05

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less

  3. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  4. Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.

    The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.« less

  5. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciencesmore » Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.« less

  6. Methods and apparatuses for the development of microstructured nuclear fuels

    DOEpatents

    Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM

    2009-04-21

    Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

  7. Nuclear reactor safety device

    DOEpatents

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  8. 10 CFR 74.53 - Process monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula... estimated measurement standard deviation greater than five percent that is either input or output material... results generated during an inventory period for indications of measurement biases or unidentified loss...

  9. International Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; andmore » (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.« less

  10. 10 CFR 20.1801 - Security of stored material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...

  11. 10 CFR 20.1801 - Security of stored material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...

  12. 10 CFR 20.1801 - Security of stored material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...

  13. 10 CFR 20.1801 - Security of stored material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...

  14. 10 CFR 20.1801 - Security of stored material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...

  15. 10 CFR 76.111 - Physical security, material control and accounting, and protection of certain information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... significance (Category III), and for protection of Restricted Data, National Security Information, Safeguards... 10 Energy 2 2010-01-01 2010-01-01 false Physical security, material control and accounting, and protection of certain information. 76.111 Section 76.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...

  16. Proliferation of nuclear weapons: opportunities for control and abolition.

    PubMed

    Sidel, Victor W; Levy, Barry S

    2007-09-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.

  17. Kinetics of Materials at Extreme Conditions: Understanding the Time Dependent Approach to Equilibrium at MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, R. G.; Mcnabb, D.; Kumar, M.

    The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The developmentmore » of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”« less

  18. American-Ukrainian Nuclear Relations

    DTIC Science & Technology

    1996-10-01

    Ukrainian nuclear question. Foreign Minister Kozyrev was blunt in his view that the Ukrainians were seeking to gain control of the nuclear weapons and...the nuclear material in the weapons on its territory. Kiev was very pleased with the U.S. position, claiming that it mirrored the Ukrainian stance...had pcrsonally directed Kozyrev to come up with language that would please Ukraine and that Russia would be willing to provide the assurances

  19. Nuclear Fuel Reprocessing: U.S. Policy Development

    DTIC Science & Technology

    2006-11-29

    to the chemical separation of fissionable uranium and plutonium from irradiated nuclear fuel. The World War II-era Manhattan Project developed...created the Atomic Energy Commission (AEC) and transferred production and control of fissionable materials from the Manhattan Project . As the exclusive

  20. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less

  1. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less

  2. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... features of the facility relating to material accounting, containment, and surveillance; (4) A description of the existing and proposed procedures at the facility for nuclear material accounting and control, with special reference to material balance areas established by the licensee, measurement of flow, and...

  3. 10 CFR 75.35 - Material status reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... physical inventory which is taken as part of the material accounting and control procedures required by... instructions may be obtained from the U.S. Nuclear Regulatory Commission, Division of Fuel Cycle Safety and...

  4. Nuclear Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  5. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... and Management System (ADAMS): You may access publicly-available documents online in the NRC Library... revised ANSI N15.8 in February 2009. ANSI N15.8-2009 provides guidance on the fundamentals of an SNM...

  6. Controlled manipulation of elastomers with radiation: Insights from multiquantum nuclear-magnetic-resonance data and mechanical measurements

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.

    2011-03-01

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.

  7. Flexible Robotic Entry Device for nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M.

    1988-01-01

    The Savannah River Laboratory (SRL) has developed and is implementing a Flexible Robotic Entry Device (FRED) for the nuclear materials production reactors at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique ''smart tether'' method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. 3 figs.

  8. MEANS FOR CONTROLLING A NUCLEAR REACTOR

    DOEpatents

    Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.

    1957-12-17

    This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.

  9. Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pregenzer, Arian Leigh

    2011-12-01

    The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunitiesmore » for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.« less

  10. Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization

    NASA Astrophysics Data System (ADS)

    Dean, Garrett James

    Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of four minutes to seven hours. The algorithm described is capable of determining the cooling time and fluence the sample was exposed to within 10% as well as roughly estimating the relative concentrations of nuclides present in the original composition.

  11. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  12. Industrial Hardening: 1981 Technical Status-Report.

    DTIC Science & Technology

    1982-09-01

    preparedness for nuclear disaster ), establish additional industry contacts (through which to test and evaluate the new inputs and refinements), and...handling and control of toxic (and hazardous) materials in a nuclear disaster situation are desirable. In line with our strategy to seek overlapping...earthquake preparedness that apply to a nuclear disaster requires an analysis that is less direct than comparing ground shock. Earthquake-generated

  13. 15 CFR Supplement No. 3 to Part 730 - Other U.S. Government Departments and Agencies With Export Control Responsibilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L.

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navymore » while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.« less

  15. Russian Contract Procurement Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J G

    2010-03-29

    This contract supports the enhancement of physical protection or nuclear material control and accounting systems at institutes or enterprises of the newly independent states under the material protection control and accounting (MPC&A) program. The contract is entered into pursuant to the MPC&A Program, a gratuitous technical assistance program, in accordance with the bilateral Agreements between the Russian Federation and the United States of America concerning the Safe and Secure Transportation, Storage and Destruction of Weapons and the Prevention of Weapons Proliferation of June 1992, as extended and amended by Protocol signed of June 1999, Agreement between the Government of themore » Russian Federation regarding Cooperation in the Area of Nuclear Materials Physical Protection, Control and Accounting of October 1999 and the Russian Federation law of May 1999 on the taxation exemption of gratuitous technical assistance with Russian Federation under registration No.DOE001000.« less

  16. Proliferation of Nuclear Weapons: Opportunities for Control and Abolition

    PubMed Central

    Sidel, Victor W.; Levy, Barry S.

    2007-01-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690

  17. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    PubMed Central

    Pregenzer, Arian

    2014-01-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons, and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation, and counterterrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclear technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters worldwide provide significant benefits to global public health. PMID:24524501

  18. MC and A instrumentation catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neymotin, L.; Sviridova, V.

    1998-06-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog hasmore » been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.« less

  19. Bibliography of Nuclear Education Resources.

    ERIC Educational Resources Information Center

    Alexander, Susan, Ed.

    Provided in this bibliography is a listing of nuclear education books and resource materials. Entries (most of which are annotated) are presented under these headings: action; arms control and negotiations; arms race; the arts; atomic energy; atomic testing; bibliographies; civil defense; conference proceedings; conflict solving; conversion;…

  20. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act-Regulations Implementing Section 102(2... Control Desk, Director, Office of Nuclear Material Safety and Safeguards, a separate document entitled...

  1. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.

  2. Thermal control of high energy nuclear waste, space option. [mathematical models

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  3. Effectiveness of United StatesLed Economic Sanctions as a Counterproliferation Tool Against Irans Nuclear Weapons Program

    DTIC Science & Technology

    2015-12-01

    www.nytimes.com/2015/07/15/world/middleeast/iran-nuclear-deal-is- reached-after-long-negotiations.html. 70 Valerie Lincy and Simon Chin, “How to...procuring steel and other materials used in the manufacturing of missile propellants. Lastly, in the United Kingdom case, the State Department...97 Valerie Lincy and Gary Milhollin, “Iran’s Nuclear Timetable,” Wisconsin Project on Nuclear Arms Control, June 17, 2015, http

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winstanley, J. L.

    In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division atmore » Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons« less

  6. 78 FR 33995 - Nuclear Proliferation Assessment in Licensing Process for Enrichment or Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... designed to minimize proliferation risks world-wide, including the Nuclear Non- Proliferation Treaty, the U... and licensees ensure that they comply with requirements designed to minimize proliferation risks... NRC's regulations on physical security, information security, material control and accounting, cyber...

  7. 10 CFR Appendix I to Part 110 - Illustrative List of Reprocessing Plant Components Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium or other... materials such as low carbon stainless steels, titanium or zirconium, or other high quality materials... features for control of nuclear criticality: (i) Walls or internal structures with a boron equivalent of at...

  8. New Brunswick Laboratory. Progress report, October 1995--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group,more » Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.« less

  9. JPRS Report, Arms Control.

    DTIC Science & Technology

    1989-05-25

    to slide on interna- tional markets , making it easy to purchase raw materials . Today capitalists can use transnational corporations, to find...For example, nuclear industries have shifted their emphasis from nuclear weapons to peaceful uses of nuclear energy, and missile industries have...principle of deter- rence is by no means a 20th-century discovery. Both Greece and Rome understood that the use of threats of disaster far

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P.J.

    Lasers and laser-based sources are now routinely used to control and manipulate nuclear processes, e.g. fusion, fission and resonant nuclear excitation. Two such “nuclear photonics” activities with the potential for profound societal impact will be reviewed in this presentation: the pursuit of laser-driven inertial confinement fusion at the National Ignition Facility and the development of laser-based, mono-energetic gamma-rays for isotope-specific detection, assay and imaging of materials.

  11. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans

    The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less

  13. OAST Space Theme Workshop. Volume 3: Working group summary. 7: Material (M-1). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The approach of matching technology areas with various themes needs was not effective for the materials and thermal control discipline because of the diversity of requirements for each. Top priorities were evolved from the advanced space transportation system and the space power platform because these are essential building blocks in fulfilling some of the other themes. Important needs identified include life long-life cryogenic cooling systems for sensors, masers, and other devices and the needs for lightweight nuclear shielding materials for nuclear electric propulsion.

  14. Introduction to Pits and Weapons Systems (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less

  15. 78 FR 53173 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0112] Agency Information Collection Activities... for employment), contractors, and consultants of NRC licensees and contractors whose activities involve access to, or control over, special nuclear material at either fixed sites or for transportation...

  16. 10 CFR 11.10 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Maintenance of records. 11.10 Section 11.10 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL General Provisions § 11.10 Maintenance of records. Each record required by this...

  17. 10 CFR 11.10 - Maintenance of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Maintenance of records. 11.10 Section 11.10 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL General Provisions § 11.10 Maintenance of records. Each record required by this...

  18. TLA — markers and nuclear scanning method for wear rate monitoring

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Ivanov, E.; Dudu, D.; Catana, M.; Roman, M.

    1994-08-01

    Two new extensions of the TLA-direct measuring method are presented: the TLA-markers for wear control and the nuclear scanning method for monitoring wear non-uniformity on large surfaces. Both methods were applied to measure the material loss on the surface of railway car brake disks.

  19. [Atomic Energy Control Board] annual report 1997--1998. Research report number INFO-9999-1 (in English;French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    The Board`s mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The annual report of the Board presents information on regulatory requirements; nuclear facilities, from uranium mines to nuclear power plants and related operations; regulation of nuclear materials; radioactive waste management; compliance monitoring; research; non-proliferation, safeguards and security; international activities, and public information. A financial statement is also included.

  20. Believing Your Eyes: Strengthening the Reliability of Tags and Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brim, Cornelia P.; Denlinger, Laura S.

    2013-07-01

    NNSA’s Office of Nonproliferation and International Security (NIS) is working together with scientific experts at the DOE national laboratories to develop the tools needed to safeguard and secure nuclear material from diversion, theft, and sabotage--tasks critical to support future arms control treaties that may involve the new challenge of monitoring nuclear weapons dismantlement. Use of optically stimulated luminescent material is one method to enhance the security and robustness of existing tamper indicating devices such as tags and seals.

  1. U.S.-Russian cooperation in nuclear disarmament and nonproliferation

    NASA Astrophysics Data System (ADS)

    Podvig, Pavel

    2010-02-01

    The United States and Russia, the two largest nuclear powers, have a special obligation to provide leadership in nuclear disarmament and in strengthening the nuclear non-proliferation regime. In the past year the two countries made an effort to restart the arms control process by concluding a new treaty that would bring their legal disarmament obligations in line with the realities of their post-cold war relationships. The process of negotiating deeper nuclear reductions in the new environment turned out to be rather difficult, since the approaches that the countries used in the past are not well suited to dealing with issues like conversion of strategic nuclear delivery systems to conventional missions, tactical nuclear weapons, or dismantlement of nuclear warheads. This presentation considers the recent progress in U.S.-Russian arms control process and outlines the key issues at the negotiations. It also considers prospects for further progress in bilateral nuclear disarmament and issues that will be encountered at later stages of the process. The author argues that success of the arms reductions will depend on whether the United States and Russia will be able to build an institutional framework for cooperation on a range of issues - from traditional arms control to securing nuclear materials and from missile defense to strengthening the international nuclear safeguards. )

  2. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  3. ROBOCAL: Gamma-ray isotopic hardware/software interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, presently being developed at the Los Alamos National Laboratory, is a full-scale prototypical robotic system for remotely performing calorimetric and gamma-ray isotopics measurements of nuclear materials. It features a fully automated vertical stacker-retriever for storing and retrieving packaged nuclear materials from a multi-drawer system, and a fully automated, uniquely integrated gantry robot for programmable selection and transfer of nuclear materials to calorimetric and gamma-ray isotopic measurement stations. Since ROBOCAL is to require almost no operator intervention, a mechanical control system is required in addition to a totally automated assay system. The assay system must be a completely integrated datamore » acquisition and isotopic analysis package fully capable of performing state-of-the-art homogeneous and heterogeneous analyses on many varied matrices. The TRIFID assay system being discussed at this conference by J. G. Fleissner of the Rocky Flats Plant has been adopted because of its many automated features. These include: MCA/ADC setup and acquisition; spectral storage and analysis utilizing an expert system formalism; report generation with internal measurement control printout; user friendly screens and menus. The mechanical control portion consists primarily of two detector platforms and a sample platform, each with independent movement. Some minor modifications and additions are needed with TRIFID to interface the assay and mechanical portions with the CimRoc 4000 software controlling the robot. 6 refs., 5 figs., 3 tabs.« less

  4. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern, Keith; Daming, Liu; Hanley, Tim

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducingmore » CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.« less

  5. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less

  6. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less

  7. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  8. Nuclear reactor fuel containment safety structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.

  9. Development of automated optical verification technologies for control systems

    NASA Astrophysics Data System (ADS)

    Volegov, Peter L.; Podgornov, Vladimir A.

    1999-08-01

    The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.

  10. Downgrade of the Savannah River Sites FB-Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI

    2005-07-05

    This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less

  11. 75 FR 79049 - Final Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... (RG) 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for Material Control and Accounting... and licenses. Regulatory Guide 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for... and Use of Pressure-Sensitive Seals on Containers for Onsite Storage of Special Nuclear Material...

  12. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    DOE PAGES

    Dreicer, Mona; Pregenzer, Arian

    2014-04-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclearmore » technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.« less

  13. 10 CFR 71.123 - Test control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Test control. 71.123 Section 71.123 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.123 Test control. The licensee, certificate holder, and applicant for a CoC shall establish a test...

  14. 10 CFR 71.123 - Test control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Test control. 71.123 Section 71.123 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.123 Test control. The licensee, certificate holder, and applicant for a CoC shall establish a test...

  15. 10 CFR 71.123 - Test control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Test control. 71.123 Section 71.123 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.123 Test control. The licensee, certificate holder, and applicant for a CoC shall establish a test...

  16. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  17. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less

  20. Adversary modeling: an analysis of criminal activities analogous to potential threats to nuclear safeguard systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heineke, J.M.

    1978-12-20

    This study examines and analyzes several classes of incidents in which decision makers are confronted with adversaries. The classes are analogous to adversaries in a material control system in a nuclear facility. Both internal threats (bank frauds and embezzlements) and external threats (aircraft hijackings and hostage-type terrorist events were analyzed. (DLC)

  1. Reproducibility, Controllability, and Optimization of Lenr Experiments

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2006-02-01

    Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.

  2. METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL

    DOEpatents

    Huston, N.E.

    1961-06-01

    A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.

  3. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  4. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  5. Nuclear safeguards in Brazil and Argentina: 25 years of ABACC

    NASA Astrophysics Data System (ADS)

    Kassenova, Togzhan

    2017-11-01

    As possessors of advanced nuclear technology, Brazil and Argentina bear special responsibility for helping the international community and neighbors in their region feel confident that their nuclear programs are peaceful, secure, and safe. Over the past 25 years, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) has played an indispensable role in strengthening such confidence by implementing nuclear safeguards in the two countries. Today, ABACC carries out safeguards inspections at a total of 76 nuclear facilities in Brazil and Argentina. This article describes how Brazil and Argentina view trends in the global nonproliferation regime and international nuclear safeguards, and explains how these trends relate to unique challenges and opportunities facing Brazil, Argentina, and ABACC.

  6. Application of modern autoradiography to nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less

  7. Application of modern autoradiography to nuclear forensic analysis

    DOE PAGES

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...

    2018-05-20

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less

  8. Application of modern autoradiography to nuclear forensic analysis.

    PubMed

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this paper we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. 10 CFR 73.72 - Requirement for advance notice of shipment of formula quantities of strategic special nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quantities of strategic special nuclear material, special nuclear material of moderate strategic significance, or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... shipment of formula quantities of strategic special nuclear material, special nuclear material of moderate...

  10. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  11. Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation

    NASA Astrophysics Data System (ADS)

    Mayer, K.; Wallenius, M.; Lützenkirchen, K.; Galy, J.; Varga, Z.; Erdmann, N.; Buda, R.; Kratz, J.-V.; Trautmann, N.; Fifield, K.

    2011-09-01

    Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.

  12. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  13. 77 FR 25932 - Revisions to the Export Administration Regulations (EAR): Control of Energetic Materials and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... the fact that they apply to the same group of destinations as missile technology controls (i.e., both... Requirements section of ECCN 1E101, consistent with the ``technology'' controls of the Nuclear Suppliers Group.... 120105018-2011-01] RIN 0694-AF53 Revisions to the Export Administration Regulations (EAR): Control of...

  14. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  15. Radiological Weapons Control: A Soviet and US Perspective. Occasional Paper 29.

    ERIC Educational Resources Information Center

    Issraelyan, Victor L.; Flowerree, Charles C.

    Two international diplomats from the Soviet Union and the United States focus on the need for a treaty to ban the use of radiological weapons. Radiological weapons are those based on the natural decay of nuclear material such as waste from military or civilian nuclear reactors. Such devices include both weapons and equipment, other than a nuclear…

  16. Probing the nuclear susceptibility of mesoionic compounds using two-beam coupling with chirp-controlled pulses

    NASA Astrophysics Data System (ADS)

    Bosco, Carlos A. C.; Maciel, Glauco S.; Rakov, Nikifor; de Araújo, Cid B.; Acioli, Lúcio H.; Simas, Alfredo M.; Athayde-Filho, Petrônio F.; Miller, Joseph

    2007-11-01

    The third-order non-linear optical response of mesoionic compounds (MIC) in dimethylsulfoxide (DMSO) and methanol solutions was investigated by use of collinear pump and probe technique with chirp-controlled femtosecond pulses. The experiments allowed the investigation of non-instantaneous nuclear processes and thermal effects induced by two-photon absorption (TPA). We found that the nuclear non-linearity of MIC in DMSO is ˜1/5 the benzene, which was used as a reference material. This result is attributed to the large inertia of MIC to rotation, compared to benzene. The results for MIC in methanol indicate the influence of thermal effects due to TPA.

  17. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  18. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  19. CONTROL ROD

    DOEpatents

    Walker, D.E.; Matras, S.

    1963-04-30

    This patent shows a method of making a fuel or control rod for a nuclear reactor. Fuel or control material is placed within a tube and plugs of porous metal wool are inserted at both ends. The metal wool is then compacted and the tube compressed around it as by swaging, thereby making the plugs liquid- impervious but gas-pervious. (AEC)

  20. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  1. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  2. 10 CFR 71.119 - Control of special processes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Control of special processes. 71.119 Section 71.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality... shall establish measures to assure that special processes, including welding, heat treating, and...

  3. 10 CFR 71.119 - Control of special processes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Control of special processes. 71.119 Section 71.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality... shall establish measures to assure that special processes, including welding, heat treating, and...

  4. 10 CFR 71.119 - Control of special processes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Control of special processes. 71.119 Section 71.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality... shall establish measures to assure that special processes, including welding, heat treating, and...

  5. 10 CFR 71.119 - Control of special processes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Control of special processes. 71.119 Section 71.119 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality... shall establish measures to assure that special processes, including welding, heat treating, and...

  6. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study

    PubMed Central

    Jara-Ettinger, Ana Cecilia; López-Tavera, Juan Carlos; Zavala-Cerna, María Guadalupe; Torres-Bugarín, Olivia

    2015-01-01

    Background An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. Material and Methods We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. Results Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. Conclusions Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject. PMID:26244938

  7. An analytical chemistry laboratory's experiences under Department of Energy Order 5633. 3 - a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.D.

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventorymore » of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes.« less

  8. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  9. Nuclear Technology. Course 31: Quality Assurance Practices. Module 31-5, Nonconforming Materials.

    ERIC Educational Resources Information Center

    Pritchard, Jim; Espy, John

    This fifth in a series of eight modules for a course titled Quality Assurance Practices describes the essential elements of a nonconforming material control system, including purpose and application. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  10. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  11. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  12. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  13. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  14. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  15. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  16. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  17. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  18. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  19. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  20. Quantum Control and Entanglement of Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Klimov, Paul

    Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.

  1. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's abilitymore » to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.« less

  2. Determining Nuclear Fingerprints: Glove Boxes, Radiation Protection, and the International Atomic Energy Agency.

    PubMed

    Rentetzi, Maria

    2017-06-01

    In a nuclear laboratory, a glove box is a windowed, sealed container equipped with two flexible gloves that allow the user to manipulate nuclear materials from the outside in an ostensibly safe environment. As a routine laboratory device, it invites neglect from historians and storytellers of science. Yet, since especially the Gulf War, glove boxes have put the interdependence of science, diplomacy, and politics into clear relief. Standing at the intersection of history of science and international history, technological materials and devices such as the glove box can provide penetrating insight into the role of international diplomatic organizations to the global circulation and control of scientific knowledge. The focus here is on the International Atomic Energy Agency. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Report of the CIRRPC Executive Committee regarding EPA NESHAP regulations on radionuclides for medical research institutions and radiopharmaceutical manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-06-01

    There appears to be no compelling public health protection reason for EPA`s promulgation of NESHAP regulations to control air emissions of radioactive materials from NRC-licensed facilities engaged in activities associated with the practice and development of nuclear medicine. The NRC`s existing regulations provide the necessary controls for protection and EPA`s regulations would only add burdensome reporting requirements at substantial cost to medical treatment and diagnosis. Availability of nuclear medicine practice could be impacted and advancements through research delayed.

  4. Atoms for peace and the nonproliferation treaty: unintended consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streeper, Charles Blamires

    2009-01-01

    In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMDmore » related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logged 1562 incidents, of which only 18 include weapons grade nuclear materials. As much as 66% of the radioactive material involved in these incidents was not recovered. Since 2004, there has been a 75% increase in incidents of unrecoverable material, much of which is labeled dangerous with potential for deterministic health affects if misused. This makes clear that a black market of illicit trade in sources exists. The incidents reported to the IAEA's database rely only on voluntary state reporting; therefore, the number of lost or stolen sources is expected to be much higher.« less

  5. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less

  6. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    PubMed

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  7. 10 CFR 70.5 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: ATTN: Document Control Desk, Director, Office of Nuclear Material Safety and Safeguards or... electronic submissions can be obtained by visiting the NRC's Web site at http://www.nrc.gov/site-help/e...

  8. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  9. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  10. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  11. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  12. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  13. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  14. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  15. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  16. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  17. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  18. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  19. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  20. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  1. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  2. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  3. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  4. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  5. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  6. Nuclear Technology. Course 28: Welding Inspection. Module 28-8, Filler Metal Control.

    ERIC Educational Resources Information Center

    Espy, John

    This eighth in a series of ten modules for a course titled Welding Inspection describes controls necessary to place the proper electrode or rod at each welding station. More specifically, the module describes use of the American Welding Society specifications, control of weld filler material after receipt from the supplier, and methods of ensuring…

  7. Internal contamination in the space station

    NASA Technical Reports Server (NTRS)

    Poythress, C.

    1985-01-01

    Atmosphere trace contaminant control systems used in the past (Lunar Module and Skylab) and present (nuclear submarines and Shuttle) are discussed. Recommendations are made for the future Space Station contaminant control system. The prevention and control methods used are judicious material selection, detection, and specific removal equipment. Sources and effects of contamination relating to crew and equipment are also discussed.

  8. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  9. 10 CFR 63.4 - Communications and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... follows: (1) By mail addressed: ATTN: Document Control Desk; Director, Office of Nuclear Material Safety... the NRC's offices at 11555 Rockville Pike, Rockville, Maryland; ATTN: Document Control Desk: Director... obtained by visiting the NRC's Web site at http://www.nrc.gov/site-help/e-submittals.html; by e-mail to...

  10. 10 CFR 63.4 - Communications and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... follows: (1) By mail addressed: ATTN: Document Control Desk; Director, Office of Nuclear Material Safety... the NRC's offices at 11555 Rockville Pike, Rockville, Maryland; ATTN: Document Control Desk: Director... obtained by visiting the NRC's Web site at http://www.nrc.gov/site-help/e-submittals.html; by e-mail to...

  11. Material Stream Strategy for Lithium and Inorganics (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle

    Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.

  12. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  13. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  14. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  15. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  16. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  17. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  18. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  19. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  20. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  1. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  2. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  3. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  4. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  5. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  6. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  7. SARS: Safeguards Accounting and Reporting Software

    NASA Astrophysics Data System (ADS)

    Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.

    In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.

  8. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  9. Criticality Safety Basics for INL FMHs and CSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.« less

  10. 75 FR 76050 - Notice of the Nuclear Regulatory Commission Consent to Indirect Change of Control and Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Ranch in situ recovery (ISR) project in Johnson and Campbell Counties, Wyoming. The project is currently in operating status, but is not producing uranium at this time. Materials License SUA-1569 authorizes Uranium One Americas, Inc., to possess uranium and byproduct material at its Moore Ranch ISR Project in...

  11. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    PubMed

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  12. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  13. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  14. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  15. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  16. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  17. Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, James E; Meek, Elizabeth

    2009-01-01

    The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the keymore » points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the near-term (1-4) years and longer-term (5-10) years planning horizons. Some final observations include acknowledging the enduring nature of several key objectives on the Obama Administration's arms control and nonproliferation agenda. The CTBT, FMCT, bilateral nuclear arms reductions and strengthening the NPT have been sought by successive U.S. Administrations for nearly thirty years. Efforts towards negotiated arms control, although de-emphasized by the G.W. Bush Administration, have remained a pillar of U.S. national security strategy for decades and are likely to be of enduring if not increasing importance for decades to come. Therefore revitalization and expansion of USG capabilities in this area can be a positive legacy no matter what near-term arms control goals are achieved over the next four years. This is why it is important to reconstruct integrated bureaucratic, legislative, budgetary and diplomatic strategies to sustain the arms control and nonproliferation agenda. In this endeavor some past lessons must be taken to heart to avoid bureaucratic overkill and keep interagency policy-making and implementation structures lean and effective. On the Technical side a serious, sustained multilateral program to develop, down select and performance test nuclear weapons dismantlement verification technologies and procedures should be immediately initiated. In order to make this happen the United States and Russia should join with the UK and other interested states in creating a sustained, full-scale research and development program for verification at their respective nuc1ear weapons and defense establishments. The goals include development of effective technologies and procedures for: (1) Attribute measurement systems to certify nuclear warheads and military fissile materials; (2) Chain-of-custody methods to track items after they are authenticated and enter accountability; (3) Transportation monitoring; (4) Storage monitoring; (5) Fissile materials conversion verification. The remainder of this paper focuses on transparency and verification for nuclear arms and fissile material reductions.« less

  18. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  19. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  20. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  1. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  2. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  3. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  4. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  5. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  6. 10 CFR Appendix E to Part 73 - Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... material are synonymous: Category I is a formula quantity of strategic special nuclear material; Category II is special nuclear material of moderate strategic significance or irradiated fuel; and Category III is special nuclear material of low strategic significance. (Verbatim from Annex I to the...

  7. Statistical methods for nuclear material management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less

  8. Flexible robotic entry device for a nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M. II

    1988-01-01

    The Savannah River Laboratory has developed and is implementing a flexible robotic entry device (FRED) for the nuclear materials production reactors now operating at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique smart tether method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. This system makes it possible to use FRED under all operating and standby conditions, including those where radio/microwave transmissions are not possible or permitted, and increases the quantity of data available.

  9. Regulatory control of low level radioactive waste in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.D.S.; Chiou, Syh-Tsong

    1996-12-31

    The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less

  10. Investigation of injury/illness data at a nuclear facility. Part II

    DOE PAGES

    Cournoyer, Michael E.; Garcia, Vincent E.; Sandoval, Arnold N.; ...

    2015-07-01

    At Los Alamos National Laboratory (LANL), there are several nuclear facilities, accelerator facilities, radiological facilities, explosives sites, moderate- and high-hazard non-nuclear facilities, biosciences laboratory, etc. The Plutonium Science and Manufacturing Directorate (ADPSM) provides special nuclear material research, process development, technology demonstration, and manufacturing capabilities. ADPSM manages the LANL Plutonium Facility. Within the Radiological Control Area at TA-55 (PF-4), chemical and metallurgical operations with plutonium and other hazardous materials are performed. LANL Health and Safety Programs investigate injury and illness data. In this study, statistically significant trends have been identified and compared for LANL, ADPSM, and PF-4 injury/illness cases. A previouslymore » described output metric is used to measures LANL management progress towards meeting its operational safety objectives and goals. Timelines are used to determine trends in Injury/Illness types. Pareto Charts are used to prioritize causal factors. The data generated from analysis of Injury/Illness data have helped identify and reduce the number of corresponding causal factors.« less

  11. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  12. 29 CFR 1910.1096 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...

  13. 29 CFR 1910.1096 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...

  14. 29 CFR 1910.1096 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...

  15. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    PubMed Central

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  16. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.« less

  17. 5 CFR 842.208 - Firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and nuclear materials couriers. 842.208 Section 842.208 Administrative Personnel OFFICE OF PERSONNEL... ANNUITY Eligibility § 842.208 Firefighters, law enforcement officers, and nuclear materials couriers. (a... enforcement officer or nuclear materials courier totaling 25 years; or (2) After becoming age 50 and...

  18. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  19. Risk ranking of LANL nuclear material storage containers for repackaging prioritization.

    PubMed

    Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon

    2007-05-01

    Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.

  20. 10 CFR 60.4 - Communications and records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sent by mail addressed: ATTN: Document Control Desk: Director, Office of Nuclear Material Safety and... obtained by visiting the NRC's Web site at http://www.nrc.gov/site-help/e-submittals.html; by e-mail to...

  1. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tampering with transports and cargo containers; and (iii) Surveillance subsystems and procedures to detect... to establish activities for transferring cargo in emergency situations; and (iii) Removal controls...

  2. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tampering with transports and cargo containers; and (iii) Surveillance subsystems and procedures to detect... to establish activities for transferring cargo in emergency situations; and (iii) Removal controls...

  3. [Measures against Radiation Exposure Due to Large-Scale Nuclear Accident in Distant Place--Radioactive Materials in Nagasaki from Fukushima Daiichi Nuclear Power Plant].

    PubMed

    Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro

    2015-01-01

    To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.

  4. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  5. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  6. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  7. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  8. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  9. 19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  10. DOE research and development report. Progress report, October 1980-September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Carleton D.

    The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less

  11. 76 FR 63672 - Notice of Acceptance of Application for Special Nuclear Materials License From Passport Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Application for Special Nuclear Materials License From Passport Systems, Inc., Opportunity To Request a... special nuclear material (SNM), submitted by Passport Systems, Inc. (Passport or the Applicant). The..., if approved, would authorize Passport to possess and use special nuclear materials under 10 CFR Part...

  12. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  13. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  14. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  15. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  16. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  17. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  18. The Alliance of Advanced Process Control and Accountability – A Future Safeguards-By-Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Bresee, James C.; Paviet, Patricia D.

    For any chemical separation process producing a valuable product, a material balance is an important process control measurement. That is particularly true for the separation of actinides from irradiated nuclear fuel, not only for their intrinsic value but also because an incomplete material balance may indicate diversion for unauthorized use. The DOE Office of Nuclear Energy is currently carrying out at the Pacific Northwest National Laboratory an experimental measurement of how well and with what precision current technologies can implement near real-time actinide material balances. This measurement effort is called the CoDCon project. It involves the separation of a productmore » with a 70/30 uranium/plutonium mass ratio. Initial tests will use dissolved fuel simulants prepared with pure uranium and plutonium nitrates at the same input ratios as irradiated fuel. Subsequent testing with actual irradiated fuel would be done to verify the results obtained with simulants. The experiments will use advanced on-line instrumentation supported by dynamic process models. Since accountability uncertainties could mask diversions, the aim of the project is not only to measure present-day capabilities but also, through sensitivity analyses, to identify those measurements with the greatest potential for overall material-balance improvements. The latter results will help identify priorities for future fuel cycle R&D programs. Advanced separations process control and material accountability technologies thus have a common goal: to provide the best tools available for safeguards-by-design [defined by the International Atomic Energy Agency (IAEA) as the integration of the design of a new nuclear facility through planning, construction, operation and decommissioning]. Since the potential domestic use of CoDCon results may be later than their possible foreign applications, arrangements may be feasible for possible bilateral or multinational cooperation in the CoDCon project.« less

  19. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less

  20. Corrosion study of a highly durable electrolyzer based on cold crucible technique for pyrochemical reprocessing of spent nuclear oxide fuel

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.

    2013-01-01

    The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.

  1. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  2. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  3. Detecting errors and anomalies in computerized materials control and accountability databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Hench, K.; Yarbro, T.

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines thesemore » large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results.« less

  4. 10 CFR 140.5 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  5. 10 CFR 140.5 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and Environmental Management Programs, or..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  6. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  7. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less

  8. Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  9. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  10. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less

  11. The Role of the Russian Methodological and Training Center in providing Nondestructive Assay Technical Assistance to Russian Enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, Sergey; Bezhunov, Gennady; Ryazanov, Boris

    The Russian Methodological and Training center (RMTC) was initially created to provide not only personnel training in the areas of nuclear material control and accounting (MC&A), but also methodological and technical assistance to the Russian government and nuclear facilities. The goal of the assistance was to promote enhancement of Russian MC&A infrastructure and modernize the MC&A systems at individual enterprises and facilities.

  12. University of South Florida- Phase Change Materials (PCM)

    ScienceCinema

    Goswami, Yogi; Stefanakos, Lee

    2018-05-30

    USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night--when the sun is not out--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF's PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  13. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    PubMed

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  14. 75 FR 44072 - Export and Import of Nuclear Equipment and Material; Updates and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Energy Act. Retransfers of special nuclear material produced through the use of U.S.-obligated material... the Atomic Energy Act that apply to imports of special nuclear, source or byproduct material are... NUCLEAR REGULATORY COMMISSION 10 CFR Part 110 [NRC-2008-0567] RIN 3150-AI16 Export and Import of...

  15. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Cary E.; de Boer, Gloria; De Castro, Kara

    2010-10-01

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the “human factor.” Gen. Eugene Habiger, a former “Assistant Secretary for Safeguards and Security” at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that “good security is 20% equipment and 80% people.”1 Although eliminating the “human factor” is not possible, accounting for and mitigating the riskmore » of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.« less

  16. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers,E.; deBoer,G.; Crawford, C.

    2009-10-19

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the riskmore » of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.« less

  17. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.

    2005-05-16

    The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allowsmore » to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.« less

  18. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  19. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focusmore » of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various chapters contain both a description of the mechanism or and a discussion of the current approaches to modeling the phenomena.« less

  20. Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krass, A.W.

    2005-12-19

    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. Themore » material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.« less

  1. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, P.

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}furthermore » steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.« less

  2. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-pointmore » metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex forms of nuclear explosion debris (e.g., Trinitite).« less

  3. Radiation Control on Uzbekistan Borders - Results and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrenko, Vitaliy; Yuldashev, Bekhzod; Ismailov, Ulughbek

    2009-12-02

    The measures and actions on prevention, detection and response to criminal or unauthorized acts involving radioactive materials in Uzbekistan are presented. In frames of program of radiation monitoring to prevent illicit trafficking of nuclear and radioactive materials main customs border checkpoints were equipped with commercial radiation portal monitors. Special radiation monitors elaborated and manufactured in INP AS RU are installed in INP(main gates, research reactor and laboratory building) to provide nuclear security of Institute facilities. The experience of Uzbekistan in establishing radiation monitoring systems on its borders, their operation and maintenance would be useful for realization of proposed plan ofmore » strengthening measures to prevent illicit trafficking in Republics of Central Asia region.« less

  4. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    DOE PAGES

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; ...

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less

  5. 10 CFR 150.4 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sent by mail addressed: ATTN: Document Control Desk, Director, Office of Federal and State Materials and Environmental Management Programs, and sent either by mail to the U.S. Nuclear Regulatory..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  6. 10 CFR 62.3 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under them should be sent by mail addressed: ATTN: Document Control Desk, Director, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission...; or, where practicable, by electronic submission, for example, via Electronic Information Exchange, or...

  7. 10 CFR 62.3 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... under them should be sent by mail addressed: ATTN: Document Control Desk, Director, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission...; or, where practicable, by electronic submission, for example, via Electronic Information Exchange, or...

  8. 10 CFR 150.4 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sent by mail addressed: ATTN: Document Control Desk, Director, Office of Federal and State Materials and Environmental Management Programs, and sent either by mail to the U.S. Nuclear Regulatory..., Rockville, Maryland; or, where practicable, by electronic submission, for example, via Electronic...

  9. Polaris-P Year 2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Willy; Boucher, Andy

    The Polaris-P is under development at H3D for the Gamma-Ray Imaging Spectrometers for Nuclear Materials Accounting and Controls Phase II SBIR from the DOE. This report will summarize the progress made during the second year of the project.

  10. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less

  11. System configuration management plan for 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, G.F. Jr.

    1994-10-11

    The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less

  12. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  13. RADIOLOGICAL SEALED SOURCE LIBRARY: A NUCLEAR FORENSICS TOOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canaday, Jodi; Chamberlain, David; Finck, Martha

    If a terrorist were to obtain and possibly detonate a device that contained radiological material, radiological forensic analysis of the material and source capsule could provide law enforcement with valuable clues about the origin of the radiological material; this information could then provide further leads on where the material and sealed source was obtained, and the loss of control point. This information could potentially be utilized for attribution and prosecution. Analyses of nuclear forensic signatures for radiological materials are generally understood to include isotopic ratios, trace element concentrations, the time since irradiation or purification, and morphology. Radiological forensic signatures formore » sealed sources provide additional information that leverages information on the physical design and chemical composition of the source capsule and containers, physical markings indicative of an owner or manufacturer. Argonne National Laboratory (Argonne), in collaboration with Idaho National Laboratory (INL), has been working since 2003 to understand signatures that could be used to identify specific source manufacturers. These signatures include the materials from which the capsule is constructed, dimensions, weld details, elemental composition, and isotopic abundances of the radioactive material. These signatures have been compiled in a library known as the Argonne/INL Radiological Sealed Source Library. Data collected for the library has included open-source information from vendor catalogs and web pages; discussions with source manufacturers and touring of production facilities (both protected through non-disclosure agreements); technical publications; and government registries such as the U.S. Nuclear Regulatory Commission’s Sealed Source and Device Registry.« less

  14. LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blink, J A

    2011-03-23

    Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less

  15. 2014 Review on the Extension of the AMedP-8(C) Methodology to New Agents, Materials, and Conditions

    DTIC Science & Technology

    2015-08-01

    chemical agents, five biological agents, seven radioisotopes , nuclear fallout, or prompt nuclear effects.1 Each year since 2009, OTSG has sponsored IDA...evaluated four agents: anthrax, botulinum toxin, sarin (GB), and distilled mustard (HD), first using the default parameters and methods in HPAC and...the IDA team then made incremental changes to the default casualty parameters and methods to control for all known data and methodological

  16. 75 FR 25301 - Nuclear Fuel Services, Inc.; Environmental Assessment and Finding of No Significant Impact for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... procedures for storing and handling radioactive materials. Thus, the impacts under the ``no action... of Special Nuclear Material AGENCY: Nuclear Regulatory Commission. ACTION: Environmental Assessment... Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Mail Stop EBB-2C40M, Rockville, MD...

  17. 10 CFR 11.11 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...

  18. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  19. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  20. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

Top