Science.gov

Sample records for nuclear matter equation

  1. Equation of state for {beta}-stable hot nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.; Panos, C. P.

    2009-04-15

    We provide an equation of state for hot nuclear matter in {beta} equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under the {beta}-decay process lead first to the evaluation of proton and lepton fractions and then to the evaluation of internal energy, free energy, and pressure, and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assessed and analyzed in the framework of the proposed effective interaction model. Special attention is given to the study of the contribution of the components of {beta}-stable nuclear matter to the entropy per particle, a quantity of great interest in the study of structure and collapse of supernova.

  2. Determination of the equation of state of asymmetric nuclear matter

    SciTech Connect

    Tsang, Manyee Betty

    2016-12-30

    A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraints of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.

  3. Unified description of equation of state and transport properties of nuclear matter

    SciTech Connect

    Benhar, Omar; Farina, Nicola; Valli, Marco; Fiorilla, Salvatore

    2008-10-13

    Correlated basis function perturbation theory and the formalism of cluster expansions have been recently employed to obtain an effective interaction from a state-of-the-art nucleon nucleon potential model. The approach based on the effective interaction allows for a consistent description of the nuclear matter ground state and nucleon-nucleon scattering in the nuclear medium. This paper reports the the results of numerical calculations of different properties of nuclear and neutron matter, including the equation of state and the shear viscosity and thermal conductivity transport coefficients, carried out using the effective interaction.

  4. Equation of state of hot polarized nuclear matter using the generalized Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Abd-Alla, M.; Hager, S. A.

    2000-04-01

    We used the generalized Skyrme potential to study the equation of state of polarized nuclear matter in the frame of the Thomas-Fermi model. The critical temperature of the liquid-gas phase transition is found to be Tc=16.2 MeV. This critical temperature was found to decease with the asymmetry, spin, and spin-isospin excess parameters. The isothermal compressibility of polarized nuclear matter was also studied. The volume compressibility Kv was found to decrease with temperature. The symmetry compressibility Kx, the spin symmetry compressibility Ky, and the spin-isospin symmetry compressibility Kz were found to have a little increasing behavior with temperature.

  5. Probing the equation of state of nuclear matter via neutron star asteroseismology.

    PubMed

    Sotani, Hajime; Nakazato, Ken'ichiro; Iida, Kei; Oyamatsu, Kazuhiro

    2012-05-18

    We general-relativistically calculate the frequency of fundamental torsional oscillations of neutron star crusts, where we focus on the crystalline properties obtained from macroscopic nuclear models in a way that is dependent on the equation of state of nuclear matter. We find that the calculated frequency is sensitive to the density dependence of the symmetry energy, but almost independent of the incompressibility of symmetric nuclear matter. By identifying the lowest-frequency quasiperiodic oscillation in giant flares observed from soft gamma-ray repeaters as the fundamental torsional mode and allowing for the dependence of the calculated frequency on stellar models, we provide a lower limit of the density derivative of the symmetry energy as L≃50  MeV.

  6. Equation of state of neutron star matter, and the nuclear symmetry energy

    SciTech Connect

    Loan, Doan Thi; Tan, Ngo Hai; Khoa, Dao T.; Margueron, Jerome

    2011-06-15

    The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the npe{mu} composition in the {beta} equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Yn and M3Y-Pn), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the soft and stiff scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the Tolman-Oppenheimer-Volkov equations to study how the nuclear symmetry energy affects the model prediction of different NS properties, like the cooling process as well as the gravitational mass, radius, and moment of inertia.

  7. Equation of state for nucleonic matter and its quark mass dependence from the nuclear force in lattice QCD.

    PubMed

    Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2013-09-13

    Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469  MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.

  8. Nuclear matter equation of state from a quark-model nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Fukukawa, K.; Baldo, M.; Burgio, G. F.; Lo Monaco, L.; Schulze, H.-J.

    2015-12-01

    Starting from a realistic constituent quark model for the nucleon-nucleon interaction, we derive the equation of state (EOS) of nuclear matter within the Bethe-Brueckner-Goldstone approach up to the three-hole-line level, without the need to introduce three-nucleon forces. To estimate the uncertainty of the calculations both the gap and the continuous choices for the single-particle potential are considered and compared. The resultant EOS is compatible with the phenomenological analysis of the saturation point, the incompressibility, the symmetry energy at a low density, and its slope at saturation, together with the high-density pressure extracted from flow data on heavy-ion collisions. Although the symmetry energy is appreciably higher in the gap choice in the high-density region, the maximum neutron star masses derived from the continuous-choice EOS and the gap-choice EOS are similar and close to two solar masses, which is again compatible with recent observational data. A comparison with other microscopic equations of state is presented and discussed.

  9. Constraining the equation of state of nuclear matter from fusion hindrance in reactions leading to the production of superheavy elements

    NASA Astrophysics Data System (ADS)

    Veselsky, M.; Klimo, J.; Ma, Yu-Gang; Souliotis, G. A.

    2016-12-01

    The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter K0=240 -260 MeV is obtained while the stiff density-dependences of the symmetry energy (γ >1 ) are rejected.

  10. NUCLEAR PHYSICS: Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Hua; Zhang, Ying-Xun; Li, Zhu-Xia; Zhao, Zhi-Xiang

    2008-11-01

    An investigation on the equation of state of the isospin asymmetric, hot, dense matter of nucleons and deltas is performed based on the relativistic mean Geld theory. The QHD-II-type effective Lagrangian extending to the delta degree of freedom is adopted. Our results show that the equation of state is softened due to the inclusion of the delta degree of freedom. The baryon resonance isomer may occur depending on the delta-meson coupling. The results show that the densities for appearing the baryon resonance isomer, the densities for starting softening the equation of state and the extent of the softening depend not only on the temperature, the coupling strengths but also the isospin asymmetry of the baryon matter.

  11. Toward order-by-order calculations of the nuclear and neutron matter equations of state in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Sammarruca, F.; Coraggio, L.; Holt, J. W.; Itaco, N.; Machleidt, R.; Marcucci, L. E.

    2015-05-01

    We calculate the nuclear and neutron matter equations of state from microscopic nuclear forces at different orders in chiral effective field theory and with varying momentum-space cutoff scales. We focus attention on how the order-by-order convergence depends on the choice of resolution scale and the implications for theoretical uncertainty estimates on the isospin asymmetry energy. Specifically we study the equations of state using consistent NLO and N2LO (next-to-next-to-leading order) chiral potentials where the low-energy constants cD and cE associated with contact vertices in the N2LO chiral three-nucleon force are fitted to reproduce the binding energies of H3 and He3 as well as the beta-decay lifetime of H3 . At these low orders in the chiral expansion there is little sign of convergence, while an exploratory study employing the N3LO two-nucleon force together with the N2LO three-nucleon force give first indications for (slow) convergence with low-cutoff potentials and poor convergence with higher-cutoff potentials. The consistent NLO and N2LO potentials described in the present work provide the basis for estimating theoretical uncertainties associated with the order-by-order convergence of nuclear many-body calculations in chiral effective field theory.

  12. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||

    1997-01-01

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  13. Equation of state in the pion condensation phase in asymmetric nuclear matter using a holographic QCD model

    NASA Astrophysics Data System (ADS)

    Nishihara, Hiroki; Harada, Masayasu

    2014-12-01

    We study the asymmetric nuclear matter using a holographic QCD model by introducing a baryonic charge in the infrared boundary. We first show that, in the normal hadron phase, the predicted values of the symmetry energy and its slope parameter are comparable with the empirical values. We find that the phase transition from the normal phase to the pion condensation phase is delayed compared with the pure mesonic matter: the critical chemical potential is larger than the pion mass which is obtained for the pure mesonic matter. We also show that, in the pion condensation phase, the pion contribution to the isospin number density increases with the chemical potential, while the baryonic contribution is almost constant. Furthermore, the value of chiral condensation implies that the enhancement of the chiral symmetry breaking occurs in the asymmetric nuclear matter as in the pure mesonic matter. We also give a discussion on how to understand the delay in terms of the four-dimensional chiral Lagrangian including the rho and omega mesons based on the hidden local symmetry.

  14. Determination of the equation of state of dense matter.

    PubMed

    Danielewicz, Paweł; Lacey, Roy; Lynch, William G

    2002-11-22

    Nuclear collisions can compress nuclear matter to densities achieved within neutron stars and within core-collapse supernovae. These dense states of matter exist momentarily before expanding. We analyzed the flow of matter to extract pressures in excess of 10(34) pascals, the highest recorded under laboratory-controlled conditions. Using these analyses, we rule out strongly repulsive nuclear equations of state from relativistic mean field theory and weakly repulsive equations of state with phase transitions at densities less than three times that of stable nuclei, but not equations of state softened at higher densities because of a transformation to quark matter.

  15. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  17. The role of nuclear physics in supernovae and the evolution of neutron stars Neutrino Opacities, Equation of State, Transport Coefficients, and Dark Matter Production

    NASA Astrophysics Data System (ADS)

    Rrapaj, Ermal

    A massive star, of at least eight solar masses, end their life cycle in a sudden, catastrophic collapse under its own gravity. In a thousandth of a second, it can shrink from thousands of kilometers across to a ball of ultra-condensed matter just a few kilometers across. Ultimately, it all ends in a cataclysmic explosion known as a supernova, and for a few short weeks it burns as brightly as several billion suns, briefly outshining the star's entire home galaxy. The visible light of a supernova, though, represents only about 1% of the released energy, the vast majority being in the form of ultraviolet light, x-rays, gamma rays and, especially neutrinos. In the first chapter of work, I study neutrino - nucleon interactions and their role in the nucleosynthesis of heavy elements. Another key ingredient is the equation of state, which relates the thermodynamic properties of these extreme environments to the micro physics of nuclear interactions, explored in the second chapter. As a supernova cools, a new neutron star is born. The thermal, electric properties and the shear viscosity of this object are analyzed in terms of a newly discovered interaction, among electrons and neutrons, in the third chapter. Given the enormous amount of energy released during the explosion, I study the possibility of producing light massive particles, candidates for what is commonly called dark matter, in the last chapter of this work. I find that supernovae are ideal environments where the interplay of all forces in nature can be observed, nuclear forces playing a paramount role.

  18. Constraining the equation of state of nuclear matter with gravitational wave observations: Tidal deformability and tidal disruption

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria

    2013-11-01

    We study how to extract information on the neutron star equation of state from the gravitational wave signal emitted during the coalescence of a binary system composed of two neutron stars or a neutron star and a black hole. We use post-Newtonian templates which include the tidal deformability parameter and, when tidal disruption occurs before merger, a frequency cutoff. Assuming that this signal is detected by Advanced LIGO/Virgo or the Einstein Telescope, we evaluate the uncertainties on these parameters using different data-analysis strategies based on the Fisher matrix approach and on recently obtained analytical fits of the relevant quantities. We find that the tidal deformability is more effective than the stellar compactness to discriminate among different possible equations of state.

  19. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  20. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  1. Hot nuclear matter

    SciTech Connect

    Chapman, S.

    1992-11-01

    The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.

  2. Hot magnetized nuclear matter: Thermodynamic and saturation properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bordbar, G. H.

    2017-03-01

    We have used a realistic nuclear potential, AV_{18}, and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

  3. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    consideration before sending the Bill to the full House and Senate for consideration . The House targets June 30 as a completion date for Appropriations...control number. 1. REPORT DATE 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Nuclear Matters. A...It is designed to be useful, but it is neither authoritative nor directive. Please refer to the applicable statute, regulation, Department of

  4. Nuclear matter physics at NICA

    NASA Astrophysics Data System (ADS)

    Senger, P.

    2016-08-01

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed.

  5. Particle-hole states in nuclear matter

    SciTech Connect

    Matyas, C.A.

    1985-01-01

    This work deals with the collective excitations in nuclear matter, from the point of view of the TDA approximation. Our calculations involved the construction of a Hamiltonian, expressed as a matrix in the space of particle-hole excitations with a given momentum transfer. We used in this Hamiltonian an average single nucleon potential, and (in some cases) an effective interaction obtained for the potential HEA in the relativistic Brueckner-Hartree Fock theory. The eigenvectors of the TDA-Hamiltonian were used to compute the strength of the collective response of nuclear matter to external probes. Our results, succinctly described in the last section, are summarized in a set of figures at the end of this monograph. The specific form of the TDA equations that we used, and the procedure to calculate the degree of collectivity of the solutions, is studied in detail in the fifth chapter. A derivation of the TDA equations, and a discussion of the solutions for a separable potential, is given in the fourth chapter. The structure of a non-relativistic potential for a system of two nucleons is examined in the third chapter, in several representations. On the other hand, the particle-hole states relevant to our discussions on the TDA equations are introduced in the first two chapters.

  6. Nuclear Matter Stability in a Soliton Model for Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Derreth, Ch.; Elze, H.-Th.; Greiner, W.

    A relativistic band structure method for the computation of the electronic structure of atomic clusters is adapter to the Friedberg-Lee nontopological soliton model. Thus, finite nuclei can be studied in the soliton model. As a verification of our method, we calculated the equation of state of nuclear matter. In order to achieve nuclear matter stability, we added the colour magnetic interaction for an inhomogeneous dielectric medium as well as a phenomenological residual interaction to the soliton model. Both modifications are examined in detail. Nuclear matter stability near the empirical ground state density and binding energy has been achieved.

  7. Virial Expansion of the Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Magana, Ruslan; Zheng, Hua; Bonasera, Aldo

    We study the equation of state (EOS) of nuclear matter as function of density. We expand the energy per particle (E/A) of symmetric infinite nuclear matter in powers of the density to take into account 2, 3, …, N-body forces. New EOS are proposed by fitting ground state properties of nuclear matter (binding energy, compressibility and pressure) and assuming that at high densities a second-order phase transition to the quark-gluon plasma (QGP) occurs. The latter phase transition is due to symmetry breaking at high density from nuclear matter (locally color white) to the QGP (globally color white). In the simplest implementation of a second-order phase transition we calculate the critical exponent δ by using Landau's theory of phase transition. We find δ = 3. Refining the properties of the EOS near the critical point gives δ = 5 in agreement with experimental results. We also discuss some scenarios for the EOS at finite temperatures.

  8. Functional renormalization group studies of nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2017-03-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.

  9. Elementary diagrams in nuclear and neutron matter

    SciTech Connect

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developed a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.

  10. Linear response of homogeneous nuclear matter with energy density functionals

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Davesne, D.; Navarro, J.

    2015-03-01

    Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.

  11. Superfluidity in asymmetric nuclear matter

    SciTech Connect

    Sedrakian, A.; Alm, T.; Lombardo, U.

    1997-02-01

    The onset of superfluidity in isospin-asymmetric nuclear matter is investigated within the BCS theory. A neutron-proton superfluid state in the channel {sup 3}S{sub 1}-{sup 3}D{sub 1} comes about from the interplay between thermal excitations and separation {delta}{mu} of the two Fermi surfaces. The superfluid state disappears above the threshold value of the density-asymmetry parameter {alpha}=(n{sub n}{minus}n{sub p})/n{approx_equal}0.35. For large enough shift between the two Fermi surfaces {delta}{mu}=(1)/(2)({mu}{sub n}{minus}{mu}{sub p}) the transition to the normal state becomes a first-order transition and a second gap solution develops. This solution, however, corresponds to a metastable superfluid state which is unstable with respect to the transition to the normal state. {copyright} {ital 1997} {ital The American Physical Society}

  12. Monte Carlo approach to nuclei and nuclear matter

    SciTech Connect

    Fantoni, Stefano; Gandolfi, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.; Pederiva, Francesco

    2008-10-13

    We report on the most recent applications of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. The equation of state (EOS) for pure neutron matter in both normal and BCS phase and the superfluid gap in the low-density regime are computed, using a realistic Hamiltonian containing the Argonne AV8' plus Urbana IX three-nucleon interaction. Preliminary results for the EOS of isospin-asymmetric nuclear matter are also presented.

  13. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    NASA Astrophysics Data System (ADS)

    Sagun, V. V.; Bugaev, K. A.; Ivanytskyi, A. I.; Oliinychenko, D. R.; Mishustin, I. N.

    2017-03-01

    Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  14. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGES

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  15. Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach

    SciTech Connect

    S. Lawley; W. Bentz; A.W. Thomas

    2006-02-10

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  16. Realistic calculations of excitations in nuclear matter

    SciTech Connect

    Kwong, N.H.

    1983-01-01

    A numerical method has been developed to solve the RPA equation, exchange term included, in nuclear matter. The dynamic form factor S(q,w) is extracted for several v4 and v6 phenomenological potentials, including the d1-potential of Gogny et al. The limits of validity of the long-wavelength (Landau) approximation and the often adopted local-kernel approximation are discussed. Substantial disagreements with the exact results are found for the latter. The method is then applied to solve a Jastrow-correlated extension of the RPA equation, using the hardcore OMY potential. Results of calculations performed in two-body cluster approximation and Fermi-Hypernetted-Chain (FHNC) approximation are compared. The two-body results predict an instability against density fluctuations, which disappears at the FHNC level. The validity and consequences of employing the FHNC effective potential within the self-consistent HF/RPA framework are discussed. Future developments include applying the method to other Fermi systems such as liquid /sup 3/He and the microscopic calculation of Landau parameters.

  17. Past and present of nuclear matter

    SciTech Connect

    Ritter, H.G.

    1994-05-01

    The subject of nuclear matter is interesting for many fields of physics ranging from condensed matter to lattice QCD. Knowing its properties is important for our understanding of neutron stars, supernovae and cosmology. Experimentally, we have the most precise information on ground state nuclear matter from the mass formula and from the systematics of monopole vibrations. This gives us the ground state density, binding energy and the compression modulus k at ground state density. However, those methods can not be extended towards the regime we are most interested in, the regime of high density and high temperature. Additional information can be obtained from the observation of neutron stars and of supernova explosions. In both cases information is limited by the rare events that nature provides for us. High energy heavy ion collisions, on the other hand, allow us to perform controlled experiments in the laboratory. For a very short period in time we can create a system that lets us study nuclear matter properties. Density and temperature of the system depend on the mass of the colliding nuclei, on their energy and on the impact parameter. The system created in nuclear collisions has at best about 200 constituents not even close to infinite nuclear matter, and it lasts only for collision times of {approx} 10{sup {minus}22}sec, not an ideal condition for establishing any kind of equilibrium. Extended size and thermal and chemical equilibrium, however, axe a priori conditions of nuclear matter. As a consequence we need realistic models that describe the collision dynamics and non-equilibrium effects in order to relate experimental observables to properties of nuclear matter. The study of high energy nuclear collisions started at the Bevalac. I will try to summarize the results from the Bevalac studies, the highlights of the continuing program, and extension to higher energies without claiming to be complete.

  18. Relativity Damps OPEP in Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Banerjee, Manoj K.

    1998-09-01

    Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.

  19. Relativity damps OPEP in nuclear matter

    SciTech Connect

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.

  20. Soliton matter as a model of dense nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.

  1. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    SciTech Connect

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  2. Speed of sound in nuclear matter and Skyrme effective interactions

    SciTech Connect

    Su, R.K.; Kuo, T.T.S.

    1987-02-01

    Using a nuclear equation of state derived from a finite-temperature Green's function method and the Skyrme effective interactions SkI, SkIII and SkM*, the authors have calculated the speed of sound in symmetric nuclear matter. For certain densities and temperatures, this speed is found to become super-luminous. Causal boundaries in the density-temperature plane are determined, and they indicate that SkM* is a more desirable effective interaction than SkI and SkIII. Comparison with a similar calculation by Osnes and Strottman is made.

  3. Phase structure in a chiral model of nuclear matter

    SciTech Connect

    Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh

    2011-08-15

    The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

  4. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  5. Nuclear Matter Phase Transition in Infinite and Finite Systems

    NASA Astrophysics Data System (ADS)

    Terranova, S.; Bonasera, A.

    2005-04-01

    A new "semiclassical" model of the nuclear matter, composed of u, d colored quarks, is proposed. The approach, named Constrained Molecular Dynamics (CoMD) is based on the molecular dynamics simulation of the quarks, which interact through the Richardson's potential, and on a constraint due to Pauli blocking. With a suitable choice of the quark masses, some possible Equation of State (EOS) of the nuclear matter, at temperature equal to zero and finite baryon density, are obtained. These equations of state, not only present some known properties of the nuclear matter, as the Quark-Gluon Plasma (QGP) phase transition, but also shown the existence of a new state, the Exotic Color Clustering (ECC) state, in which cluster of quarks with the same color are formed. Some new quantities, "indicators" of the phase transition, are introduced: three order parameters, Mc2, Mc3, Mc4 defined trough the Gell-Mann matrices λα, and the lifetime of the J/Ψ particle. The behavior of the J/Ψ particle is studied also in the "finite" systems, obtained by expanding the corresponding "infinite" systems. It seems that the dynamics and the finite size effects do not wash completely the phase transition occurred in infinite systems, and the J/Ψ particle is still a good signature.

  6. Probing nuclear matter with jet conversions

    SciTech Connect

    Liu, W.; Fries, R. J.

    2008-05-15

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum p{sub T}. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum p{sub T} that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/{lambda} while energy loss probes the average squared momentum transfer {mu}{sup 2}/{lambda}. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p{sub T} identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

  7. Wanted! Nuclear Data for Dark Matter Astrophysics

    SciTech Connect

    Gondolo, P.

    2014-06-15

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  8. Wanted! Nuclear Data for Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    Gondolo, P.

    2014-06-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  9. Neutrinos, Dark Matter and Nuclear Detection

    SciTech Connect

    Goldstein, W H; Bernstein, A; Craig, W W; Johnson, M

    2007-05-29

    Solutions to problems in nuclear non-proliferation and counter-terrorism may be found at the forefront of modern physics. Neutrino oscillation experiments, dark matter searches, and high energy astrophysics, are based on technology advances that have may also have application to nuclear detection. The detection problems share many characteristics, including energy scales, time structures, particle-type, and, of course, the combination of high backgrounds and low signal levels. This convergence of basic and applied physics is realized in non-proliferation and homeland security projects at Lawrence Livermore National Laboratory. Examples described here include reactor anti-neutrino monitoring, dual-phase noble liquid TPC development, gamma-ray telescopes, and nuclear resonance fluorescence.

  10. From asymmetric nuclear matter to neutron stars: A functional renormalization group study

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2015-03-01

    A previous study of nuclear matter in a chiral nucleon-meson model is extended to isospin-asymmetric matter. Fluctuations beyond mean-field approximation are treated in the framework of the functional renormalization group. The nuclear liquid-gas phase transition is investigated in detail as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of both symmetric nuclear matter and pure neutron matter are found to be in good agreement with realistic many-body computations. We also study the density dependence of the pion mass in the medium. The question of chiral symmetry restoration in neutron matter is addressed; we find a stabilization of the phase with spontaneously broken chiral symmetry once fluctuations are included. Finally, neutron-star matter including β equilibrium is discussed. The model satisfies the constraints imposed by the existence of two-solar mass neutron stars.

  11. Determining the nuclear equation of state from neutron-star masses and radii

    NASA Technical Reports Server (NTRS)

    Lindblom, Lee

    1992-01-01

    A method is developed for determining the nuclear equation of state directly from a knowledge of the masses and radii of neutron stars. This analysis assumes only that equilibrium neutron-star matter has the stress-energy tensor of an isotropic fluid with a barotropic equation of state, and that general relativity describes a neutron star's internal gravitational field. We present numerical examples which illustrate how well this method will determine the equation of state when the appropriate observational data become available.

  12. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  13. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  14. Equation of state of matter at supernuclear densities.

    NASA Technical Reports Server (NTRS)

    Leung, Y. C.; Wang, C. G.

    1973-01-01

    The qualitative features of the equation of state of matter at supernuclear densities are deduced through a careful examination of the nature of particle interactions at short distances and by the introduction of an 'effective baryon mass spectrum.' It is found that the equation of state begins to take on a particularly simple form (the 'asymptotic form') at a relatively low matter density of 100,000 teragrams per cu cm.

  15. Relativistic mean-field hadronic models under nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.

    2014-11-01

    Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The

  16. Hadronization measurements in cold nuclear matter

    SciTech Connect

    Dupre, Raphael

    2015-05-01

    Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.

  17. Is nuclear matter a quantum crystal?

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1973-01-01

    A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.

  18. Applications of modern chiral interactions in nuclear matter and nuclei

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca

    2016-09-01

    Experimental investigations are in progress, and more are planned for the near future, to set reliable constraints on the isospin asymmetric part of the nuclear equation of state. The latter plays a fundamental role in a broad spectrum of systems and phenomena, including the skins of neutron-rich nuclei and the location of the neutron drip lines. From the theoretical standpoint, microscopic calculations with statistically meaningful uncertainties are essential to guide experiments. We will discuss recent calculations of the nuclear and neutron matter equations of state at different orders of the chiral expansion. We will present applications and discuss the significance of those predictions as a foundation for future studies of convergence of the chiral perturbation series. Anticipating future experiments which may provide reliable information on the weak charge density in nuclei, we discuss the possibility of constraining the size of three-neutron forces in neutron matter. Supported by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270.

  19. Dynamics of hot and dense nuclear and partonic matter

    SciTech Connect

    Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.

    2012-06-15

    The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.

  20. Cosmological implications of the dark matter equation of state

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Li, Hang; Wu, Yabo; Lu, Jianbo

    In this paper, we study a model which is composed of the cosmological constant and dark matter with nonzero equation of state parameter, which could be called as ΛwDM. In the synchronous gauge, we obtain the perturbation equations of dark matter, and deduce the evolution equations of growth factor about the dark matter and baryons. Based on the Markov Chain Monte Carlo (MCMC) method, we constrain this model by the recently available cosmic observations which include cosmic microwave background (CMB) radiation, baryon acoustic oscillation (BAO), type Ia supernovae (SNIa) and fσ8(z) data points from redshift-space distortion (RSD). The results present a tighter constraint on the model than the case without fσ8(z) data. In 3σ regions, we find the dark matter equation of state parameter wdm = 0.00011‑0.00070‑0.00135‑0.00178+0.00069+0.00134+0.00179. The currently available cosmic observations do not favor the nonzero dark matter equation of state parameter, no deviation from the lambda cold dark matter (ΛCDM) model is found in 1σ region.

  1. Laboratory tests of low density astrophysical nuclear equations of state.

    PubMed

    Qin, L; Hagel, K; Wada, R; Natowitz, J B; Shlomo, S; Bonasera, A; Röpke, G; Typel, S; Chen, Z; Huang, M; Wang, J; Zheng, H; Kowalski, S; Barbui, M; Rodrigues, M R D; Schmidt, K; Fabris, D; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Rizzi, V; Viesti, G; Cinausero, M; Prete, G; Keutgen, T; El Masri, Y; Majka, Z; Ma, Y G

    2012-04-27

    Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

  2. Symmetry energy of dilute warm nuclear matter.

    PubMed

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  3. Nuclear matter in the early universe

    SciTech Connect

    Barros, Celso de Camargo; Cunha, Ivan Eugênio da

    2015-12-17

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.

  4. Recent progress on dense nuclear matter in skyrmion approaches

    NASA Astrophysics Data System (ADS)

    Ma, YongLiang; Rho, Mannque

    2017-03-01

    The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.

  5. EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2013-08-10

    Microscopic calculations of neutron matter based on nuclear interactions derived from chiral effective field theory, combined with the recent observation of a 1.97 {+-} 0.04 M{sub Sun} neutron star, constrain the equation of state of neutron-rich matter at sub- and supranuclear densities. We discuss in detail the allowed equations of state and the impact of our results on the structure of neutron stars, the crust-core transition density, and the nuclear symmetry energy. In particular, we show that the predicted range for neutron star radii is robust. For use in astrophysical simulations, we provide detailed numerical tables for a representative set of equations of state consistent with these constraints.

  6. Equation of state and neutrino opacity of dense stellar matter

    SciTech Connect

    Reddy, S.

    2004-01-01

    The properties of matter at densities similar to nuclear density plays an important role in core collapse supernova. In this talk I discuss aspects of the equation of state and weak interactions at high density. I highlight its relation to the temporal and spectral features of the neutrino emission from the newly born neutron star born in the aftermath of a core-collapse supernova. I will briefly comment on how this will impact r-process nucleosynthesis. The hot and dense neutron star (proto-neutron star) born in the aftermath of a core collapse supernova provides a promising environment for r-process nucleosynthesis. The intense temperatures and neutrino fluxes in the vicinity of the proto-neutron star is expected to result in a high entropy neutron-rich wind necessary for successful r-process nucleosynthesis. Although theoretical efforts to simulate core collapse supernova have not been able to provide a mechanism for robust explosions, several key features of the supernova dynamics and early evolution of the proto-neutron star are well understood. Large scale numerical simulations of supernova and neutron star evolution are now being pursued by several groups. Simulating core collapse supernova is challenging because it involves coupled multi-dimensional hydrodynamics and neutrino transport. The neutrinos play a key role since they are the dominant source of energy transport. It is expected that refinements in neutrino transport and better treatment of multi-dimensional effects are needed to understand the explosion mechanism. The temporal and spectral features of the neutrino emission which is emitted from the proto-neutron star is an independent diagnostic of supernova explosion dynamics and early evolution of the proto-neutron star. To accurately predict the ambient conditions just outside the newly born neutron star for the first 10-20 s, we will need to understand both the explosion mechanism and neutrino emission. In this talk I will discuss micro

  7. Modern compact star observations and the quark matter equation of state

    NASA Astrophysics Data System (ADS)

    Klähn, T.; Blaschke, D.; Sandin, F.; Fuchs, Ch.; Faessler, A.; Grigorian, H.; Röpke, G.; Trümper, J.

    2007-10-01

    We present a hybrid equation of state (EoS) for dense matter that satisfies phenomenological constraints from modern compact star (CS) observations which indicate high maximum masses (M ∼ 2M⊙) and large radii (R > 12 km). The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy-ion collisions and a deconfinement transition at ∼ 0.55 fm-3. The quark matter phase is described by a 3-flavor Nambu-Jona-Lasinio model that accounts for scalar diquark condensation and vector meson interactions while the nuclear matter phase is obtained within the Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-A potential. We demonstrate that both pure neutron stars and neutron stars with quark matter cores are consistent with modern CS observations. Hybrid star configurations with a CFL quark core are unstable within the present model.

  8. Sigma meson in vacuum and nuclear matter

    NASA Astrophysics Data System (ADS)

    Menchaca-Maciel, M. C.; Morones-Ibarra, J. R.

    2013-04-01

    We have obtained the value of the interaction constant g σππ that adjusts the values obtained in the E791 Collaboration at Fermilab and BES Collaboration at the Beijing Electron Positron Collider experiments. To get this we have used the concept of critical width to make compatible the parameters obtained from the Breit-Wigner formula and those obtained from the density function. Also, the total width and effective mass modification of the sigma meson in nuclear matter has been studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in-medium effect of sigma-omega mixing. We have considered, for completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases with respect to its value in vacuum and that the contribution of the sigma-omega mixing effect on the mass shift is relevant.

  9. Phases of kinky holographic nuclear matter

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija

    2016-10-01

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  10. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  11. Functional renormalization group study of nuclear and neutron matter

    SciTech Connect

    Drews, Matthias; Weise, Wolfram

    2016-01-22

    A chiral model based on nucleons interacting via boson exchange is investigated. Fluctuation effects are included consistently beyond the mean-field approximation in the framework of the functional renormalization group. The liquid-gas phase transition of symmetric nuclear matter is studied in detail. No sign of a chiral restoration transition is found up to temperatures of about 100 MeV and densities of at least three times the density of normal nuclear matter. Moreover, the model is extended to asymmetric nuclear matter and the constraints from neutron star observations are discussed.

  12. K meson-nucleus interactions: strangeness and nuclear matter

    SciTech Connect

    Kahana, S.

    1985-01-01

    A brief review is provided of some straightforward K-nuclear and ..lambda..-hypernuclear systems. A discussion of less straightforward speculations on H-dibaryons and strange quark matter by many authors, is also given. 28 refs., 6 figs.

  13. Quark Matter Equation of State from Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Vuorinen, Aleksi

    2017-03-01

    In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state of the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.

  14. Einstein's equations and a cosmology with finite matter

    NASA Astrophysics Data System (ADS)

    Clavelli, L.; Goldstein, Gary R.

    2015-04-01

    We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.

  15. Operational Equations of State. 2. The Generalized Courant-Friedrichs Equation of State for Condensed Matter

    DTIC Science & Technology

    2011-09-01

    The equation of state (EOS) with separable internal energy played a big role in the analysis of dynamics of condensed matter and development of the mathematical basis of the shock-wave physics (Courant, R.; Friedrichs, K. O. Supersonic Flow and Shock Waves; Interscience: New

  16. Neutrino mean free paths in cold symmetric nuclear matter

    SciTech Connect

    Cowell, S.; Pandharipande, V.R.

    2004-09-01

    The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.

  17. An Application of Functional Renormalization Group Method for Superdense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Barnaföldi, G. G.; Jakovác, A.; Pósfay, P.

    2017-01-01

    We proposed a method, using the expansion of the effective potential in a base of harmonic functions, to study the Functional Renormalization Group (FRG) method at finite chemical potential. Within this theoretical framework we determined the equation of state and the phase diagram of a simple model of massless fermions coupled to scalars through Yukawa-couling at the zero-temperature limit. Here, we use our FRG-based equation of state to describe the superdense nuclear matter inside compact astrophysical objects. We calculated the mass-radius relation for a compact star using the TOV equation, which was compared to other results.

  18. Low energy overlineKN interaction in nuclear matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.

  19. Interacting Quark Matter Equation of State for Compact Stars

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2014-02-01

    Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.

  20. $J/\\Psi$ mass shift in nuclear matter

    SciTech Connect

    Gastao Krein, Anthony Thomas, Kazuo Tsushima

    2011-02-01

    The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.

  1. Sonoluminescence test for equation of state in warm dense matter

    NASA Astrophysics Data System (ADS)

    Ng, Siu-Fai; Barnard, J. J.; Leung, P. T.; Yu, S. S.

    2009-07-01

    In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm 3, and the electron density due to ionization is 10 21/cm 3. So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration. The numerical results obtained are compared with the experimental data and found to be very sensitive to the equation of state (EOS) used. As theories for the equation of state, as well as the opacity data, in the WDM regime are still very uncertain, we propose that SL may be a good low-cost experimental check for the EOS and the opacity data for matter in the WDM regime.

  2. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  3. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  4. From light nuclei to nuclear matter the role of relativity?

    SciTech Connect

    Coester, F.; Physics

    2003-11-10

    The success of non-relativistic quantum dynamics in accounting for the binding energies and spectra of light nuclei with masses up to A=10 raises the question whether the same dynamics applied to infinite nuclear matter agrees with the empirical saturation properties of large nuclei. The simple unambiguous relation between few-nucleon and many-nucleon Hamiltonians is directly related to the Galilean covariance of nonrelativistic dynamics. Relations between the irreducible unitary representations of the Galilei and Poincare groups indicate that the 'nonrelativistic' nuclear Hamiltonians may provide sufficiently accurate approximations to Poincare invariant mass operators. In relativistic nuclear dynamics based on suitable Lagrangeans the intrinsic nucleon parity is an explicit, dynamically relevant, degree of freedom and the emphasis is on properties of nuclear matter. The success of this approach suggests the question how it might account for the spectral properties of light nuclei.

  5. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  6. Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy.

    PubMed

    Steiner, A W; Gandolfi, S

    2012-02-24

    Using a phenomenological form of the equation of state of neutron matter near the saturation density which has been previously demonstrated to be a good characterization of quantum Monte Carlo simulations, we show that currently available neutron star mass and radius measurements provide a significant constraint on the equation of state of neutron matter. At higher densities we model the equation of state by using polytropes and a quark matter model. We show that observations offer an important constraint on the strength of the three-body force in neutron matter, and thus some theoretical models of the three-body force may be ruled out by currently available astrophysical data. In addition, we obtain an estimate of the symmetry energy of nuclear matter and its slope that can be directly compared to the experiment and other theoretical calculations.

  7. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  8. Shell effects in hot nuclei and their influence on nuclear composition in supernova matter

    SciTech Connect

    Nishimura, Suguru; Takano, Masatoshi

    2014-05-02

    We calculate nuclear composition in supernova (SN) matter explicitly taking into account the temperature dependence of nuclear shell effects. The abundance of nuclei in SN matter is important in the dynamics of core-collapse supernovae and, in recently constructed equations of state (EOS) for SN matter, the composition of nuclei are calculated assuming nuclear statistical equilibrium wherein the nuclear internal free energies govern the composition. However, in these EOS, thermal effects on the shell energy are not explicitly taken into account. To address this shortfall, we calculate herein the shell energies of hot nuclei and examine their influence on the composition of SN matter. Following a simplified macroscopic-microscopic approach, we first calculate single-particle (SP) energies by using a spherical Woods-Saxon potential. Then we extract shell energies at finite temperatures using Strutinsky method with the Fermi distribution as the average occupation probability of the SP levels. The results show that at relatively low temperatures, shell effects are still important and magic nuclei are abundant. However, at temperatures above approximately 2 MeV, shell effects are almost negligible, and the mass fractions with shell energies including the thermal effect are close to those obtained from a simple liquid drop model at finite temperatures.

  9. Medium modifications of baryon properties in nuclear matter and hypernuclei

    NASA Astrophysics Data System (ADS)

    Liang, J. S.; Shen, H.

    2013-09-01

    We study the medium modifications of baryon properties in nuclear many-body systems, especially in Λ hypernuclei. The nucleon and the Λ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and Λ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.

  10. 77 FR 6598 - In the Matter of Entergy Nuclear Operations, Inc., Palisades Nuclear Plant, 27780 Blue Star...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations, Inc., Palisades Nuclear Plant, 27780 Blue Star Memorial Highway, Covert, MI 49043-9530; Confirmatory Order (Effective Immediately) I Entergy...

  11. The coexistence curve of finite charged nuclear matter

    NASA Astrophysics Data System (ADS)

    Elliott, J. B.; Moretto, L. G.; Phair, L.; Wozniak, G. J.; Beaulieu, L.; Breuer, H.; Korteling, R. G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V. E.; Yennello, S. J.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D. A.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Gilkes, M. L.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J. C.; Lindenstruth, V.; Lisa, M. A.; Matis, H. S.; McMahan, M.; McParland, C.; Müller, W. F. J.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romanski, J.; Romero, J. L.; Russo, G. V.; Sann, H.; Scharenberg, R. P.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M.; Tuvé, C.; Wang, S.; Warren, P.; Wieman, H. H.; Wienold, T.; Wolf, K.

    2002-04-01

    The multifragmentation data of the ISiS Collaboration and the EOS Collaboration are examined. Fisher's droplet formalism, modified to account for Coulomb energy, is used to determine the critical exponents τ and σ, the surface energy coefficient c0, the pressure-temperature-density coexistence curve of finite nuclear matter and the location of the critical point. .

  12. Phase transitions of nuclear matter beyond mean field theory

    SciTech Connect

    Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa

    2007-10-15

    The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.

  13. Nuclear Matter from Effective Quark-Quark Interaction

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Fukukawa, K.

    2014-12-01

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  14. Nuclear matter from effective quark-quark interaction.

    PubMed

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  15. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  16. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    SciTech Connect

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A. Yudin, A. V.

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  17. Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter

    NASA Astrophysics Data System (ADS)

    Yasui, Shigehiro; Sudoh, Kazutaka

    2017-03-01

    We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.

  18. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  19. Nuclear matter radii determined by interaction cross sections

    SciTech Connect

    Ozawa, A.

    2005-10-19

    Experimental studies on nuclear matter radii determined by the interaction cross sections ({sigma}I) are reviewed. In particular, the procedure to determine the root-mean square matter radii from the measured {sigma}I by Galuber model analysis is described. Future {sigma}I measurements at the RI beam factory (RIBF) in RIKEN are introduced. As new calculations, the sensitivity of the skin is discussed in the case with a proton target based on Glauber-model calculations. In the energy region of RIBF, {sigma}I is sensitive for the skin; however, measurements with high accuracies are needed.

  20. Nuclear matter in nontopological soliton models with quark-meson coupling

    NASA Astrophysics Data System (ADS)

    Barnea, Nir; Walhout, Timothy S.

    2000-09-01

    A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field σ. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark- σ coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results — the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matter, with particular interest in the transition to a quark plasma, showing that even the simplest version of the model provides a reasonable qualitative fit to both the empirical nuclear matter equation of state and single nucleon properties.

  1. Properties of nucleon in nuclear matter: once more

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.

    2014-05-01

    We calculate the mass and residue of the nucleon in nuclear matter in the frame work of QCD sum rules using the nucleon's interpolating current with an arbitrary mixing parameter. We evaluate the effects of the nuclear medium on these quantities and compare the results obtained with the existing theoretical predictions. The results are also compared with those obtained in vacuum to find the shifts in the quantities under consideration. Our calculations show that these shifts in the mass and residue are about and , respectively.

  2. Nucleon propagation through nuclear matter in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Mallik, S.; Mishra, H.

    2007-05-01

    We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.

  3. Electric-dipole sum rule in nuclear matter

    NASA Astrophysics Data System (ADS)

    Fabrocini, A.; Fantoni, S.

    1985-03-01

    The enhancement factor K in the electric-dipole sum rule for some realistic models of symmetrical nuclear matter is calculated using variational theory. The nuclear-matter wave function used contains central, spin, isospin, tensor and spin-orbit pair correlations. The non-central correlations, particularly the tensor one, give the major contribution to K. At experimental equilibrium density K. turns out to be ≈ 1.8, of which 65% comes from OPEP and 30% from the short-range part of the interaction. The two-pion-exchange three-nucleon interaction contributes ≈ 0.2% and is cancelled, to a large extent, by the contribution due to the intermediate-range two-body potential. The relationship of the summed oscillator strength with the effective mass is also discussed.

  4. Suppression of the {Lambda}-{Sigma} coupling in nuclear matter

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We initiated a study of the modification of the coupling of the {Lambda}N to the {Sigma}N channel in nuclear matter with the Fermi hypernetted-chain variational approach. This modification of the {Lambda}N-{Sigma}N coupling is a central problem in hypernuclear physics and is related closely to the strongly repulsive three-body forces which are needed to account for hypernuclear binding energies. All earlier calculations have only considered this problem in the so-called G-matrix approximation which neglects important higher-order effects. An important result of this work will be a better understanding of the density dependence of {Lambda} binding in nuclear matter, which can then be tested in the calculation of the {Lambda} single-particle energies.

  5. Constructing the phase diagram of finite neutral nuclear matter

    NASA Astrophysics Data System (ADS)

    Elliott, J. B.; Moretto, L. G.; Phair, L.; Wozniak, G. J.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D. A.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Gilkes, M. L.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J. C.; Lindenstruth, V.; Lisa, M. A.; Matis, H. S.; McMahan, M.; McParland, C.; Müller, W. F.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romanski, J.; Romero, J. L.; Russo, G. V.; Sann, H.; Scharenberg, R. P.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J.; Tincknell, M.; Tuvé, C.; Wang, S.; Warren, P.; Wieman, H. H.; Wienold, T.; Wolf, K.

    2003-02-01

    The fragment yields from the multifragmentation of gold, lanthanum, and krypton nuclei obtained by the EOS Collaboration are examined in terms of Fisher’s droplet formalism modified to account for Coulomb energy. The critical exponents σ and τ and the surface energy coefficient c0 are obtained. Estimates are made of the pressure-temperature and temperature-density coexistence curve of finite neutral nuclear matter as well as the location of the critical point.

  6. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  7. Nuclear processing - a simple cost equation or a complex problem?

    SciTech Connect

    Banfield, Z.; Banford, A.W.; Hanson, B.C.; Scully, P.J.

    2007-07-01

    BNFL has extensive experience of nuclear processing plant from concept through to decommissioning, at all stages of the fuel cycle. Nexia Solutions (formerly BNFL's R and D Division) has always supported BNFL in development of concept plant, including the development of costed plant designs for the purpose of economic evaluation and technology selection. Having undertaken such studies over a number of years, this has enabled Nexia Solutions to develop a portfolio of costed plant designs for a broad range of nuclear processes, throughputs and technologies. This work has led to an extensive understanding of the relationship of the cost of nuclear processing plant, and how this can be impacted by scale of process, and the selection of design philosophy. The relationship has been seen to be non linear and so simplistic equations do not apply, the relationship is complex due to the variety of contributory factors. This is particularly evident when considering the scale of a process, for example how step changes in design occurs with increasing scale, how the applicability of technology options can vary with scale etc... This paper will explore the contributory factor of scale to nuclear processing plant costs. (authors)

  8. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  9. Saturated symmetric nuclear matter in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2013-06-01

    Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric nuclear matter ρ0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of ρ0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also calculated. It is found that with an increasing magnetic field ρ0(B) increases, while the system becomes less bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing the dipole moment strength ρ0(B) is found to decrease, but the system becomes more tightly bound while the fluctuations in K and a4 persist.

  10. Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Lie-Wen

    2016-12-01

    Recent progress in theory, experiment, and observation challenges the mean-field models by using the conventional Skyrme interaction, suggesting that the extension of the conventional Skyrme interaction is necessary. In this work, by fitting the experimental data of a number of finite nuclei together with a few additional constraints on nuclear matter using the simulated annealing method, we construct three Skyrme interaction parameter sets; namely, eMSL07, eMSL08, and eMSL09, based on an extended Skyrme interaction which includes additional momentum and density-dependent two-body forces to effectively simulate the momentum dependence of the three-body force. The three new interactions (i) can reasonably describe the ground-state properties and the isoscalar giant monopole resonance energies of various spherical nuclei used in the fit as well as the ground-state properties of many other spherical nuclei, (ii) nicely conform to the current knowledge on the equation of state of asymmetric nuclear matter, (iii) eliminate the notorious unphysical instabilities of symmetric nuclear matter and pure neutron matter up to a very high density of 1.2 fm-3 , and (iv) simultaneously support heavier neutron stars with mass larger than two times the solar mass. One important difference of the three new interactions involves the prediction of the symmetry energy at supra-saturation densities, and these new interactions are thus potentially useful for the future determination of the largely uncertain high-density symmetry energy. In addition, the predictions of nuclear matter, finite nuclei, and neutron stars made using the three new interactions are compared with those made using the three typical interactions BSk22, BSk24, and BSk26 from the Brussels group.

  11. Constraining the nuclear equation of state at subsaturation densities.

    PubMed

    Khan, E; Margueron, J; Vidaña, I

    2012-08-31

    Only one-third of the nucleons in 208Pb occupy the saturation density area. Consequently, nuclear observables related to the average properties of nuclei, such as masses or radii, constrain the equation of state not at the saturation density but rather around the so-called crossing density, localized close to the mean value of the density of nuclei: ρ is approximately equal to 0.11 fm(-3). This provides an explanation for the empirical fact that several equation of state quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy per unit of volume at the crossing density is constrained by the giant monopole resonance measurements in an isotopic chain rather than the incompressibility at saturation density. The giant monopole resonance measurements provide M=1100±70 MeV (6% uncertainty), whose extrapolation gives K(∞)=230±40 MeV (17% uncertainty).

  12. Effective kaon masses in dense nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    The effective mass and decay width of kaonic modes in baryonic matter are studied within a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, π∑, πΛ system. Including Pauli blocking and Fermi motion in the kaon dispersion relation, we find a strong non-linear density dependence of the K - effective mass and decay width in symmetric nuclear matter at densities around 0.1 times normal nuclear matter density ϱ0 due to the in-medium dynamics of the Λ(1405) resonance. At higher densities the K - effective mass decreases slowly but stays above 0.5 mK at least up to densities below 3 ϱ0. In neutron matter the K - effective mass decreases almost linearly with increasing density but remains relatively large ( m K∗ > 0.65 m K) for ϱn ≲ 3 ϱ0. The K + effective mass turns out to increase very slowly with rising density.

  13. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  14. Thermodynamic instabilities in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.

    2016-11-01

    We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density) that by chemical-diffusive instability (fluctuations on the strangeness concentration). The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232)-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  15. Nonextensive statistical effects and strangeness production in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Pigato, D.

    2012-12-01

    By means of an effective relativistic nuclear equation of state in the framework of the nonextensive statistical mechanics, characterized by power-law quantum distributions, we study the phase transition from hadronic matter to quark-gluon plasma at finite temperature and baryon density. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction and zero net strangeness. We show that nonextensive statistical effects strongly influence the strangeness production during the pure hadronic phase and the hadron-quark-gluon mixed phase transition, also for small deviations from the standard Boltzmann-Gibbs statistics.

  16. The properties of nuclear matter with lattice NN potential in relativistic Brueckner-Hartree-Fock theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinniu; Toki, Hiroshi; Shen, Hong

    2016-10-01

    We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around ‑3 and ‑5 MeV at saturation density, while it becomes ‑8 and ‑12 MeV in relativistic framework with 1S0, 3S1, and 3D1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1S0 channel with isospin T = 1 case.

  17. The properties of nuclear matter with lattice NN potential in relativistic Brueckner-Hartree-Fock theory

    PubMed Central

    Hu, Jinniu; Toki, Hiroshi; Shen, Hong

    2016-01-01

    We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around −3 and −5 MeV at saturation density, while it becomes −8 and −12 MeV in relativistic framework with 1S0, 3S1, and 3D1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1S0 channel with isospin T = 1 case. PMID:27752124

  18. Nuclear inertia from the time dependent pairing equations

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2016-10-01

    In a dynamical system, the momenta of inertia and the effective masses are not adiabatic quantities, but are dynamical ones that depend on the dissipated energy accumulated during motion. However, these parameters are calculated for adiabatic nuclear systems, leaving no room for dissipated energy. In this work, a formalism is elaborated in order to derive simultaneously the nuclear momenta of inertia and the effective masses by taking into account the appearance of dissipated energy for large amplitude motion of the nuclear system. The expressions that define the inertia are obtained from the variational principle. The same principle manages the time dependent pairing equations, offering estimations of the averaged dissipation energy for large amplitude motions. The model is applied to 232Th fission. The fission barrier was calculated along the least action trajectory. The dissipation energy, effective mass and moment of inertia are determined for different values of the collective velocities. The dissipation increases with the internuclear velocity in binary disintegration processes and modifies the effective mass parameters. We observed that the inertia decreases as long as the collective velocity increases to some moderate values and begins to grow for larger collective velocities. So, a dependence between the cranking mass parameters and the intrinsic excitation energy is evidenced. In order to investigate the overall effect, the half-lives are predicted for adiabatic and dynamics simulations.

  19. Relativistic mean-field models and nuclear matter constraints

    SciTech Connect

    Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.

    2013-05-06

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  20. Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

    NASA Astrophysics Data System (ADS)

    Alam, N.; Agrawal, B. K.; Fortin, M.; Pais, H.; Providência, C.; Raduta, Ad. R.; Sulaksono, A.

    2016-11-01

    We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2 M⊙ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and nonrelativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range 0.6 -1.8 M⊙ . This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope, and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a 1.4 M⊙ neutron star in the range 11.09 -12.86 km.

  1. Three nucleon forces in nuclear matter in QCD sum rules

    NASA Astrophysics Data System (ADS)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-03-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contributions of the 3N forces to nucleon self energies are expressed in terms of the nonlocal scalar condensate (d = 3) and of the configuration of the four-quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the other parts. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained. Estimations on contributions of the 4N forces to the nucleon self energies are made.

  2. Reducible chiral four-body interactions in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kaiser, N.; Milkus, R.

    2016-01-01

    The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion exchanges and a spin-spin contact term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can be reduced to easily manageable one- or two-parameter integrals. One finds substantial compensations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of -1.3 MeV for densities ρ < 2ρ0.

  3. Neutrons in strong magnetic fields and equation of state of neutron matter

    NASA Astrophysics Data System (ADS)

    Bigdeli, Mohsen

    2017-02-01

    In the present work, I investigate the influence of neutron mass reduction due to magnetic field on the equation of state of neutron matter using the lowest-order constraint variational (LOCV) method with the A V18 potential.

  4. Modification of the ω-Meson Lifetime in Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Kotulla, M.; Trnka, D.; Mühlich, P.; Anton, G.; Bacelar, J. C. S.; Bartholomy, O.; Bayadilov, D.; Beloglazov, Y. A.; Bogendörfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Ewald, R.; Fabry, I.; Fuchs, M.; Essig, K.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Hössl, J.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Fritz; Klempt, E.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Mertens, T.; Metag, V.; Mosel, U.; Nanova, M.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Radkov, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Suft, G.; Sumachev, V. V.; Szczepanek, T.; Süle, A.; Thoma, U.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.

    2008-05-01

    Information on hadron properties in the nuclear medium has been derived from the photoproduction of ω mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the ω-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic ω width is found to be 130 150MeV/c2 at normal nuclear matter density for an average 3-momentum of 1.1GeV/c. In the rest frame of the ω meson, this inelastic ω width corresponds to a reduction of the ω lifetime by a factor ≈30. For the first time, the momentum dependent ωN cross section has been extracted from the experiment and is in the range of 70 mb.

  5. Modification of the omega-meson lifetime in nuclear matter.

    PubMed

    Kotulla, M; Trnka, D; Mühlich, P; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglazov, Y A; Bogendörfer, R; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Mosel, U; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch

    2008-05-16

    Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb.

  6. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    SciTech Connect

    Westerdale, Shawn S.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  7. Bulk Properties of Nuclear Matter From Excitations of Nuclei

    SciTech Connect

    Shlomo, Shalom

    2007-10-26

    We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.

  8. Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter

    SciTech Connect

    Matevosyan, Hrayr

    2007-08-01

    Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme

  9. Width of the {phi} meson in nuclear matter

    SciTech Connect

    Polyanskiy, A. Yu.; Hartmann, M.; Kiselev, Yu. T.; Paryev, E. Ya.; Buescher, M.; Chiladze, D.; Dymov, S. N.; Dzyuba, A. A.; Gebel, R.; Hejny, V.; Kaempfer, B.; Keshelashvili, I.; Koptev, V. P.; Lorentz, B.; Maeda, Y.; Merzliakov, S. I.; and others

    2012-01-15

    The ratios of the cross sections for {phi}-meson production induced by 2.83-GeV protons on Cu, Ag, and Au nuclei to the respective cross section for C nuclei were measured at the ANKE-COSY facility in the momentum range of 0.6-1.6 GeV/c and the angular range of 0 Degree-Sign -8 Degree-Sign . The product {phi} mesons were identified by their decay {phi} {yields} K{sup +}K{sup -}. The procedure used to separate kaon pairs was described in detail, and all sources of the background and their contribution to the resulting error in the values found for the above cross-section ratios were analyzed. The A dependence of the cross section for {phi}-meson production was shown to obey the A{sup 0.56{+-}0.03} law. The total width of the {phi} meson at a normal nuclear density was extracted from a comparison of the measured cross-section ratios with the results of calculations based on two theoretical models. The resulting width value exceeds substantially both the vacuum width and the width expected in the absence of the nuclear-matter effect on the properties of the {phi} meson.

  10. A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Roberts, Luke; Ott, Christian

    2017-01-01

    The equation of state (EOS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct the EOS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the SNA and NSE regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EOS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EOS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.

  11. A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Roberts, Luke F.; Ott, Christian D.

    2016-09-01

    The equation of state (EoS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct EoS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the two regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EoS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EoS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.

  12. Stability and size of a chiral soliton immersed in nuclear matter

    SciTech Connect

    Kahana, S.

    1985-01-01

    The alteration in nucleon substructure when nucleons are placed in nuclear matter is addressed in a Wigner-Seitz approximation by treating nuclei as a collection of chiral solitons. In the limit of strong coupling between quarks and the binding chiral fields, and for low density nuclear matter, it is found the solitons decrease slightly in size. 19 refs., 3 figs.

  13. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    NASA Astrophysics Data System (ADS)

    Vasconcellos, C. A. Zen

    2015-12-01

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  14. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    SciTech Connect

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-21

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  15. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-01

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  16. Spectral equation-of-state theory for dense, partially ionized matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Burke

    2005-07-01

    The Schrödinger equation is solved in time and space to implement a finite-temperature equation-of-state theory for dense, partially ionized matter. The time-dependent calculation generates a spectrum of quantum states. Eigenfunctions are calculated from a knowledge of the spectrum and used to calculate the electronic pressure and energy. Results are given for Be and LiD and compared with results from the INFERNO model [D. A. Liberman, Phys. Rev. B 20, 4981 (1979)].

  17. Isovector response function of hot nuclear matter with Skyrme interactions

    SciTech Connect

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-11-01

    We investigate the role of the effective nucleon-nucleon interaction in the description of giant dipole resonances in hot nuclei. For this purpose we calculate the response function of hot nuclear matter to a small isovector external perturbation using various effective Skyrme interactions. We find that for Skyrme forces with an effective mass close to unity an undamped zero sound mode occurs at zero temperature. This mode gives rise in finite nuclei (calculated via the Steinwedel-Jenssen model) to a resonance whose energy agrees with the observed value. We find that zero sound disappears at a temperature of a few MeV, leaving only a broad peak in the dipole strength. For Skyrme forces with a small value of the effective mass (0.4), there is no zero sound at zero temperature but only a weak peak located too high in energy. The strength distribution in this case is nearly independent of temperature and shows small collective effects. The relevance of these results for the saturation of photon multiplicities observed in recent experiments is pointed out.

  18. Family matters: happiness in nuclear families and twins.

    PubMed

    Nes, Ragnhild Bang; Czajkowski, N; Tambs, K

    2010-09-01

    Biometric studies have shown that happiness is strongly affected by genes. The findings are mainly based on twin data, however, and the full validity of the results has been debated. To overcome some limitations in classical twin research, we examined aetiological sources of subjective well-being (SWB), using two independent population-based samples, one including nuclear families (N = 54,540) and one including twins (N = 6,620). Biometric modelling using R was conducted to test for a data structure implying either non-additive genetic effects or higher environmental co-twin correlation in MZ than DZ pairs (violation of the EEA). We also estimated non-random mating, cultural transmission and shared environments specific for regular siblings and twins. Two sets of nested models were fitted and compared. The best explanatory model shows that family matters for happiness predominantly due to quantitative sex-specific genetic effects, a moderate spousal correlation and a shared twin environment. Upper limits for broad-sense heritability were estimated to be 0.33 (females) and 0.36 (males). Our study constitutes the most elaborate biometric study of SWB to date and illustrates the utility of including responses from multiple types of relatives in quantitative genetic analyses.

  19. Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter

    SciTech Connect

    Sekerzhitskii, V.S.

    1995-01-01

    According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.

  20. Deformation of Lattice in a Solid Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    1994-02-01

    The effect of the deformation of lattice in the three dimensional (3D) ALS (i.e., alternating layer spin) solid of neutron matter is investigated, taking the elastic-, spin- and isospin-wave excitations into account in the model with Pandharipande-Smith (PS)'s potential and non-vanishing classical pion field. The q-number part of pion-field is replaced by the effective one-pion-exchange potential (OPEP). The tetragonal structure of lattice is presumed. Solutions of the equation of motion (EOM) for the ground state are sought by the variational method for two cases in which c-number part of π--field is non-vanishing and is supposed to be propagating either (i) perpendicularly to or (ii) within layers of 3D ALS solid. The phonon and magnon sectors of Hamiltonian are diagonalized for case (i) and the phonon sector for case (ii). The criterion of the stability is the absence of imaginary part in the dispersion relations of phonon and of magnon. In both cases, tetragonal lattices have energies about 40 MeV/nucleon lower than the simple cubic (sc) lattices in the density region of [0.35 fm-3, 0.75 fm-3]. In (i), the zero-point energy of magnon is a few percent of phonon. Both in (i) and (ii), the charged pion condensations are negligible.

  1. Students' Understanding of Conservation of Matter, Stoichiometry and Balancing Equations in Indonesia

    ERIC Educational Resources Information Center

    Agung, Salamah; Schwartz, Marc S.

    2007-01-01

    This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…

  2. Structural Equation Modeling in Assessing Students' Understanding of the State Changes of Matter

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George

    2012-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of the particulate nature of matter, the collective properties and physical changes, such as melting, evaporation, boiling and condensation. The structural relationships among particular groups of items were investigated. In addition,…

  3. Dynamical properties of nuclear and stellar matter and the symmetry energy

    SciTech Connect

    Pais, Helena; Santos, Alexandre; Brito, Lucilia; Providencia, Constanca

    2010-08-15

    The effects of density dependence of the symmetry energy on the collective modes and dynamical instabilities of cold and warm nuclear and stellar matter are studied in the framework of relativistic mean-field hadron models. The existence of the collective isovector and possibly an isoscalar collective mode above saturation density is discussed. It is shown that soft equations of state do not allow for a high-density isoscalar collective mode; however, if the symmetry energy is hard enough, an isovector mode will not disappear at high densities. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. Estimations of the size of the clusters formed in the nonhomogeneous phase, as well as the corresponding growth rates and distillation effect, are made. It is shown that cluster sizes increase with temperature, that the distillation effect close to the inner edge of the crust-core transition is very sensitive to the symmetry energy, and that, within a dynamical instability calculation, the pasta phase exists in warm compact stars up to 10-12 MeV.

  4. The Heart of Matter: A Nuclear Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Viola, Vic; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students…

  5. Asymmetric nuclear matter and neutron star properties within the extended Brueckner theory

    NASA Astrophysics Data System (ADS)

    Hassaneen, Khaled S. A.

    2017-01-01

    Microscopically, the equation of state (EOS) and other properties of asymmetric nuclear matter at zero temperature have been investigated extensively by adopting the non-relativistic Brueckner-Hartree-Fock (BHF) and the extended BHF approaches by using the self-consistent Green's function approach or by including a phenomenological three-body force. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. We can calculate the total mass and radius for neutron stars using various equations of state at high densities in β-equilibrium without hyperons. A comparison with other microscopic predictions based on non-relativistic and density-dependent relativistic mean-field calculations has been done. It is found that relativistic EOS yields however larger mass and radius for neutron star than predictions based on non-relativistic approaches. Also the three-body force plays a crucial role to deduce the theoretical value of the maximum mass of neutron stars in agreement with recent measurements of the neutron star mass.

  6. Do Skyrme forces that fit nuclear matter work well in finite nuclei?

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Goddard, P. M.; Stone, J. R.; Dutra, M.

    2013-05-01

    A short list of Skyrme force parameterizations, recently found to have passed a series of constraints relating to nuclear matter properties is analyzed for their ability to reproduce data in finite nuclei. We analyse binding energies, isotope shifts, neutron skin thicknesses and fission barriers. We find that the subset of forces have no common ability to reproduce(or otherwise)properties of finite nuclei, despite passing the extensive range of nuclear matter constraints.

  7. Equation of state of strongly interacting matter and intensity interferometry of thermal photons

    NASA Astrophysics Data System (ADS)

    De, Somnath; Srivastava, Dinesh K.; Chatterjee, Rupa

    2011-07-01

    We find that an equation of state (EOS) for hot hadronic matter consisting of all mesons (baryons) having M < 1.5 (2.0)GeV along with Hagedorn resonances in thermal and chemical equilibrium, matches rather smoothly with lattice EOS (p4 action, Nτ = 8) for T up to ≈200 MeV, when corrections are made for the finite volume of hadrons. Two equations of state, HHL and HHB are constructed where the above is matched to the lattice and bag model EoS respectively at a critical temperature Tc = 165MeV. We find that the particle and thermal photon spectra differ only marginally for the two equations of state at both RHIC and LHC energies. The intensity interferometry results, specially the outward correlations for thermal photons are found to be quite distinct for the two equations of state.

  8. Fraunhofer diffraction of coherent and incoherent nuclear matter waves by complementary screens

    NASA Astrophysics Data System (ADS)

    da Silveira, R.; Leclercq-Willain, Ch.

    2013-06-01

    The analogy between Fraunhofer diffraction effects observed in nuclear and subnuclear collisions and those observed with light diffracted by complementary screens is revisited. Emphasis will be put on the collision mechanisms playing a role analogous to that of an aperture in light diffraction. These analogies are illustrated with examples involving coherent and incoherent nuclear matter waves.

  9. Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole

    SciTech Connect

    Chernov, S. V.

    2015-06-15

    We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.

  10. Constraining the Equation of State of Superhadronic Matter from Heavy-Ion Collisions.

    PubMed

    Pratt, Scott; Sangaline, Evan; Sorensen, Paul; Wang, Hui

    2015-05-22

    The equation of state of QCD matter for temperatures near and above the quark-hadron transition (∼165  MeV) is inferred within a Bayesian framework through the comparison of data from the Relativistic Heavy Ion Collider and from the Large Hadron Collider to theoretical models. State-of-the-art statistical techniques are applied to simultaneously analyze multiple classes of observables while varying 14 independent model parameters. The resulting posterior distribution over possible equations of state is consistent with results from lattice gauge theory.

  11. Constraining the equation of state of superhadronic matter from heavy-ion collisions

    DOE PAGES

    Pratt, Scott; Sorensen, Paul; Sangaline, Evan; ...

    2015-05-19

    The equation of state of QCD matter for temperatures near and above the quark-hadron transition (~165 MeV) is inferred within a Bayesian framework through the comparison of data from the Relativistic Heavy Ion Collider and from the Large Hadron Collider to theoretical models. State-of-the-art statistical techniques are applied to simultaneously analyze multiple classes of observables while varying 14 independent model parameters. Thus, the resulting posterior distribution over possible equations of state is consistent with results from lattice gauge theory.

  12. Experimental study of the equation of state of isochorically heated warm dense matter

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss Mcnaughton

    2007-12-01

    We have performed a series of experiments developing the techniques of volumetric, isochoric heating of matter to high energy density states, and the subsequent probing of the release isentrope. Using ultrafast, ultra intense laser systems with pulse lengths from 100fs - 1ps and pulse energies between 2 J and 100 J, we generated strong secondary radiation, in the form of Kalpha x-rays and directed proton beams, which we used to rapidly heat a foil sample to temperatures from ˜1 eV to ˜25 eV at solid density, thus entering the strongly coupled, partially ionized regime of warm dense matter, in which the equation of state is poorly understood. The first set of experiments examines the possibility of using laser generated Kalpha x-rays in isochoric heating experiments and concludes that this technique will require the use of higher energies and higher Z materials than were used in this thesis to achieve warm dense matter conditions. In the second set of experiments, we used an ultrafast, laser-generated proton beam with a temperature of ˜2 MeV and cutoff energy of ˜40 MeV to volumetrically and isochorically heat a sample foil to >20 eV. With single-shot diagnostics, we measured the evolution of the temperature with 3.3 ps resolution over the first 35 ps of expansion by streaked optical pyrometry, and measured the evolution of the target expansion over the same timescale with sub-ps resolution by chirped pulse interferometry. In this way we were able to verify the equation of state and ion-balance in the SESAME equation of state tables with a Saha ionization model and distinguish this as more accurate than other, simpler models. This thesis establishes an experimental framework for acquiring equation of state data in the regime of warm dense matter that is distinct and complimentary to that acquired by the techniques of shock heating.

  13. Renormalization group flow equations for chiral nuclear models

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew Sheriden

    1997-10-01

    facto use of the hydrodynamic limit fails both qualitatively and quantitatively. These systems require the use of the RG for an understanding beyond that provided by the hydrodynamic continuum limit or mean field theory. Next we discuss the derivation of the exact RG equations and the differential flow equations under various approximations for model field theories containing both bosonic and fermionic degrees of freedom. The RG flow equations for the boson and generalized Yukawa effective potentials to leading order (LO) in the derivative expansion (DE) are derived in detail and compared with previously published results. The derivation of the σ-model flow equations is outlined and the results, which are quite lengthy, are catalogued in an appendix. We present the numerical solution of the LO flow equations for the Yukawa coupled fermions and the σ-model treating the field variables and the momentum scale as independent continuous variables. The results for the flow of the boson and fermion Yukawa couplings are in agreement with those previously published. The results for the σ-model include the calculation of πpi scattering lengths which are an improvement on the old perturbative calculation and essentially in agreement with experiment. (Abstract shortened by UMI.)

  14. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    SciTech Connect

    Vasconcellos, C. A. Zen

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  15. Self-consistency and quasi-particle approximation in π- and Δ-propagation in nuclear matter

    NASA Astrophysics Data System (ADS)

    Cenni, R.; Dillon, G.

    1983-01-01

    The equations for the self-consistent π- and Δ-propagation in nuclear matter are solved numerically in the quasi-particle approximation. We have taken into account the full complexity of nucleon recoil and Fermi motion as well as the effects of binding and short-range correlations. Because of the much smoother behaviour of the self-consistent π and Δ self-energies it turns out that the quasi-particle approximation is still a good one even at normal nuclear density, whereas for kF ⩾ 1 fm -1 the first-order solution displays a multiple eigenmode propagation for the pion in the resonance region. The self-consistent π- and Δ-dispersion relations in the medium are then obtained for increasing densities by an iterative procedure which takes as a starting point, each time, the final result at the preceding density.

  16. Heavy ion collisions with A = 10/sup 57/: Aspects of nuclear stability and the nuclear equation of state in coalescing neutron-star binary systems

    SciTech Connect

    Mathews, G.J.; Wilson, J.R.; Evans, C.R.; Detweiler, S.L.

    1987-12-01

    The dynamics of the final stages of the coalescence of two neturon stars (such as the binary pulsar PSR 1913+16) is an unsolved problem in astrophysics. Such systems are probably efficient generators of gravitational radiation, and may be significant contributors to heavy-element nucleosynthesis. The input physics for the study of such systems is similar to that required for the strudy of heavy-ion collision hydrodynamics; e.g., a finite temperature nuclear equation of state, properties of nuclei away from stability, etc. We discuss the development of a relativistic hydrodynamics code in three spatial dimensions for the purpose of studying such neutron-star systems. The properties of the mass-radius relation (determined by the nuclear equation of state) may lead to a proposed mechanism by which hot, highly neutronized matter is ejected from the coalescing stars. This material is photodisintegrated into a free (mostly) neutron gas which may subsequently experience rapid-neutron capture (r-process) nucleosynthesis. 15 refs., 4 figs.

  17. Time-dependent pairing equations for seniority-one nuclear systems

    SciTech Connect

    Mirea, M.

    2008-10-15

    When the time-dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority-one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time-dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time-dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in detail. These equations are applied to the case of a superasymmetric fission process, that is, to explain the fine structure the {sup 14}C emission from {sup 233}Ra. In this context, a new version of the Woods-Saxon model extended for two-center potentials is used.

  18. Investigating the Nuclear Equation of State through N/Z Equilibration

    SciTech Connect

    Yennello, S.; Keksis, A.; Bell, E.

    2007-10-26

    The equilibration of the N/Z degree of freedom during heavy-ion collisions can be a discriminating observables for helping to understand the nuclear equation of state. Equilibration can be investigated by examining the ratios of isotopes produced in these reactions. The isotope ratio method and the tracer method yield consistent results. The quasiprojectiles produced in deep inelastic collisions are predicted to be sensitive to the density dependence of the equation of state.

  19. Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state.

    PubMed

    Pradhan, Ekadashi; Magyar, Rudolph J; Akimov, Alexey V

    2016-11-30

    Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.

  20. Intron or no intron: a matter for nuclear pore complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2015-01-01

    Nuclear pore complexes (NPCs) have been shown to regulate distinct steps of the gene expression process, from transcription to mRNA export. In particular, mRNAs expressed from intron-containing genes are surveyed by a specific NPC-dependent quality control pathway ensuring that unspliced mRNAs are retained within the nucleus. In this Extra View, we summarize the different approaches that have been developed to evaluate the contribution of various NPC components to the expression of intron-containing genes. We further present the mechanistic models that could account for pre-mRNA retention at the nuclear side of NPCs. Finally, we discuss the possibility that other stages of intron-containing gene expression could be regulated by nuclear pores, in particular through the regulation of mRNA biogenesis factors by the NPC-associated SUMO protease Ulp1. PMID:26709543

  1. 78 FR 19535 - In the Matter of Entergy Operations, Inc. (Arkansas Nuclear One, Unit 1); Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Operations, Inc. (Arkansas Nuclear One, Unit 1); Confirmatory Order Modifying License I Entergy Operations, Inc. (Entergy, licensee), is the holder of Renewed...

  2. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... COMMISSION In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company (Yankee... (together, the ] ``application''), Yankee Atomic notified the Nuclear Regulatory Commission (NRC or...

  3. Equation of State of the Strong Interaction Matter in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Yu-Xin

    2015-10-01

    We investigate the equation of state of the strong interaction matter in a background magnetic field via the two flavor Nambu-Jona-Lasinio model. Starting from the mean-field thermodynamical potential density Ω, we calculate the pressure density p, the entropy density s, the energy density ɛ, and the interaction measure (ɛ - 3p)/T4 of the strong interaction matter at finite temperature and finite magnetic field. The results manifest that the chiral phase transition is just a crossover but not a low order phase transition. Moreover there may exist magnetic catalysis effect, and its mechanism is just the effective dimension reduction induced by the magnetic field. Supported by the National Natural Science Foundation of China under Grant Nos. 10935001, 11175004 and 11435001, and the National Key Basic Research Program of China under Grant Nos. G2013CB834400 and 2015CB856900

  4. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters.

    PubMed

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  5. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters

    PubMed Central

    Gomez, Nestor; Erazo, Tatiana; Lizcano, Jose M.

    2016-01-01

    ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation

  6. Nuclear matter properties from local chiral interactions with Δ isobar intermediate states

    NASA Astrophysics Data System (ADS)

    Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro

    2016-12-01

    Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N 3 LO Δ ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N 3 LO Δ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.

  7. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  8. The Thermal Properties of Asymmetric Nuclear Matter within the Extended Brueckner-Hartree-Fock Approach

    NASA Astrophysics Data System (ADS)

    Hassaneen, Khaled; Mansour, Hesham

    2017-02-01

    The single-particle potentials and other properties at absolute zero temperature in isospin asymmetric nuclear matter are investigated in the frame of an extended Brueckner theory. Also thermal quantities are calculated in asymmetric nuclear matter using CD-Bonn potential and the Urbana three-body forces (3BF). Also, the effects of the hole-hole contributions are investigated within the self-consistent Greens function approach. The inclusion of 3BF or the hole-hole contributions improves the predicted saturation property of symmetric nuclear matter within the Brueckner-Hartree-Fock approach and it leads to a significant stiffening of the density dependence of symmetry energy at high densities but the exact saturation point is not reproduced. This is of great importance in astrophysical calculation. A phenomenological term simulating the three-body interaction is introduced to assure the empirical saturation property. The hot properties of asymmetric nuclear matter such as the internal energy and the pressure are analyzed using T2-approximation method at low temperatures.

  9. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  10. 77 FR 41811 - In the Matter of Tennessee Valley Authority Watts Bar Nuclear Plant EA-12-021; Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Tennessee Valley Authority Watts Bar Nuclear Plant EA-12-021; Confirmatory Order... for all matters discussed in the NRC's letter to TVA of March 23, 2012 (EA-12- 021). 8. This...

  11. 76 FR 20722 - In the Matter of Indiana Michigan Power Company; DC Cook Nuclear Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... COMMISSION In the Matter of Indiana Michigan Power Company; DC Cook Nuclear Plant Independent Spent Fuel... notice, in the matter of DC Cook Nuclear Plant Independent Spent Fuel Storage Installation (ISFSI) Order..., 2001, terrorists simultaneously attacked targets in New York, NY, and Washington, DC, using...

  12. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.

  13. Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Da Providencia, J.

    2009-08-15

    We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.

  14. Onset of nuclear matter expansion in Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Crochet, P.; Rami, F.; Gobbi, A.; Dona, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Amouroux, V.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Berrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Pras, P.; Ramillien, V.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Vasiliev, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; FOPI Collaboration

    1997-02-01

    Using the FOPI detector at GSI Darmstadt, excitation functions of collective flow components were measured for the Au+Au system, in the reaction plane and out of this plane, at seven incident energies ranging from 100 A MeV to 800 A MeV. The threshold energies, corresponding to the onset of sideward-flow (balance energy) and squeeze-out effect (transition energy), are extracted from extrapolations of these excitation functions toward lower beam energies for charged products with Z ⩾ 2. The transition energy is found to be larger than the balance energy. The impact parameter dependence of both balance and transition energies, when extrapolated to central collisions, suggests comparable although slightly higher values than the threshold energy for the radial flow. The relevant parameter seems to be the energy deposited into the system in order to overcome the attractive nuclear forces.

  15. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  16. Covariant and self-consistent vertex corrections for pions and isobars in nuclear matter

    SciTech Connect

    Korpa, C. L.; Lutz, M. F. M.; Riek, F.

    2009-08-15

    We evaluate the pion and isobar propagators in cold nuclear matter self-consistently applying a covariant form of the isobar-hole model. Migdal's vertex correction effects are considered systematically in the absence of phenomenological soft form factors. Saturated nuclear matter is modeled by scalar and vector mean fields for the nucleon. It is shown that the short-range dressing of the {pi}N{delta} vertex has a significant effect on the pion and isobar properties. Using realistic parameters sets we predict a downward shift of about 50 MeV for the {delta} resonance at nuclear saturation density. The pionic soft modes are much less pronounced than in previous studies.

  17. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) - Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  18. Specific heat of matter formed in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan K.; Nandi, Basanta K.

    2016-10-01

    We report the excitation energy dependence of specific heat (cv) of hadronic matter at freeze-out in Au+Au and Cu+Cu collisions at the BNL Relativistic Heavy Ion Collider energies by analyzing the published data on event-by-event mean transverse momentum ( ) distributions. The distributions in finite pT ranges are converted to distributions of effective temperatures, and dynamical fluctuations in temperature are extracted by subtracting widths of the corresponding mixed event distributions. The heat capacity per particle at the kinetic freeze-out surface is presented as a function of collision energy, which shows a sharp rise in cv below √{sN N}=62.4 GeV. We employ the hadron resonance gas (HRG) model to estimate cv at the chemical and kinetic freeze-out surfaces. The experimental results are compared to the HRG and other theoretical model calculations. HRG results show good agreement with data. Model predictions for cv at the CERN Large Hadron Collider energy are presented.

  19. NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Graen, Timo; Grubmüller, Helmut

    2016-01-01

    The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.

  20. 75 FR 74750 - In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or... U.S. Nuclear Regulatory Commission (the Commission or NRC) published a rulemaking in the...

  1. 75 FR 35846 - In the Matter of Babcock & Wilcox Nuclear Operations Group, Inc., Lynchburg, VA; Order Imposing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Babcock & Wilcox Nuclear Operations Group, Inc., Lynchburg, VA; Order Imposing Civil Monetary Penalty I Babcock & Wilcox Nuclear Operations Group, Inc., (Licensee) is the holder...

  2. 78 FR 41805 - In the Matter of FirstEnergy Nuclear Operating Company; Beaver Valley Power Station; Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... COMMISSION In the Matter of FirstEnergy Nuclear Operating Company; Beaver Valley Power Station; Independent Spent Fuel Storage Installation; Order Modifying License (Effective Immediately) AGENCY: Nuclear... fingerprinting for unescorted access to FirstEnergy Nuclear Operating Company. FOR FURTHER INFORMATION CONTACT:...

  3. Effective meson masses in nuclear matter based on a cutoff field theory

    SciTech Connect

    Nakano, M.; Noda, N.; Mitsumori, T.; Koide, K.; Kouno, H.; Hasegawa, A.

    1997-02-01

    Effective masses of {sigma}, {omega}, {pi}, and {rho} mesons in nuclear matter are calculated based on a cutoff field theory. Instead of the traditional density-Feynman representation, we adopt the particle-hole-antiparticle representation for nuclear propagators so that unphysical components are not included in the meson self-energies. For an estimation of the contribution from the divergent particle-antiparticle excitations, i.e., vacuum polarization in nuclear matter, the idea of the renormalization group method is adopted. In this cutoff field theory, all the counterterms are finite and calculated numerically. It is shown that the predicted meson masses converge even if the cutoff {Lambda} is changed as long as {Lambda} is sufficiently large and that the prescription works well also for so-called nonrenormalized mesons such as {pi} and {rho}. According to this method, it is concluded that meson masses in nuclear matter have a weak dependence on the baryon density. {copyright} {ital 1997} {ital The American Physical Society}

  4. Gap-bridging enhancement of modified Urca processes in nuclear matter

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Pangeni, Kamal

    2017-01-01

    In nuclear matter at neutron-star densities and temperatures, Cooper pairing leads to the formation of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing β processes, via the mechanism of "gap bridging." We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with P32 neutron pairing.

  5. Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.

    2015-08-01

    Elements of nuclear symmetry energy evaluated from different energy density functionals parametrized by fitting selective bulk properties of few representative nuclei are seen to vary widely. Those obtained from experimental data on nuclear masses across the periodic table, however, show that they are better constrained. A possible direction in reconciling this paradox may be gleaned from comparison of results obtained from use of the binding energies in the fitting protocol within a microscopic model with two sets of nuclei, one a representative standard set and another where very highly asymmetric nuclei are additionally included. A covariance analysis reveals that the additional fitting protocol reduces the uncertainties in the nuclear symmetry energy coefficient, its slope parameter, as well as the neutron-skin thickness in 208Pb nucleus by ˜50 % . The central values of these entities are also seen to be slightly reduced.

  6. Equation of state studies of warm dense matter samples heated by laser produced proton beams

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Guymer, T.; James, S. F.; Gumbrell, E.; Brown, C. R. D.; Hill, M.; Morton, J.; Doyle, H.

    2012-03-01

    Heating of matter by proton beams produced by short pulse, laser-solid target interaction has been demonstrated over the last ten years by a number of workers. In the work described in this paper heating by a pulse of laser produced protons has been combined with high-resolution soft x-ray radiography to record the expansion of thin wire targets. Analysis of the radiographs yields material properties in the warm dense matter regime. These measurements imply initial temperatures in the experimental samples over a range from 14 eV up to 40 eV; the sample densities varied from solid to a tenth solid density. Assuming an adiabatic expansion after the initial proton heating phase isentropes of the aluminium sample material were inferred and compared to tabulated data from the SESAME equation of state library. The proton spectrum was also measured using calibrated magnetic spectrometers and radiochromic film. The accuracy of the technique used to infer material data is discussed along with possible future development.

  7. Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    SciTech Connect

    Stöcker, Horst; Maruhn, Jouchim A.; Greiner, Walter

    1980-03-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  8. Simulation of electromagnetic and strange probes of dense nuclear matter at NICA/MPD

    NASA Astrophysics Data System (ADS)

    Zinchenko, A.; Kolesnikov, V.; Vasendina, V.

    2016-01-01

    The main task of the NICA/MPD physics program is a study of the properties of nuclear matter under extreme conditions achieved in collisions of heavy ions. These properties can reveal themselves through different probes, the most promising among those being the lepton-antilepton pairs and strange hadrons. In this paper the MPD performance for measuring the electron-positron pairs and strange hyperons in central Au+Au collisions at NICA energies is presented.

  9. Investigation of the organic matter in inactive nuclear tank liquids. Environmental Restoration Program

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  10. Robert Vivian Pound and the Discovery of Nuclear Magnetic Resonance in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Pavlish, Ursula

    2010-06-01

    This paper is based upon five interviews I conducted with Robert Vivian Pound in 2006-2007 and covers his childhood interest in radios, his time at the Massachusetts Institute of Technology Radiation Laboratory during the Second World War, his work on the discovery of nuclear magnetic resonance in condensed matter, his travels as a professor at Harvard University, and his social interactions with other physicists.

  11. Pulsar Glitches and the Neutron-Star Matter Equation of State

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Piekarewicz, Jorge; Horowitz, Charles J.

    2015-04-01

    Long time observation of sudden spin jumps in the Vela pulsar suggests that at least 1.6% of the total moment of inertia must reside in the solid crust. It has been argued that the amount of superfluid entrainment in the crust effectively reduces the angular-momentum reservoir, and in turn suggests that the crustal fraction of the moment of inertia must increase to about 7%. This indicates that the required angular momentum reservoir may exceed the one available in the crust as predicted by most models of the equation of state. We explore the possibility that uncertainties in the equation of state provide enough flexibility for the construction of models that predict a large crustal moment of inertia. Since the crustal moment of inertia is sensitive to the transition pressure at the crust-core interface, we tune the parameters of the model to maximize the transition pressure, while still providing an excellent description of nuclear observables. In particular, we find that if the neutron-skin thickness of 208 Pb falls within the (0.20-0.26) fm range, large enough transition pressures can be generated to explain the large Vela glitches without invoking an additional angular-momentum reservoir beyond that confined to the solid crust. Our results suggest that the crust may be enough.

  12. The tendency analytical equations of stable nuclides and the superluminal velocity motion laws of matter in geospace

    NASA Astrophysics Data System (ADS)

    Yan, Kun

    In this paper, by discussing the existent distribution trend of relation for the proton number and the neutron number to be included by the stable nuclides in geospace, the tendency analytical method and it's periodic distribution equation forms of the stable nuclides are expressed at first. Then the comparison result between the curve of the theoretical equation analysis and the points of the experimental distribution data of the stable nuclides in geospace are given. Further more, the stable nuclide limit and the chemical element limit for the chemical element periodic table are given, and the possible corresponding relation equation with the positron-particle annihilation is expressed, which includes the estimation of the order of the static mass to be situated nearby at the electron neutrino structural dimension. Subsequently, by forming two hypotheses about the energy state of vacuum matter, and basing on the equivalent Binet equation, the mass equations and the energy equations of the partial moving with light-velocity or superluminal-velocity motion fusing with the results of Einstein special relativity are expressed. As inference, the possible corresponding relations between the mass equations and energy equations with the dark matter and dark energy are discussed tentatively.

  13. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and dependence on quark masses

    NASA Astrophysics Data System (ADS)

    Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.

    2013-07-01

    We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.

  14. Spin-dependent structure functions in nuclear matter and the polarized EMC effect

    SciTech Connect

    I.C. Cloet; W. Bentz; A.W. Thomas

    2005-04-01

    An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu-Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions, and find that we are readily able to reproduce both nuclear matter saturation and the experimental F{sub 2N}{sup A}/F{sub 2N} ratio, that is, the EMC effect. Applying this framework to determine g{sub 1p}{sup A}, we find that the ratio g{sub 1p}{sup A}/g{sub 1p} differs significantly from 1, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which if confirmed experimentally, will reveal much about the quark structure of nuclear matter.

  15. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2017-02-01

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f( E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r_h , mass M_h , velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M_h ≳ 2.3 × 10^6 M_⊙ and effective temperatures T_0 > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 × 10^6 M_⊙ ≳ M_h ≳ M_{h,min} ˜eq 3.10 × 10^4 (2 {keV}/m)^{16/5} M_⊙, T_0 < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T_0 = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r_h , the squared velocity v^2(r_h) and the temperature T_0 turn to exhibit square-root of M_h scaling laws. The normalized density profiles ρ (r)/ρ (0) and the normalized velocity profiles v^2(r)/ v^2(0) are universal functions of r/r_h reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6 ≳ M_h ≥ M_{h,min} , the equation of state is galaxy mass dependent and the density and velocity profiles are not

  16. Disappearance of flow as a probe of the nuclear equation of state

    SciTech Connect

    Krofcheck, D.; Bauer, W.; Crawley, G.M.; Howden, S.; Ogilvie, C.A.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K. ); Tickle, R.S. ); Djalali, C. ); Gale, C. )

    1992-10-01

    The disappearance of directed, collective nuclear motion ( flow'') away from the interaction region of heavy-ion collisions has been observed using the Lawrence Berkeley Laboratory Streamer Chamber. We find that flow vanishes at a beam energy near 50 MeV/nucleon for the {sup 139}La+{sup 139}La system and near 60 MeV/nucleon for the {sup 93}Nb+{sup 93}Nb system. The disappearance of flow may be understood as resulting from a balance between attractive and repulsive scattering strengths. Full calculations with the Boltzmann-Uehling-Uhlenbeck model show that the disappearance of flow is sensitive to the assumed nuclear equation of state (EOS) and to the in-medium scattering cross section ({sigma}{sub {ital N}{ital N}}). Also, in the {sup 93}Nb+{sup 93}Nb system, the purely attractive contribution to the reduced flow does not appear to be strongly sensitive to the EOS assumptions.

  17. Approximate analytical solution for nuclear matter in a mean-field Walecka model and Coester line behavior

    SciTech Connect

    Delfino, A.; Silva, J.B.; Malheiro, M.

    2006-03-15

    We study nuclear matter, at the mean-field approximation, by considering as equal the values of the scalar and the vector density in the Walecka model, which is a very reasonable approximation up to the nuclear matter saturation density. It turns out that the model has an analytical solution for the scalar and vector couplings as functions only of the nuclear matter density and binding energy. The nuclear matter properties are very close to the original version of the model. This solution allows us to show that the correlation between the binding energy and the saturation density is Coester line like. The liquid-gas phase transition is also studied and the critical and flash temperatures are again very similar to the original ones.

  18. Yang-Mills equation for the nuclear geometrical collective model connexion

    NASA Astrophysics Data System (ADS)

    Sparks, N.; Rosensteel, G.

    2017-01-01

    The Bohr-Mottelson collective model of rotations and quadrupole vibrations is a foundational model in nuclear structure physics. A modern formulation using differential geometry of bundles builds on this legacy collective model to allow a deformation-dependent interaction between rotational and vortical degrees of freedom. The interaction is described by the bundle connexion. This article reports the Yang-Mills equation for the connexion. For a class of solutions to the Yang-Mills equation, the differential geometric collective model attains agreement between experiment and theory for the moments of inertia of deformed isotopes. More generally, the differential geometric framework applies to models of emergent phenomena in which two interacting sets of degrees of freedom must be unified.

  19. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  20. Low-momentum NN interactions and all-order summation of ring diagrams of symmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Siu, L.-W.; Holt, J. W.; Kuo, T. T. S.; Brown, G. E.

    2009-05-01

    We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole (pphh) ring diagrams within a momentum model space of decimation scale Λ are summed to all orders. The calculation is carried out using the renormalized low-momentum nucleon-nucleon (NN) interaction Vlow-k, which is obtained from a bare NN potential by integrating out the high-momentum components beyond Λ. The bare NN potentials of CD-Bonn, Nijmegen, and Idaho have been employed. The choice of Λ and its influence on the single particle spectrum are discussed. Ring-diagram correlations at intermediate momenta (k≃2fm-1) are found to be particularly important for nuclear saturation, suggesting the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated out. Using Vlow-k with Λ~3fm-1, we perform a ring-diagram computation with the above potentials, which all yield saturation energies E/A and Fermi momenta kF(0) considerably larger than the empirical values. On the other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory results of E/A≃-15 MeV and kF(0)≃1.4fm-1. The effect of this medium dependence is well reproduced by an empirical three-body force of the Skyrme type.

  1. Basic Equations Interrelate Atomic and Nuclear Properties to Patterns at the Size Scales of the Cosmos, Extended Clusters of Galaxies, Galaxies, and Nebulae

    NASA Astrophysics Data System (ADS)

    Allen, Rob

    2016-09-01

    Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.

  2. Electronic Contributions to the Equation-of-State of Warm Dense Matter*

    NASA Astrophysics Data System (ADS)

    Albritton, J. R.; Liberman, D. A.; Sonnad, V.; Young, D. A.; Reisman, D. B.; Cauble, R. C.

    2001-10-01

    We describe calculations with the INFERNO[1] atom-in-jellium model to produce single-shock Hugoniot curves for aluminum, copper, and still other elements, from their normal initial density and also from "expanded" states of initial density of about 1/10 normal. These calculations address the regime of "warm-dense-matter", the former in support of experiments toward maximum compression, and the latter in support of experiments toward isentropic compression. INFERNO provides the electronic contributions to the internal energy and pressure, and ideal-gas or QEOS[2] atomic nuclear contributions complete the scheme. We compare INFERNO’s fully quantum-mechanical treatment of electrons with the familiar Thomas-Fermi model. We also investigate the one-component-plasma[3] model for the non-ideal contributions of atomic ions in strongly-coupled plasmas. [1] D.A. Liberman, Phys Rev B, 20, 4981 (1979) [2] R.M. More, K.H. Warren, D.A. Young, and G.B. Zimmerman, Phys Fluids, 31, 3059 (1988) [3] H. DeWitt, W. Slattery, and Gilles Chabrier, Physica B, 228, 21 (1996) *This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  3. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    DTIC Science & Technology

    2015-05-05

    non-relativistic matter , radiation, and dark energy components. - 10 - In application to astrophysics and cosmology, our theory can describe the...AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER . 5a.  CONTRACT

  4. Many-particle theory of nuclear system with application to neutron-star matter and other systems

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1978-01-01

    General problems in nuclear-many-body theory were considered. Superfluid states of neutron star matter and other strongly interacting many-fermion systems were analyzed by using the soft-core potential of Reid. The pion condensation in neutron star matter was also treated.

  5. Condensed-matter equation of states covering a wide region of pressure studied experimentally

    PubMed Central

    Gordon, Elijah E.; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-01-01

    The relationships among the pressure P, volume V, and temperature T of solid-state materials are described by their equations of state (EOSs), which are often derived from the consideration of the finite-strain energy or the interatomic potential. These EOSs consist of typically three parameters to determine from experimental P-V-T data by fitting analyses. In the empirical approach to EOSs, one either refines such fitting parameters or improves the mathematical functions to better simulate the experimental data. Despite over seven decades of studies on EOSs, none has been found to be accurate for all types of solids over the whole temperature and pressure ranges studied experimentally. Here we show that the simple empirical EOS, P = α1(PV) + α2(PV)2 + α3(PV)3, in which the pressure P is indirectly related to the volume V through a cubic polynomial of the energy term PV with three fitting parameters α1–α3, provides accurate descriptions for the P-vs-V data of condensed matter in a wide region of pressure studied experimentally even in the presence of phase transitions. PMID:27976712

  6. Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to renormalization-group equations

    NASA Astrophysics Data System (ADS)

    Zhou, Shun

    2017-04-01

    In this article, we point out that the effective Hamiltonian for neutrino oscillations in matter is invariant under the transformation of the mixing angle {θ }12\\to {θ }12-π /2 and the exchange of first two neutrino masses {m}1≤ftrightarrow {m}2, if the standard parametrization of lepton flavor mixing matrix is adopted. To maintain this symmetry in perturbative calculations, we present a symmetric formulation of the effective Hamiltonian by introducing an η-gauge neutrino mass-squared difference {{{Δ }}}* \\equiv η {{{Δ }}}31+(1-η ){{{Δ }}}32 for 0≤slant η ≤slant 1, where {{{Δ }}}{ji}\\equiv {m}j2-{m}i2 for {ji}=21,31,32, and show that only η =1/2, η ={\\cos }2{θ }12 or η ={\\sin }2{θ }12 is allowed. Furthermore, we prove that η ={\\cos }2{θ }12 is the best choice to derive more accurate and compact neutrino oscillation probabilities, by implementing the approach of renromalization-group equations. The validity of this approach becomes transparent when an analogy is made between the parameter η herein and the renormalization scale μ in relativistic quantum field theories.

  7. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2); Notice of Appointment of Adjudicatory Employee Commissioners: Gregory...

  8. 77 FR 11169 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant; R.E. Ginna Independent Spent Fuel Storage Installation... Independent Spent Fuel Storage Installation (ISFSI) which authorizes the possession, use and operation of...

  9. 78 FR 68102 - Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; In the Matter of Nuclear Innovation North America LLC (South Texas Project Units 3 and 4); Notice of Hearing (Application for Combined Licenses) November 6, 2013. Before Administrative Judges: Michael M....

  10. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  11. ϕ meson self-energy in nuclear matter from ϕ N resonant interactions

    NASA Astrophysics Data System (ADS)

    Cabrera, D.; Hiller Blin, A. N.; Vicente Vacas, M. J.

    2017-01-01

    The ϕ -meson properties in cold nuclear matter are investigated by implementing resonant ϕ N interactions as described in effective approaches including the unitarization of scattering amplitudes. Several N*-like states are dynamically generated in these models around 2 GeV, in the vicinity of the ϕ N threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the ϕ collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the K ¯K cloud. Depending on model details (position of the resonances and strength of the coupling to ϕ N ) we report a ϕ broadening up to about 40-50 MeV, to be added to the ϕ →K ¯K in-medium decay width, and an attractive optical potential at threshold up to about 35 MeV at normal matter density. The ϕ spectral function develops a double peak structure as a consequence of the mixing of resonance-hole modes with the ϕ quasiparticle peak. The former results point in the direction of making up for missing absorption as reported in ϕ nuclear production experiments.

  12. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  13. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape

    PubMed Central

    St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp

    2012-01-01

    Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933

  14. Transverse isospin response function of asymmetric nuclear matter from a local isospin density functional

    NASA Astrophysics Data System (ADS)

    Lipparini, Enrico; Pederiva, Francesco

    2016-08-01

    The time dependent local isospin density approximation (TDLIDA) has been extended to the study of the transverse isospin response function in nuclear matter with an arbitrary neutron-proton asymmetry parameter ξ . The energy density functional has been chosen in order to fit existing accurate quantum Monte Carlo calculations with a density dependent potential. The evolution of the response with ξ in the Δ Tz=±1 channels is quite different. While the strength of the Δ Tz=+1 channel disappears rather quickly by increasing the asymmetry, the Δ Tz=-1 channel develops a stronger and stronger collective mode that in the regime typical of neutron star matter at β equilibrium almost completely exhausts the excitation spectrum of the system. The neutrino mean free paths obtained from the TDLIDA responses are strongly dependent on ξ and on the presence of collective modes, leading to a sizable difference with respect to the prediction of the Fermi gas model.

  15. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  16. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xiong, Xiaonu; Ji, Xiangdong

    2015-02-01

    We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.

  17. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  18. Nucleon spectral function at finite temperature and the onset of superfluidity in nuclear matter

    SciTech Connect

    Alm, T.; Roepke, G.; Schnell, A.; Kwong, N.H.; Koehler, H.S.

    1996-05-01

    Nucleon self-energies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behavior of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic {ital T} matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the self-energy and correspondingly in the spectral function. The real part of the on-shell self-energy (optical potential) shows an anomalous behavior for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the self-energy derived from the {ital K} matrix of Brueckner theory is also calculated. It is found that there is no pairing singularity in the imaginary part of the self-energy in this case, which is due to the neglect of hole-hole scattering in the {ital K} matrix. From the self-energy the spectral function and the occupation numbers for finite temperatures are calculated. {copyright} {ital 1996 The American Physical Society.}

  19. Characterization of sewage sludge organic matter using solid-state carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.

  20. Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies

    SciTech Connect

    Berninger, M.

    2011-06-24

    Experimental equation-of-state (EOS) data are difficult to obtain for warm dense matter (WDM)–ionized materials at near-solid densities and temperatures ranging from a few to tens of electron volts–due to the difficulty in preparing suitable plasmas without significant density gradients and transient phenomena. We propose that the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility can be used to create a temporally stationary and spatially uniform WDM. DARHT has an 18 MeV electron beam with 2 kA of current and a programmable pulse length of 20 ns to 200 ns. This poster describes how Monte Carlo n-Particle (MCNP) radiation transport and LASNEX hydrodynamics codes were used to demonstrate that the DARHT beam is favorable for avoiding the problems that have hindered past attempts to constrain WDM properties. In our concept, a 60 ns pulse of electrons is focused onto a small, cylindrical (1 mm diameter × 1 mm long) foam target, which is inside a stiff high-heat capacity tube that both confines the WDM and allows pressure measurements. In our model, the foam is made of 30% density Au and the tamper is a B4C tube. An MCNP model of the DARHT beam investigated electron collisions and the amount of energy deposited in the foam target. The MCNP data became the basis for a LASNEX source model, where the total energy was distributed over a 60 ns time-dependent linear ramp consistent with the DARHT pulse. We used LASNEX to calculate the evolution of the foam EOS properties during and after deposition. Besides indicating that a ~3 eV Au plasma can be achieved, LASNEX models also showed that the WDM generates a shock wave into the tamper whose speed can be measured using photonic Doppler velocimetry. EOS pressures can be identified to better than 10% precision. These pressures can be correlated to energy deposition with electron spectrometry in order to obtain the Au EOS. Radial uniformity in the DARHT beam was also investigated. To further obtain uniform radial

  1. Predicting dry matter intake by growing and finishing beef cattle: evaluation of current methods and equation development.

    PubMed

    Anele, U Y; Domby, E M; Galyean, M L

    2014-06-01

    The NRC (1996) equation for predicting DMI by growing-finishing beef cattle, which is based on dietary NEm concentration and average BW(0.75), has been reported to over- and underpredict DMI depending on dietary and animal conditions. Our objectives were to 1) develop broadly applicable equations for predicting DMI from BW and dietary NEm concentration and 2) evaluate the predictive value of using NE requirements and dietary NE concentrations to determine the DMI required (DMIR) by feedlot cattle. Two new DMI prediction equations were developed from a literature data set, which represented treatment means from published experiments from 1980 to 2011 that covered a wide range of dietary NEm concentrations. Dry matter intake predicted from the 2 new equations, which were based on NEm concentration and either the ending BW for a feeding period or the DMI per unit of average BW (End BW and DMI/BW, respectively), accounted for 61 and 58% of the variation in observed DMI, respectively, vs. 48% for the 1996 NRC equation. When validated with 4 independent data sets that included 7,751 pen and individual observations of DMI by animals of varying BW and feeding periods of varying length, DMI predicted by the 1996 NRC equation, the End BW and DMI/BW equations, and the DMIR method accounted for 13.1 to 82.9% of the variation in observed DMI, with higher r(2) values for 2 feedlot pen data sets and lower values for pen and individual data sets that included animals on lower-energy, growing diets as well as those in feedlot settings. The DMIR method yielded the greatest r(2) values and least prediction errors across the 4 data sets; however, mean biases (P < 0.01) were evident for all the equations across the data sets, ranging from as high as 1.01 kg for the DMIR method to -1.03 kg for the 1996 NRC equation. Negative linear bias was evident in virtually all cases, suggesting that prediction errors changed as DMI increased. Despite the expanded literature database for equation

  2. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  3. Transverse momentum dependence of spectra of cumulative particles produced from droplets of dense nuclear matter

    SciTech Connect

    Vechernin, Vladimir

    2016-01-22

    The transverse momentum dependence of the yields of particles produced from the clusters of dense cold nuclear matter in nuclei is calculated in the approach based on perturbative QCD calculations of the corresponding quark diagrams near the thresholds. It is shown that the transverse momentum dependence of the pion and proton spectra at different values of the Feynman variable x in the cumulative region, x > 1, can be described by the only parameter - the constituent quark mass, taken to be equal 300 MeV. It is found that the cumulative protons are formed predominantly via a coherent coalescence of three fast cluster quarks, whereas the production of cumulative pions is dominated by one fast cluster quark hadronization. This enabled to explain the experimentally observed more slow increase of the mean transverse momentum of cumulative protons with the increase of the cumulative variable x, compared to pions.

  4. Competition between fermions and bosons in nuclear matter at low densities and finite temperatures

    NASA Astrophysics Data System (ADS)

    Mabiala, J.; Zheng, H.; Bonasera, A.; Kohley, Z.; Yennello, S. J.

    2016-12-01

    We derive the free energy for fermions and bosons from fragmentation data. Inspired by the symmetry and pairing energy of the Weizsäcker mass formula, we obtain the free energy of fermions (nucleons) and bosons (alphas and deuterons) using Landau's free-energy approach. We confirm previously obtained results for fermions and show that the free energy for α particles is negative and close to the free energy for ideal Bose gases and in perfect agreement with the free energy of an interacting Bose gas under the repulsive Coulomb force. Deuterons behave more similarly to fermions (positive free energy) rather than bosons, which is probably due to their low binding energy. We show that the α -particle fraction is dominant at all temperatures and densities explored in this work. This is consistent with their negative free energy, which favors clusterization of nuclear matter into α particles at subsaturation densities and finite temperatures.

  5. Nuclear matter incompressibility from a semi-empirical analysis of breathing-mode energies

    NASA Astrophysics Data System (ADS)

    Sharma, M. M.; Stocker, W.; Gleissl, P.; Brack, M.

    1989-11-01

    We check the validity and applicability of a liquid-drop model type expansion for the incompressibility KA of finite nuclei: K A = K V + K SA {-1}/{3} + (higher-order terms). Our theoretical considerations are based upon calculations of breathing-mode energies following from a density variational framework taking into account various Skyrme interactions. Using a semi-empirical procedure based upon this expansion of KA, we corroborate that new precision data for the monopole energies favour a volume coefficient KV (300±25) MeV and an appreciable surface coefficient KS (-750±80) MeV. We discuss the implication of this result for the incompressibility K∞ of infinite nuclear matter.

  6. What can HELIOS tell us on phase transition of nuclear matter

    SciTech Connect

    En'yo, H.

    1987-01-01

    Transverse energy (E/sub t/) distributions and P/sub t/ spectra of negative particles and photons measured by the HELIOS experiment in 200 GeVN and 60 GeVN oxygen-nucleus reactions are presented. The E/sub t/ distributions are compared to a geometrical parametrization and a Montereverse arrowCarlo calculation, particle spectra to the proton-nucleus reaction case. The comparisons show that yet the results can be understood without assuming quark-gluon plasma formation. A discussion is made based on these comparisons together with an estimate of the energy density of the reaction, attempting to know how close we are to the detection of a phase transition of nuclear matter. 21 refs., 15 figs.

  7. Onset Transition to Cold Nuclear Matter from Lattice QCD with Heavy Quarks

    NASA Astrophysics Data System (ADS)

    Fromm, M.; Langelage, J.; Lottini, S.; Neuman, M.; Philipsen, O.

    2013-03-01

    Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a three-dimensional effective theory derived by combined strong coupling and hopping expansions, which is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign problem. Our continuum extrapolated data approach a first order phase transition at μB≈mB as the temperature approaches zero. An excellent description of the data is achieved by an analytic solution in the strong coupling limit.

  8. Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter

    SciTech Connect

    Moustakidis, Ch. C.

    2008-11-15

    We have studied the effects of momentum-dependent interactions on the single-particle properties of hot asymmetric nuclear matter. In particular, the single-particle potential of protons and neutrons as well as the symmetry potential have been studied within a self-consistent model using a momentum-dependent effective interaction. In addition, the isospin splitting of the effective mass has been derived from the above model. In each case temperature effects have been included and analyzed. The role of the specific parametrization of the effective interaction used in the present work has been investigated. It has been concluded that the behavior of the symmetry potential depends strongly on the parametrization of the interaction part of the energy density and the momentum dependence of the regulator function. The effects of the parametrization have been found to be less pronounced on the isospin mass splitting.

  9. Nuclear physics insights for new-physics searches using nuclei: Neutrinoless ββ decay and dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Menéndez, Javier

    2017-03-01

    Experiments using nuclei to probe new physics beyond the Standard Model, such as neutrinoless ββ decay searches testing whether neutrinos are their own antiparticle, and direct detection experiments aiming to identify the nature of dark matter, require accurate nuclear physics input for optimizing their discovery potential and for a correct interpretation of their results. This demands a detailed knowledge of the nuclear structure relevant for these processes. For instance, neutrinoless ββ decay nuclear matrix elements are very sensitive to the nuclear correlations in the initial and final nuclei, and the spin-dependent nuclear structure factors of dark matter scattering depend on the subtle distribution of the nuclear spin among all nucleons. In addition, nucleons are composite and strongly interacting, which implies that many-nucleon processes are necessary for a correct description of nuclei and their interactions. It is thus crucial that theoretical studies and experimental analyses consider β decays and dark matter interactions with a coupling to two nucleons, called two-nucleon currents.

  10. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    SciTech Connect

    Fallows, Scott Mathew

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  11. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Daw, E.; Ezeribe, A. C.; Gauvreau, J.-L.; Harton, J. L.; Lafler, R.; Lee, E. R.; Loomba, D.; Lumnah, A.; Miller, E. H.; Mouton, F.; Murphy, A. StJ.; Paling, S. M.; Phan, N. S.; Robinson, M.; Sadler, S. W.; Scarff, A.; Schuckman, F. G., II; Snowden-Ifft, D. P.; Spooner, N. J. C.

    2016-10-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS2+CF4 target gas mixture. The CS2+CF4+O2 mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a 252Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, or the so-called head-tail asymmetry parameter, to be deduced. Results show that the previously reported observation of head-tail sensitivity in pure CS2 is well retained after the addition of oxygen to the gas mixture.

  12. The Conservation Equations for a Magnetically Confined Gas Core Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    1994-07-01

    A very promising propulsion scheme that could meet the objectives of the Space Exploration Initiative (SEI) of sending manned missions to Mars in the early part of the next century is the open-cycle Gas Core (GCR) Nuclear Rocket. Preliminary assessments of the performance of such advice indicate that specific impulses of several thousand seconds, and thrusts of hundreds of kilonewtons are possible. These attractive propulsion parameters are obtained because the hydrogen propellant gets heated to very high temperatures by the energy radiated from a critical uranium core which is in the form of a plasma generated under very high pressure. Because of the relative motion between the propellant and the core, certain types of hydrodynamic instabilities can occur, and result in rapid escape of the fuel through the nozzle. One effective way of dealing with this instability is to place the system in an externally applied magnetic field. In this paper we formulate the appropriate conservation equations that describe the dynamics of GCR in the presence of magnetic fields, and indicate the role such fields play in the performance of the system.

  13. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    NASA Astrophysics Data System (ADS)

    Múnera, Héctor A.

    2016-07-01

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  14. Study of Dark-matter Admixed Neutron Stars Using the Equation of State from the Rotational Curves of Galaxies

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.

    2017-01-01

    In this work, we employ the dark matter equations of state (DMEOSs) obtained from the rotational curves of galaxies as well as the fermionic DMEOS with m=1.0 {GeV} to study the structure of dark-matter admixed neutron stars (DMANSs). Applying the equation of state in the Skyrme framework for the neutron matter (NM), we calculate the mass–radius relation for different DMANSs with various DMEOSs and central pressure of dark matter (DM) to NM ratios. Our results show that for some DMEOSs, the mass–radius relations are in agreement with new observations, e.g., EXO 1745-248, 4U 1608-52, and 4U 1820-30, which are inconsistent with normal neutron stars. We conclude that both DMEOSs and central pressure ratios of DM to NM affect the slope of the mass–radius relation of DMANSs. This is because of the interaction between DM and NM, which leads to gravitationally or self-bound DMANSs. We study the radius of the NM sphere as well as the radius of the DM halo for different DMANSs. The results confirm that, in some cases, a NM sphere with a small radius is surrounded by a halo of DM with a larger radius. Our calculations verify that, due to the different degrees of DM domination in DMANSs, with a value of the visible radius of a star two possible DMANSs with different masses can exist. The gravitational redshift is also calculated for DMANSs with different DMEOSs and central pressure ratios. The results explain that the existence of DM in a DMANS leads to higher values of gravitational redshift of the star.

  15. Nuclear matter properties in the relativistic mean-field theory at finite temperature with interaction between sigma-omega mesons

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-05-21

    We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.

  16. 78 FR 13384 - In the Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Matter of FirstEnergy Nuclear Operating Co. (Beaver Valley Units 1 and 2); Confirmatory Order Modifying... Utilization Facilities,'' on November 5, 2009. The licenses authorize the operation of the Beaver Valley Power Station, Units 1 and 2 (Beaver Valley, facility), in accordance with conditions specified therein....

  17. A few-parameter equation of state of the condensed matter and its application to the impact problems

    NASA Astrophysics Data System (ADS)

    Fomin, V.; Kraus, E.; Shabalin, I.

    A simple caloric model of the equation of state is proposed to describe thermodynamic properties of solid materials with the phase transitions being ignored and with the minimum possible number of parameters as the initial data. Thermal oscillations of the crystal lattice are described by the Debye approximation. The values of the parameters on the zero isotherm are calculated analytically from the generalized form of the Gruneisen function. Thermodynamic characteristics are calculated in wide ranges of densities and pressures. Extensive comparisons of theoretical results with experimental data available for high energy densities are performed for the materials considered. Two-dimensional problems of a high-velocity impact of a reactor of a nuclear powerplant with the Earth's surface propulsion system are solved on the basis of Willkins' method with allowance for the equation of state being derived.

  18. Rater Comparability Scoring and Equating: Does Choice of Target Population Weights Matter in This Context?

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2013-01-01

    When a constructed-response test form is reused, raw scores from the two administrations of the form may not be comparable. The solution to this problem requires a rescoring, at the current administration, of examinee responses from the previous administration. The scores from this "rescoring" can be used as an anchor for equating. In…

  19. Does the Choice of Reference Levels of Education Matter in the ORU Earnings Equation?

    ERIC Educational Resources Information Center

    Chiswick, Barry R.; Miller, Paul W.

    2010-01-01

    This paper examines whether the results of the earnings equation developed in the over-education/required education/under-education (ORU) literature are sensitive to whether the usual or reference levels of education are measured using the Realized Matches or Worker Self-Assessment methods. The analyses are conducted for all male native-born and…

  20. In-pile calorimetry in the joint Sandia/KfK equation-of-state experiments on nuclear fuels

    SciTech Connect

    Breitung, W.M.

    1981-04-01

    Because determination of the fuel energy deposition is of crucial importance in in-pile equation of state (EOS) experiments on nuclear fuels, an in-pile calorimeter was developed for the joint Sandia/KfK EOS series. This report describes calorimeter design, principle, and uncertainty of the energy measurement, as well as the planned test program. The uncertainty in the measured total energy deposition into the EOS test fuel is estimated to + or - 2%.

  1. Effective equations for matter-wave gap solitons in higher-order transversal states.

    PubMed

    Mateo, A Muñoz; Delgado, V

    2013-10-01

    We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.

  2. Effective equations for matter-wave gap solitons in higher-order transversal states

    NASA Astrophysics Data System (ADS)

    Mateo, A. Muñoz; Delgado, V.

    2013-10-01

    We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,nr) transversal states (states featuring a central vortex of charge m as well as nr concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.

  3. ON THE FATE OF THE MATTER REINSERTED WITHIN YOUNG NUCLEAR STELLAR CLUSTERS

    SciTech Connect

    Hueyotl-Zahuantitla, Filiberto; Palous, Jan; Wuensch, Richard; Tenorio-Tagle, Guillermo; Silich, Sergiy

    2013-04-01

    This paper presents a hydrodynamical model describing the evolution of the gas reinserted by stars within a rotating young nuclear star cluster (NSC). We explicitly consider the impact of the stellar component on the flow by means of a uniform insertion of mass and energy within the stellar cluster. The model includes the gravity force of the stellar component and a central supermassive black hole (SMBH), and accounts for the heating from the central source of radiation and the radiative cooling of the thermalized gas. By using a set of parameters typical for NSCs and SMBHs in Seyfert galaxies, our simulations show that a filamentary/clumpy structure is formed in the inner part of the cluster. This 'torus' is Compton-thick and covers a large fraction of the sky (as seen from the SMBH). In the outer parts of the cluster a powerful wind is produced that inhibits the infall of matter from larger scales and thus the NSC-SMBH interplay occurs in isolation.

  4. Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen; Typel, Stefan; Röpke, Gerd

    2011-11-01

    The formation of clusters in nuclear matter is investigated, which occurs, e.g., in low-energy heavy-ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean-field model. All three models contain bound states of nuclei with mass number A≤4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.

  5. Indications for a critical end point in the phase diagram for hot and dense nuclear matter.

    PubMed

    Lacey, Roy A

    2015-04-10

    Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200  GeV) and Pb+Pb (sqrt[s_{NN}]=2.76  TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165  MeV and μ_{B}^{cep}∼95  MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.

  6. Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.

    2016-04-01

    We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.

  7. A few-parameter equation of state of the condensed matter

    NASA Astrophysics Data System (ADS)

    Kraus, E. I.; Shabalin, I. I.

    2016-11-01

    A simple caloric equation-of-state model is proposed to describe thermodynamic properties of solid materials without phase transitions with the minimum number of parameters as initial data. The thermal vibrations of the crystal lattice are described by the Debye approximation. The parameter values on the zero isotherm are calculated analytically from the generalized form of the Grüneisen function. Thermodynamic characteristics are calculated in the wide range of densities and pressures. The results of the theoretical calculations for these materials are exhaustively compared with the available experimental data for high energy densities.

  8. A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg's earlier work leading him to the discovery of quantum mechanics, which inspired Dirac's work. I argue that Heisenberg's and Dirac's work was guided by their adherence to and their confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by D'Ariano and coworkers on the principles of quantum information theory, which extend quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equations from these principles alone, without using the principles of relativity.

  9. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    DOE PAGES

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; ...

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb–9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a darkmore » matter direct detection experiment located in the SNOLAB underground laboratory.« less

  10. Relating the strangeness content of the nucleon with the mass shift of the ϕ meson in nuclear matter

    SciTech Connect

    Gubler, Philipp; Ohtani, Keisuke

    2016-01-22

    The behavior of the ϕ meson at finite density is studied, making use of a QCD sum rule approach in combination with the maximum entropy method. It is demonstrated that a possible mass shift of the ϕ in nuclear matter is strongly correlated to the strangeness content of the nucleon, which is proportional to the strange sigma term, σ{sub sN}. In contrast to earlier studies, our results show that, depending on the value of σ{sub sN}, the ϕ meson could receive both a positive or negative mass shift at nuclear matter density. We find that these results depend only weakly on potential modifications of the width of the ϕ meson peak and on assumptions made on the behavior of four-quark condensates at finite density.

  11. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    SciTech Connect

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; Privitera, P.; Robinson, A. E.; Scholz, B.; Sengul, C.; Zhou, J.; Estrada, J.; Izraelevitch, F.; Tiffenberg, J.; de Mello Neto, J. R. T.; Machado, D. Torres

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb–9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.

  12. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  13. Generation of matter-wave solitons of the Gross-Pitaevskii equation with a time-dependent complicated potential

    SciTech Connect

    Mohamadou, Alidou; Wamba, Etienne; Kofane, Timoleon C.; Doka, Serge Y.; Ekogo, Thierry B.

    2011-08-15

    We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.

  14. Consequences of a strong phase transition in the dense matter equation of state for the rotational evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Bejger, M.; Blaschke, D.; Haensel, P.; Zdunik, J. L.; Fortin, M.

    2017-03-01

    Aims: We explore the implications of a strong first-order phase transition region in the dense matter equation of state in the interiors of rotating neutron stars, and the resulting creation of two disjoint families of neutron-star configurations (the so-called high-mass twins). Methods: We numerically obtained rotating, axisymmetric, and stationary stellar configurations in the framework of general relativity, and studied their global parameters and stability. Results: The instability induced by the equation of state divides stable neutron star configurations into two disjoint families: neutron stars (second family) and hybrid stars (third family), with an overlapping region in mass, the high-mass twin-star region. These two regions are divided by an instability strip. Its existence has interesting astrophysical consequences for rotating neutron stars. We note that it provides a natural explanation for the rotational frequency cutoff in the observed distribution of neutron star spins, and for the apparent lack of back-bending in pulsar timing. It also straightforwardly enables a substantial energy release in a mini-collapse to another neutron-star configuration (core quake), or to a black hole.

  15. A database for equations of state and resistivities measurements in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Clérouin, J.; Noiret, P.; Blottiau, P.; Recoules, V.; Siberchicot, B.; Renaudin, P.; Blancard, C.; Faussurier, G.; Holst, B.; Starrett, C. E.

    2012-08-01

    The aim of this paper is to provide experimental data on various expanded elements in the warm dense matter regime. The experiments were done on the experimental facility "enceinte à plasma isochore" and are evaluated through a thorough comparison with ab initio calculations, average-atom codes, and chemical models. This comparison allows for the evaluation of the experimental temperatures that are not accessible to the measurements and permits the building of useful data tables gathering energy, pressure, conductivity, and temperatures. We summarize experiments performed on aluminum (0.1 and 0.3 g/cm3), nickel (0.2 g/cm3), titanium (0.1 g/cm3), copper (0.3 and 0.5 g/cm3), silver (0.43 g/cm3), gold (0.5 g/cm3), boron (0.094 g/cm3), and silicon (0.21 g/cm3) for temperatures ranging from 0.5 eV to 3-4 eV.

  16. The effects of QCD equation of state on the relic density of WIMP dark matter

    SciTech Connect

    Drees, Manuel; Hajkarim, Fazlollah; Schmitz, Ernany Rossi

    2015-06-12

    Weakly Interactive Massive Particles (WIMPs) are the most widely studied candidate particles forming the cold dark matter (CDM) whose existence can be inferred from a wealth of astrophysical and cosmological observations. In the framework of the minimal cosmological model detailed measurements on the cosmic microwave background by the PLANCK collaboration fix the scaled CDM relic density to Ω{sub c}h{sup 2}=0.1193±0.0014, with an error of less than 1.5%. In order to fully exploit this observational precision, theoretical calculations should have a comparable or smaller error. In this paper we use recent lattice QCD calculations to improve the description of the thermal plasma. This affects the predicted relic density of “thermal WIMPs”, which once were in chemical equilibrium with Standard Model particles. For WIMP masses between 3 and 15 GeV, where QCD effects are most important, our predictions differ from earlier results by up to 9% (12%) for pure S-wave (P-wave) annihilation. We use these results to compute the thermally averaged WIMP annihilation cross section that reproduces the correct CDM relic density, for WIMP masses between 0.1 GeV and 10 TeV.

  17. Origin of the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas

    2007-05-01

    There is a measure of debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We briefly outline some of the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently to density dependent effective interactions.

  18. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  19. 76 FR 54499 - In the Matter of Entergy Operations, Inc. and Entergy Nuclear Operations, Inc.; Confirmatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Fitzpatrick Nuclear Power Plant, Grand Gulf Nuclear Station, Unit 1, Indian Point Nuclear Generating, Units 2... Committees (both for Boiling Water Reactors and Pressurized Water Reactors) will conduct an effectiveness... the issuance of this CO, subcommittees of Entergy's Safety Review Committees (both for Boiling...

  20. Constraining Neutron Star Matter with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  1. Equation of state and transport property measurements of warm dense matter.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael Paul

    2009-10-01

    Location of the liquid-vapor critical point (c.p.) is one of the key features of equation of state models used in simulating high energy density physics and pulsed power experiments. For example, material behavior in the location of the vapor dome is critical in determining how and when coronal plasmas form in expanding wires. Transport properties, such as conductivity and opacity, can vary an order of magnitude depending on whether the state of the material is inside or outside of the vapor dome. Due to the difficulty in experimentally producing states near the vapor dome, for all but a few materials, such as Cesium and Mercury, the uncertainty in the location of the c.p. is of order 100%. These states of interest can be produced on Z through high-velocity shock and release experiments. For example, it is estimated that release adiabats from {approx}1000 GPa in aluminum would skirt the vapor dome allowing estimates of the c.p. to be made. This is within the reach of Z experiments (flyer plate velocity of {approx}30 km/s). Recent high-fidelity EOS models and hydrocode simulations suggest that the dynamic two-phase flow behavior observed in initial scoping experiments can be reproduced, providing a link between theory and experiment. Experimental identification of the c.p. in aluminum would represent the first measurement of its kind in a dynamic experiment. Furthermore, once the c.p. has been experimentally determined it should be possible to probe the electrical conductivity, opacity, reflectivity, etc. of the material near the vapor dome, using a variety of diagnostics. We propose a combined experimental and theoretical investigation with the initial emphasis on aluminum.

  2. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Nuclear Plant (FNP), Units 1 and 2, in accordance with conditions specified therein. The facility is... investigation, the NRC issued a letter to FNP dated January 9, 2013, which documented an apparent violation that occurred during calendar years 2010 and 2011. Specifically, FNP Technical Specification 5.4.1.a,...

  3. 76 FR 14997 - In the Matter of Entergy Nuclear Vermont Yankee, LLC and Entergy Nuclear Operations, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Pertaining to Groundwater Contamination In March of 2010, NRC's EDO established a Groundwater Task Force (GTF... leaking buried pipes at commercial nuclear power plants. The charter of the Task Force was to reevaluate the recommendations made in the Liquid Radioactive Release Lessons Learned Task Force Final...

  4. Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-01-01

    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.

  5. Propagation of Chaos and the McKean-Vlasov Equation in Duals of Nuclear Spaces

    DTIC Science & Technology

    1990-05-01

    hydrodynamical equation for one-dimensional Ginzburg -Landau model, IMA Repring Series No. 328, University of Minnesota. [5] Ikeda, N. and Watanabe, S. (1981...Cambanis and E. Masry. Trapezoidal stratified Monte Carlo integration, Mar. 90. 287. M. Marques and S. Cambanis, Dichotomies for certain product

  6. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    SciTech Connect

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs.

  7. Nuclear and particle astrophysics

    SciTech Connect

    Glendenning, N.K.

    1990-10-31

    We discuss the physics of matter that is relevant to the structure of compact stars. This includes nuclear, neutron star matter and quark matter and phase transitions between them. Many aspects of neutron star structure and its dependance on a number of physical assumptions about nuclear matter properties and hyperon couplings are investigated. We also discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neuron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general of theory of relativity is correct at the macroscopic scale. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Indeed the prompt explosion, from which a constraint had been thought to follow, is now believed not to be mechanism by which most, if any stars, explode. In any case the nuclear equation of state is but one of a multitude on uncertain factors, and possibly one of the least important. The rapid rotation of pulsars is also discussed. It is shown that for periods below a certain limit it becomes increasingly difficult to reconcile them with neutron stars. Strange stars are possible if strange matter is the absolute ground state. We discuss such stars and their compatibility with observation. 112 refs., 37 figs., 6 tabs.

  8. Analysis of colliding nuclear matter in terms of symmetry energy and cross-section using computational method

    SciTech Connect

    Sharma, Arun Bharti, Arun; Gautam, Sakshi

    2015-08-28

    Here we perform a systematic study to extract the information for colliding nuclear matter via symmetry energy and nucleon-nucleon cross section in the fragmentation of some asymmetric colliding nuclei (O{sup 16}+Br{sup 80,} {sup 84,} {sup 92}) in the energy range between 50-200 MeV/nucleon. The simulations are carried out using isospin-dependent quantum-molecular dynamics (IQMD) computational approach for central collisions. Our study reveals that fragmentation pattern of neutron-rich colliding nuclei is sensitive to symmetry energy at lower incident energies, whereas isospin dependence of nucleon-nucleon cross section becomes dominant for reactions at higher incident energies.

  9. Second-order correction to the Bigeleisen–Mayer equation due to the nuclear field shift

    PubMed Central

    Bigeleisen, Jacob

    1998-01-01

    The nuclear field shift affects the electronic, rotational, and vibrational energies of polyatomic molecules. The theory of the shifts in molecular spectra has been studied by Schlembach and Tiemann [Schlembach, J. & Tiemann, E. (1982) Chem. Phys. 68, 21]; measurements of the electronic and rotational shifts of the diatomic halides of Pb and Tl have been made by Tiemann et al. [Tiemann, E., Knöckel, H. & Schlembach, J. (1982) Ber. Bunsenges. Phys. Chem. 86, 821]. These authors have estimated the relative shifts in the harmonic frequencies of these compounds due to the nuclear field shift to be of the order of 10−6. I have used this estimate of the relative shift in vibrational frequency to calculate the correction to the harmonic oscillator approximation to the isotopic reduced partition-function ratio 208Pb32S/207Pb32S. The correction is 0.3% of the harmonic oscillator value at 300 K. In the absence of compelling evidence to the contrary, it suffices to calculate the nuclear field effect on the total isotopic partition-function ratio from its shift of the electronic zero point energy and the unperturbed molecular vibration. PMID:9560183

  10. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

    NASA Astrophysics Data System (ADS)

    Foucart, F.; Desai, D.; Brege, W.; Duez, M. D.; Kasen, D.; Hemberger, D. A.; Kidder, L. E.; Pfeiffer, H. P.; Scheel, M. A.

    2017-02-01

    Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers.

  11. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  12. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    NASA Astrophysics Data System (ADS)

    Holt, Jeremy W.; Rho, Mannque; Weise, Wolfram

    2016-03-01

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme". Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  13. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    SciTech Connect

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L; Roberts, Luke F; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint.

  14. Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion

    PubMed Central

    CAVALIER-SMITH, THOMAS

    2005-01-01

    • Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear DNA amounts, modulated somewhat by genes affecting the degree of DNA packing or unfolding; the huge spread of nuclear genome sizes is the necessary consequence of the origin of the nuclear envelope and the nucleation of its assembly by DNA, plus the adaptively significant 300 000-fold range of cell volumes and selection for balanced growth by optimizing karyoplasmic volume ratios (essentially invariant with cell volume in growing/multiplying cells). This simple explanation of the C-value paradox is refined here in the light of new insights into the nature of heterochromatin and the nuclear lamina, the genetic control of cell volume, and large-scale eukaryote phylogeny, placing special emphasis on protist test cases of the basic principles of nuclear genome size evolution. • Genome Miniaturization and Expansion Intracellular parasites (e.g. Plasmodium, microsporidia) dwarfed their genomes by gene loss and eliminating virtually all secondary DNA. The primary driving forces for genome reduction are metabolic and spatial economy and cell multiplication speed. Most extreme nuclear shrinkage yielded genomes as tiny as 0·38 Mb (making the nuclear genome size range effectively 1·8 million-fold!) in some minute enslaved nuclei (nucleomorphs) of cryptomonads and chlorarachneans, chimaeric cells that also retain a separate normal large nucleus. The latter shows typical correlation between genome size and cell volume, but nucleomorphs do not despite co-existing in the same cell

  15. Black-Hole Solutions to Einstein's Equations in the Presence of Matter and Modifications of Gravitation in Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Goutéraux, B.

    2010-11-01

    In this thesis, we wish to examine the black-hole solutions of modified gravity theories inspired by String Theory or Cosmology. Namely, these modifications will take the guise of additional gauge and scalar fields for the so-called Einstein-Maxwell-Dilaton theories with an exponential Liouville potential; and of extra spatial dimensions for Einstein-Gauss-Bonnet theories. The black-hole solutions of EMD theories as well as their integrability are reviewed. One of the main results is that a master equation is obtained in the case of planar horizon topology, which allows to completely integrate the problem for s special relationship between the couplings. We also classify existing solutions. We move on to the study of Gauss-Bonnet black holes, focusing on the six-dimensional case. It is found that the Gauss-Bonnet coupling exposes the Weyl tensor of the horizon to the dynamics, severely restricting the Einstein spaces admissible and effectively lifting some of the degeneracy on the horizon topology. We then turn to the study of the thermodynamic properties of black holes, in General Relativity as well as in EMD theories. For the latter, phase transitions may be found in the canonical ensemble, which resemble the phase transitions for Reissner-Nordström black holes. Generically, we find that the thermodynamic properties (stability, order of phase transitions) depend crucially on the values of the EMD coupling constants. Finally, we interpret our planar EMD solutions holographically as Infra-Red geometries through the AdS/CFT correspondence, taking into account various validity constraints. We also compute AC and DC conductivities as applications to Condensed Matter Systems, and find some properties characteristic of strange metal behaviour.

  16. CLASH-VLT: Constraints on the Dark Matter Equation of State from Accurate Measurements of Galaxy Cluster Mass Profiles

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara; Biviano, Andrea; Rosati, Piero; Borgani, Stefano; Umetsu, Keiichi; Bartelmann, Matthias; Girardi, Marisa; Grillo, Claudio; Lemze, Doron; Zitrin, Adi; Balestra, Italo; Mercurio, Amata; Nonino, Mario; Postman, Marc; Czakon, Nicole; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Annunziatella, Marianna; Benitez, Narciso; Czoske, Oliver; Donahue, Megan; Ettori, Stefano; Ford, Holland; Fritz, Alexander; Kelson, Dan; Koekemoer, Anton; Kuchner, Ulrike; Lombardi, Marco; Maier, Christian; Moustakas, Leonidas A.; Munari, Emiliano; Presotto, Valentina; Scodeggio, Marco; Seitz, Stella; Tozzi, Paolo; Zheng, Wei; Ziegler, Bodo

    2014-03-01

    A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being Ltc, depend solely on the gravitational potential, whereas photon trajectories reflect the contributions from the gravitational potential plus a relativistic-pressure term that depends on the cluster mass. We exploit this phenomenon to constrain the equation of state (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2-0847 at z = 0.44, as obtained in an extensive imaging and spectroscopic campaign within the Cluster Lensing And Supernova survey with Hubble. The unprecedented high quality of our data set and the properties of this cluster are well suited to determine the EoS parameter of the cluster fluid. Since baryons contribute at most 15% to the total mass in clusters and their pressure is negligible, the EoS parameter we derive describes the behavior of the DM fluid. We obtain the most stringent constraint on the DM EoS parameter to date, w = (pr + 2 pt )/(3 c 2ρ) = 0.00 ± 0.15 (stat) ± 0.08 (syst), averaged over the radial range 0.5 Mpc <= r <= r 200, where pr and pt are the radial and tangential pressure, and ρ is the density. We plan to further improve our constraint by applying the same procedure to all clusters from the ongoing Cluster Lensing And Supernova Survey with Hubble-Very Large Telescope program.

  17. Advanced solid-state carbon-13 nuclear magnetic resonance spectroscopic studies of sewage sludge organic matter: detection of organic "domains".

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Two novel solid-state 13C nuclear magnetic resonance (NMR) spectroscopic techniques, PSRE (proton spin relaxation editing) and RESTORE [Restoration of Spectra via T(CH) and T(1rho)H (T One Rho H) Editing], were used to provide detailed chemical characterization of the organic matter from six Australian sewage sludges. These methods were used to probe the submicrometer heterogeneity of sludge organic matter, and identify and quantify spatially distinct components. Analysis of the T1H relaxation behavior of the sludges indicated that each sludge contained two types of organic domains. Carbon-13 PSRE NMR subspectra were generated to determine the chemical nature of these domains. The rapidly relaxing component of each sludge was rich in protein and alkyl carbon, and was identified as dead bacterial material. The slowly relaxing component of each sludge was rich in carbohydrate and lignin structures, and was identified as partly degraded plant material. The bacterial domains were shown, using the RESTORE technique, to also have characteristically rapid T(1rho)H relaxation rates. This rapid T(1rho)H relaxation was identified as the main cause of underrepresentation of these domains in standard 13C cross polarization (CP) NMR spectra of sludges. The heterogeneous nature of sewage sludge organic matter has implications for land application of sewage sludge, since the two components are likely to have different capacities for sorbing organic and inorganic toxicants present in sewage sludge, and will decompose at different rates.

  18. Constraining nuclear equations of state using gravitational waves from hypermassive neutron stars.

    PubMed

    Shibata, Masaru

    2005-05-27

    Latest general relativistic simulations for the merger of binary neutron stars with realistic equations of states (EOSs) show that a hypermassive neutron star of an ellipsoidal figure is formed after the merger if the total mass is smaller than a threshold value which depends on the EOSs. The effective amplitude of quasiperiodic gravitational waves from such hypermassive neutron stars is approximately 6-7 x 10(-21) at a distance of 50 Mpc, which may be large enough for detection by advanced laser interferometric gravitational wave detectors although the frequency is high, approximately 3 kHz. We point out that the detection of such signals may lead to constraining the EOSs for neutron stars.

  19. Plasma Time in Discriminating Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Barker, D'ann

    2012-10-01

    In the detection of WIMP-induced nuclear recoils with high-purity germanium detectors, CDMS-type bolometers are often used in measuring the ionization yield. For this technology, the detector is operated in the milli-Kelvin temperature range, which requires high priced detectors. Alternative electron/nuclear recoil discrimination using pulse shape has been widely utilized in the energy range of MeV in neutrinoless double-beta decay experiments with germanium detectors. However, the nuclear recoils induced by WIMPs are in the energy range of keV, and their pulse shape difference with electronic recoils in the same energy range has not proven to be visible in a commercially available germanium detector. This paper presents a new idea of using plasma time difference in pulse shape to discriminate nuclear recoils from electronic recoils. We show the plasma time difference as a function of nuclear recoil energy. The technique using plasma time will be discussed with a generic germanium detector.

  20. Heavy-ion collisions and the nuclear equation of state. Progress report, August 15, 1992--April 1993

    SciTech Connect

    Keane, D.

    1993-08-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL`s Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development.

  1. Nuclear emulsions as a very high resolution detector for directional dark matter search

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, N.; Di Marco, N.; Pupilli, F.; Alexandrov, A.; De Lellis, G.; Di Crescenzo, A.; Tioukov, V.; Sirignano, C.; Naka, T.; Asada, T.; Katsuragawa, T.; Yoshimoto, M.; Hakamata, K.; Ishikawa, M.; Kuwabara, K.; Umemoto, A.; Furuya, S.; Machii, S.; Tawara, Y.

    2014-01-01

    The use of nuclear emulsions in particle physics dates back to the very early stages. They are now used when an extremely high position resolution is required like in the search for short lived particles. The capability to detect nuclear recoils induced by WIMPs relies on the possibility to detect sub-micrometric trajectories. Recently nuclear emulsions with silver grains of 20 nm diameter were developed, opening the way for the reconstruction of nanometric particles. This challenging purpose requires the development of fully automated optical readout systems for a fast scanning of the emulsion films. This is meant for a pre-selection of recoil candidates. Once candidates have been identified, a fine grained X-ray microscope is used to detect the grains making up the tracks. We report here the present results on the current development along this line.

  2. Using heavy-ion collisions to elucidate the asymmetric equation-of-state

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; McIntosh, Alan

    2016-06-01

    The nuclear equation-of-state impacts a number of nuclear properties as well as astrophysical processes. The asymmetric term of the equation-of-state, which describes the behavior away from N=Z, has significant uncertainty. Giant resonances and nuclear masses can elucidate the asymmetry energy for cold normal-density nuclei. Heavy-ion collisions can be used to probe nuclear matter at higher temperatures and densities away from saturation density. The temperatures that are attained in these nuclear collisions are predicted to depend on the isospin asymmetry. In this work we present evidence of the asymmetry dependence of the nuclear caloric curve.

  3. BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    NASA Astrophysics Data System (ADS)

    Winckler, N.; Rybalchenko, A.; Shevelko, V. P.; Al-Turany, M.; Kollegger, T.; Stöhlker, Th.

    2017-02-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  4. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  5. Exchange current corrections to neutrino-nucleus scattering. I. Nuclear matter

    NASA Astrophysics Data System (ADS)

    Umino, Y.; Udias, J. M.

    1995-12-01

    Relativistic exchange current corrections to the impulse approximation in low and intermediate energy neutrino-nucleus scattering are presented assuming nonvanishing strange quark form factors for constituent nucleons. Two-body exchange current operators which treat all SU(3) vector and axial currents on an equal footing are constructed by generalizing the soft-pion dominance method of Chemtob and Rho. For charged current reactions, exchange current corrections can reduce the impulse approximation results by 5 to 10 % depending on the nuclear density. A finite strange quark form factor may change the total cross section for neutral current scattering by 20% while exchange current corrections are found to be sensitive to the nuclear density. Implications on the current LSND experiment to extract the strange quark axial form factor of the nucleon are discussed.

  6. Practical matters for the control of contamination in a nuclear medicine department.

    PubMed

    Nicol, A; Robertson, J; McCurrach, A

    2011-03-01

    A practicable and safe methodology is required for the control of contamination arising due to work in nuclear medicine departments, taking account of the range of radionuclides used for diagnostic and therapeutic procedures. A method for categorising radionuclides is proposed, based on their contamination derived limits. The categories utilised are: low energy gamma, imaging gamma, high energy gamma with beta, low energy beta, high energy beta and (51)Cr. A framework for the preparation of a risk assessment for the control of contamination in a nuclear medicine department is presented. This includes assessment of the procedures performed, occupancies and workflows for the department and a review of control measures. A risk assessment should also include a contamination monitoring programme and a practicable approach is presented.

  7. Phase transition of the baryon-antibaryon plasma in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Iazzi, F.; Pigato, D.

    2014-02-01

    We investigate the presence of thermodynamic instabilities in a hot and dense nuclear medium where a phase transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma can take place. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232)-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) that by chemical- diffusive instability (fluctuations on the strangeness concentration). It turns out that, in this situation, phases with different values of antibaryon-baryon ratios and strangeness content may coexist.

  8. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    SciTech Connect

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas E-mail: davi.rodrigues@ufes.br E-mail: pacheco@oca.eu

    2013-11-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.

  9. Atomic and Nuclear Interactions of High Energy Photons and Electrons with Matter.

    DTIC Science & Technology

    1975-09-29

    resolution width. Thesmooth curve represents the Danos model fit which is the sum of the two dashed Lorentz curves. 1.3.1. The total photoneutron...Phys.Rev. T~! (1966) 1071. 3~ J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics” -John Wiley and Sons, New York (1952). - 4. M. Danos ...Photonuclear Reactions (1960) . V 13. R. Nathans and J. Halpern, Phys.Rev. 92 ( 1953 ) 940. 14. S. Costa, L. Pasqualini , C. Piragino and L. Roasio

  10. Cold and hot nuclear matter effects on charmonium production in p+Pb collisions at LHC energy

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Guo, Tiecheng; Liu, Yunpeng; Zhuang, Pengfei

    2017-02-01

    We study cold and hot nuclear matter effects on charmonium production in p+Pb collisions at √{sNN} = 5.02 TeV in a transport approach. At the forward rapidity, the cold medium effect on all the c c bar states and the hot medium effect on the excited c c bar states only can explain well the J / ψ and ψ‧ yield and transverse momentum distribution measured by the ALICE collaboration, and we predict a significantly larger ψ‧pT broadening in comparison with J / ψ. However, we can not reproduce the J / ψ and ψ‧ data at the backward rapidity with reasonable cold and hot medium effects.

  11. COBRA-NC: a thermal-hydraulic code for transient analysis of nuclear reactor components. Equations and constitutive models. Volume 1

    SciTech Connect

    Wheeler, C.L.; Thurgood, M.J.; Guidotti, T.E.; DeBellis, D.E.

    1986-05-01

    COBRA-NC is a digital computer program written in FORTRAN IV that simulates the response of nuclear reactor components and systems to thermal-hydraulic transients. The code solves the multicomponent, compressible, three-dimensional, two-fluid, three-field equations for two-phase flow. The three velocity fields are the vapor/gas field, the continuous liquid field, and the liquid drop field. The code has been used to model flow and heat transfer within the reactor core, the reactor vessel, the steam generators, and in the nuclear containment. The conservation equations, equations of state, and physical models that are common to all applications are presented in this volume of the code documentation.

  12. Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2016-12-01

    The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f0 in the particle-hole channel. For f0 > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 < f0 < 0 there are only damped excitations, and for f0 < -1 the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f0(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f0 > -1.

  13. Exploring the nuclear pasta phase in core-collapse supernova matter.

    PubMed

    Pais, Helena; Stone, Jirina R

    2012-10-12

    The core-collapse supernova phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in core-collapse supernova, we focus on the transitional region between homogeneous (uniform) and inhomogeneous (pasta) phases. A three-dimensional, finite temperature Skyrme-Hartree-Fock (3D-SHF)+BCS calculation yields, for the first time fully self-consistently, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron-rich heavy nuclei and a free neutron and electron gas, and its dissolution to a homogeneous neutron, proton, and electron liquid. We also identify density regions for different pasta formations between the two limits. We employ four different forms of the Skyrme interaction, SkM*, SLy4, NRAPR, and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. One new stable pasta shape has been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Our results are critically compared to recent calculations of pasta formation in the quantum molecular dynamics approach and Thomas-Fermi and coexisting phase approximations to relativistic mean-field models.

  14. Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations

    SciTech Connect

    Kosior, Amelia; Staszczak, A.; Wong, Cheuk-Yin

    2017-01-01

    Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.

  15. Plasma dark matter direct detection

    SciTech Connect

    Clarke, J.D.; Foot, R. E-mail: rfoot@unimelb.edu.au

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  16. Effect of medium dependent binding energies on inferring the temperatures and freeze-out density of disassembling hot nuclear matter from cluster yields

    NASA Astrophysics Data System (ADS)

    Shlomo, S.; Röpke, G.; Natowitz, J. B.; Qin, L.; Hagel, K.; Wada, R.; Bonasera, A.

    2009-03-01

    We explore the abundance of light clusters in asymmetric nuclear matter at subsaturation density. With increasing density, binding energies and wave functions are modified due to medium effects. The method of Albergo, Costa, Costanzo, and Rubbino (ACCR) for determining the temperature and free nucleon density of a disassembling hot nuclear source from fragment yields is modified to include, in addition to Coulomb effects and flow, also effects of medium modifications of cluster properties, which become of importance when the nuclear matter density is above 10-3fm-3. We show how the analysis of cluster yields, to infer temperature and nucleon densities, is modified if the shifts in binding energies of in medium clusters are included. Although, at low densities, the temperature calculated from given yields changes only modestly if medium effects are taken into account, larger discrepancies are observed when the nucleon densities are determined from measured yields.

  17. Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value

    NASA Astrophysics Data System (ADS)

    Frank, Rupert L.; Lieb, Elliott H.; Seiringer, Robert

    2007-08-01

    The paper deals with the numerical method of the compressible gas flow through a porous filter emphasizing the treatment of the interface between a pure gaseous phase and a solid phase. An incident shock wave is initiated in the gaseous phase interacting with a porous filter inducing a transmitted and a reflected wave. To take into account the discontinuity jump in the porosity between the gaseous phase and the porous filter, an approximate Riemann solver is used to compute homogeneous non-conservative Euler equations in porous media using ideal gas state law. The discretization of this problem is based on a finite volume method where the fluxes are evaluated by a “volumes finis Roe” (VFRoe) scheme. A stationary solution is determined with a continuous variable porosity in order to test the numerical scheme. Numerical results are compared with the two-phase shock tube experiments and simulations of a shock wave attenuation and gas filtration in porous filters are presented.

  18. Multiparticle Correlation Functions: A probe for the High Energy Density Nuclear Matter created at RHIC

    NASA Astrophysics Data System (ADS)

    Holzmann, Wolf

    2002-04-01

    In a recent publication [1], the PHENIX collaboration has reported on the transverse momentum spectra for charged hadrons and for neutral pions in the range 1 < pT < 5 GeV/c. The spectra from peripheral nuclear collisions were found to be consistent with a simple scaling of the spectra from p+p collisions by the average number of nucleon-nucleon binary collisions. In contrast, the spectra from central collisions appeared to be significantly suppressed when compared to that from peripheral collisions as well as to the scaled p+p expectation. These observations have been interpreted as an important signature for jet quenching( [1],[2]) in central Au + Au collisions at RHIC. Significant jet production should also lead to discernable multi-particle correlations. Thus, the study of such correlations and their possible modification due to quenching, offers a promising opportunity for the investigation and study of QGP formation at RHIC. The multiparticle correlation analysis technique will be presented in conjunction with possible results for Au + Au data (sqrt(s) = 200GeV/c) obtained with the PHENIX detector at RHIC [1] Adcox et al., Phys. Rev. Lett. 88, 022301 (2001) [2] M. Gyulassy and X.-N. Wang, Nucl. Phys. B420, 583 (1994)X.-N. Wang, M.Gyulassy and M. Pluemer, Phys. Rev. D 51, 3436 (1995)

  19. Indications for a critical point in the phase diagram for hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.

    2016-12-01

    Two-pion interferometry measurements are studied for a broad range of collision centralities in Au+Au (√{sNN} = 7.7- 200 GeV) and Pb+Pb (√{sNN} = 2.76 TeV) collisions. They indicate non-monotonic excitation functions for the Gaussian emission source radii difference (Rout -Rside), suggestive of reaction trajectories which spend a fair amount of time near a soft point in the equation of state (EOS) that coincides with the critical end point (CEP). A Finite-Size Scaling (FSS) analysis of these excitation functions, provides further validation tests for the CEP. It also indicates a second order phase transition at the CEP, and the values Tcep ∼ 165 MeV and μBcep ∼ 95 MeV for its location in the (T ,μB)-plane of the phase diagram. The static critical exponents (ν ≈ 0.66 and γ ≈ 1.2) extracted via the same FSS analysis, place this CEP in the 3D Ising model (static) universality class. A Dynamic Finite-Size Scaling analysis of the excitation functions, gives the estimate z ∼ 0.87 for the dynamic critical exponent, suggesting that the associated critical expansion dynamics is dominated by the hydrodynamic sound mode.

  20. Tensor interaction and short range correlations in relativistic nuclear models

    SciTech Connect

    Panda, Prafulla K.; Providencia, C.; Providencia, J. da

    2007-06-15

    Short range correlations are introduced using a Jastrow factor in a relativistic approach to the equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. The pion exchange, including the tensor contribution, is taken into account. It is shown that both the tensor contribution of pion exchange and short range correlations soften the equation of state. Neutron matter with correlations presents no minimum at low densities.

  1. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Davidenko, V. D.; Zinchenko, A. S.; Harchenko, I. K.

    2016-12-01

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  2. Simulations of the nuclear recoil head-tail signature in gases relevant to directional dark matter searches

    NASA Astrophysics Data System (ADS)

    Spooner, N. J. C.; Majewski, P.; Muna, D.; Snowden-Ifft, D. P.

    2010-12-01

    We present the first detailed simulations of the so-called head-tail effect of nuclear recoils in gas, the presence of which is vital to directional WIMP dark matter searches. We include comparison simulations of the range and straggling of carbon, sulphur and fluorine recoils in low pressure gas. However, the prime focus is a detailed investigation of carbon and sulphur recoils in 40 Torr negative ion carbon disulfide, a gas proposed for use in large scale directional detectors. The focus is to determine whether the location of the majority of the ionization charge released and observed from a recoil track in carbon disulfide is at the beginning (tail) of the track, at the end (head) or evenly distributed. We used the SRIM simulation program, together with a purpose-written Monte Carlo generator to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results indicate the likely existence of a head-tail track asymmetry but with a magnitude critically influenced by several competing factors, notably the W-value assumed, the drift distance and diffusion, and the recoil energy.

  3. Determination of dry matter content in potato tubers by low-field nuclear magnetic resonance (LF-NMR).

    PubMed

    Hansen, Christian Lyndgaard; Thybo, Anette Kistrup; Bertram, Hanne Christine; Viereck, Nanna; van den Berg, Frans; Engelsen, Søren Balling

    2010-10-13

    The objective of this study was to develop a calibration model between time-domain low-field nuclear magnetic resonance (LF-NMR) measurements and dry matter (DM) content in single potatoes. An extensive sampling procedure was used to collect 210 potatoes from eight cultivars with a wide range in DM content, ranging from 16 to 28%. The exponential NMR relaxation curves were resolved into four mono-exponential components using a number of solution diagnostics. Partial least-squares (PLS) regression between NMR parameters (relaxation time constants T(2,1-4) and magnitudes M(0,1-4)) and DM content resulted in a model with low error (RMSECV, 0.71; RMSEP, 0.60) and high correlation (r(CV), 0.97; r(test), 0.98) between predicted and actual DM content. Correlation between DM content and each of the proton populations revealed that M(0,1) (T(2,1), 3.6 ms; SD, 0.3 ms; r, 0.95) and M(0,4) (T(2,4), 508 ms; SD, 53 ms; r, -0.90) were the major contributors to the PLS regression model.

  4. Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature

    SciTech Connect

    Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.

    2013-03-25

    Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

  5. Investigating a suitable equation of state for an infinite system of nucleons

    NASA Astrophysics Data System (ADS)

    Zoghi-Foumani, Niloufar; Shojaei, Mohammad Reza

    2016-08-01

    In this paper, the average energy variation with respect to the density of a system of nucleons is theoretically studied. A new formula is proposed for the nuclear equation of state. This formula is related to an infinite system of protons and neutrons with relatively small thermal excitation. It is shown that the presented formulation for the nuclear equation of state reproduces the results obtained in the Skyrme-Hartree-Fock (SHF) and Relativistic Mean-Field (RMF) models of nuclear matter. It should be realized that the consistency of the obtained results for nuclear matter with the predictions of the well-known SHF and RMF models for symmetric and asymmetric system of nucleons indicates the reliability of this formulation for various types of nuclear matter in large scales such as neutron stars.

  6. 75 FR 5357 - In the Matter of Entergy Nuclear Operations, Inc., et al.; Order Extending the Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... Nuclear Power Station (Pilgrim). Pilgrim is a boiling water nuclear reactor that is owned by Entergy... and IP3 are both pressurized water nuclear reactors that are owned by ENIP2 and ENIP3, respectively... (FitzPatrick). FitzPatrick is a boiling water nuclear reactor that is owned by EN-FitzPatrick...

  7. Softening of the Equation of State of Matter at Large Densities and Temperatures: Chiral-Symmetry Restoration Versus Quark Deconfinement

    SciTech Connect

    Bonanno, Luca; Drago, Alessandro; Lavagno, Andrea

    2007-12-14

    We discuss two models in which a softening of the equation of state takes place due to the appearance of new degrees of freedom. The first is a hadronic model in which the softening is due to chiral symmetry restoration. In the second model the softening is associated with the formation of clusters of quarks in the mixed phase. We show that in the first case the bulk modulus is mainly dependent on the density, while in the mixed-phase model the bulk modulus strongly depends on the temperature and it is not vanishing due to the presence of two conserved charges, the baryon and the isospin one.

  8. QCD constraints on the equation of state for compact stars

    SciTech Connect

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-22

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  9. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  10. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-12-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  11. Constraints on the Skyrme equations of state from properties of doubly magic nuclei.

    PubMed

    Brown, B Alex

    2013-12-06

    I use properties of doubly magic nuclei to constrain symmetric nuclear matter and neutron matter equations of state. I conclude that these data determine the value of the neutron equation of state at a density of ρ(on)=0.10  nucleons/fm3 to be 11.4(10) MeV. The slope at that point is constrained by the value of the neutron skin. Analytical equations are given that show the dependence of the Skyrme equations of state on the neutron skin.

  12. Evaluation of the National Research Council (1996) dry matter intake prediction equations and relationships between intake and performance by feedlot cattle.

    PubMed

    McMeniman, J P; Defoor, P J; Galyean, M L

    2009-03-01

    Intake prediction equations of NRC based on initial BW and dietary NE(m) concentration were evaluated with a commercial feedlot database consisting of 3,363 pen means collected from 3 feedlots over a 4-yr period. The DMI predicted by NRC equations had significant (P < 0.01) mean and linear biases across the range of observed DMI in the database. In general, DMI was overpredicted by the NRC equations. Adjustment of the NE(m)-based prediction by use of a 12% increase in NE(m) concentration and a 4% decrease in predicted DMI associated with the feeding of monensin decreased bias. Dry matter intake predicted by the NE(m)-based monensin-adjusted, NE(m)- based, and initial BW equations explained 67, 66, and 64% of the variation in observed DMI, respectively. Relationships between ADG and G:F with DMI as a percentage of BW and NE(g) intake also were examined in the same data set. Across the wide range of average shrunk BW in the database (334.4 to 548.0 kg), ADG was positively related to DMI as a percentage of BW (P < 0.01); however, this relationship was not strong (r(2) = 0.17). Likewise, G:F showed little relationship with DMI as a percentage of BW (P < 0.01; r(2) = 0.05). By accounting for differences in maintenance energy requirements of pens with varying average BW, NE(g) intake was strongly and positively related to ADG (linear and quadratic, P < 0.01; R(2) = 0.70); however, G:F showed little relationship with NE(g) intake (P = 0.02; r(2) = 0.01). Our evaluations with measurements of DMI by cattle in commercial feedlots indicated the shortcomings of current published equations for predicting DMI and suggest the need for development of new equations with improved accuracy and precision. Furthermore, our data indicate that increasing NE(g) in- take increased ADG in a quadratic manner but did not affect G:F by pens of cattle in feedlots. These findings suggest a diminishing returns effect of energy intake on energy retention.

  13. Correlation equation for predicting attachment efficiency (α) of organic matter-colloid complexes in unsaturated porous media.

    PubMed

    Morales, Verónica L; Sang, Wenjng; Fuka, Daniel R; Lion, Leonard W; Gao, Bin; Steenhuis, Tammo S

    2011-12-01

    Naturally occurring polymers such as organic matter have been known to inhibit aggregation and promote mobility of suspensions in soil environments by imparting steric stability. This increase in mobility can significantly reduce the water filtering capacity of soils, thus jeopardizing a primary function of the vadose zone. Improvements to classic filtration theory have been made to account for the known decrease in attachment efficiency of electrostatically stabilized particles, and more recently, of sterically stabilized particles traveling through simple and saturated porous media. In the absence of an established unsaturated transport expression, and in the absence of applicable theoretical approaches for suspensions with asymmetric and nonindifferent electrolytes, this study presents an empirical correlation to predict attachment efficiency (α) for electrosterically stabilized suspensions in unsaturated systems in the presence of nonideal electrolytes. We show that existing models fall short in estimating polymer-coated colloid deposition in unsaturated media. This deficiency is expected given that the models were developed for saturated conditions where the mechanisms controlling colloid deposition are significantly different. A new correlation is derived from unsaturated transport data and direct characterization of microspheres coated with natural organic matter over a range of pH and CaCl(2) concentrations. The improvements to existing transport models include the following: adjustment for a restricted liquid-phase in the medium, development of a quantitative term to account for unsaturated transport phenomena, and adjustments in the relative contribution of steric stability parameters based on direct measurements of the adsorbed polymer layer characteristics. Differences in model formulation for correlations designed for saturated systems and the newly proposed correlation for unsaturated systems are discussed, and the performance of the new model

  14. Spatial solitons in thermo-optical media from the nonlinear Schrödinger-Poisson equation and dark-matter analogs

    NASA Astrophysics Data System (ADS)

    Navarrete, Alvaro; Paredes, Angel; Salgueiro, José R.; Michinel, Humberto

    2017-01-01

    We analyze theoretically the Schrödinger-Poisson equation in two transverse dimensions in the presence of a Kerr term. The model describes the nonlinear propagation of optical beams in thermo-optical media and can be regarded as an analog system for a self-gravitating self-interacting wave. We compute numerically the family of radially symmetric ground-state bright stationary solutions for focusing and defocusing local nonlinearity, keeping in both cases a focusing nonlocal nonlinearity. We also analyze excited states and oscillations induced by fixing the temperature at the borders of the material. We provide simulations of soliton interactions, drawing analogies with the dynamics of galactic cores in the scalar field dark-matter scenario.

  15. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  16. Solution of self-consistent equations for the N 3LO nuclear energy density functional in spherical symmetry. The program HOSPHE (v1.02)

    NASA Astrophysics Data System (ADS)

    Carlsson, B. G.; Dobaczewski, J.; Toivanen, J.; Veselý, P.

    2010-09-01

    We present solution of self-consistent equations for the N 3LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program HOSPHE (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summaryProgram title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 809 No. of bytes in distributed program, including test data, etc.: 290 514 Distribution format: tar.gz Programming language: Fortran-90 Computer: PCs and workstations Operating system: Linux RAM: 50 MB Classification: 17.22 External routines: LAPACK ( http://www.netlib.org/lapack/), BLAS ( http://www.netlib.org/blas/) Nature of problem: The nuclear mean-field methods constitute principal tools of a description of nuclear states in heavy nuclei. Within the Local Density Approximation with gradient corrections up to N 3LO [1], the nuclear mean-field is local and contains derivative operators up to sixth order. The locality allows for an effective and fast solution of the self-consistent equations. Solution method: The program uses the spherical harmonic oscillator basis to expand single-particle wave functions of neutrons and protons for the nuclear state being described by the N 3LO nuclear energy density functional [1]. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonian, which depends non

  17. 77 FR 11168 - In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... and the indirect license transfers. Constellation Energy Nuclear Group, LLC, shall inform the NRC in... Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station, LLC; Nine Mile Point... Indirect Transfer of Licenses I Nine Mile Point Nuclear Station, LLC (NMPNS, LLC, or the licensee) is...

  18. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    SciTech Connect

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.

  19. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    DOE PAGES

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based onmore » the Coulomb coupling parameter and one-component plasmas.« less

  20. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime.

    PubMed

    Ticknor, Christopher; Collins, Lee A; Kress, Joel D

    2015-08-01

    We present simulations of a four-component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5-200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. Additionally, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.

  1. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  2. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    SciTech Connect

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-24

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  3. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving Indirect Transfer of... Nuclear Power Station, Units 1 and 2 (ZNPS) in Zion, Illinois. II. By letter dated January 10, 2013, ZS... Power Station, Units 1 and 2 held by ZS, including the General License for the Zion Independent...

  4. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    SciTech Connect

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E. -J.; Kim, H. -J.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoon, I.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

  5. Effective Interactions in Neutron-Rich Matter

    SciTech Connect

    Sammarruca, F.; Krastev, P.; Barredo, W.

    2005-10-14

    We are generally concerned with probing the behavior of the isospin-asymmetric equation of state. In particular, we will discuss the one-body potentials for protons and neutrons obtained from our Dirac-Brueckner-Hartree-Fock calculations of neutron-rich matter properties. We will also present predictions of proton-proton and neutron-neutron cross sections in the isospin-asymmetric nuclear medium.

  6. 75 FR 54920 - In the Matter of Pacific Gas & Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... management of the Diablo Canyon Nuclear Power Plant's design/ licensing basis which undermines PG&E's ability... Electronic Hearing Docket webpage at http://ehd1.nrc.gov/EHD/ . The time and date of the evidentiary...

  7. 78 FR 28003 - In the Matter of Entergy Arkansas and Entergy Operations, Arkansas Nuclear One, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... the Director of the Office of Nuclear Reactor Regulation satisfactory documentary evidence that EAL... (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13077A237), to reflect the...

  8. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  9. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  10. Pools and fluxes of organic matter in a boreal landscape: implications for a safety assessment of a repository for nuclear waste.

    PubMed

    Kumblad, Linda; Söderbäck, Björn; Löfgren, Anders; Lindborg, Tobias; Wijnbladh, Erik; Kautsky, Ulrik

    2006-12-01

    To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co is carrying out site investigations, including extensive studies of different parts of the surface ecosystems, at two sites in Sweden. Here we use the output from detailed modeling of the carbon dynamics in the terrestrial, limnic and marine ecosystems to describe and compare major pools and fluxes of organic matter in the Simpevarp area, situated on the southeast coast of Sweden. In this study, organic carbon is used as a proxy for radionuclides incorporated into organic matter. The results show that the largest incorporation of carbon into living tissue occurs in terrestrial catchments. Carbon is accumulated in soil or sediments in all ecosystems, but the carbon pool reaches the highest values in shallow near-land marine basins. The marine basins, especially the outer basins, are dominated by large horizontal water fluxes that transport carbon and any associated contaminants into the Baltic Sea. The results suggest that the near-land shallow marine basins have to be regarded as focal points for accumulation of radionuclides in the Simpevarp area, as they receive a comparatively large amount of carbon as discharge from terrestrial catchments, having a high NPP and a high detrital accumulation in sediments. These focal points may constitute a potential risk for exposure to humans in a future landscape as, due to post-glacial land uplift, previous accumulation bottoms are likely to be used for future agricultural purposes.

  11. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    SciTech Connect

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC

  12. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. From charged particle density to jet quenching

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    2016-03-01

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- pT hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central Au+Au collisions at sqrt{s_{NN}} = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at sqrt{s_{NN}} = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, η/s≈ 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p+A, d+ Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both

  13. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE PAGES

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and

  14. Orientation of functional groups of soil organic matter on the surface of water repellent soils determined by pulse saturation magic angle spinning (PSTMAS) nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiradate, Syuntaro; Kawamoto, Ken; Senani Wijewardana, Nadeeka; Müller, Karin; Møldrup, Per; Clothier, Brent; Komatsu, Toshiko

    2014-05-01

    Orientation of functional groups of soil organic matter on soil particles plays a crucial role in the occurrence of soil water repellency. In addition to a general method to characterize soil organic matter using cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) technique, we determined the surface orientation of functional groups in water repellent soils by using pulse saturation magic angle spinning (PSTMAS) NMR technique. A preliminary experiment confirmed that the PSTMAS NMR spectrum successfully determined the high mobility of methyl group of octadecylsilylated silica gels when a comparison was made with that of CPMAS NMR. This means that the methyl group oriented towards the outside of the silica gel particle. Similarly, for an experimental system consisting of mixtures of octadecylsilylated silica gel and dimethyl sulfoxide (DMSO), the extremely high mobility of methyl group derived from DMSO was detected using the same methodology. For water repellent soils from Japan and New Zealand, it was found that the methyl and methylene groups were highly mobile. In contrast, the NMR signals of aromatic moiety, another hydrophobic moiety of soil organic matter, were not as intense in PSTMAS compared with CPMAS. From these results, we conclude that alkyl moiety (methyl and methylene groups) would be oriented towards the outside of the soil particle and would play an important role in the appearance of water repellency of soils.

  15. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  16. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  17. Variational Theory of Hot Dense Matter

    ERIC Educational Resources Information Center

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  18. Study of the vibrational characteristics of the homonuclear diatomic nuclear schrödinger equation with a numerov method using a number of empirical potential functions

    NASA Astrophysics Data System (ADS)

    Heidari, Alireza; Anwar Bég, O.; Ghorbani, Mohammadali

    2013-02-01

    Many empirical potential energy functions have been modeled to represent the potential energy function of a diatomic molecule along whole range of internuclear distance coordinate, whereby one can determine certain molecular constants. Here we employ various potential functions such as Morse, Rydberg, Varshni(II), Varshni(III), Varshni(VI), Pöschl-Teller, Hulburt-Hirschfelder, Lippincott, Frost-Musulin, Linnet, and Rosen-Morse, and the Numerov method to solve the nuclear Schrödinger equation for F2, as an example of a homonuclear diatomic molecule. Herewith, the vibrational and vibration-rotation energy levels are obtained and excellent accuracy is achieved. The potential of employing the Numerov method in engineering physics computations is emphasized.

  19. Hadronic matter and rapidly rotating compact stars

    SciTech Connect

    Weber, F.; Kettner, C.; Glendenning, N.K.

    1994-03-01

    In part one of this paper the authors review the present status of neutron star matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon populations, pion condensation, possible transition of baryon matter to quark matter). Part two deals with the theoretical determination of the minimum possible rotational periods of neutron stars, performed in the framework of general relativity, whose knowledge serves to distinguish between pulsars that can be understood as rotating neutron stars and those that cannot. Likely candidates for the latter are hypothetical strange stars. Their properties are discussed in the third part of this contribution.

  20. Low density instabilities in asymmetric nuclear matter within the quark-meson coupling (QMC) model with the {delta} meson

    SciTech Connect

    Santos, Alexandre M.; Providencia, Constanca; Panda, Prafulla K.

    2009-04-15

    In the present work we include the isovector-scalar {delta} meson in the quark-meson coupling (QMC) model and study the properties of asymmetric nuclear within QMC without and with the {delta} meson. Recent constraints set by isospin diffusion on the slope parameter of the nuclear symmetry energy at saturation density are used to adjust the model parameters. The thermodynamical spinodal surfaces are obtained and the instability region at subsaturation densities within QMC and QMC{delta} models are compared with mean-field relativistic models. The distillation effect in the QMC model is discussed.

  1. Critical study of type II supernovae: equations of state and general relativity

    SciTech Connect

    Kahana, S.

    1986-01-01

    The relevance of relativistic gravitation and of the properties of nuclear matter at high density to supernova explosions is examined in detail. The existing empirical knowledge on the nuclear equation of state at densities greater than saturation, extracted from analysis of heavy ion collisions and from the breathing mode in heavy nuclei, is also considered. Particulars of the prompt explosions recently obtained theoretically by Baron, Cooperstein, and Kahana are presented. 40 refs., 9 figs., 3 tabs.

  2. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Excitation of nuclear isomers by X rays from laser plasma

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr A.; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2010-06-01

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer 93Mo upon irradiation of a niobium 93Nb target by ~50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma.

  3. 13C Nuclear Magnetic Resonance and Electron Paramagnetic Spectroscopic Comparison of Hydrophobic Acid, Transphilic Acid, and Reverse Osmosis May 2012 Isolates of Organic Matter from the Suwannee River

    PubMed Central

    Nwosu, Ugwumsinachi G.; Cook, Robert L.

    2015-01-01

    Abstract Dissolved organic matter (DOM) is found in most natural waters at concentrations low enough to make DOM isolation methodologies critical to full analytical characterization and preservation. During the last few decades, two major protocols have been developed for the extraction of DOM isolates from natural waters. These methods utilize XAD resins and reverse osmosis (RO). In this work, the hydrophobic acid (May 2012 HPOA) and transphilic acid (May 2012 TPIA) isolates from XAD-8 and XAD-4 resins, respectively, were compared with the RO (May 2012 RO) natural organic matter isolate of the Suwannee River water using 13C nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. 13C NMR analysis showed that the May 2012 RO isolate could be viewed as a hybrid of the more hydrophobic May 2012 HPOA isolate and more hydrophilic May 2012 TPIA isolate. The May 2012 HPOA isolate is shown to be higher in alkyl and aromatic moieties, while the May 2012 TPIA isolate is higher in O-alkyl moieties. EPR analysis revealed that the May 2012 TPIA and, in particular, May 2012 HPOA isolates had higher radical concentrations than the May 2012 RO isolate. It is postulated that some of the radical concentrations came from the use of base during the isolation procedures, especially in the XAD method. PMID:25565761

  4. Phenomenological QCD equations of state for neutron stars

    NASA Astrophysics Data System (ADS)

    Kojo, Toru; Powell, Philip D.; Song, Yifan; Baym, Gordon

    2016-12-01

    We delineate the properties of QCD matter at baryon density nB = 1 - 10n0 (n0: nuclear saturation density), through the construction of neutron star equations of state that satisfy the neutron star mass-radius constraints as well as physical conditions on the speed of sound. The QCD matter is described in the 3-window modeling: at nB ≲ 2n0 purely nuclear matter; at nB ≳ 5n0 percolated quark matter; and at 2n0 ≲nB ≲ 5n0 matter intermediate between these two which are constructed by interpolation. Using a schematic quark model with effective interactions inspired from hadron and nuclear physics, we analyze the strength of interactions necessary to describe observed neutron star properties. Our finding is that the interactions should remain as strong as in the QCD vacuum, indicating that gluons at nB = 1 - 10n0 remain non-perturbative even after quark matter formation.

  5. High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions

    PubMed Central

    Meier, Thomas; Haase, Jürgen

    2014-01-01

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694

  6. High-sensitivity nuclear magnetic resonance at Giga-Pascal pressures: a new tool for probing electronic and chemical properties of condensed matter under extreme conditions.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2014-10-10

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.

  7. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  8. Nuclear Energy Research Initiative Program (NERI) Quarterly Progress Report; New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors

    SciTech Connect

    Wolfer, W G; Surh, M P; Garner, F A; Chrzan, D C; Schaldach, C; Sturgeon, J B

    2003-02-13

    The objectives of this research project are to significantly extend the theoretical foundation and the modeling of radiation-induced microstructural changes in structural materials used in Generation IV nuclear reactors, and to derive from these microstructure models the constitutive laws for void swelling, irradiation creep and stress-induced swelling, as well as changes in mechanical properties. The need for the proposed research is based on three major developments and advances over the past two decades. First, new experimental discoveries have been made on void swelling and irradiation creep which invalidate previous theoretical models and empirical constitutive laws for swelling and irradiation creep. Second, recent advances in computational methods and power make it now possible to model the complex processes of microstructure evolution over long-term neutron exposures. Third, it is now required that radiation-induced changes in structural materials over extended lifetimes be predicted and incorporated in the design of Generation IV reactors. Our approach to modeling and data analysis is a dual one in accord with both the objectives to simulate the evolution of the microstructure and to develop design equations for macroscopic properties. Validation of the models through data analysis is therefore carried out at both the microscopic and the macroscopic levels. For the microstructure models, we utilize the transmission electron microscopy results from steels irradiated in reactors and from model materials irradiated by neutrons as well as ion bombardments. The macroscopic constitutive laws will be tested and validated by analyzing density data, irradiation creep data, diameter changes of fuel elements, and post-irradiation tensile data. Validation of both microstructure models and macroscopic constitutive laws is a more stringent test of the internal consistency of the underlying science for radiation effects in structural materials for nuclear reactors.

  9. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the

  10. A nonlinear relativistic nuclear model for protoneutronstars

    NASA Astrophysics Data System (ADS)

    Razeira, M.; Vasconcellos, C. A. Z.; Dillig, M.

    2003-08-01

    In the last few decades, studies on the internal structure, composition, dynamics and evolution of protoneutron stars, neutron stars, pulsars, hybrid and strange stars became central topics for theoretical and experimental research. Since the observation of the first pulsar in 1967, whose characteristic observational features allowed its identification as a rotating neutron star, nuclear models have been widely employed in the description of the holly graal of modern physics, the equation of state of dense matter. As under the pull of gravity the energy density in the core of these compact stars is thought to approach or even exceed more than 6 times the density of ordinary nuclear matter, predictions on the structure of the stars depend sensitively on the equation of state provided by model calculations. Combined with the equations of the general relativity metric, predictions on the mass, radius, crust extent and moment of inertia of the stars are then susceptible to the comparison to observation. In this work, a theoretical modeling for protoneutron stars (nuclear matter at finite temperature) is studied in the framework of an effective many-body relativistic mean field theory and the Sommerfeld approximation which contains the fundamental baryon octet and leptonic degrees of freedom, sigma, omega, rho and delta mesons, chemical equilibrium and charge neutrality. Our predictions include the determination of the mass of protoneutron stars, the mass-radius relation, relative population, gravitational redshift among other properties.

  11. Optimizing the rapidity limit for nuclear stopping in intermediate energy heavy-ion collisions

    SciTech Connect

    Vinayak, Karan Singh; Kumar, Suneel

    2013-03-15

    A systematic study regarding the role of participant matter and spectator matter in nuclear stopping using isospin-dependent quantum molecular dynamics model is presented. The simulations have been carried out with soft equation of state along with the reduced isospin-dependent cross section to study the effect of different types and sizes of rapidity distributions on nuclear stopping for the whole colliding geometry with density-dependent symmetry energy. In addition to that, we attempt to investigate the role of isospin in heavy-ion collisions by calculating the individual contribution of neutrons and protons in nuclear stopping for different systems having different isotopic content.

  12. Strange-quark-matter stars

    SciTech Connect

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  13. Nuclear Data Matters - The obvious case of a bad mixing ratio for 58Co

    SciTech Connect

    Hoffman, R. D.; Nesaraja, Caroline D.; Mattoon, Caleb

    2015-05-13

    We present results of modeled cross sections for neutron- and proton-induced reactions leading to the final product nucleus 58Co. In each case the gamma-cascade branching ratios given in the ENSDF database circa 2014 predict modeled nuclear cross sections leading to the ground and first excited metastable state that are incompatible with measured cross sections found in the NNDC experimental cross section database EXFOR. We show that exploring the uncertainty in the mixing ratio used to calculate the gamma-cascade branching ratios for the 53.15 keV 2nd excited state leads to changes in the predicted partial cross sections by amounts that give good agreement with measured data.

  14. Dependence of the Sr-to-Ba and Sr-to-Eu Ratio on the Nuclear Equation of State in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Kajino, T.; Aoki, W.; Suda, T.

    2016-10-01

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclear EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.

  15. Variational Studies of Nucleon Matter with Realistic Potentials

    NASA Astrophysics Data System (ADS)

    Akmal, Arya

    We study cold, symmetric nuclear matter and pure neutron matter at densities up to six times nuclear saturation density, with realistic interactions fitted to nucleon-nucleon scattering data, using variational methods and correlated wave functions. The expectation value of the nuclear Hamiltonian is expanded in terms of cluster contributions, and re-summed via chain summation methods. Included in the calculation are a number of new, momentum-dependent cluster diagrams, which make significant contributions to the energy. These include relativistic boost corrections, heretofore neglected in studies of infinite matter. The boost corrections, partially mocked up by the three-nucleon interaction in previous studies, must be treated explicitly to obtain accurate predictions of the energy of matter at densities above saturation. We find that matter exhibits structure on the femtometer scale at saturation density, and undergoes a phase transition at about twice saturation density. The new phase is marked by a significant increase in the length of tensor correlations. The nature of the transition is further elucidated using the spin-isospin structure function, which points to long-range order in the new phase. We argue that this new phase contains a neutral pion condensate, as evidenced by enhancement of the pionic interactions and the pion field. In addition to symmetric nuclear and pure neutron matter, we present an equation of state for beta-stable matter, used to predict properties of spherical, non-rotating neutron stars by integrating the relativistic equation governing gravitational equilibrium. The interaction models presented here, with relativistic boost corrections, predict the existence of neutron stars with masses up to 2.0 to 2.2 solar masses. We also investigate the possibility of a deconfined quark phase in neuron star cores, and argue that such a phase, should it be present, will have only a small effect on the predictions of maximum masses.

  16. Low energy electron and nuclear recoil thresholds in the DRIFT-II negative ion TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Daw, E.; Forbes, J.; Ghag, C.; Gold, M.; Hagemann, C.; Kudryavtsev, V. A.; Lawson, T. B.; Loomba, D.; Majewski, P.; Muna, D.; Murphy, A. St. J.; Paling, S. M.; Petkov, A.; Plank, S. J. S.; Robinson, M.; Sanghi, N.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Turk, J.; Tziaferi, E.

    2009-04-01

    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect of a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches.

  17. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  18. Scale-invariant hidden local symmetry, topology change, and dense baryonic matter

    NASA Astrophysics Data System (ADS)

    Paeng, Won-Gi; Kuo, Thomas T. S.; Lee, Hyun Kyu; Rho, Mannque

    2016-05-01

    When scale symmetry is implemented into hidden local symmetry in low-energy strong interactions to arrive at a scale-invariant hidden local symmetric (HLS) theory, the scalar f0(500 ) may be interpreted as pseudo-Nambu-Goldstone (pNG) boson, i.e., dilaton, of spontaneously broken scale invariance, joining the pseudoscalar pNG bosons π and the matter fields V =(ρ ,ω ) as relevant degrees of freedom. Implementing the skyrmion-half-skyrmion transition predicted at large Nc in QCD at a density roughly twice the nuclear matter density found in the crystal simulation of dense skyrmion matter, we determine the intrinsically density-dependent "bare parameters" of the scale-invariant HLS Lagrangian matched to QCD at a matching scale ΛM. The resulting effective Lagrangian, with the parameters scaling with the density of the system, is applied to nuclear matter and dense baryonic matter relevant to massive compact stars by means of the double-decimation renormalization-group Vlow k formalism. We satisfactorily postdict the properties of normal nuclear matter and more significantly predict the equation of state of dense compact-star matter that quantitatively accounts for the presently available data coming from both the terrestrial and space laboratories. We interpret the resulting structure of compact-star matter as revealing how the combination of hidden-scale symmetry and hidden local symmetry manifests itself in compressed baryonic matter.

  19. A density functional equation of state for use in astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Olson, J. Pocahontas

    2015-10-01

    In this thesis, I present a new equation of state for use in simulating supernovae, black holes and neutron star mergers. It is the first such equation of state for astrophysical applications to use a density functional theory description for hadronic matter. The inclusion of thermal effects of matter enable nuclear Skyrme models, which have been highly tested and constrained at laboratory energy scales, to expand their domain to predictions of astronomical phenomena. Broadening the scope of these models can further confine parameter sets, using vastly different energy scales. The new equation of state, titled the Notre Dame-Livermore Equation of State (NDL EoS), allows for the creation of a pion condensate at high density and pair production of all known baryonic and mesonic states at high temperature. The description of matter also allows for the possibility of the formation of a net proton excess (Ye> 0:5). In addition to the density functional theory formulation for hadronic matter, the NDL EoS contains low and high density completions to better describe matter in these specific energy regimes. The low density description expands upon a Bowers and Wilson formulation, adding a transition through nuclear pasta phases, which are of particular importance in neutron star structure. These low density definitions have further been updated to include an improved treatment of the nuclear statistical equilibrium and the transition to heavy nuclei as the density approaches nuclear matter density. At high densities, matter is allowed to transition to a quark-gluon plasma (QGP) either as a first-order Gibbs transition, or a smooth crossover. Notre Dame-Livermore I identify predictions of the NDL EoS, contrasting them to existing equations of state and various Skyrme models of the NDL EoS. The observation of a heavy (two solar masses) neutron star restricts many descriptions of matter, and rules out several Skyrme parameter sets that had heretofore been entirely within the

  20. Reviews DVD: Nuclear Radiation Books: The Theoretical Minimum and Time Reborn Equipment: Cobra4 Data Logger Book: Stuff Matters Book: Hunting the Higgs Book: My Brief History Apps Web Watch

    NASA Astrophysics Data System (ADS)

    2014-01-01

    WE RECOMMEND Nuclear Radiation DVD is an excellent introduction to nuclear radiation WORTH A LOOK The Theoretical Minimum and Time Reborn Can mathematics be the key to reality? Cobra4 Data Logger Apparatus provides an extensive collection of sensors Stuff Matters Materials book deserves a wide readership Hunting the Higgs Higgs book a bit light on detail but good for visits to CERN My Brief History Hawking's book is readable but inconclusive APPS Using apps to help students visualize fields WEB WATCH Vintage film of Eric Laithwaite ... induction hobs as an example of electromagnetic induction ... the deconstruction of a CRO tube ... the Brocken spectre ... the Square Kilometre Array telescope

  1. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  2. Properties of the nuclear medium.

    PubMed

    Baldo, M; Burgio, G F

    2012-02-01

    We review our knowledge on the properties of the nuclear medium that have been studied, over many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. Throughout the presentation particular emphasis is placed on the possible relationship and links between the nuclear medium and the structure of nuclei, including the limitations of such an approach. First we consider the realm of phenomenological laboratory data and astrophysical observations and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its equation of state. The interplay between laboratory experiments and astrophysical observations is particularly stressed, and it is shown how their complementarity enormously enriches our insights into the structure of the nuclear medium. We then introduce the nucleon-nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau-Fermi liquid theory is introduced and briefly discussed, and it is shown how fruitful it can be in discussing the macroscopic and low-energy properties of the nuclear medium. As an illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. The general bulk properties of the nuclear medium are reviewed to indicate at which stage of our knowledge we stand, taking into account the most recent developments both in theory and experiments. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the energy density functional method. The possibility of linking

  3. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  4. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  5. Nuclear physics and astrophysics

    SciTech Connect

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  6. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  7. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  8. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  9. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  10. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  11. Contribution of radioactive (137)Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka

    2017-01-01

    Radiocesium ((137)Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of (137)Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the (137)Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The (137)Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The (137)Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The (137)Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of (137)Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual (137)Cs discharge from the catchment was 0.02-0.3% of the deposition.

  12. Final Technical Report for Years 1-4 of the Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter" - ARRA portion

    SciTech Connect

    Molnar, Denes

    2014-04-14

    The Section below summarizes research activities and achievements during the first four years of the PI’s Early Career Research Project (ECRP). Two main areas have been advanced: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time) on both single-CPU and parallel computers; ii) development of a self-consistent framework to convert viscous fluids to particles, and application of this framework to relativistic heavy-ion collisions, in particular, determination of the shear viscosity. Year 5 of the ECRP is under a separate award number, and therefore it has its own report document ’Final Technical Report for Year 5 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCDmatter”’ (award DE-SC0008028). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Topical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  13. Three-component Gross-Pitaevskii equations in the spin-1 Bose-Einstein condensate: Spin-rotation symmetry, matter-wave solutions, and dynamics.

    PubMed

    Wen, Zichao; Yan, Zhenya

    2017-03-01

    We report new matter-wave solutions of the one-dimensional spin-1 Bose-Einstein condensate system by combining global spin-rotation states and similarity transformation. Dynamical behaviors of non-stationary global spin-rotation states derived from the SU(2) spin-rotation symmetry are discussed, which exhibit temporal periodicity. We derive generalized bright-dark mixed solitons and new rogue wave solutions and reveal the relations between Euler angles in spin-rotation symmetry and parameters in ferromagnetic and polar solitons. In the modulated spin-1 Bose-Einstein condensate system, new solutions are derived and graphically illustrated for different types of modulations. Moreover, numerical simulations are performed to investigate the stability of some obtained solutions for chosen parameters.

  14. Dynamic Matter

    NASA Astrophysics Data System (ADS)

    Hohner, Jack

    2003-05-01

    First postulate: Following the Big Bang, quarks, born from zero point mass, did not acquire a constant size. They are growing. Atomic distances remain relative to increasing quark diameter resulting in molecular density remaining constant. Current rate of quark growth results in an increase of Earth radius of approximately 2.8 cm/year. The perpetual growth is sustained by the conversion of space to matter. The equality of space to matter is algebraically derived from Newton's law of gravity. There results an inward flow of space at each quark. This creates a vector field of space flowing inward at the Earth. Next postulate: Einstein space curvature is actually inward flow of space. Although this appears as an ether theory, it does not conflict with relativity. The combined vector fields of all stars in the universe create a scalar field equal to C. Inward velocity of space at the surface of the Earth is calculated at 1.46 cm/sec. This is derived from space curvature formula from relativity. This value accelerates toward the nucleus of each atom until it terminates at C at the diameter of a quark. These two predictions of the velocity C demonstrate why it is the universal constant. This work predicts the gravitational constant from a derivation based on C. Several unifying aspects emerge including; equivalence principle, 5 dimensions, time, strong nuclear force, decreasing rotational velocity of Earth, dark matter, red shift and quantum mechanics. This theory is an extension of Einstein and Newton.

  15. An intrinsically irreversible, neural-network-like approach to the Schrödinger equation and some results of application to drive nuclear synthesis research work

    SciTech Connect

    Abundo, Ugo

    2015-03-10

    An analogy is drawn among the irreversible evolution of a neural-network-based A.I., an information field associated to spacetime configurations and the behaviour of entities described by the Schrödinger equation.

  16. Centrality, rapidity, and transverse-momentum dependence of cold nuclear matter effects on J/psi production in dAu, CuCu, and AuAu collisions at sq root(s{sub NN})=200 GeV

    SciTech Connect

    Ferreiro, E. G.; Fleuret, F.; Rakotozafindrabe, A.

    2010-06-15

    We have carried out a wide study of cold nuclear matter (CNM) effects on J/psi production in dAu, CuCu and AuAu collisions at sq root(s{sub NN})=200 GeV. We have studied the effects of three different gluon-shadowing parametrizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/psi is neglected as well as an exact kinematics for a 2->2 process; namely g+g->J/psi+g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its antishadowing peak, is systematically shifted toward larger rapidities in the 2->2 kinematics, irrespective of which shadowing parametrization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of 2->2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of R{sub CP} in dAu collisions by the PHENIX collaboration.

  17. Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in D Au, Cu Cu And Au Au Collisions at S(NN)**(1/2)

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2011-11-11

    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.

  18. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  19. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  20. Chaos-assisted formation of immiscible matter-wave solitons and self-stabilization in the binary discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Makarov, D. V.; Uleysky, M. Yu.

    2017-02-01

    Binary discrete nonlinear Schrödinger equation is used to describe dynamics of two-species Bose-Einstein condensate loaded into an optical lattice. Linear inter-species coupling leads to Rabi transitions between the species. In the regime of strong nonlinearity, a wavepacket corresponding to condensate separates into localized and ballistic fractions. Localized fraction is predominantly formed by immiscible solitons consisted of only one species. Immiscible solitons are formed from initially non-separated states after transient chaotic regime. We calculate the finite-time Lyapunov exponent as a rate of wavepacket divergence in the Hilbert space. Appearance of immiscible solitons to spontaneous self-stabilization of the wavepacket. It is found that onset of chaos is accompanied by fast variations of interaction energy and energy of inter-site tunneling. Crossover to self-stabilization is accompanied by reduction of condensate density due to emittance of ballistically propagating waves.

  1. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    SciTech Connect

    Molnar, Denes

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  2. 78 FR 42560 - In the Matter of Korea Hydro and Nuclear Power, Co., Ltd. and All Other Persons Who Seek or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... letter of intent to the U.S. Nuclear Regulatory Commission (NRC) for a design certification (DC... designers, to perform a design-specific assessment of the effects of the impact of a large, commercial aircraft and to incorporate design features and functional capabilities into the nuclear power plant...

  3. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    SciTech Connect

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  4. Warm and dense stellar matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Panda, P. K.; Providencia, C.

    2011-09-15

    We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.

  5. Variational Study of the Supernova Equation of State with Hyperons

    NASA Astrophysics Data System (ADS)

    Togashi, Hajime; Hiyama, Emiko; Takano, Masatoshi

    We report on a new equation of state (EOS) of nuclear matter containing Λ hyperons constructed with the variational many-body theory for core-collapse supernova simulations. Bare baryon interactions, including the Argonne v18 two-nucleon and Urbana IX three-nucleon potentials are adopted, and the energy per baryon at zero temperature is calculated with the cluster variational method. The free energy per baryon at finite temperature is calculated with an extension of the variational method proposed by Schmidt and Pandharipande. The resulting thermodynamic quantities of hyperonic nuclear matter for various densities, temperatures, and proton fractions under the equilibrium condition μ n = μ Λ are reasonable as compared with those of the Shen EOS. It is also observed that the fraction of Λ hyperons in hot dense matter increases as the proton fraction decreases or the temperature increases. Furthermore, due to the smaller symmetry energy with our EOS, the Λ fraction of our EOS for neutron-rich matter is less than that of the Shen EOS.

  6. Probing nuclear bubble structure via neutron star asteroseismology

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-01-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e. what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models are considered here.

  7. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  8. Neutron star radii and crusts: Uncertainties and unified equations of state

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Providência, C.; Raduta, Ad. R.; Gulminelli, F.; Zdunik, J. L.; Haensel, P.; Bejger, M.

    2016-09-01

    The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large as ˜30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of state including a transition to hyperonic matter at high density are presented. All these equations of state have in common the property of describing a 2 M⊙ star and of being causal within stable neutron stars. Spans of ˜3 and ˜4 km are obtained for the radius of, respectively, 1.0 M⊙ and 2.0 M⊙ stars. Applying a set of nine further constraints from experiment and ab initio calculations the uncertainty is reduced to ˜1 and 2 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope L . Indeed, this parameter exhibits a linear correlation with the stellar radius, which is particularly clear for small mass stars around 1.0 M⊙ . The other equation-of-state parameters do not show clear correlations with the radius, within the present uncertainties. Potential constraints on L , the neutron star radius, and the equation of

  9. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  10. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wei, J.-B.; Schulze, H.-J.

    2016-09-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.

  11. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  12. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  13. Equation of State for Nucleonic and Hyperonic Neutron Stars with Mass and Radius Constraints

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Centelles, Mario; Ramos, Angels

    2017-01-01

    We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M⊙ observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened around saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M⊙ limit. By a slight modification of the parameterization, we also find that the constraints of 2 M⊙ neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼1015 G and with values of ∼1018 G in the interior can reach maximum masses of 2 M⊙ with radii in the 12–13 km range.

  14. Quark matter or new particles?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  15. Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Burch, Benjamin P.

    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson's equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype

  16. Determination of the Neutron Star Equation of State from Astrophysical Measurement

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2011-04-01

    Recent observations of cooling neutron stars and of photospheric radius expansions in X-ray bursters are used to simultaneously estimate their masses and radii. Although the observational uncertainties for these sources are large, they nevertheless snugly constrain the mass-radius relation and the underlying equation of state. The results of a Bayesian analysis using a parametrized equation of state are discussed. The results for the low-density equation of state are consistent with those deduced from recent nuclear physics estimates of pure neutron matter. Furthermore, the deduced nuclear incompressibility is surprisingly compatible with nuclear systematics and experiment. The density dependence of the nuclear symmetry energy is predicted to be relatively small, leading to correspondingly small values for the predicted neutron skin thickness of lead and for the radii of 1.4 M stars. The high-density equation of state is predicted to stiffen, however, and the estimated neutron star maximum mass, to 90% confidence, is greater than 1.85 solar masses. I also will discuss recent observations of the cooling of the neutron star in the Cas A supernova remnant, which provides not only strong evidence for the existence of both neutron superfluidity and proton superconductivity, but also a tight measurement of the ^3P2 neutron gap.

  17. The nuclear magnetic resonance relaxation data analysis in solids: General R1/R1ρ equations and the model-free approach

    NASA Astrophysics Data System (ADS)

    Kurbanov, Rauf; Zinkevich, Tatjana; Krushelnitsky, Alexey

    2011-11-01

    The advantage of the solid state NMR for studying molecular dynamics is the capability to study slow motions without limitations: in the liquid state, if orienting media are not used, all anisotropic magnetic interactions are averaged out by fast overall Brownian tumbling of a molecule and thus investigation of slow internal conformational motions (e.g., of proteins) in solution can be conducted using only isotropic interactions. One of the main tools for obtaining amplitudes and correlation times of molecular motions in the μs time scale is measuring relaxation rate R1ρ. Yet, there have been a couple of unresolved problems in the quantitative analysis of the relaxation rates. First, when the resonance offset of the spin-lock pulse is used, the spin-lock field can be oriented under an arbitrary angle in respect to B0. Second, the spin-lock frequency can be comparable or even less than the magic angle spinning rate. Up to now, there have been no equations for R1ρ that would be applicable for any values of the spin-lock frequency, magic angle spinning rate and resonance offset of the spin-lock pulse. In this work such equations were derived for two most important relaxation mechanisms: heteronuclear dipolar coupling and chemical shift anisotropy. The validity of the equations was checked by numerical simulation of the R1ρ experiment using SPINEVOLUTION program. In addition to that, the applicability of the well-known model-free approach to the solid state NMR relaxation data analysis was considered. For the wobbling in a cone at 30° and 90° cone angles and two-site jump models, it has been demonstrated that the auto-correlation functions G0(t), G1(t), G2(t), corresponding to different spherical harmonics, for isotropic samples (powders, polycrystals, etc.) are practically the same regardless of the correlation time of motion. This means that the model-free approach which is widely used in liquids can be equally applied, at least assuming these two motional

  18. Symmetry energy: nuclear masses and neutron stars

    NASA Astrophysics Data System (ADS)

    Pearson, J. M.; Chamel, N.; Fantina, A. F.; Goriely, S.

    2014-02-01

    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30MeV for the symmetry coefficient J , the corresponding root-mean square deviation being 0.549MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated ab initio our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.

  19. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  20. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  1. Nuclear Terrorism.

    SciTech Connect

    Hecker, Siegfried S.

    2001-01-01

    As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

  2. Kalman filter-based fast track reconstruction for charged particles in a Compressed Baryonic Matter experiment using parallel computing on a multicore server at the Laboratory of Information Technologies, Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T. O.; Zyzak, M. V.; Ivanov, V. V.; Kisel, P. I.

    2015-05-01

    One of the main goals in the Compressed Baryonic Matter (CBM) experiment (GSI, Germany) is to find parameters of charged particle trajectories. An online full event reconstruction is planned to be carried out in this experiment, thus demanding fast algorithms be developed, which make the most of the capabilities of modern CPU and GPU architectures. This paper presents the results of an analysis of the Kalman filter-based track reconstruction for charged particles implemented by using various code parallelization methods. A multicore server located at the Laboratory of Information Technologies, Joint Institute for Nuclear Research (LIT JINR), with two CPU Intel Xeon X5660 processors and a GPU Nvidia GTX 480 video card is used.

  3. Chromatin as active matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I.

    2017-01-01

    Active matter models describe a number of biophysical phenomena at the cell and tissue scale. Such models explore the macroscopic consequences of driving specific soft condensed matter systems of biological relevance out of equilibrium through ‘active’ processes. Here, we describe how active matter models can be used to study the large-scale properties of chromosomes contained within the nuclei of human cells in interphase. We show that polymer models for chromosomes that incorporate inhomogeneous activity reproduce many general, yet little understood, features of large-scale nuclear architecture. These include: (i) the spatial separation of gene-rich, low-density euchromatin, predominantly found towards the centre of the nucleus, vis a vis. gene-poor, denser heterochromatin, typically enriched in proximity to the nuclear periphery, (ii) the differential positioning of individual gene-rich and gene-poor chromosomes, (iii) the formation of chromosome territories, as well as (iv), the weak size-dependence of the positions of individual chromosome centres-of-mass relative to the nuclear centre that is seen in some cell types. Such structuring is induced purely by the combination of activity and confinement and is absent in thermal equilibrium. We systematically explore active matter models for chromosomes, discussing how our model can be generalized to study variations in chromosome positioning across different cell types. The approach and model we outline here represent a preliminary attempt towards a quantitative, first-principles description of the large-scale architecture of the cell nucleus.

  4. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  5. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  6. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  7. Nuclear Models

    NASA Astrophysics Data System (ADS)

    Fossión, Rubén

    2010-09-01

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  8. Resource Letter FNP-1: Frontiers of nuclear physics

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    2004-08-01

    This Resource Letter provides a bibliography of the current research activities in nuclear physics and also a guide for finding useful nuclear data. The major areas included are nuclear structure and reactions, symmetry tests, nuclear astrophysics, nuclear theory, high-density matter, and nuclear instrumentation.

  9. Gluon effects on the equation of state of color superconducting strange stars

    NASA Astrophysics Data System (ADS)

    Ferrer, E. J.; de la Incera, V.; Paulucci, L.

    2015-08-01

    Compact astrophysical objects are a window for the study of strongly interacting nuclear matter given the conditions in their interiors, which are not reproduced in a laboratory environment. Much has been debated about their composition with possibilities ranging from a simple mixture of mostly protons and neutrons to deconfined quark matter. Recent observations on the mass of two pulsars, PSR J 1614 -2230 and PSR J 0348 +0432 , have posed a great restriction on their composition, since the equation of state must be hard enough to support masses of about at least two solar masses. The onset of quarks tends to soften the equation of state, but it can get substantially stiffer since in the high-dense medium a repulsive vector interaction channel is opened. Nevertheless, we show that once gluon effects are considered, the equation of state of strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity becomes softer decreasing the maximum stellar mass that can be reached. This may indicate that strange stars made entirely of CFL matter can only be favored if other interactions, as the one corresponding to the vector channel, are taken into consideration and are large enough.

  10. Chiral symmetry in quarkyonic matter

    SciTech Connect

    Kojo, T.

    2012-05-15

    The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.

  11. Nuclear theory progress report, April 1991--April 1992

    SciTech Connect

    Not Available

    1992-07-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics. (LSP)

  12. Nuclear theory progress report, April 1991--April 1992

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics. (LSP)

  13. Initial value constraints with tensor matter

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2011-12-01

    In generally covariant metric gravity theories with tensor matter fields, the initial value constraint equations, unlike in general relativity, are in general not just the 0μ components of the metric field equation. This happens because higher derivatives can occur in the matter stress tensor. A universal form for these constraints is derived here from a generalized Bianchi identity that includes matter fields. As an application, the constraints for Einstein-aether theory are found.

  14. Equation poems

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.

    1996-05-01

    One of the most challenging goals of a physics teacher is to help students see that the equations of physics are connected to each other, and that they logically unfold from a small number of basic ideas. Derivations contain the vital information on this connective structure. In a traditional physics course, there are many problem-solving exercises, but few, if any, derivation exercises. Creating an equation poem is an exercise to help students see the unity of the equations of physics, rather than their diversity. An equation poem is a highly refined and eloquent set of symbolic statements that captures the essence of the derivation of an equation. Such a poetic derivation is uncluttered by the extraneous details that tend to distract a student from understanding the essential physics of the long, formal derivation.

  15. Penetration equations

    SciTech Connect

    Young, C.W.

    1997-10-01

    In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.

  16. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  17. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  18. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  19. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-20

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  20. Nuclear matter effects on J /ψ production in asymmetric Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.

    2014-12-01

    We report on J /ψ production from asymmetric Cu + Au heavy-ion collisions at √{sNN}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J /ψ yields in Cu + Au collisions in the Au-going direction is found to be comparable to that in Au + Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J /ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus.

  1. Infinite matter properties and zero-range limit of non-relativistic finite-range interactions

    NASA Astrophysics Data System (ADS)

    Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.

    2016-12-01

    We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin-orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin-orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.

  2. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA

    PubMed Central

    2010-01-01

    Background Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. Results We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. Conclusions We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions

  3. The nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Burgio, G. F.

    2016-11-01

    The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.

  4. Modeling nuclear processes by Simulink

    SciTech Connect

    Rashid, Nahrul Khair Alang Md

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  5. Modeling nuclear processes by Simulink

    NASA Astrophysics Data System (ADS)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  6. Study of ψ(2 S) production and cold nuclear matter effects in pPb collisions at sqrt{s_{NN}}=5 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.

    2016-03-01

    The production of ψ(2 S) mesons is studied in dimuon final states using proton-lead (pPb) collision data collected by the LHCb detector. The data sample corresponds to an integrated luminosity of 1 .6 nb-1. The nucleon-nucleon centre-of-mass energy of the pPb collisions is sqrt{s_{NN}}=5 TeV. The measurement is performed using ψ(2 S) mesons with transverse momentum less than 14 GeV/ c and rapidity y in the ranges 1 .5 < y < 4 .0 and -5 .0 < y < -2 .5 in the nucleon-nucleon centre-of-mass system. The forward-backward production ratio and the nuclear modification factor are determined for ψ(2 S) mesons. Using the production cross-section results of ψ(2 S) and J/ψ mesons from b-hadron decays, the boverline{b} cross-section in pPb collisions at sqrt{s_{NN}}=5 TeV is obtained. [Figure not available: see fulltext.

  7. Matter in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  8. Density-Dependent Relations among Properties of Hadronic Matter and Applications to Hadron-Quark Stars

    SciTech Connect

    Uechi, Hiroshi; Uechi, Schun T.

    2011-05-06

    Density-dependent relations among the saturation properties of symmetric nuclear matter and hyperonic matter, and properties of hadron-(strange) quark stars are shown by applying the conserving nonlinear {sigma}-{omega}-{rho} hadronic mean-field theory. Nonlinear interactions are renormalized self-consistently as effective coupling constants, effective masses, and sources of equations of motion by maintaining thermodynamic consistency to the mean-field approximation. Effective masses and coupling constants at the saturation point of symmetric nuclear matter simultaneously determine the binding energy and saturation properties of hyperonic matter. The coupling constants expected from the hadronic mean-field model and SU(6) quark model for the vector coupling constants are compared by calculating masses of hadron-quark neutron stars. The nonlinear {sigma}-{omega}-{rho} mean-field approximation with vacuum fluctuation corrections and strange quark matter defined by the MIT-bag model were employed to examine properties of hadron-(strange) quark stars. We found that hadron-(strange) quark stars become more stable at high densities compared to pure hadronic and strange quark stars.

  9. What the Sun Has Taught Us About Basic Properties of Matter

    SciTech Connect

    Basu, Sarbani

    2012-03-07

    The Sun is an immensely large object formed out of many tons of gas. Yet the Sun can help us learn about some of the basic properties of matter. The structure of the Sun is governed not only by macrophysics such as hydrostatic equilibrium, convective and radiative heat transport, but also by microphysics such as nuclear reaction rates and the equation of state of the material that forms the Sun. Knowledge of the detailed structure of the Sun can therefore help us constrain the basic properties of matter. Helioseismology, the study of solar pulsations, has given us the means to get a detailed picture of the solar interior. In this talk I shall discuss how helioseismology has allowed us to determine details of solar structure, and in turn allowing us to study basic properties of matter.

  10. Neutron matter from chiral two- and three-nucleon calculations up to N3LO

    NASA Astrophysics Data System (ADS)

    Drischler, C.; Carbone, A.; Hebeler, K.; Schwenk, A.

    2016-11-01

    Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all contributions are predicted up to next-to-next-to-next-to-leading order (N3LO ) in the chiral expansion. By making use of recent advances in the partial-wave decomposition of three-nucleon (3 N ) forces, we include for the first time N3LO 3 N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent Green's function theory (SCGF). Using these two complementary many-body frameworks we provide improved predictions for the equation of state of neutron matter at zero temperature and also analyze systematically the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the normal-ordering framework to finite temperatures. These developments open the way to improved calculations of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.

  11. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  12. Flavor Symmetry and Topology Change in Nuclear Symmetry Energy for Compact Stars

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Kyu; Rho, Mannque

    2013-03-01

    The nuclear symmetry energy figures crucially in the structure of asymmetric nuclei and, more importantly, in the equation of state (EoS) of compact stars. At present it is almost totally unknown, both experimentally and theoretically, in the density regime appropriate for the interior of neutron stars. Basing on a strong-coupled structure of dense baryonic matter encoded in the skyrmion crystal approach with a topology change and resorting to the notion of generalized hidden local symmetry in hadronic interactions, we address a variety of hitherto unexplored issues of nuclear interactions associated with the symmetry energy, i.e., kaon condensation and hyperons, possible topology change in dense matter, nuclear tensor forces, conformal symmetry, chiral symmetry, etc., in the EoS of dense compact-star matter. One of the surprising results coming from HLS structure that is distinct from what is given by standard phenomenological approaches is that at high density, baryonic matter is driven by renormalization group flow to the "dilaton-limit fixed point" constrained by "mended symmetries". We further propose how to formulate kaon condensation and hyperons in compact-star matter in a framework anchored on a single effective Lagrangian by treating hyperons as the Callan-Klebanov kaon-skyrmion bound states simulated on crystal lattice. This formulation suggests that hyperons can figure in the stellar matter — if at all — when or after kaons condense, in contrast to the standard phenomenological approaches where the hyperons appear as the first strangeness degree of freedom in matter, thereby suppressing or delaying kaon condensation. In our simplified description of the stellar structure in terms of symmetry energies, which is compatible with that of the 1.97 solar mass star, kaon condensation plays a role of "doorway state" to strange quark matter.

  13. Dense matter at RAON: Challenges and possibilities

    NASA Astrophysics Data System (ADS)

    Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman

    2016-11-01

    Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.

  14. Nuclear Regulatory Commission issuances

    SciTech Connect

    1996-03-01

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

  15. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  16. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  17. Beautiful equations

    NASA Astrophysics Data System (ADS)

    Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul

    2014-07-01

    In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).

  18. Insight into the composition and evolution of compost-derived dissolved organic matter using high-performance liquid chromatography combined with Fourier transform infrared and nuclear magnetic resonance spectra.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Li, Wen-Tao; Gao, Ru-Tai; Zhang, Hui; Tan, Wen-Bing; Huang, Cai-Hong

    2015-11-13

    Size exclusion chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) were combined with Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (NMR) based on two dimensional (2D) hetero-spectral correlation spectra techniques to fractionate compost-derived dissolved organic matter (DOM) and determine how size- and hydrophobicity-distinguished fractions differ in the composition and evolution. The results showed that the compost-derived DOM was comprised of protein- and humic-like species. The low apparent molecule weight (AMW) protein-like components were enriched in C-C=H3 and N-C=O, and showed more bioreactivity compared with the high AMW counterpart. The hydrophobic and hydrophilic protein-like components both consisted of CCH3 and N-C=O. However, the relatively hydrophilic protein-like components were more easily consumed. As to the humic-like species, the relatively hydrophilic components were slightly larger than the relatively hydrophobic ones. The high AMW and relatively hydrophilic humic-like components were high in C-H, OCH3, N-C=O, N-H, COO, O-H and aromatic C. The low AMW and relatively hydrophobic humic-like components were enriched in CCH3 and N-C=O, and were easily biodegraded during composting. 2D hetero-spectral correlation spectra techniques enhance the characterization of DOM and provide a promising way to elucidate the environmental behaviors of DOM.

  19. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  20. From dilute matter to the equilibrium point in the energy-density-functional theory

    NASA Astrophysics Data System (ADS)

    Yang, C. J.; Grasso, M.; Lacroix, D.

    2016-09-01

    Due to the large value of the scattering length in nuclear systems, standard density-functional theories based on effective interactions usually fail to reproduce the nuclear Fermi-liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in effective field theories for systems with large scattering lengths, a new energy-density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.

  1. Explicit integration of Friedmann's equation with nonlinear equations of state

    SciTech Connect

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong E-mail: gwg1@damtp.cam.ac.uk

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.

  2. Challenges in nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.

    2016-08-01

    The goal of nuclear structure theory is to build a comprehensive microscopic framework in which properties of nuclei and extended nuclear matter, and nuclear reactions and decays can all be consistently described. Due to novel theoretical concepts, breakthroughs in the experimentation with rare isotopes, increased exchange of ideas across different research areas, and the progress in computer technologies and numerical algorithms, nuclear theorists have been quite successful in solving various bits and pieces of the nuclear many-body puzzle and the prospects are exciting. This article contains a brief, personal perspective on the status of the field.

  3. Identification of highly deformed even-even nuclei in the neutron- and proton-rich regions of the nuclear chart from the B(E2)↑ and E2 predictions in the generalized differential equation model

    NASA Astrophysics Data System (ADS)

    Nayak, R. C.; Pattnaik, S.

    2015-11-01

    We identify here the possible occurrence of large deformations in the neutron- and proton-rich (n-rich and p-rich) regions of the nuclear chart from extensive predictions of the values of the reduced quadrupole transition probability B(E2)↑ for the transition from the ground state to the first 2+ state and the corresponding excitation energy E2 of even-even nuclei in the recently developed generalized differential equation (GDE) model exclusively meant for these physical quantities. This is made possible from our analysis of the predicted values of these two physical quantities and the corresponding deformation parameters derived from them such as the quadrupole deformation β2, the ratio of β2 to the Weisskopf single-particle β2(sp) and the intrinsic electric quadrupole moment Q0, calculated for a large number of both known as well as hitherto unknown even-even isotopes of oxygen to fermium (0 to FM; Z = 8-100). Our critical analysis of the resulting data convincingly support possible existence of large collectivity for the nuclides 30,32Ne,34Mg, 60Ti, 42,62,64Cr,50,68Fe, 52,72Ni, 72,70,96Kr,74,76Sr,78,80,106,108Zr, 82,84,110,112Mo, 140Te,144Xe, 148Ba,122Ce, 128,156Nd,130,132,158,160Sm and 138,162,164,166Gd, whose values of β2 are found to exceed 0.3 and even 0.4 in some cases. Our findings of large deformations in the exotic n-rich regions support the existence of another “island of inversion” in the heavy-mass region possibly caused by breaking of the N = 70 subshell closure.

  4. Imperfect Dark Matter

    SciTech Connect

    Mirzagholi, Leila; Vikman, Alexander E-mail: alexander.vikman@lmu.de

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  5. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  6. Literacy Matters.

    ERIC Educational Resources Information Center

    Macedo, Donaldo

    2003-01-01

    Suggests that in an era of excessive high-stakes testing and a blind embrace of "technicism," literacy not only matters, but may represent one of the last hopes to "salvage our already feeble democracy." Concludes that literacy matters if, and only if, it is viewed as a democratic right and as a human right. (SG)

  7. Changing Facets of Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Covello, Aldo

    2008-04-01

    -parity bands in [symbol]Ru and odd-parity doublets in [symbol]Mo / J. H. Hamilton ... [et al.]. Identification of levels in [symbol]Cs / E. F. Jones ... [et al.]. Nuclear structure at extreme conditions through gamma spectroscopy measurements / S. Leoni. Selection rules for the intra and interband transitions and quantum numbers for the triaxial rotor in odd-a nuclei / K. Sugawara-Tanabe and K. Tanabe. Collective bands in superdeformed nuclei / J. Kvasil ... [et al.]. Nuclear structure calculations in a large domain of excitation energy / Ch. Stoyanov and D. Tarpanov. Time-dependent density functional theory with Skyrme forces: description of giant resonances in deformed nuclei / J. Kvasil ... [et al.]. Finite rank approximation for Skyrme forces and effects of the particle-particle channel / A. P. Severyukhin, V. V. Voronov, and N. Van Giai. Low-lying of states in deformed nuclei / A. V. Sushkov, N. Lo Iudice, and N. Yu. Shirikova. New microscopic approach to multiphonon nuclear spectra / F. Andreozzi ... [et al.]. Variational equation for quantum number projection at finite temperature / K. Tanabe and H. Nakada. Thermal pairing in nuclei / N. Dinh Dang. Composite bosons and quasiparticles in a number conserving approach / F. Palumbo. Kinetic equation for nuclear response with pairing / V. I. Abrosimov ... [et al.]. Self-consistent quasiparticle RPA for multi-level pairing model / N. Quang Hung and N. Dinh Dang -- Section V. Special topics. The liquid-vapor phase diagram of infinite uncharged nuclear matter / L. G. Moretto, J. B. Elliott, and L. Phair. Bremsstrahlung accompanied [symbol] decay of [symbol]Po / H. Boie ... [et al.]. The coulomb dissociation of [symbol]B in the coulomb field and the validity of the CD method / M. Gai. Nuclear many-body physics where structure and reactions meet / N. Ahsan and A. Volya. Recent developments in the spectral fluctuations of nuclei, hadrons and other quantum systems / J. M. G. Gómez ... [et al.].

  8. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  9. Nuclear astrophysics and electron beams

    SciTech Connect

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  10. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  11. Equations of motion in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2015-06-01

    We make use of an effective field-theoretical approach to derive post-Newtonian equations of motion of hydrodynamical inhomogeneities in cosmology. The matter Lagrangian for the perturbed cosmological model includes dark matter, dark energy, and ordinary baryonic matter. The Lagrangian is expanded in an asymptotic Taylor series around a Friedmann-Lemaître-Robertson-Walker background. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the expansion series is gauge-invariant and all of them together form a basis for the successive post-Newtonian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Newtonian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background metric. Temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large-scale inhomogeneities of matter as those generated by the primordial cosmological perturbations in these two components with δρ/ρ ≤ 1. The small scale inhomogeneities are generated by the baryonic matter which is considered as a bare perturbation of the background gravitational field, dark matter and energy. Mathematically, the large scale structure inhomogeneities are given by the homogeneous solution of the post-Newtonian equations while the small scale inhomogeneities are described by a particular solution of these equations with the stress-energy tensor of the baryonic matter that admits δρ/ρ ≫ 1. We explicitly work out the field equations of the first post-Newtonian approximation in cosmology and derive the post-Newtonian equations of motion of the large and small scale inhomogeneities which generalize the covariant law of conservation of stress-energy-momentum tensor of matter in asymptotically-flat spacetime.

  12. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  13. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  14. Interaction of Radiation with Matter

    SciTech Connect

    Rickards, J.

    2010-09-10

    A flash introductory course in the interaction of ionizing radiation with matter is presented for students starting out in nuclear physics, medical applications of radiation, materials modification, radiation damage, detectors, materials analysis, radiation protection, and other applications. Emphasis is on defining basic concepts and on a simple visualization of ideas for practical applications, rather than on completeness or rigor.

  15. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  16. Plasma, The Fourth State of Matter

    ERIC Educational Resources Information Center

    Zandy, Hassan F.

    1970-01-01

    Discusses plasma as a source of energy through nuclear fission processes, as well as the difficulties encountered in such a process. States that 99 percent of the matter in the universe is plasma, and only 1 percent is the common three states of matter. Describes the fundamental properties of plasma, plasma "pinch, and plasma oscillations. (RR)

  17. Nuclear astrophysics of supernovae

    SciTech Connect

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

  18. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  19. Strong and Electroweak Matter 2004

    NASA Astrophysics Data System (ADS)

    Eskola, Kari J.; Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari

    RHIC experimental summary: the message from pp, d+Au and Au+Au collisions / M. Calderón de la Barca Sánchez -- Hydrodynamic aspects of relativistic heavy ion collisions at RHIC / P. F. Kolb -- Photon emission in a hot QCD plasma / P. Aurenche -- In search of the saturation scale: intrinsic features of the CGC / H. Weigert -- From leading hadron suppression to jet quenching at RHIC and LHC / U. A. Wiedemann -- Lattice simulations with chemical potential / C. Schmidt -- Mesonic correlators in hot QCD / M. Laine -- Thermalization and plasma instabilities / P. Arnold -- Transport coefficients in hot QCD / G. D. Moore -- Classical fields and heavy ion collisions / T. Lappi -- Progress in nonequilibrium quantum field theory II / J. Berges and J. Serreau -- A general effective theory for dense quark matter / P. T. Reuter, Q. Wang and D. H. Rischke -- Thermal leptogenesis / M. Plümacher -- Cold electroweak Baryogenesis / J. Smit -- Proton-nucleus collisions in the color glass condensate framework / J.-P. Blaizot, F. Gelis and R. Venugopalan -- From classical to quantum saturation in the nuclear wavefunction / D. N. Triantafyllopoulos -- Charge correlations in heavy ion collisions / A. Rajantie -- Whitening of the quark-gluon plasma / S. Mrówczyński -- Progress in anisotropic plasma physics / P. Romatschke and M. Strickland -- Deconfinement and chiral symmetry: competing orders / K. Tuominen -- Relation between the chiral and deconfinement phase transitions / Y. Hatta -- Renormalized Polyakov loops, matrix models and the Gross-Witten point / A. Dumitru and J. T. Lenaghan -- The nature of the soft excitation at the critical end point of QCD / A. Jakovác ... [et al.] -- Thermodynamics of the 1+1-dimensional nonlinear sigma model through next-to-leading order in 1/N / H. J. Warringa -- Light quark meson correlations at high temperature / E. Laemann ... [et al.] -- Charmonia at finite momenta in a deconfined plasma / S. Datta ... [et al.] -- QCD thermodynamics: lattice

  20. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

    SciTech Connect

    Todd-Rutel, B.G.; Piekarewicz, J.

    2005-09-16

    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer--both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in {sup 208}Pb of R{sub n}-R{sub p}=0.21 fm. The impact of such a softening on various neutron-star properties is also examined.

  1. White Matter Glial Pathology in Autism

    DTIC Science & Technology

    2014-09-01

    The majority of total nuclear-encoded non-ribosomal RNA in a human cell is “ dark matter ” un-annotated RNA. BMC Biol. 8, 149 (2010). 9. Ginsberg, S...DATE September 2014 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2013 - 31 Aug 2014 4. TITLE AND SUBTITLE White Matter Glial Pathology in...stages of preparation due to poor sample quality factors such as low RIN or insufficient sequencing reads. Superficial white matter was laser

  2. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  3. DRIFT: a directionally sensitive dark matter detector

    NASA Astrophysics Data System (ADS)

    Morgan, Ben; Drift; Uk Dark Matter Collaborations

    2003-11-01

    Directional Recoil Identification From Tracks-I (DRIFT) is the world's first WIMP dark matter detector with sensitivity to the directions of nuclear recoils. The distribution of WIMP induced nuclear recoil directions offers the most powerful way of positively identifying a WIMP signal. This paper discusses the DRIFT-I detector and considers future high spatial resolution readout schemes.

  4. Exclusive study of nuclear collisions at the AGS

    SciTech Connect

    Rai, G.; E895 Collaboration

    1993-08-01

    We propose to carry out a systematic and exclusive measurement of the energy and mass dependence of particle production, correlations and collective effects in Au+Au collisions. We wish to determine the highest compression achievable in nuclear matter and to study its properties. We shall search for evidence for an exotic Equation of State, that is, new physics such as Resonance Matter, Exotica, and QGP. We are also interested in signatures of critical phenomena in dilute nuclear matter. We propose to measure the four-momentum of light mass particles ({pi}{sup {plus_minus}}, K{sub s}{sup 0}, K{sup {plus_minus}}, {Lambda}, n,p,d, {sup 3}He, {sup 4}He, {sup 6}He, and the isotopes of Li and Be), projectile fragments from Z = 6 to Z = 79, and anti-proton production. The majority of the data will be acquired, on an event by event basis, from a state-of-the-art Time Projection Chamber (EOSTPC) built and used at LBL by the EOC collaboration. The TPC provides continuous tracking, almost 4{pi} acceptance and particle identification for the light mass particles.

  5. Nuclear Cluster Physics

    SciTech Connect

    Kamimura, Masayasu

    2011-05-06

    Predictive power of theory needs good models and accurate calculation methods to solve the Schroedinger equations of the systems concerned. We present some examples of successful predictions based on the nuclear cluster models of light nuclei and hypernuclei and on the calculation methods that have been developed by Kyushu group.

  6. Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation

    SciTech Connect

    Zhang, Z. W.; Shen, H.

    2014-06-20

    We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ρ {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.

  7. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  8. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  9. Constraining the Symmetry Parameters of the Nuclear Interaction

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.; Lim, Yeunhwan

    2013-07-01

    One of the major uncertainties in the dense matter equation of state has been the nuclear symmetry energy. The density dependence of the symmetry energy is important in nuclear astrophysics, as it controls the neutronization of matter in core-collapse supernovae, the radii of neutron stars and the thicknesses of their crusts, the rate of cooling of neutron stars, and the properties of nuclei involved in r-process nucleosynthesis. We show that fits of nuclear masses to experimental masses, combined with other experimental information from neutron skins, heavy ion collisions, giant dipole resonances, and dipole polarizabilities, lead to stringent constraints on parameters that describe the symmetry energy near the nuclear saturation density. These constraints are remarkably consistent with inferences from theoretical calculations of pure neutron matter, and, furthermore, with astrophysical observations of neutron stars. The concordance of experimental, theoretical, and observational analyses suggests that the symmetry parameters Sv and L are in the range 29.0-32.7 MeV and 40.5-61.9 MeV, respectively, and that the neutron star radius, for a 1.4 M ⊙ star, is in the narrow window 10.7 km

  10. Reconciling MOND and dark matter?

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Liberati, Stefano; Sindoni, Lorenzo; Famaey, Benoit

    2009-03-01

    Observations of galaxies suggest a one-to-one analytic relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass, a relation summarized by Milgrom's law of modified Newtonian dynamics (MOND). However, present-day covariant versions of MOND usually require some additional fields contributing to the geometry, as well as an additional hot dark matter component to explain cluster dynamics and cosmology. Here, we envisage a slightly more mundane explanation, suggesting that dark matter does exist but is the source of MOND-like phenomenology in galaxies. We assume a canonical action for dark matter, but also add an interaction term between baryonic matter, gravity, and dark matter, such that standard matter effectively obeys the MOND field equation in galaxies. We show that even the simplest realization of the framework leads to a model which reproduces some phenomenological predictions of cold dark matter (CDM) and MOND at those scales where these are most successful. We also devise a more general form of the interaction term, introducing the medium density as a new order parameter. This allows for new physical effects which should be amenable to observational tests in the near future. Hence, this very general framework, which can be furthermore related to a generalized scalar-tensor theory, opens the way to a possible unification of the successes of CDM and MOND at different scales.

  11. Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.

    PubMed

    Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J

    2014-10-31

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414  MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414  MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).

  12. Cool Quark Matter.

    PubMed

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  13. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    SciTech Connect

    Arcones, Almudena; Escher, Jutta E.; Others, M.

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  14. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  15. Implications of tachyon-like matter for superdense stars.

    NASA Technical Reports Server (NTRS)

    Bhatia, M. S.; Pande, L. K.

    1972-01-01

    Derivation of a new equation of state of superdense matter by treating superdense matter as a perfect, degenerate tachyon gas. Model calculations for superdense stars based on this equation of state are presented. By appropriately choosing a certain parameter, dynamical stability can be achieved for arbitrarily large central densities. Also, a somewhat larger than usual value for the maximum mass is obtained.

  16. 10 CFR 4.44 - Resolution of matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Resolution of matters. 4.44 Section 4.44 Energy NUCLEAR... matters. (a) If an investigation pursuant to § 4.43 indicates a failure to comply with this subpart, the responsible NRC official will so inform the recipient and the matter will be resolved by voluntary...

  17. 10 CFR 4.44 - Resolution of matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Resolution of matters. 4.44 Section 4.44 Energy NUCLEAR... matters. (a) If an investigation pursuant to § 4.43 indicates a failure to comply with this subpart, the responsible NRC official will so inform the recipient and the matter will be resolved by voluntary...

  18. 10 CFR 4.44 - Resolution of matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Resolution of matters. 4.44 Section 4.44 Energy NUCLEAR... matters. (a) If an investigation pursuant to § 4.43 indicates a failure to comply with this subpart, the responsible NRC official will so inform the recipient and the matter will be resolved by voluntary...

  19. 10 CFR 4.44 - Resolution of matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Resolution of matters. 4.44 Section 4.44 Energy NUCLEAR... matters. (a) If an investigation pursuant to § 4.43 indicates a failure to comply with this subpart, the responsible NRC official will so inform the recipient and the matter will be resolved by voluntary...

  20. 10 CFR 4.44 - Resolution of matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Resolution of matters. 4.44 Section 4.44 Energy NUCLEAR... matters. (a) If an investigation pursuant to § 4.43 indicates a failure to comply with this subpart, the responsible NRC official will so inform the recipient and the matter will be resolved by voluntary...

  1. Thermal conductivity of color-flavor-locked quark matter

    SciTech Connect

    Braby, Matt; Chao Jingyi; Schaefer, Thomas

    2010-04-15

    We compute the thermal conductivity of color-flavor-locked (CFL) quark matter. At temperatures below the scale set by the gap in the quark spectrum, transport properties are determined by collective modes. In this work we focus on the contribution from the lightest modes, the superfluid phonon and the massive neutral kaon. The calculation is done in the framework of kinetic theory, using variational solutions of the linearized Boltzmann equation. We find that the thermal conductivity owing to phonons is kappa{sup (P)}approx1.04x10{sup 26} mu{sub 500}{sup 8}DELTA{sub 50}{sup -6} erg cm{sup -1} s{sup -1} K{sup -1} and the contribution of kaons is kappa{sup (K)}approx2.81x10{sup 21} f{sub p}i{sub ,100}{sup 4}T{sub MeV}{sup 1/2}m{sub 10}{sup -5/2} erg cm{sup -1} s{sup -1} K{sup -1}. These values are smaller than previous estimates but still much larger than (in the case of phonons) or similar to (for kaons) the corresponding values in nuclear matter. From the phonon thermal conductivity we estimate that a CFL quark matter core of a compact star becomes isothermal on a time scale of a few seconds.

  2. Numerical optimization using flow equations.

    PubMed

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  3. Numerical optimization using flow equations

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  4. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1991-01-01

    The influence of a high magnetic field (B is greater than 10 exp 12 G) on the degenerate matter equation of state appropriate to a neutron star is studied. The regime dominated by relativistic electrons up to the neutron drip density is highlighted. The equilibrium matter composition and equation of state, allowing for inverse beta-decay. Two different equilibrium models are determined: an ideal neutron-proton-electron (npe) gas and the more realistic model of Baym, Pethick, and Sutherland (1971) consisting of a Coulomb lattice of heavy nuclei embedded in an electron gas. For a sufficiently high field strength, the magnetic field has an appreciable effect, changing the adiabatic index of the matter and the nuclear transition densities. The influence of a strong field on some simple nonequilibrium processes, including beta-decay and inverse beta-decay (electron capture) is also considered. The effects produced by the magnetic field are mainly due to the changes in the transverse electron quantum orbits and the allowed electron phase space induced by the field.

  5. FOREWORD: Nuclear Physics in Astrophysics V

    NASA Astrophysics Data System (ADS)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    the conference dinner banquet at the Dan hotel. An excursion to the 'Red Canyon' in the Eilat Mountains on Wednesday afternoon was one of the social highlights of the conference. A total number of 140 scientists attended NPA5 and about 30 accompanying persons; about 25% of these were young participants (less than 36 years old). 23 participants were from Israel, and 27 were from outside of Europe (including two from Africa). The subjects covered at the conference in Eilat concentrated mainly on the spirit of the original idea - to probe experimental and theoretical activity in nuclear structure and reactions that is directly related to the physics of the Universe. There were also sessions of general interest in astrophysics, as well as a poster session on Tuesday evening featuring 40 posters. The topics included: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis, Radioactive Beams and Exotic Nuclei-New Facilities and Future Possibilities for Astrophysics Neutrino Physics - the Low and High-Energy Frontiers Rare events, Dark Matter, Double beta-decay, Symmetries The conference started with an excellent exposé of the progress made in the discovery of super-heavy elements and the study of their properties. The progress in this field is enormous, and this subject should be communicated to more general audiences. The role of the nuclear equation of state and of the precise determination of nuclear masses in nucleosynthesis was emphasized in several talks. The role of neutrinos in astrophysics was discussed extensively in several sessions. One of the highlights of this was the presentation about the IceCube and DeepCore detectors operating deep in the Antarctic ice. These facilities are able to detect cosmogenic neutrinos in a wide energy range, from 10 GeV to 1010 GeV. The subject of solar neutrinos was discussed in a number of talks. Topics related to properties

  6. DAMIC: a novel dark matter experiment

    SciTech Connect

    Tiffenberg, Javier; Bertou, Xavier; Butner, Melissa J.; Cancelo, Gustavo; Chavarria, Alvaro; D'Olivo, Juan Carlos; Estrada Vigil, Juan Cruz; Moroni, Guillermo Fernandez; Izraelevitch, Federico; Kilminster, Ben; Lawson, Ian T.; Marsal, Fernando; Molina, Jorge; Privitera, Paolo; Schwarz, Tom; Sofo haro, Miguel; Tiffenberg, Javier; Trillaud, Frederic; Zhou, Jing

    2013-10-24

    DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.

  7. Hourly atmospheric concentrations of Cs-134 and Cs-137 at monitoring stations for suspended particulate matter in and south of Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2013-04-01

    No data has been found of continuous monitoring of radioactive materials in the atmosphere in Fukushima area after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident on March 11, 2011, although it greatly contributes to accurate evaluation of the internal exposure dose, to reconstruction of emission time series of released radionuclides, and to validation of numerical simulations by atmospheric transport models. Then, we have challenged to retrieve the radioactivity in atmospheric aerosols collected every hour on a filter tape of Suspended Particulate Matter (SPM) monitoring system with beta ray attenuation method used at air pollution monitoring stations in east Japan. A test measurement for hourly atmospheric concentrations of Cs-134 and Cs-137 was successfully performed with a Ge detector for the used filter tapes during March 15-23, 2011, at three stations in Fukushima City 60 km northwest of the FD1NPP and four stations in southwest Ibaraki prefecture more than 150 km southwest of the FD1NPP. The data in Fukushima City revealed high Cs-137 concentrations of 10-30 Bq m-3 from the evening of March 15 to the early morning of March 16, when a large amount of radioactive materials was simultaneously deposited on the land surface by precipitation according to the measurement of radiation dose rate. Higher Cs-137 concentrations of 10-50 Bq m-3 were also found from the afternoon of March 20 to the morning of March 21, and which could not be detected by the radiation dose rate due to no precipitation. In contrast, much higher concentrations with the maximum of 320 Bq m-3 in southwest Ibaraki than in Fukushima City were found on the morning of March 15 and 21 under strong temperature inversion near the surface. The polluted air masses with high radioactive materials were passed away within a few hours as a plume in southwest Ibaraki, while the high Cs-137 concentrations lasted for 10-16 hours in Fukushima City where the polluted air masses after their transport

  8. Guidance Matters

    ERIC Educational Resources Information Center

    Gartrell, Dan

    2006-01-01

    Conflicts happen all the time in early childhood classrooms--and just about everywhere else in life. Conflict management includes the ability to: (1) prevent conflicts from becoming too serious to resolve easily and (2) resolve conflicts peaceably no matter how serious they get. When a third person assists others in resolving a conflict, this is…

  9. Changes Matter!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  10. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  11. Relaxation of the Chiral Chemical Potential in the Dense Matter of a Neutron Star

    NASA Astrophysics Data System (ADS)

    Dvornikov, M. S.

    2017-03-01

    A model of the generation of a magnetic field in a neutron star is developed, based on an instability of the magnetic field caused by the electroweak interaction between electrons and nucleons in nuclear matter. The rate of change of the helicity of electrons as they scatter on protons in the dense matter of a neutron star is calculated with the help of methods of quantum field theory. The influence of the electroweak interaction between electrons and background nucleons on the process of change of the helicity is examined. A kinetic equation is derived for the evolution of the chiral chemical potential. The results obtained are used to describe the evolution of the magnetic field in magnetars.

  12. Advanced nuclear propulsion technologies

    SciTech Connect

    Cassenti, B.N. )

    1991-01-01

    Advanced nuclear propulsion can take on several forms. Radioactive thrust sheets directly use the decay of radioactive nuclei to provide propulsion. The fissioning of nuclei has been extensively studied for propulsion both analytically and experimentally. Fusion has been analytically examined as a means of providing propulsion during the last few decades. In the last decade, serious attention has been given to the direct annihilation of matter. Each of these technologies is discussed in this paper with the greatest emphasis on antiproton annihilation propulsion.

  13. Warm Dense Matter: Another Application for Pulsed Power Hydrodynamics

    DTIC Science & Technology

    2009-06-01

    developing, and validating extended, or new, computational models that describe material equation -of- state , constitutive properties, and the behavior of...the properties of warm dense matter such as equation of state , viscosity, conductivity is an emerging area of study focused on the behavior of matter...M.W.C. Dharma-wardana, J. Benage, “Possibility of an unequivocal test of different models of the equation of state of aluminum in the coupling regime

  14. Old Neutron Stars as Probes of Isospin-Violating Dark Matter

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Sun, Kai-Jia; Chen, Lie-Wen

    2015-02-01

    Isospin-violating dark matter (IVDM), which couples differently with protons and neutrons, provides a promising mechanism to ameliorate the tension among recent direct detection experiments. Assuming dark matter (DM) is non-interacting bosonic asymmetric IVDM, we investigate how the existence of old neutron stars limits the DM-proton scattering cross-section {{σ }p}, especially the effects of the isospin-violating DM-nucleon interactions and the symmetry energy in the equation of state (EOS) of isospin asymmetric nuclear matter. Our calculations are completely based on general relativity and the structure of neutron stars is obtained by solving the Tolman-Oppenheimer-Volkoff equations with nuclear matter EOS constrained by terrestrial experiments. We find that, by considering the more realistic neutron star model rather than a simple uniform neutron sphere as usual, the {{σ }p} bounds from old neutron stars can be varied by more than an order of magnitude depending on the specific values of the DM neutron-to-proton coupling ratio {{f}n}/{{f}p}, and they can be further varied by more than a factor of two depending on the density dependence of the symmetry energy. In particular, we demonstrate that the observed nearby isolated old neutron star PSR B1257+12 can set a very strong limit on {{σ }p} for low-mass DM particles (≤slant 20 GeV) that reaches a sensitivity beyond the current best limits from direct detection experiments and disfavors the DM interpretation of previously reported positive experimental results, including the IVDM.

  15. Thermal effects on nuclear symmetry energy with a momentum-dependent effective interaction

    SciTech Connect

    Moustakidis, Ch. C.

    2007-08-15

    The knowledge of the nuclear symmetry energy of hot neutron-rich matter is important for understanding the dynamical evolution of massive stars and the supernova explosion mechanisms. In particular, the electron capture rate on nuclei and/or free protons in presupernova explosions is especially sensitive to the symmetry energy at finite temperature. In view of the above, in the present work we calculate the symmetry energy as a function of the temperature for various values of the baryon density by applying a momentum-dependent effective interaction. In addition to a previous work, the thermal effects are studied separately both in the kinetic part and the interaction part of the symmetry energy. We focus also on the calculations of the mean-field potential, employed extensively in heavy-ion reaction research, both for nuclear and pure neutron matter. The proton fraction and the electron chemical potential, which are crucial quantities for representing the thermal evolution of supernova and neutron stars, are calculated for various values of the temperature. Finally, we construct a temperature dependent equation of state of {beta}-stable nuclear matter, the basic ingredient for the evaluation of the neutron star properties.

  16. Diquark abundance in stellar matter

    SciTech Connect

    Horvath, J.E.; de Freitas Pacheco, J.A.; de Araujo, J.C.N. )

    1992-11-15

    The clustering of quarks into pairs (diquarks) has been suggested recently to play an important role in dense matter and its astrophysical realization in neutron-star cores. We address in this work the features of diquark matter by employing an accurate equation of state valid for the effective {lambda}{phi}{sup 4} diquark theory, and find milder (although non-negligible) effects than in previous calculations. Some considerations on the very presence of a diquark-dominated region immediately above the deconfinement density are also given.

  17. Quark matter with strong magnetic field and possibility of the third family of compact stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Tatsumi, Toshitaka

    2017-01-01

    We consider the possibility for the existence of the third family of compact objects, considering the effect of strong magnetic fields inside the hybrid stars. As a result, we demonstrate such new sequences of stable equilibrium configurations for some hadronic equations of state. Through the analysis of the adiabatic index inside stars, we find the conditions for appearing the third family of compact objects, i.e., for hadronic stars without quarks, that the maximum mass should be small, the central density for the maximum mass should be also small, and the radius for the the maximum mass should be large. Even for soft hadronic equations of state, the two solar-mass stars might survive as the third family of compact objects, once quark matter with strong magnetic field, such as ˜ O(10^{19} G), is taken into account. It might give a hint to solve the so-called hyperon puzzle in nuclear physics.

  18. Hadrons in the Nuclear Medium

    SciTech Connect

    Misak Sargsian; G.A. Miller; John Arrington; William Bertozzi; Werner Boeglin; Carl Carlson; Donal Day; Leonid Frankfurt; Kim Egiyan; Rolf Ent; Shalev Gilad; Keith Griffioen; Douglas Higinbotham; Sebastian Kuhn; Wally Melnitchouk; Eliezer Piasetzky; Stepan Stepanyan; Mark Strikman; Lawrence Weinstein

    2002-10-01

    Quantum Chromodynamics, the microscopic theory of strong interactions, has not yet been applied to the calculation of nuclear wave functions. However, it certainly provokes a number of specific questions and suggests the existence of novel phenomena in nuclear physics which are not part of the traditional framework of the meson-nucleon description of nuclei. Many of these phenomena are related to high nuclear densities and the role of color in nucleonic interactions. Quantum fluctuations in the spatial separation between nucleons may lead to local high density configurations of cold nuclear matter in nuclei, up to four times larger than typical nuclear densities. We argue here that experiments utilizing the higher energies available upon completion of the Jefferson Laboratory energy upgrade will be able to probe the quark-gluon structure of such high density configurations and therefore elucidate the fundamental nature of nuclear matter. We review three key experimental programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic scattering from nuclei at x>1, and the measurement of tagged structure functions. These interrelated programs are all aimed at the exploration of the quark structure of high density nuclear configurations. The study of the QCD dynamics of elementary hard processes is another important research direction and nuclei provide a unique avenue to explore these dynamics. We argue that the use of nuclear targets and large values of momentum transfer at would allow us to determine whether the physics of the nucleon form factors is dominated by spatially small configurations of three quarks.

  19. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  20. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.