Sample records for nuclear medicine scan

  1. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear medicine...

  2. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear medicine...

  3. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear medicine...

  4. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear medicine...

  5. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear medicine...

  6. A study of professional radiation hazards in CT scan and nuclear medicine workers using GTG-banding and solid stain.

    PubMed

    Changizi, Vahid; Alizadeh, Mohammad Hossein; Mousavi, Akbar

    2015-01-01

    CT scan and nuclear medicine exams deliver a great part of medical exposures. This study examined professional radiation hazards in CT scan and nuclear medicine workers. In a cross sectional study 30 occupationally exposed workers and 7 controls (all from personnel of a laboratory) were selected. Physical dosimetry was performed for exposed workers. Blood samples were obtained from the experimental and control groups. Three culture mediums for each one were prepared in due to routine chromosome analysis using G-banding and solid stain. There were significant increased incidence of chromatid gap (ctg) and chromatid break (ctb) with mean±SD frequencies of 3±0.84 and 3.1±1.40 per 100 cells respectively in the nuclear medicine workers versus controls with mean±SD frequencies of 1.9±0.69 and 1.3±0.84 for ctg and ctb, respectively. Chromosome gaps (chrg) were higher significantly in the nuclear medicine population (2.47±0.91) than in controls (1.4±0.9) (p< 0.05). In CT scan group the ctg and ctb were increased with a mean±SD frequency of 2.7±0.79 and 2.6±0.91 per 100 cells respectively compared with control group. The mean±SD frequencies of the chrb were 2.0±0.75 and 0.86±0.690 per 100 cells for exposed workers and control group, respectively. This study showed chromosome aberrations in peripheral lymphocytes using solid stain method are reasonable biomarker reflecting personnel radiation damage.

  7. Utilization of nuclear medicine scintigraphy in Taiwan, 1997-2009.

    PubMed

    Hung, Mao-Chin; Hsieh, Wanhua Annie; Chang, Peter Wushou; Hwang, Jeng-Jong

    2011-12-01

    To analyze the utilization of nuclear medicine scintigraphy in the Taiwanese population within the national health-care system between 1997 and 2009. Based on the Taiwan's National Health Insurance Research Database of 1997-2009, a retrospective population-based analysis was conducted. Descriptive statistics and regression analysis were employed to analyze the frequencies and longitudinal trends in the utilization of diagnostic nuclear medicine procedures during the period. In addition, correlation analysis was applied to determine the correlated factors in the utility of nuclear medicine scintigraphy. The annual total nuclear medicine scintigraphy was estimated to be 256,389 on average in 1997-2009 and 11.7 per 1,000 population over the period. The frequency had increased by 67% over the years, from 8.2 per 1,000 population in 1997 to 13.7 per 1,000 population in 2009. The most frequently performed procedures were whole-body bone scans (33.4% of total) and myocardial perfusion scans (29.4% of total), with 4,615 and 5,620 increments per year, respectively. Most patients were in the age group of 41-65 years old when taking examinations. In addition, male subjects were slightly more than female patients (51.5 vs. 48.5%). Furthermore, the frequencies of whole-body bone scans and PET scans were proportional to the incidences of cancers (correlation coefficients were 0.96 and 0.94, respectively). The utilization of nuclear medicine scintigraphy with the National Health Insurance system in Taiwan has been changed considerably in the past 13 years. Both whole-body bone scan and myocardial perfusion scan were performed most often with significantly increases. The trend of nuclear medicine scintigraphy may have potential impact on making health-care policy in Taiwan.

  8. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  9. Radiation safety audit of a high volume Nuclear Medicine Department.

    PubMed

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-10-01

    Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.

  10. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  11. A Set of Image Processing Algorithms for Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng

    2007-06-01

    Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.

  12. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  13. Thyroid scan

    MedlinePlus

    ... thyroid; Radioactive iodine uptake and scan test - thyroid; Nuclear scan - thyroid ... the test. Ask your provider or the radiology/nuclear medicine team performing the scan about taking precautions.

  14. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  15. Nucleology, nuclear medicine, molecular nuclear medicine and subspecialties.

    PubMed

    Grammaticos, Philip C

    2005-01-01

    Henry N. Wagner Jr started the presentation of the highlights of the 39th Annual Meeting of the Society of Nuclear Medicine by quoting: "The economist JM Keynes said: "the difficult lies not in new ideas but in escaping from the old ones". Many changes have taken place in the actual term describing our specialty during the last 15 years. Cardiologists have adopted an important chapter of nuclear medicine and to describe that they use the term of "nuclear cardiology". Radiologists have proposed the term "radionuclide radiology". "Nuclear endocrinology", "nuclear oncology", "nuclear nephrology" may be considered as terms describing chapters of nuclear medicine related to other specialties. Will that indicate that our specialty will be divided into smaller chapters and be offered to colleagues working in other specialties leaving to us the role of the supervisor or perhaps the radioprotection officer for in vivo studies? Of course this role is now being exercised by our colleagues in medical physics. It is suggested to use the word " nucleology", instead of "nuclear medicine" where "nuclear" is used as an adjective. Thus, we will avoid being part of another specialty and cardiologists would use the term cardiac nucleology where "cardiac" is the adjective. The proposed term "nucleology" as compared to the existing term "nuclear medicine" has the advantage of being simpler, correct from the grammar point of view and not related to combined terms that may seem to offer part of our specialty to other specialties. At present our specialty faces many problems. The term "nucleology" supports our specialty from the point of view of terminology. During the 3rd International Meeting of Nuclear Medicine of N. Greece which was held in Thessaloniki, Macedonia, Greece on 4-6 November 2005, a discussion arose among participants as to whether the name of "nucleology" could replace the existing name of "nuclear medicine". Finally, a vote (between "yes" and "no") for the new proposed

  16. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  17. Converting energy to medical progress [nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biologicalmore » research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.« less

  18. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  19. A profile of Australian nuclear medicine technologist practice.

    PubMed

    Adams, Edwina J; Cox, Jennifer M; Adamson, Barbara J; Schofield, Deborah J

    2008-01-01

    Nuclear medicine in Australia has encountered significant change over the past 30 years, with a move to privately owned practices, technological advances and the transfer of education of the nuclear medicine technologist (NMT) from technical college apprenticeships to university degrees. Currently, shortages of nuclear medicine technologists are reported in some states of Australia. It is not known whether changes in NMT practice or the type of centre in which an NMT works have an influence on retention of staff. The primary objective of this survey was to establish a profile of NMT practice in Australia, with the aim of producing baseline data that could be used in further research to establish levels of retention and job satisfaction. Chief technologists in three states of Australia were invited to respond to a written questionnaire. The questionnaire included data about staffing levels, imaging modalities, procedures performed, and movement of staff. Findings presented will relate to the profile of practice data only. Forty-eight (54%) chief technologists responded to the questionnaire with 73% working in privately owned practices. The majority of centres employ up to two full-time equivalent nuclear medicine technologists and have two gamma cameras and one full-time equivalent nuclear medicine physician. Most centres perform a limited range of studies with bone scans predominating. More than half the centres make some use of a centralized radiopharmacy service. Further research is required to determine how these changes may impact on workplace satisfaction and in turn, on retention.

  20. Diagnostic Nuclear Medicine for Paediatric Patients in Australia: Assessing the Individual's Dose Burden.

    PubMed

    Bartlett, Marissa L; Forsythe, Anna; Brady, Zoe; Mathews, John D

    2018-05-01

    We report data for all Australians aged 0-19 y who underwent publicly funded nuclear medicine studies between 1985 and 2005, inclusive. Radiation doses were estimated for individual patients for 95 different types of studies. There were 374 848 occasions of service for 277 511 patients with a collective effective dose of 1123 Sievert (Sv). Most services were either bone scans (45%) or renal scans (29%), with renal scans predominating at younger ages and bone scans at older ages. This pattern persisted despite a 4-fold increase in the annual number of procedures. Younger children were more likely to experience multiple scans, with the third quartile of scans per patient dropping from two to one with patient age. The median effective dose per patient ranged from 1.3 mSv (4-7 y old) to 2.8 mSv (13-16 y old). This large data set provides valuable information on nuclear medicine services for young Australians in the period 1985-2005.

  1. Essentials of nuclear medicine science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladik, W.B. III; Saha, G.B.; Study, K.T.

    1987-01-01

    This book contains 26 chapters. Some of the titles are: Normal Biodistribution of Diagnostic Radiopharmaceuticals; Radiopharmacokinetics in Nuclear Medicine; Nuclear Medicine Procedures for Monitoring Patient Therapy; Animal Models of Human Disease; Patient Preparation for Nuclear Medicine Studies; and Interventional Studies in Nuclear Medicine.

  2. Radiation exposure to sonographers from nuclear medicine patients: A review.

    PubMed

    Earl, Victoria Jean; Badawy, Mohamed Khaldoun

    2018-06-01

    Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.

  3. Radiation Safety in Nuclear Medicine Procedures.

    PubMed

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  4. Fundamentals of nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  5. Trends in radiation exposure from clinical nuclear medicine procedures in Shanghai, China.

    PubMed

    Yi, Yanling; Zheng, Junzheng; Zhuo, Weihai; Gao, Linfeng

    2012-03-01

    This study was designed to assess the trends in the frequencies of nuclear medicine procedures in Shanghai, China, and to determine their contributions to the per capita effective dose to the Shanghai population. The mean activities of radionuclides administered by nuclear medicine departments were compared with the Chinese national guidelines on diagnostic reference levels. On the basis of the three surveys carried out by Shanghai Municipal Center for Disease Control and Prevention in 1996, 1998, and 2008, the typically administered radiopharmaceuticals, levels of activity, the number of procedures, and population were systematically analyzed to assess the frequencies of nuclear medicine procedures and the per capita effective dose. The frequencies were approximately 2.77, 3.46, and 6.63 per 1000 people in 1996, 1998, and 2008, respectively. The annual per capita doses from diagnostic nuclear medicine were estimated to be 0.016, 0.022, and 0.032 mSv in 1996, 1998, and 2008, respectively. The annual frequency of therapeutic nuclear medicine procedures increased from 0.131 to 0.430 per 1000 people in the intervening 12 years. In the 12 years before 2008, diagnostic and therapeutic procedures in nuclear medicine in Shanghai increased continuously, and the annual per capita dose doubled. Increases in PET imaging and bone scans were the major contributors to the increasing frequency and magnitude of radiation exposure to the population. The activities administered for most diagnostic procedures were generally consistent with the designated reference levels.

  6. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    PubMed

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  7. Nuclear medicine techniques in the assessment of alkaptonuria.

    PubMed

    Vinjamuri, Sobhan; Ramesh, Chandakacharla N; Jarvis, Jonathan; Gallagher, Jim A; Ranganath, Lakshminarayana L

    2011-10-01

    Alkaptonuria is a rare autosomal recessive disorder due to a lack of the enzyme homogentisate dioxygenase, leading to ochronosis, a process of accumulation of a melanin-like polymer of homogentisic acid in cartilage and other collagenous structures. Patients develop severe osteoarthropathy that resembles osteoarthritis. Although the diagnosis of alkaptonuria is not particularly challenging in view of the blue-black discolouration of visible connective tissue and the presence of homogentisic acid in urine, the natural history of alkaptonuria remains poorly understood. Patients would benefit immensely from an objective assessment of their disease status and from a clearer understanding of the pathophysiology and associated physical changes. Isotope bone scans, which are commonly used to identify the extent of involvement of bones in cancerous processes, have also been increasingly used for characterizing the extent of arthropathy in conditions such as osteoarthritis and rheumatoid arthritis. Semiquantitative scores based on the extent of involvement of joints have been used to describe the involvement of large joints in the context of symptomatic treatment for osteoarthritis. A similar semiquantitative isotope bone scan score depending on the involvement of the number of large joints in patients with alkaptonuria can be formulated and validated in a suitable cohort of patients. Bone densitometry measurement using dual-energy X-ray absorptiometry scanning is an internationally accepted tool to assess the risk and extent of osteoporosis, and is increasingly used to assess the additional fracture risk in patients with arthropathy. We believe that, currently, nuclear medicine techniques can provide useful information, which can be incorporated into disease severity scores for alkaptonuria. Once the biological basis for alkaptonuria is better understood, it is feasible that nuclear medicine techniques of even greater sensitivity and specificity can be developed, thereby

  8. Nuclear Heart Scan

    MedlinePlus

    ... into your blood and travels to your heart. Nuclear heart scans use single photon emission computed tomography (SPECT) or cardiac positron emission tomography (PET) to detect the energy from the tracer to make pictures of your ...

  9. Pediatric nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures ismore » now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.« less

  10. Self-assessment of current knowledge in nuclear medicine (second edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, J.B.; Frey, G.D.; Cooper, J.F.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first editionmore » but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.« less

  11. Using Nuclear Medicine Imaging Wisely in Diagnosing Infectious Diseases

    PubMed Central

    Censullo, Andrea

    2017-01-01

    Abstract In recent years, there has been an increasing emphasis on efficient and accurate diagnostic testing, exemplified by the American Board of Internal Medicine’s “Choosing Wisely” campaign. Nuclear imaging studies can provide early and accurate diagnoses of many infectious disease syndromes, particularly in complex cases where the differential remains broad. This review paper offers clinicians a rational, evidence-based guide to approaching nuclear medicine tests, using an example case of methicillin-sensitive Staphylococcus aureus (MSSA) bacteremia in a patient with multiple potential sources. Fluorodeoxyglucose-positron emission tomography (FDG-PET) with computed tomography (CT) and sulfur colloid imaging with tagged white blood cell (WBC) scanning offer the most promise in facilitating rapid and accurate diagnoses of endovascular graft infections, vertebral osteomyelitis (V-OM), diabetic foot infections, and prosthetic joint infections (PJIs). However, radiologists at different institutions may have varying degrees of expertise with these modalities. Regardless, infectious disease consultants would benefit from knowing what nuclear medicine tests to order when considering patients with complex infectious disease syndromes. PMID:28480283

  12. [Costing nuclear medicine diagnostic procedures].

    PubMed

    Markou, Pavlos

    2005-01-01

    To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.

  13. Nuclear Medicine Technologists' Perception and Current Assessment of Quality: A Society of Nuclear Medicine and Molecular Imaging Technologist Section Survey.

    PubMed

    Mann, April; Farrell, Mary Beth; Williams, Jessica; Basso, Danny

    2017-06-01

    discern perceptions of quality in nuclear medicine. The results show that technologists believe image quality and quality control are the most important determinants. Most respondents felt that quality is directly related to the level of education of the technologist acquiring the scan. However, the responses obtained also demonstrated variation in perception of what represents quality. The SNMMI-TS can use the results of the study as a benchmark of current technologists' knowledge and performance of quality measures and target educational programs to improve the quality of nuclear medicine and molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  14. History and Perspectives of Nuclear Medicine in Myanmar

    PubMed Central

    Mar, Win

    2018-01-01

    Nuclear Medicine was established in Myanmar in 1963 by Dr Soe Myint and International Atomic Energy expert Dr R. Hochel at Yangon General Hospital. Nuclear medicine diagnostic and therapeutic services started with Probe Scintillation Detector Systems and rectilinear scanner. In the early stage, many Nuclear Medicine specialists from the International Atomic Energy Agency (IAEA) spent some time in Myanmar and made significant contributions to the development of Nuclear Medicine in our country. The department participated in various IAEA technical cooperation projects and regional cooperation projects. By the late 1990s, new centers were established in Mandalay, Naypyidaw, and North Okkalapa Teaching Hospital of University of Medicine 11, Yangon. The training program related to Nuclear Medicine includes a postgraduate master’s degree (three years) at the University of Medicine. Currently, all centers are equipped with SPECT, SPECT-CT, PET-CT, and cyclotron in Yangon General Hospital. Up until now, the International Atomic Energy Agency has been playing a crucial role in the growth and development of Nuclear Medicine in Myanmar. Our vision is to provide a wide spectrum of nuclear medicine services at a level compatible with the international standards to become a Center of Excellence. PMID:29333470

  15. Epidemiology for the nuclear medicine technologist.

    PubMed

    Bolus, N E

    2001-09-01

    The purpose of this article is to introduce the nuclear medicine technologist to the field of epidemiology. There are many applications of epidemiology in nuclear medicine, including research studies that deal with the causes of disease or ways to prevent disease from occurring and investigating the possible effects of ionizing radiation on occupational workers and the general public. One use of an epidemiologic study is to suggest ways to reduce the occurrence of a disease. After reading this article, the nuclear medicine technologist will be familiar with: a) the history and underlying assumptions of epidemiology, b) types of epidemiologic studies, c) what is a valid statistical association for an epidemiologic study, d) proper judgment of cause and effect relationships, e) definitions of epidemiologic terms, and f) an example of a nuclear medicine research study.

  16. Technical errors in planar bone scanning.

    PubMed

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  17. A new era for Nuclear Medicine neuroimaging in Spain: Where do we start from in Spain?

    PubMed

    Balsa, M A; Camacho, V; Garrastachu, P; García-Solís, D; Gómez-Río, M; Rubí, S; Setoain, X; Arbizu, J

    To determine the status of neuroimaging studies of Nuclear Medicine in Spain during 2013 and first quarter of 2014, in order to define the activities of the neuroimaging group of the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM). A questionnaire of 14 questions was designed, divided into 3 parts: characteristics of the departments (equipment and professionals involved); type of scans and clinical indications; and evaluation methods. The questionnaire was sent to 166 Nuclear Medicine departments. A total of 54 departments distributed among all regions completed the questionnaire. Most departments performed between 300 and 800 neuroimaging examinations per year, representing more than 25 scans per month. The average pieces of equipment were three; half of the departments had a PET/CT scanner and SPECT/CT equipment. Scans performed more frequently were brain SPECT with 123 I-FP-CIT, followed by brain perfusion SPECT and PET with 18 F-FDG. The most frequent clinical indications were cognitive impairment followed by movement disorders. For evaluation of the images most sites used only visual assessment, and for the quantitative assessment the most used was quantification by region of interest. These results reflect the clinical activity of 2013 and first quarter of 2014. The main indications of the studies were cognitive impairment and movement disorders. Variability in the evaluation of the studies is among the challenges that will be faced in the coming years. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  18. Nuclear medicine training and practice in Turkey.

    PubMed

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-05-01

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  19. Performance of automatic scanning microscope for nuclear emulsion experiments

    NASA Astrophysics Data System (ADS)

    Güler, A. Murat; Altınok, Özgür

    2015-12-01

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  20. Performance of automatic scanning microscope for nuclear emulsion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güler, A. Murat, E-mail: mguler@newton.physics.metu.edu.tr; Altınok, Özgür; Tufts University, Medford, MA 02155

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  1. Theranostics in nuclear medicine practice.

    PubMed

    Yordanova, Anna; Eppard, Elisabeth; Kürpig, Stefan; Bundschuh, Ralph A; Schönberger, Stefan; Gonzalez-Carmona, Maria; Feldmann, Georg; Ahmadzadehfar, Hojjat; Essler, Markus

    2017-01-01

    The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.

  2. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    PubMed

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  4. (Cardiology and nuclear medicine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.

    1988-10-27

    The traveler was invited to serve as an external examiner for a doctoral thesis entitled Analysis of Myocardial Time-Activity Curves Related to Radiolabeled Free Fatty Acid Metabolism'' in the Cardiology Department at the Free University of Amsterdam, The Netherlands. The traveler also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, the Department of Nuclear Medicine in Aachen, West Germany, and the Cyclotron Research Center in Liege, Belgium. He led discussions, reviewed data, and coordinated further collaboration on the preclinical studies and clinical testing of radiopharmaceuticals being developed by the traveler's research group at the Oakmore » Ridge National Laboratory (ORNL).« less

  5. Theranostics in nuclear medicine practice

    PubMed Central

    Yordanova, Anna; Eppard, Elisabeth; Kürpig, Stefan; Bundschuh, Ralph A; Schönberger, Stefan; Gonzalez-Carmona, Maria; Feldmann, Georg; Ahmadzadehfar, Hojjat; Essler, Markus

    2017-01-01

    The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices. PMID:29042793

  6. Nuclear Medicine Imaging in the Dentomaxillofacial Region.

    PubMed

    Wassef, Heidi R; Colletti, Patrick M

    2018-07-01

    Nuclear medicine studies evaluate physiology on a molecular level providing earlier detection of lesions before morphologic change is evident. 99m Tc-MDP and 18 F-fluoride bone scans detect osteomyelitis earlier than radiographs and computed tomography (CT); aid in diagnosis of temporomandibular joint disorder; and evaluate activity of condylar hyperplasia, extent of Paget disease, and viability of bone grafts. 18 F-FDG PET/CT distinguish between soft tissue and bone infections and diagnose osteomyelitis complicated by fracture or surgery. FDG PET is more accurate than CT alone and has a major role in staging, restaging, and assessing response to therapy for head and neck malignancies and in detecting sequelae of therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. General Nuclear Medicine

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  8. Mentoring and the Nuclear Medicine Technologist.

    PubMed

    Burrell, Lance

    2018-06-08

    The goal of this article is to give an overview of mentoring for nuclear medicine technologists (NMT). Mentoring is an integral part of the training and practice in the field of nuclear medicine technology. There is a great need for NMTs to continue involvement in mentorship so that we can develop and maintain the talent and leadership that the field needs. In this article, definitions of mentorship will be provided. Then, how mentoring can work; including different methods and techniques will be covered. Next, the benefits of mentoring will be discussed. Finally, advice for improved application will be presented. Throughout, this article will discuss how mentoring applies to the NMT. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. IAEA support to medical physics in nuclear medicine.

    PubMed

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a

  10. Impact of operator on determining functional parameters of nuclear medicine procedures.

    PubMed

    Mohammed, A M; Naddaf, S Y; Mahdi, F S; Al-Mutawa, Q I; Al-Dossary, H A; Elgazzar, A H

    2006-01-01

    The study was designed to assess the significance of the interoperator variability in the estimation of functional parameters for four nuclear medicine procedures. Three nuclear medicine technologists with varying years of experience processed the following randomly selected 20 cases with diverse functions of each study type: renography, renal cortical scans, myocardial perfusion gated single-photon emission computed tomography (MP-GSPECT) and gated blood pool ventriculography (GBPV). The technologists used the same standard processing routines and were blinded to the results of each other. The means of the values and the means of differences calculated case by case were statistically analyzed by one-way ANOVA. The values were further analyzed using Pearson correlation. The range of the mean values and standard deviation of relative renal function obtained by the three technologists were 50.65 +/- 3.9 to 50.92 +/- 4.4% for renography, 51.43 +/- 8.4 to 51.55 +/- 8.8% for renal cortical scans, 57.40 +/- 14.3 to 58.30 +/- 14.9% for left ventricular ejection fraction from MP-GSPECT and 54.80 +/- 12.8 to 55.10 +/- 13.1% for GBPV. The difference was not statistically significant, p > 0.9. The values showed a high correlation of more than 0.95. Calculated case by case, the mean of differences +/- SD was found to range from 0.42 +/- 0.36% in renal cortical scans to 1.35 +/- 0.87% in MP-GSPECT with a maximum difference of 4.00%. The difference was not statistically significant, p > 0.19. The estimated functional parameters were reproducible and operator independent as long as the standard processing instructions were followed. Copyright 2006 S. Karger AG, Basel.

  11. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Helsinki 2004, and a dash of horizon scanning.

    PubMed

    Ell, Peter J

    2005-01-01

    The Annual Congress of the European Association of Nuclear Medicine represents the major scientific and professional event in the field of nuclear medicine in Europe. Specialists from all allied professions meet to discuss the latest findings and discoveries. A very large industrial exhibition demonstrates the latest technological innovations and developments. This Highlights Lecture summarises the scientific and medical advances discussed at this important gathering. The lecture covers a significant proportion of the data presented and/or discussed in up-to-date reviews, and places some of the trends encountered in the context of the evolution of the field as a whole. There is much food for thought in most areas of nuclear medicine: advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in known areas of clinical application such as neurology and psychiatry, cardiology, oncology, endocrine disorders, paediatrics, nephro-urology and musculoskeletal disorders. This Highlights Lecture is, however, only a brief resume of the vast amount of data discussed, which can be found in much greater detail in the Congress Proceedings, published as volume 31, supplement 2 of Eur J Nucl Med Mol Imaging in August 2004.

  12. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  13. New Trends and Possibilities in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.A.E.; Csernay, L

    New Trends and Possibilities in Nuclear Medicine provides an examination of the latest developments in the field of nuclear medicine. This volume reviews advances made in imaging techniques and presents a detailed overview of many new imaging procedures and their clinical applications, e.g.,the oncological applications of immunoscintigraphy. This book also elucidates the various diagnostic capabilities of nuclear imaging in a wide range of disciplines, including cardiology, neurology, pulmonology, gastroenterology, nephrology, oncology, and hematology.

  14. Nanotechnology and nuclear medicine; research and preclinical applications.

    PubMed

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  15. The contribution of medical physics to nuclear medicine: a physician's perspective.

    PubMed

    Ell, Peter J

    2014-12-01

    This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.

  16. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients in...

  17. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients in...

  18. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients in...

  19. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients in...

  20. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients in...

  1. Nuclear Medicine in Pediatric Cardiology.

    PubMed

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using 18 FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  2. The role of general nuclear medicine in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Lacey R, E-mail: lgreene@csu.edu.au; Wilkinson, Deborah; Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as amore » powerful modality for patients with breast cancer.« less

  3. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    MedlinePlus

    What You Should Know About Pediatric Nuclear Medicine and Radiation Safety www.imagegently.org What is nuclear medicine? Nuclear medicine uses radioactive isotopes to create pictures of the human body. These pictures ...

  4. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  5. The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.

    PubMed

    Mankoff, David A; Pryma, Daniel A

    2014-12-01

    Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.

  6. Avoidable challenges of a nuclear medicine facility in a developing nation

    PubMed Central

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-01-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation. PMID:24379527

  7. The role of commercial nuclear pharmacy in the future practice of nuclear medicine.

    PubMed

    Callahan, R J

    1996-04-01

    It has been estimated that today 70% to 80% of all radiopharmaceutical doses are dispensed through commercial nuclear pharmacy channels. These services are provided by the approximately 250 facilities in the United States, with some multisite corporations dispensing in excess of 20,000 unit-dose prescriptions per day. As pressures mount within health care institutions to reduce manpower, increase cost-effectiveness, increase participation in managed care contracts, and to seek outside vendors for many services that were previously provided in-house, the future role of the commercial nuclear pharmacy in the practice of nuclear medicine will only continue to increase. The essence of nuclear pharmacy practice is the dispensing of a full range of high quality radiopharmaceuticals in patient-specific unit doses. These doses must be delivered in a timely and cost effective manner, without compromising quality or patient safety. Commercial nuclear pharmacies have expanded to provide such varied functions as radiation safety and waste management, as well as consultative and marketing activities directed towards clinicians within a nuclear medicine practitioners own facility. In-service continuing education programs directed towards physicians and technologists are frequently offered by many commercial nuclear pharmacies. Changes in health care economics, merging and down-sizing in the hospital industry, and the overall impact of managed care on the viability of hospitals in general has resulted in slow growth, or even a small decline in the number of institutionally based nuclear pharmacists. As a result, nuclear medicine practitioners will be looking to the commercial nuclear pharmacies to meet a larger portion of their radiopharmaceutical needs, as well as to value added services, such as education and research and development. Specialized practice settings, such as nuclear cardiology and free-standing nuclear medicine clinics, are especially well suited to the services

  8. Pulmonary nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loken, M.K.

    1987-01-01

    This book contains 19 chapters. Some of the titles are: Pulmonary Nuclear Medicine; Radionuclide Venography as an Adjunct to V-P Imaging in the Assessment of Thromboembolic Disease; Assessment of Mucous Transport in the Respiratory Tract by Radioisotopic Techniques; Radiolabeled Blood Cells and Tracers in the Study of Acute Pulmonary Injury and ARDS; and Magnetic Resonance Imaging of the Lungs.

  9. Comparative analysis of dosimetry parameters for nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toohey, R.E.; Stabin, M.G.

    For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRPmore » Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.« less

  10. Thirty years from now: future physics contributions in nuclear medicine.

    PubMed

    Bailey, Dale L

    2014-12-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  11. A study on quantitative analysis of exposure dose caused by patient depending on time and distance in nuclear medicine examination

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Cho, J. H.; Shin, S. G.; Dong, K. R.; Chung, W. K.; Chung, J. E.

    2013-01-01

    This study evaluated possible actions that can help protect against and reduce radiation exposure by measuring the exposure dose for each type of isotope that is used frequently in nuclear medicine before performing numerical analysis of the effective half-life based on the measurement results. From July to August in 2010, the study targeted 10, 6 and 5 people who underwent an 18F-FDG (fludeoxyglucose) positron emission tomography (PET) scan, 99mTc-HDP bone scan, and 201Tl myocardial single-photon emission computed tomography (SPECT) scan, respectively, in the nuclear medicine department. After injecting the required medicine into the subjects, a survey meter was used to measure the dose depending on the distance from the heart and time elapsed. For the 18F-FDG PET scan, the dose decreased by approximately 66% at 90 min compared to that immediately after the injection and by 78% at a distance of 1 m compared to that at 0.3 m. In the 99mTc-HDP bone scan, the dose decreased by approximately 71% in 200 min compared to that immediately after the injection and by approximately 78% at a distance of 1 m compared to that at 0.3 m. In the 201Tl myocardial SPECT scan, the dose decreased by approximately 30% in 250 min compared to that immediately after the injection and by approximately 55% at a distance of 1 m compared to that at 0.3 m. In conclusion, the dose decreases by a large margin depending on the distance and time. In conclusion, this study measured the exposure doses by isotopes, distance from the heart and exposure time, and found that the doses were reduced significantly according the distance and the time.

  12. Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?

    PubMed

    Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L

    2018-05-01

    Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.

  13. A Perspective of the future of nuclear medicine training and certification

    PubMed Central

    Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M.; Osborne, Joseph R.

    2016-01-01

    Nuclear Medicine has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become “Molecular Imaging”. Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle; imaging, radiopharmaceuticals and instrumentation. Since the foundation of the ABNM, the practice of Nuclear Medicine and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and Nuclear Medicine. The potential for further cooperation or fusion of the American Board of Radiology (ABR) and the American Board of Nuclear Medicine (ABNM) is likely to bring about a new path for Nuclear Medicine and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid Nuclear Medicine – Radiology specialty that combines Physiology and Molecular Biology with detailed anatomic imaging that will sustain the innovation that has been central to nuclear medicine residency and practice. Herein, we also introduce a few basic trends in imaging utilization in the United States. These trends do not predict future utilization, but highlight the need for an appropriately credentialed practitioner to interpret these examinations and provide value to the healthcare system. PMID:26687859

  14. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Koo, Phillip J.; Castillo, Richard

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based modelmore » were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were

  15. Guidelines on nuclear medicine imaging in neuroblastoma.

    PubMed

    Bar-Sever, Zvi; Biassoni, Lorenzo; Shulkin, Barry; Kong, Grace; Hofman, Michael S; Lopci, Egesta; Manea, Irina; Koziorowski, Jacek; Castellani, Rita; Boubaker, Ariane; Lambert, Bieke; Pfluger, Thomas; Nadel, Helen; Sharp, Susan; Giammarile, Francesco

    2018-06-25

    Nuclear medicine has a central role in the diagnosis, staging, response assessment and long-term follow-up of neuroblastoma, the most common solid extracranial tumour in children. These EANM guidelines include updated information on 123 I-mIBG, the most common study in nuclear medicine for the evaluation of neuroblastoma, and on PET/CT imaging with 18 F-FDG, 18 F-DOPA and 68 Ga-DOTA peptides. These PET/CT studies are increasingly employed in clinical practice. Indications, advantages and limitations are presented along with recommendations on study protocols, interpretation of findings and reporting results.

  16. American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be awaremore » of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.« less

  17. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    PubMed

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is <1 min. SPECT and PET slice reorientation is interactive (<1 s). JaRViS could run on a Windows 95/98/NT or a Macintosh platform with Netscape Communicator or Microsoft Intemet Explorer. The performance of Java code for bilinear interpolation, cine display, and filtering approaches that of a standard imaging workstation. It is feasible to set up a remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made

  18. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  19. A Training Manual for Nuclear Medicine Technologists.

    ERIC Educational Resources Information Center

    Simmons, Guy H.; Alexander, George W.

    This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)

  20. Poster - 03: How to manage a nuclear medicine PET-CT for radiation oncology patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinse, Martin; Létourneau, Étienne; Duplan, Danny

    Purpose: Development of an adapted multidisciplinary procedure designed to optimize the clinical workflow between radiation therapy (RT) and nuclear medicine (NM) for a PET-CT located in the NM department. Methods : The radiation oncologist (RO) prescribes the PET-CT exam and the clinical RT therapist gives all the necessary information to the patient prior to the exam. The immobilization accessories are prepared in the RT department. The RT and NM therapists work together for radiotracer injection, patient positioning and scan acquisition. The nuclear medicine physician (NMP) will study the images, draw Biological Target Volumes (BTVs) and produce a full exam report.more » Results : All tasks related to a planning PET-CT are done within 48 hours from the request by the RO to the reception of the images with the NMP contours and report. Conclusions : By developing a complete procedure collectively between the RT and NM departments, the patient benefits of a quick access to a RT planning PET-CT exam including the active involvement of every medical practitioners in these fields.« less

  1. Nuclear Medicine Physics: The Basics. 7th ed.

    PubMed

    Mihailidis, Dimitris

    2012-10-01

    Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.

  2. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    PubMed

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  3. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, part 1-statement of the issue and a review of available resources.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seong; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2015-04-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI were to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. This article presents part 1 of the final report of this initial project of the NMGI. It provides a review of the value of pediatric nuclear medicine, the current understanding of the carcinogenic risk of radiation as it pertains to the administration of radiopharmaceuticals in children, and the application of dosimetric models in children. A listing of pertinent educational and reference resources available in print and online is also provided. The forthcoming part 2 report will discuss current standards for administered activities in children and adolescents that have been developed by various organizations and an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of nuclear medicine clinics and centers. Lastly, the part 2 report will recommend a path forward toward global standardization of the administration of radiopharmaceuticals in children. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Assessment of OEP health's risk in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-01

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 ± 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  5. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    PubMed

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online

  6. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    PubMed

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  7. UK nuclear medicine survey, 1992-93.

    PubMed

    Elliott, A T; Elliott, F M; Shields, R A

    1996-01-01

    A postal survey of UK nuclear medicine departments was undertaken to collate information on equipment, numbers of procedures and staffing levels for the years 1992 and 1993. It was estimated that there are 235 sites undertaking nuclear medicine, the total number of procedures performed being some 490,000 in 1993 compared with 430,000 in 1989. Informal investigation suggests that the increase is due to greater usage of myocardial perfusion and lung ventilation/perfusion studies. Wide variations were noted in staffing levels, with only 22% of departments having medical cover of half-time equivalent or better: over 30% of departments have less than one consultant session per week. Approximately 20% of departments claimed to have no physics input, with a further 20% having less than one session per week.

  8. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    PubMed

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  9. Radiation dose produced by patients during radiopharmaceutical incorporation in nuclear medicine diagnostic procedures.

    PubMed

    Morán, V; Prieto, E; García-García, B; Barbés, B; Ribelles, M J; Richter, J Á; Martí-Climent, J M

    2016-01-01

    The aim of this study was to assess the dose received by members of the public due to close contact with patients undergoing nuclear medicine procedures during radiopharmaceutical incorporation, and comparing it with the emitted radiation dose when the test was complete, in order to establish recommendations. A prospective study was conducted on 194 patients. H*(10) dose rates were measured at 0.1, 0.5, and 1.0m after the radiopharmaceutical administration, before the image acquisition, and at the end of the nuclear medicine procedure. Effective dose for different close contact scenarios were calculated, according to 95th percentile value (bone scans) and the maximum value (remaining tests). During the radiopharmaceutical incorporation, a person who stays with another injected patient in the same waiting room may receive up to 0.59 mSv. If the patient had a medical appointment, or went to a restaurant or a coffee shop, members of the public could receive 23, 43, and 22 μSv, respectively. After finishing the procedure, these doses are reduced by a factor 3. In most of the studies, the use of private instead of public transport may reduce the dose by more than a factor 6. It is recommended to increase the distance between the patients during the radiopharmaceutical incorporation and to distribute them according to the diagnostic procedure. Patients should be encouraged to use private instead of public transport. Depending on the number of nuclear medicine outpatients per year attended by a physician, it could be necessary to apply restrictions. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  10. The contribution of Medical Physics to Nuclear Medicine: looking back - a physicist's perspective.

    PubMed

    Hutton, Brian F

    2014-12-01

    This paper is the first in a series of invited perspectives by four pioneers of Nuclear Medicine imaging and physics. A medical physicist and a Nuclear Medicine clinical specialist each take a backward look and a forward look at the contributions of Medical Physics to Nuclear Medicine. Contributions of Medical Physics are presented from the early discovery of radioactivity, development of first imaging devices, computers and emission tomography to recent development of hybrid imaging. There is evidence of significant contribution of Medical Physics throughout the development of Nuclear Medicine.

  11. Nuclear medicine. Bibliography from Nuclear Science Abstracts, Volumes 31--33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-12-01

    References to 4362 publications related to nuclear medicine announced in Nuclear Science Abstracts (NSA) volumes 31(Jan.--June 1975), 32(July--Dec. 1975), and 33(Jan.--June 1976) are contained in this bibliography. References are arranged in order by the original NSA abstract number which approximately places them in chronological order. Sequence numbers appear beside each reference, and the indexes refer to these sequence numbers. Indexes included are: Corporate, Personal Author, Subject, and Report Number.

  12. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  13. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  14. Will the Australian nuclear medicine technologist workforce meet anticipated health care demands?

    PubMed

    Adams, Edwina; Schofield, Deborah; Cox, Jennifer; Adamson, Barbara

    2008-05-01

    Determination of national nuclear medicine technologist workforce size was made from census data in 2001 and 1996 and from the professional body in 2004. A survey conducted by the authors in 2005 provided retention patterns in north-eastern Australia and suggested causes. Utilisation of nuclear medicine diagnostic services was established through the Medicare Benefits Schedule group statistics. More than half the nuclear medicine technologist workforce is under 35 years of age. Attrition commences from age 30, with very few workers over 55 years. In 2005 there was a 12% attrition of the survey workforce. In the past decade, service provision increased while workforce size decreased and the nuclear medicine technologist workforce is at risk of failing to meet the anticipated rise in health service needs.

  15. Assessment of OEP health's risk in nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Ourmore » results show an annual equivalent dose average of 4.49 {+-} 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.« less

  16. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    PubMed

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  17. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    PubMed

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  18. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital

    PubMed Central

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-01-01

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely. PMID:27077874

  19. Nuclear Medicine | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-05-01

    >Nuclear medicine procedures can help detect and treat disease by using a small amount of radioactive material, called a radiopharmaceutical. Some radiopharmaceuticals are used with imaging equipment to detect diseases.

  20. Nuclear medicine technologist training in European countries.

    PubMed

    Lass, Piotr

    2002-08-01

    This article overviews the training of nuclear medicine technologists in chosen European countries, the United States and Canada. There are basically two types of training: at medical schools following secondary school, without any university degree, usually on a 2- or 3-year basis, or else as a university course, leading to a BSc degree after 3 years, and in some countries to an MSc degree after an additional 2 years. In the United States both systems coexist, while in Europe the picture varies from country to country. The number of hours devoted to nuclear medicine also varies between curricula. Some efforts are being made to unify this system by transition to the university model of education in many European countries.

  1. The use of nuclear medicine techniques in the emergency department

    PubMed Central

    McGlone, B; Balan, K

    2001-01-01

    Nuclear medicine techniques have received little attention in the practice of emergency medicine, yet radionuclide imaging can provide valuable and unique information in the management of acutely ill patients. In this review, emphasis is placed on the role of these techniques in patients with bone injuries, non-traumatic bone pain and in those with pleuritic chest pain. New developments such as single photon emission computed tomography (SPECT) in myocardial infarction are outlined and older techniques such as scrotal scintigraphy are reviewed. Radionuclide techniques are discussed in a clinical context and in relation to alternative imaging modalities or strategies that may be available to the emergency medicine physician. Aspects of a 24 hour nuclear medicine service are considered. PMID:11696487

  2. Nuclear medicine in cancer diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Chernov, V.; Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.

    2017-09-01

    Early cancer diagnosis remains one of the most actual problems of medicine, since it allows using the most effective methods of cancer treating. Unlike most diagnostic methods used in oncology, the methods of nuclear medicine allow assessing not so much the anatomic changes in the organ as the disturbance of metabolic processes in tumors and surrounding tissues. The authors describe the main radiopharmaceuticals used for diagnose and radiotherapy of malignant tumors.

  3. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  4. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  5. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  6. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  7. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    NASA Astrophysics Data System (ADS)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  8. Diagnostic reference level: an important tool for reducing radiation doses in adult and pediatric nuclear medicine procedures in Brazil.

    PubMed

    Willegaignon, José; Braga, Luis F E F; Sapienza, Marcelo T; Coura-Filho, George B; Cardona, Marissa A R; Alves, Carlos E R; Gutterres, Ricardo F; Buchpiguel, Carlos A

    2016-05-01

    This study aimed to establish a concise method for determining a diagnostic reference level (DRL) for adult and pediatric nuclear medicine patients on the basis of diagnostic procedures and administered radioisotope as a means of controlling medical exposure. A screening was carried out in all Brazilian Nuclear Medicine Service (NMS) establishments to support this study by collecting the average activities administered during adult diagnostic procedures and the rules applied to adjust these according to the patient's age and body mass. Percentile 75 was used in all the activities administered as a means of establishing DRL for adult patients, with additional correction factors for pediatric patients. Radiation doses from nuclear medicine procedures on the basis of average administered activity were calculated for all diagnostic exams. A total of 107 NMSs in Brazil agreed to participate in the project. From the 64 nuclear medicine procedures studied, bone, kidney, and parathyroid scans were found to be used in more than 85% of all the NMSs analyzed. There was a large disparity among the activities administered, when applying the same procedures, this reaching, in some cases, more than 20 times between the lowest and the highest. Diagnostic exams based on Ga, Tl, and I radioisotopes proved to be the major exams administering radiation doses to patients. On introducing the DRL concept into clinical routine, the minimum reduction in radiation doses received by patients was about 15%, the maximum was 95%, and the average was 50% compared with the previously reported administered activities. Variability in the available diagnostic procedures as well as in the amount of activities administered within the same procedure was appreciable not only in Brazil, but worldwide. Global efforts are needed to establish a concise DRL that can be applied in adult and pediatric nuclear medicine procedures as the application of DRL in clinical routine has been proven to be an important

  9. Nuclear medicine and the failed joint replacement: Past, present, and future

    PubMed Central

    Palestro, Christopher J

    2014-01-01

    Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography

  10. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  11. Study of nuclear medicine practices in Portugal from an internal dosimetry perspective.

    PubMed

    Bento, J; Teles, P; Neves, M; Santos, A I; Cardoso, G; Barreto, A; Alves, F; Guerreiro, C; Rodrigues, A; Santos, J A M; Capelo, C; Parafita, R; Martins, B

    2012-05-01

    Nuclear medicine practices involve the handling of a wide range of pharmaceuticals labelled with different radionuclides, for diagnostic and therapeutic purposes. This work intends to evaluate the potential risks of internal contamination of nuclear medicine staff in several Portuguese nuclear medicine services and to conclude about the requirement of a routine internal monitoring. A methodology proposed by the International Atomic Energy Agency (IAEA), providing a set of criteria to determine the need, or not, for an internal monitoring programme, was applied. The evaluation of the risk of internal contaminations in a given set of working conditions is based on the type and amount of radionuclides being handled, as well as the safety conditions with which they are manipulated. The application of the IAEA criteria showed that 73.1% of all the workers included in this study should be integrated in a routine monitoring programme for internal contaminations; more specifically, 100% of workers performing radioimmunoassay techniques should be monitored. This study suggests that a routine monitoring programme for internal exposures should be implemented in Portugal for most nuclear medicine workers.

  12. Initial experience with a nuclear medicine viewing workstation

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  13. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  15. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  16. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  17. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    PubMed

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  18. Medical History in the Hellenic Journal of Nuclear Medicine.

    PubMed

    Otte, Andreas

    2017-01-01

    The Hellenic Journal of Nuclear Medicine is about to celebrate its 20th anniversary end of 2017. On board of the editorial team since 2003, this journal has influenced me like a good friend over the many past years. From time to time, the journal has published interesting and valuable historical notes. They show that nuclear medicine has a history and that medicine is its basis. They also teach us today, and some of the ancient perspectives and approaches are still valid. The reader of HJNM may be interested in these historical contributions, as they are timeless. Therefore, it was our idea to summarize these in the following pages. Where there is a link to the free article, this is noted. Upon opening all articles, you will find out that these are a book or so of its own. In thanks to the editor-in-chief of the Journal for his continuing support on the historical section. Below we refer to the historical papers of the Journal: History of Nuclear Medicine. Nuclear Medicine and History of Science and Philosophy: Atomic Theory of the Matter. G.N. Sfakianakis, 2001; 4(3); 155-60. Editorial. Pioneers of nuclear medicine, Madame Curie. P.C. Grammaticos. 2004; 7(1); 29-30. http://nuclmed.web.auth.gr/ magazine/eng/jan04/editorial.htm Editor's note. Hippocrates' Oath. The editor. 2004; 7(1); 31. Editorial. Useful known and unknown views of the father of modern medicine, Hippocrates and his teacher Democritus. P. Grammaticos, A. Diamantis. 2008; 11(1): 2-4. http://nuclmed.web.auth.gr/magazine/eng/jan08/2.pdf Special Article. The contribution of Maria Sklodowska-Curie and Pierre Curie to Nuclear and Medical Physics. A hundred and ten years after the discovery of radium. A. Diamantis, E. Magiorkinis, 2008; 11(1): 33-8. http://nuclmed.web.auth.gr/magazine/ eng/jan08/33.pdf Brief Historical Review. Lymphatic system and lymphoscintigraphy. P. Valsamaki. 2009; 12(1): 87-89. http://nuclmed.web. auth.gr/magazine/eng/jan09/89.pdf (In Greek) Historical Review. The philosophic and

  19. A nuclear chocolate box: the periodic table of nuclear medicine.

    PubMed

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  20. A new generation scanning system for the high-speed analysis of nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Lauria, A.; Montesi, M. C.; Tioukov, V.; Vladymyrov, M.

    2016-06-01

    The development of automatic scanning systems was a fundamental issue for large scale neutrino detectors exploiting nuclear emulsions as particle trackers. Such systems speed up significantly the event analysis in emulsion, allowing the feasibility of experiments with unprecedented statistics. In the early 1990s, R&D programs were carried out by Japanese and European laboratories leading to automatic scanning systems more and more efficient. The recent progress in the technology of digital signal processing and of image acquisition allows the fulfillment of new systems with higher performances. In this paper we report the description and the performance of a new generation scanning system able to operate at the record speed of 84 cm2/hour and based on the Large Angle Scanning System for OPERA (LASSO) software infrastructure developed by the Naples scanning group. Such improvement, reduces the scanning time by a factor 4 with respect to the available systems, allowing the readout of huge amount of nuclear emulsions in reasonable time. This opens new perspectives for the employment of such detectors in a wider variety of applications.

  1. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  2. Distinction of nuclear spin states with the scanning tunneling microscope.

    PubMed

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  3. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    PubMed Central

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    Background A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. Methods A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. Results The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. Conclusions The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures. PMID:24133396

  4. The 2011 nuclear medicine technology job analysis project of the American Registry of Radiologic Technologists.

    PubMed

    Anderson, Dan; Hubble, William; Press, Bret A; Hall, Scott K; Michels, Ann D; Koenen, Roxanne; Vespie, Alan W

    2010-12-01

    The American Registry of Radiologic Technologists (ARRT) conducts periodic job analysis projects to update the content and eligibility requirements for all certification examinations. In 2009, the ARRT conducted a comprehensive job analysis project to update the content specifications and clinical competency requirements for the nuclear medicine technology examination. ARRT staff and a committee of volunteer nuclear medicine technologists designed a job analysis survey that was sent to a random sample of 1,000 entry-level staff nuclear medicine technologists. Through analysis of the survey data and judgments of the committee, the project resulted in changes to the nuclear medicine technology examination task list, content specifications, and clinical competency requirements. The primary changes inspired by the project were the introduction of CT content to the examination and the expansion of the content covering cardiac procedures.

  5. A computer program for calculation of approximate embryo/fetus radiation dose in nuclear medicine applications.

    PubMed

    Bayram, Tuncay; Sönmez, Bircan

    2012-04-01

    In this study, we aimed to make a computer program that calculates approximate radiation dose received by embryo/fetus in nuclear medicine applications. Radiation dose values per MBq-1 received by embryo/fetus in nuclear medicine applications were gathered from literature for various stages of pregnancy. These values were embedded in the computer code, which was written in Fortran 90 program language. The computer program called nmfdose covers almost all radiopharmaceuticals used in nuclear medicine applications. Approximate radiation dose received by embryo/fetus can be calculated easily at a few steps using this computer program. Although there are some constraints on using the program for some special cases, nmfdose is useful and it provides practical solution for calculation of approximate dose to embryo/fetus in nuclear medicine applications. None declared.

  6. A U.S. Multicenter Study of Recorded Occupational Radiation Badge Doses in Nuclear Medicine.

    PubMed

    Villoing, Daphnée; Yoder, R Craig; Passmore, Christopher; Bernier, Marie-Odile; Kitahara, Cari M

    2018-05-01

    Purpose To summarize occupational badge doses recorded for a sample of U.S. nuclear medicine technologists. Materials and Methods Nine large U.S. medical institutions identified 208 former and current nuclear medicine technologists certified after 1979 and linked these individuals to historic badge dose records maintained by a commercial dosimetry company (Landauer), yielding a total of 2618 annual dose records. The distributions of annual and cumulative occupational doses were described by using summary statistics. Results Between 1992 and 2015, the median annual personal dose equivalent per nuclear medicine technologist was 2.18 mSv (interquartile range [IQR], 1.25-3.47 mSv; mean, 2.69 mSv). Median annual personal dose equivalents remained relatively constant over this period (range, 1.40-3.30 mSv), while maximum values generally increased over time (from 8.00 mSv in 1992 to 13.9 mSv in 2015). The median cumulative personal dose equivalent was 32.9 mSv (IQR, 18.1-65.5 mSv; mean, 51.4 mSv) for 45 technologists who had complete information and remained employed through 2015. Conclusion Occupational radiation doses were well below the established occupational limits and were consistent with those observed for nuclear medicine technologists worldwide and were greater than those observed for nuclear and general medical workers in the United States These results should be informative for radiation monitoring and safety efforts in nuclear medicine departments. © RSNA, 2018 Online supplemental material is available for this article.

  7. How a tertiary medical nuclear medicine department at the Himalayan area in India can be established and function in an exemplary manner. Basic rules revisited.

    PubMed

    Dhingra, Vandana Kumar; Saini, Sunil; Basu, Sandip

    2015-01-01

    We describe and discuss the various medical, social and financial aspects of setting up, and optimizing, working conditions of a tertiary Nuclear Medicine Department. This department was established in a North Indian state which comprises 93% of hilly area. During the first three years after establishment we have developed infrastructure, cooperation with other departments, improved radiation safety and cost effectiveness of our work and designed future perspectives. The facility was established in a cancer center of a tertiary care hospital where a medical college infrastructure was developed. National guidelines formulated by the Atomic Energy Regulatory Board (AERB) were followed. Our department served a population area of 10.08 million inhabitants. Over the first three years 2,400 patients underwent diagnostic scans and 106 patients underwent low dose radioiodine treatment for thyrotoxicosis. To optimize resources and at the same time, enhance their effectivity, we procured our (99)Mo/ (99m)Tc generator every other week and arranged our daily programme accordingly. Fractionation of cold kits allowed us to perform low cost in-vivo procedures on a daily basis and to save the department's running costs by 30%-50%. We run continuing education nuclear medicine programmes for referring physicians, medical students and paramedical workers which were included in routine practice which led to a consistent growth in patients referral. The need for a positron emission tomography/computed tomography (PET/CT) scan and high dose treatment department for thyroid cancer was strongly felt. Our nuclear medicine department in a peripheral region of a developing country applied better logistics by procuring new generator every fortnight, fractionating the cold kits and by organizing complete teaching programmes.

  8. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  9. Nuclear medicine in clinical urology and nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, W.N.; Dubousky, E.V.

    This book presents explanations of current procedures involving the kidney with information of the performance of each test, its rationale, and interpretation. The information covers all currently used radiopharmaceuticals, radiation dosimetry, instrumentation, test protocols, and mathematical principles of pathophysiology as they relate to nuclear medicine studies. Information is provided on which radiopharmaceutical, instrument, or computer application to use, and when.

  10. Nuclear analytical techniques in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less

  11. Position of nuclear medicine techniques in the diagnostic work-up of neuroendocrine tumors.

    PubMed

    Bombardieri, E; Seregni, E; Villano, C; Chiti, A; Bajetta, E

    2004-06-01

    In recent years nuclear medicine has contributed to the impressive development of the knowledge of neuroendocrine tumors in terms of biology (receptor scintigraphy), pharmacology (development of new tracers), and therapy (radiometabolic therapy). At present, it is impossible to plan the management of a patient affected by a neuroendocrine tumor without performing nuclear medicine examinations. The contribution of nuclear medicine had affected and improved the management of these patients by offering various important options that are part of the modern diagnosis and treatment protocols. The clinical experience and the literature confirm that, among the wide variety of tracers and nuclear medicine modalities available today, metaiodobenzylguanidine (MIBG) and DTPA-D-Phe-octreotide (pentetreotide) are the radiopharmaceuticals of current clinical use. Several new somatostatin analogues are under investigation. Positron emission tomography (PET) supplies a range of labelled compounds to be used for the visualization of tumor biochemistry. In addition to the first routinely used PET tracer in oncology, 18F-labelled deoxyglucose (FDG), a number of radiopharmaceuticals based on different precursors such as fluorodopamine and 5-hydroxytryptophan (5-HTP) are going to gain a clinical role. Of course, the diagnosis of neuroendocrine tumors has to be based on integrated information derived from different examinations including nuclear medicine studies. The clinical presentation of neuroendocrine tumors is highly variable: sometimes they manifest typical or atypical symptoms but they may also be detected by chance during an X-ray or ultrasound examination carried out for other reasons. At disease presentation nuclear medicine modalities are sometimes able to direct physicians towards the clinical diagnosis thanks to the specificity of their imaging mechanisms. They also play a role in disease staging and restaging, patient follow-up and treatment monitoring. In addition, the

  12. Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine.

    PubMed

    Pérez, Eduardo; Ntaimo, Lewis; Malavé, César O; Bailey, Carla; McCormack, Peter

    2013-12-01

    The increased demand for medical diagnosis procedures has been recognized as one of the contributors to the rise of health care costs in the U.S. in the last few years. Nuclear medicine is a subspecialty of radiology that uses advanced technology and radiopharmaceuticals for the diagnosis and treatment of medical conditions. Procedures in nuclear medicine require the use of radiopharmaceuticals, are multi-step, and have to be performed under strict time window constraints. These characteristics make the scheduling of patients and resources in nuclear medicine challenging. In this work, we derive a stochastic online scheduling algorithm for patient and resource scheduling in nuclear medicine departments which take into account the time constraints imposed by the decay of the radiopharmaceuticals and the stochastic nature of the system when scheduling patients. We report on a computational study of the new methodology applied to a real clinic. We use both patient and clinic performance measures in our study. The results show that the new method schedules about 600 more patients per year on average than a scheduling policy that was used in practice by improving the way limited resources are managed at the clinic. The new methodology finds the best start time and resources to be used for each appointment. Furthermore, the new method decreases patient waiting time for an appointment by about two days on average.

  13. An environmental scan of academic pediatric emergency medicine at Canadian medical schools: Identifying variability across Canada.

    PubMed

    Artz, Jennifer D; Meckler, Garth; Argintaru, Niran; Lim, Roderick; Stiell, Ian G

    2018-01-28

    To complement our environmental scan of academic emergency medicine departments, we conducted a similar environmental scan of the academic pediatric emergency medicine programs offered by the Canadian medical schools. We developed an 88-question form, which was distributed to pediatric academic leaders at each medical school. The responses were validated via email to ensure that the questions were answered completely and consistently. Fourteen of the 17 Canadian medical schools have some type of pediatric emergency medicine academic program. None of the pediatric emergency medicine units have full departmental status, while nine are divisions, two are sections, and three have no status. Canadian academic pediatric emergency medicine is practised at 13 major teaching hospitals and one specialized pediatric emergency department. There are 394 pediatric emergency medicine faculty members, including 13 full professors and 64 associate professors. Eight sites regularly take pediatric undergraduate clinical clerks, and all 14 provide resident education. Fellowship training is offered at 10 sites, with five offering advanced pediatric emergency medicine fellowship training. Half of the sites have at least one physician with a Master's degree in education, totalling 18 faculty members across Canada. There are 31 clinical researchers with salary support at nine universities. Eleven sites have published peer-reviewed papers (n=423) in the past five years, ranging from two to 102 per site. Annual academic budgets range from $10,000 to $2,607,515. This comprehensive review of academic activities in pediatric emergency medicine across Canada identifies the variability across the country, including the recognition of sites above and below the national average, which may prompt change at individual sites. Sharing these academic practices may inspire sites to provide more support to teachers, educators, and researchers.

  14. Trends of population radiation adsorbed dose from diagnostic nuclear medicine procedures in Iran: 1985-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, H.; Tabeie, F.; Saghari, M.

    1995-04-01

    In view of the rapid expansion of diagnostic nuclear medicine procedures in Iran, this study was undertaken to examine trends of nuclear medicine practice in the country and to determine the mean effective dose equivalent per patient and per capita. Comprehensive national data covering 93% of all nuclear medicine centers in 1985-1989 were obtained. The total number of nuclear medicine examinations inc teased by 42% during these years. The relative frequency of thyroid investigations was 84% followed by liver/spleen and bone procedures (7% and 6%, respectively). {sup 99m}Tc was the radionuclide of choice for 86% of investigation while {sup 131}Imore » alone accounted for 59% of collective effective dose equivalent. The annual average number of nuclear medicine procedures per 1,000 people was 1.9. For the thyroid, the highest number (48%) of patients investigated was in the 15-29 y age group and the lowest (3%) was in the >64 y age group. The male to female ratio of thyroid and cardiac patient was 0.18 and 3.64, respectively. The numbers of males and females studied for the remaining eight procedures were less frequent and about the same. The mean effective dose equivalent per patient and per capita was about 4.3 mSv and 8 {mu}Sv, respectively. {sup 131}I was responsible for most of collective effective dose equivalent produced by nuclear medicine. Therefore, future efforts should be concentrated on dose reduction for diagnostic {sup 131}I tests.« less

  15. What is the purpose of emission computed tomography in nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.

    1977-01-01

    ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function.

  16. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    PubMed

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  17. Information Scanning and Processing at the Nuclear Safety Information Center.

    ERIC Educational Resources Information Center

    Parks, Celia; Julian, Carol

    This report is a detailed manual of the information specialist's duties at the Nuclear Safety Information Center. Information specialists scan the literature for documents to be reviewed, procure the documents (books, journal articles, reports, etc.), keep the document location records, and return the documents to the plant library or other…

  18. Historical patterns in the types of procedures performed and radiation safety practices used in nuclear medicine from 1945–2009

    PubMed Central

    Van Dyke, Miriam E.; Drozdovitch, Vladimir; Doody, Michele M.; Lim, Hyeyeun; Bolus, Norman E.; Simon, Steven L.; Alexander, Bruce H.; Kitahara, Cari M.

    2016-01-01

    We evaluated historical patterns in the types of procedures performed in diagnostic and therapeutic nuclear medicine and the associated radiation safety practices used from 1945–2009 in a sample of U.S. radiologic technologists. In 2013–2014, 4,406 participants from the U.S. Radiologic Technologists (USRT) Study who previously reported working with medical radionuclides completed a detailed survey inquiring about the performance of 23 diagnostic and therapeutic radionuclide procedures and the use of radiation safety practices when performing radionuclide procedure-related tasks during five time periods: 1945–1964, 1965–1979, 1980–1989, 1990–1999, and 2000–2009. We observed an overall increase in the proportion of technologists who performed specific diagnostic or therapeutic procedures across the five time periods. Between 1945–1964 and 2000–2009, the median frequency of diagnostic procedures performed substantially increased (5 per week to 30 per week), attributable mainly to an increasing frequency of cardiac and non-brain PET scans, while the median frequency of therapeutic procedures performed modestly decreased (from 4 per month to 3 per month). We also observed a notable increase in the use of most radiation safety practices from 1945–1964 to 2000–2009 (e.g., use of lead-shielded vials during diagnostic radiopharmaceutical preparation increased from 56 to 96%), although lead apron use dramatically decreased (e.g., during diagnostic imaging procedures, from 81 to 7%). These data describe historical practices in nuclear medicine and can be used to support studies of health risks in nuclear medicine technologists. PMID:27218293

  19. Considerations for setting up an order entry system for nuclear medicine tests.

    PubMed

    Hara, Narihiro; Onoguchi, Masahisa; Nishida, Toshihiko; Honda, Minoru; Houjou, Osamu; Yuhi, Masaru; Takayama, Teruhiko; Ueda, Jun

    2007-12-01

    Integrating the Healthcare Enterprise-Japan (IHE-J) was established in Japan in 2001 and has been working to standardize health information and make it accessible on the basis of the fundamental Integrating Healthcare Enterprise (IHE) specifications. However, because specialized operations are used in nuclear medicine tests, online sharing of patient information and test order information from the order entry system as shown by the scheduled workflow (SWF) is difficult, making information inconsistent throughout the facility and uniform management of patient information impossible. Therefore, we examined the basic design (subsystem design) for order entry systems, which are considered an important aspect of information management for nuclear medicine tests and needs to be consistent with the system used throughout the rest of the facility. There are many items that are required by the subsystem when setting up an order entry system for nuclear medicine tests. Among these items, those that are the most important in the order entry system are constructed using exclusion settings, because of differences in the conditions for using radiopharmaceuticals and contrast agents and appointment frame settings for differences in the imaging method and test items. To establish uniform management of patient information for nuclear medicine tests throughout the facility, it is necessary to develop an order entry system with exclusion settings and appointment frames as standard features. Thereby, integration of health information with the Radiology Information System (RIS) or Picture Archiving Communication System (PACS) based on Digital Imaging Communications in Medicine (DICOM) standards and real-time health care assistance can be attained, achieving the IHE agenda of improving health care service and efficiently sharing information.

  20. Dictionary/handbook of nuclear medicine and clinical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturralde, M.P.

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  1. Current global and Korean issues in radiation safety of nuclear medicine procedures.

    PubMed

    Song, H C

    2016-06-01

    In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014. © The International Society for Prosthetics and Orthotics.

  2. Sources and magnitude of occupational and public exposures from nuclear medicine procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Report addresses the sources of exposures incurred in the practice of nuclear medicine and provides the necessary data to evaluate the magnitude of exposures to those directly associated with that practice and to those who provide nursing care to the patients containing radiopharmaceuticals. Exposure to members of the public are also addressed. The primary emphasis of this Report is on these individuals and not on the patient, since the patient receives the direct benefit from the nuclear medicine procedure. It is recognized that the patient also receives the bulk of any potential radiation decrement.

  3. Audit of nuclear medicine scientific and technical standards.

    PubMed

    Jarritt, Peter H; Perkins, Alan C; Woods, Sandra D

    2004-08-01

    The British Nuclear Medicine Society has developed a process for the service-specific organizational audit of nuclear medicine departments. This process identified the need for a scheme suitable for the audit of the scientific and technical standards of a department providing such a service. This document has evolved following audit visits of a number of UK departments. It is intended to be used as a written document to facilitate the audit procedure and may be used for both external and self-audit purposes. Scientific and technical standards have been derived from a number of sources, including regulatory documents, notes for guidance and peer-reviewed publications. The audit scheme is presented as a series of questions with responses graded according to legal and safety obligations (A), good practice (B) and desirable aspects of service delivery (C). This document should be regarded as part of an audit framework and should be kept under review as the process evolves to meet the future demands of this high-technology-based clinical service.

  4. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    NASA Astrophysics Data System (ADS)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  5. TLA — markers and nuclear scanning method for wear rate monitoring

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Ivanov, E.; Dudu, D.; Catana, M.; Roman, M.

    1994-08-01

    Two new extensions of the TLA-direct measuring method are presented: the TLA-markers for wear control and the nuclear scanning method for monitoring wear non-uniformity on large surfaces. Both methods were applied to measure the material loss on the surface of railway car brake disks.

  6. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    NASA Astrophysics Data System (ADS)

    Horvat, Stephen

    2017-04-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS.

  7. Quality assurance in nuclear medicine facilities; availability of final recommendations--FDA. Notice.

    PubMed

    1985-05-13

    The Food and Drug Administration (FDA) is announcing the availability of final recommendations prepared by its Center for Devices and Radiological Health (CDRH) on quality assurance programs in nuclear medicine facilities. The final recommendations include the agency's rationale for the recommendations as well as references that can be used as well as references that can be used as guides in conducting quality control monitoring. These final recommendations are available as a technical report in CDRH's radiation recommendations series. They are intended to encourage and promote the development of voluntary quality assurance programs in nuclear medicine facilities.

  8. The effectiveness of wastewater treatment in nuclear medicine: Performance data and radioecological considerations.

    PubMed

    Sudbrock, F; Schomäcker, K; Drzezga, A

    2017-01-01

    For planned and ongoing storage of liquid radioactive waste in a designated plant for a nuclear medicine therapy ward (decontamination system/decay system), detailed knowledge of basic parameters such as the amount of radioactivity and the necessary decay time in the plant is required. The design of the plant at the Department of Nuclear Medicine of the University of Cologne, built in 2001, was based on assumptions about the individual discharge of activity from patients, which we can now retrospectively validate. The decontamination factor of the plant is at present in the order of 10 -9 for 131 I. The annual discharges have been continuously reduced over the period of operation and are now in the region of a few kilobecquerels. This work emphasizes the high efficacy of the decontamination plant to reduce the amount of radioactivity released from the nuclear medicine ward into the environment to almost negligible levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Legal barriers in accessing opioid medicines: results of the ATOME quick scan of national legislation of eastern European countries.

    PubMed

    Vranken, Marjolein J M; Mantel-Teeuwisse, Aukje K; Jünger, Saskia; Radbruch, Lukas; Lisman, John; Scholten, Willem; Payne, Sheila; Lynch, Tom; Schutjens, Marie-Hélène D B

    2014-12-01

    Overregulation of controlled medicines is one of the factors contributing to limited access to opioid medicines. The purpose of this study was to identify legal barriers to access to opioid medicines in 12 Eastern European countries participating in the Access to Opioid Medication in Europa project, using a quick scan method. A quick scan method to identify legal barriers was developed focusing on eight different categories of barriers. Key experts in 12 European countries were requested to send relevant legislation. Legislation was quick scanned using World Health Organization guidelines. Overly restrictive provisions and provisions that contain stigmatizing language and incorrect definitions were identified. The selected provisions were scored into two categories: 1) barrier and 2) uncertain, and reviewed by two authors. A barrier was recorded if both authors agreed the selected provision to be a barrier (Category 1). National legislation was obtained from 11 of 12 countries. All 11 countries showed legal barriers in the areas of prescribing (most frequently observed barrier). Ten countries showed barriers in the areas of dispensing and showed stigmatizing language and incorrect use of definitions in their legislation. Most barriers were identified in the legislation of Bulgaria, Greece, Lithuania, Serbia, and Slovenia. The Cypriot legislation showed the fewest total number of barriers. The selected countries have in common as main barriers prescribing and dispensing restrictions, the use of stigmatizing language, and incorrect use of definitions. The practical impact of these barriers identified using a quick scan method needs to be validated by other means. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  10. Nuclear medicine technologists are able to accurately determine when a myocardial perfusion rest study is necessary

    PubMed Central

    2012-01-01

    Background In myocardial perfusion scintigraphy (MPS), typically a stress and a rest study is performed. If the stress study is considered normal, there is no need for a subsequent rest study. The aim of the study was to determine whether nuclear medicine technologists are able to assess the necessity of a rest study. Methods Gated MPS using a 2-day 99mTc protocol for 121 consecutive patients were studied. Visual interpretation by 3 physicians was used as gold standard for determining the need for a rest study based on the stress images. All nuclear medicine technologists performing MPS had to review 82 training cases of stress MPS images with comments regarding the need for rest studies, and thereafter a test consisting of 20 stress MPS images. After passing this test, the nuclear medicine technologists in charge of a stress MPS study assessed whether a rest study was needed or not or if he/she was uncertain and wanted to consult a physician. After that, the physician in charge interpreted the images and decided whether a rest study was required or not. Results The nuclear medicine technologists and the physicians in clinical routine agreed in 103 of the 107 cases (96%) for which the technologists felt certain regarding the need for a rest study. In the remaining 14 cases the technologists were uncertain, i.e. wanted to consult a physician. The agreement between the technologists and the physicians in clinical routine was very good, resulting in a kappa value of 0.92. There was no statistically significant difference in the evaluations made by technicians and physicians (P = 0.617). Conclusions The nuclear medicine technologists were able to accurately determine whether a rest study was necessary. There was very good agreement between nuclear medicine technologists and physicians in the assessment of the need for a rest study. If the technologists can make this decision, the effectiveness of the nuclear medicine department will improve. PMID:22947251

  11. Estimation of internal exposure to 99Mo in nuclear medicine patients.

    PubMed

    Silva, I C O A; Lucena, E A; Souza, W O; Dantas, A L A; Dantas, B M

    2010-05-10

    (99m)Tc is the most widely used radionuclide in nuclear medicine. It is obtained by elution of (99)Mo-(99m)Tc generators. Depending on the quality of the generator and its integrity, (99)Mo may be extracted from the column during the elution process, becoming a radionuclidic impurity in the (99m)Tc eluate. This fact would impart an unnecessary dose to the patients submitted to diagnostic procedures. The aim of this work is to evaluate (99)Mo incorporation and internal effective doses in nuclear medicine patients through bioassay techniques, providing information on the metabolism of molybdenum in humans. A methodology based on in vivo and in vitro measurements was developed. In vivo measurements were performed with a NaI detector installed in the IRD WBC. Urine samples were analysed with a HPGe at the IRD bioassay laboratory. Patients showed detectable activities of (99)Mo in whole body and urine. Results were interpreted with AIDE software. Estimated incorporation was compared to predicted values based on ICRP model. Effective doses were in the order of micro sieverts. Results suggest the need to implement a routine quality control program of radionuclidic impurity of (99)Mo in (99m)Tc eluates to be conducted by radiopharmacy laboratories of nuclear medicine centers.

  12. Nuclear medicine in clinical neurology: an update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldendorf, W.H.

    1981-01-01

    Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, sevenmore » extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans.« less

  13. Understanding the cause of an unreadable nuclear medicine image: a case of unexpected results with 123I whole-body scintigraphy.

    PubMed

    Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo

    2014-12-01

    When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Liver phantom for quality control and training in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  15. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  16. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  17. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  18. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  19. Recommendations for Nuclear Medicine Technologists Drawn from an Analysis of Errors Reported in Australian Radiation Incident Registers.

    PubMed

    Kearney, Nicole; Denham, Gary

    2016-12-01

    When a radiation incident occurs in nuclear medicine in Australia, the incident is reported to the relevant state or territory authority, which performs an investigation and sends its findings to the Australian Radiation Protection and Nuclear Safety Agency. The agency then includes these data in its Australian Radiation Incident Register and makes them available to the public as an annual summary report on its website. The aim of this study was to analyze the radiation incidents included in these annual reports and in the publically available state and territory registers, identify any recurring themes, and make recommendations to minimize future incidents. A multidisciplinary team comprising a nuclear medicine technologist, a radiation therapist, and a diagnostic radiographer analyzed all nuclear medicine technology-, radiation therapy-, and diagnostic radiography-related incidents recorded in the Australian Radiation Incident Register and in the registers of New South Wales, Western Australia, Victoria, South Australia, and Tasmania between 2003 and 2015. Each incident was placed into 1 of 18 categories, and each category was examined to determine any recurring causes of the incidents. We analyzed 209 nuclear medicine incidents. Their primary cause was failure to comply with time-out protocols (85.6%). By analyzing both the causes and the rates of radiation incidents, we were able to recommend ways to help prevent them from being repeated. Information drawn from the Australian Radiation Incident Register and 5 state registers has revealed steps that can be taken by any nuclear medicine department to prevent repetition of the incidents that have already occurred. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. [Adrenal incidentaloma and nuclear medicine examination].

    PubMed

    Tenenbaum, F

    2009-03-01

    In the setting of adrenal incidentaloma, nuclear medicine evaluation is only indicated after biological and imaging work-up has been completed. MIBG scintigraphy is helpful to characterize pheochromocytomas. In lesions without MIBG uptake, 18F FDG or 18F DOPA PET can be considered to characterize chromaffin cell tumours. To characterize lesions of the adrenal cortex, iodocholesterol scintigraphy is performed to confirm the origin of the adenoma and the benign or malignant nature of the lesion since benign adenomas show tracer uptake and malignant lesions show no tracer uptake. 18F FDG PET only characterizes the lesion as benign or malignant.

  1. Two signs indicative of successful access in nuclear medicine cerebrospinal fluid diversionary shunt studies.

    PubMed

    Bermo, Mohammed S; Khalatbari, Hedieh; Parisi, Marguerite T

    2018-05-08

    Successful shunt access is the first step in a properly performed nuclear medicine cerebrospinal fluid (CSF) shunt study. To determine the significance of the radiotracer configuration at the injection site during initial nuclear medicine CSF shunt imaging and the lack of early systemic radiotracer activity as predictors of successful shunt access. With Institutional Review Board approval, three nuclear medicine physicians performed a retrospective review of all consecutive CSF shunt studies performed in children at our institution in 2015. Antecedent nuclear medicine CSF shunt studies in these patients were also assessed and included in the review. The appearance of the reservoir site immediately after radiotracer injection was classified as either figure-of-eight or round/ovoid configuration. The presence or absence of early systemic distribution of the tracer on the 5-min static images was noted and separately evaluated. A total of 98 nuclear medicine ventriculoperitoneal CSF shunt studies were evaluated. Figure-of-eight configuration was identified in 87% of studies and, when present, had 93% sensitivity, 78% specificity, 92% accuracy, 98% positive predictive value (PPV) and 54% negative predictive value (NPV) as a predictor of successful shunt access. Early systemic activity was absent in 89 of 98 studies. Lack of early systemic distribution of the radiotracer had 98% sensitivity, 78% specificity, 96% accuracy, 98% PPV and 78% NPV as a predictor of successful shunt access. Figure-of-eight configuration in conjunction with the absence of early systemic tracer activity had 99% PPV for successful shunt access. Figure-of-eight configuration at the injection site or lack of early systemic radiotracer activity had moderate specificity for successful shunt access. Specificity and PPV significantly improved when both signs were combined in assessment.

  2. Effective Dose in Nuclear Medicine Studies and SPECT/CT: Dosimetry Survey Across Quebec Province.

    PubMed

    Charest, Mathieu; Asselin, Chantal

    2018-06-01

    The aims of the current study were to draw a portrait of the delivered dose in selected nuclear medicine studies in Québec province and to assess the degree of change between an earlier survey performed in 2010 and a later survey performed in 2014. Methods: Each surveyed nuclear medicine department had to complete 2 forms: the first, about the administered activity in selected nuclear medicine studies, and the second, about the CT parameters used in SPECT/CT imaging, if available. The administered activities were converted into effective doses using the most recent conversion factors. Diagnostic reference levels were computed for each imaging procedure to obtain a benchmark for comparison. Results: The distributions of administered activity in various nuclear medicine studies, along with the corresponding distribution of the effective doses, were determined. Excluding 131 I for thyroid studies, 67 Ga-citrate for infectious workups, and combined stress and rest myocardial perfusion studies, the remainder of the 99m Tc-based studies delivered average effective doses clustered below 10 mSv. Between the 2010 survey and the 2014 survey, there was a statistically significant decrease in delivered dose from 18.3 to 14.5 mSv. 67 Ga-citrate studies for infectious workups also showed a significant decrease in delivered dose from 31.0 to 26.2 mSv. The standardized CT portion of SPECT/CT studies yielded a mean effective dose 14 times lower than the radiopharmaceutical portion of the study. Conclusion: Between 2010 and 2014, there was a significant decrease in the delivered effective dose in myocardial perfusion and 67 Ga-citrate studies. The CT portions of the surveyed SPECT/CT studies contributed a relatively small fraction of the total delivered effective dose. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Determining the pregnancy status of patients before diagnostic nuclear medicine procedures: the Australian experience.

    PubMed

    James, Daphne J; Cardew, Paul; Warren-Forward, Helen M

    2011-09-01

    Ionizing radiation used in diagnostic nuclear medicine procedures has the potential to have biologic effects on a fetus. Nuclear medicine technologists (NMTs) therefore have a responsibility to ensure that they question all patients of childbearing age about their pregnancy status before starting any procedure, to avoid unnecessary fetal irradiation. In Australia, there are no clearly defined practice guidelines to assist NMTs in determining whom to question or how to question their patients. Semistructured interviews were conducted with chief NMTs and staff NMTs in 8 nuclear medicine departments in Australia. Questions were based around 5 areas: regulations and policy, fetal radiation exposure, questioning of the patient, difficulties in determining pregnancy status, and the impact of the use of hybrid imaging. Audio files of the interviews were transcribed and coded. Topics were coded into 5 themes: policy and awareness of guidelines, questioning the patient, radiation knowledge, decisions and assumptions made by NMTs, and the use of pregnancy testing. There was a wide variation in practice between and within departments. NMTs demonstrated a lack of knowledge and awareness of the possible biologic effects of radiation. This study identified a need in Australia for nuclear medicine to arrive at a consensus approach to verifying a patient's pregnancy status so that NMTs can successfully question patients about their pregnancy status. Continuing education programs are also required to keep NMTs up to date in their knowledge.

  4. TH-AB-206-00: Challenges and Opportunities for Nuclear Medicine Theranostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  5. Nuclear Medicine and Resources for Patients: How Complex are Online Patient Educational Materials?

    PubMed

    Hansberry, David R; Shah, Kush; Agarwal, Nitin; Kim, Sung M; Intenzo, Charles M

    2018-02-02

    The Internet is a major source of healthcare information for patients. The American Medical Association and National Institutes of Health recommend that consumer healthcare websites be written between a 3rd and 7th grade level. The purpose of this study is to evaluate the level of readability of patient education websites pertaining to nuclear medicine. Methods: Ten search terms were Googled and the top 10 links for each term were collected and analyzed for their level of readability using 10 well-established readability scales. Results: Collectively the 99 articles were written at an 11.8 grade level (standard deviation of 3.4). Only 5 of the 99 articles were written at the NIH and AMA recommended 3rd to 7th grade. Conclusion: There is a clear discordance between the readability level of nuclear medicine related imaging terms with the NIH and AMA guidelines. This disconnect may negatively impact patient understanding contributing to poor health outcomes. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  7. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  8. Team effort: the nuclear medicine decision making process. Part II.

    PubMed

    Tsuchiyama, S

    1991-06-01

    This two part article examines the nuclear medicine purchase of Baptist Memorial Hospital in Memphis, the largest private hospital in the nation. Part I (May 1991) focused on what their needs were. This concluding installment looks at the committee mechanism itself and the reasoning that went behind their decisions.

  9. Value of case-based learning in a nuclear medicine clerkship.

    PubMed

    Lee, Bi-Fang; Chiu, Nan-Tsing; Li, Chung-Yi

    2013-02-01

    Medical imaging, including nuclear medicine, is a powerful tool for supporting learning in human morphology and physiology and understanding the nature of disease and response to treatment. The purposes of this study were to create a new case-based learning (CBL) model and to compare CBL and the traditional instructional approach (TIA) in a nuclear medicine clerkship. Internal consistency and expert validity were assessed for the instrument. A quasi-experimental, two-group pretest-posttest design was used for this study. A combination of CBL and the TIA was applied to the experimental group and the TIA only to the control group. Subjects were 70 undergraduate year 5 medical students in a clerkship curriculum. Before and after the educational intervention, students were tested with the instrument. Cronbach's α coefficients of the instrument ranged from 0.79 to 0.95, indicating acceptable to strong internal consistency. For expert validity, the suitability and fitness of the instrument were verified. The overall score was significantly improved for the experimental group (from 3.51 to 3.65, P = .03) but not for the control group (from 3.48 to 3.44, P = .49). The experimental group also showed significantly improved scores in teacher assessment and learning satisfaction, the latter the only domain showing a significant difference of the differences (P = .020). The integration of CBL, allied with the TIA, into clinical clerkships provides medical students with the opportunity to learn a nuclear medicine curriculum in an interactive and case-based format tailored specifically for medical students. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  11. Pregnancy screening strategies for diagnostic nuclear medicine: survey results from Australia and New Zealand.

    PubMed

    James, Daphne J; Cardew, Paul; Warren-Forward, Helen M

    2013-09-01

    The ionizing radiation used in diagnostic nuclear medicine procedures has the potential to cause biologic harm to a fetus. Although the risks are relatively small, it is recommended that all female patients of childbearing age be questioned regarding their pregnancy status before administration of the radiopharmaceutical. This can be a sensitive situation especially for certain types of patients, such as teenagers. Currently, there are no guidelines that detail how to question the patient. Previous studies have revealed the lack of a consistent approach in this area. The aim of this study was to investigate current practice for pregnancy screening before diagnostic nuclear medicine procedures in Australia and New Zealand and to determine whether a standardized practice guideline is required. An online survey was administered via SurveyMonkey from October to December 2011. Members of the Australian and New Zealand Society of Nuclear Medicine were invited to participate. The survey consisted of 30 questions divided into 4 sections: demographics, policy and regulations, current practice, and open-ended clinical scenarios. Three hundred thirty-five responses were recorded from participants in all states and territories of Australia and New Zealand; 90% were nuclear medicine technologists. Participants reported a low awareness of radiation policy and regulations but demonstrated good knowledge of the relative risk to the fetus from commonly performed procedures. The most common minimum and maximum age to question patients was 12 y (32%) and 55 y (42%), respectively, although the range was from 10 to 60 y. Verbal questioning (44%) was the most commonly used approach. Pregnancy testing was used by 72%, usually if the patient indicated she was unsure of her pregnancy status. Responses to clinical scenarios were varied, and these will be discussed in a subsequent paper. The survey revealed a lack of awareness of government regulations and departmental policy regarding

  12. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  13. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.

    PubMed

    Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V

    2017-01-01

    PET with fluorodeoxyglucose F 18 ( 18 F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18 F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  15. A list of nuclear medicine radionuclides and potential contaminants for operators of in-vivo counters.

    PubMed

    Stabin, M; Schlafke-Stelson, A

    1991-09-01

    Operators of in-vivo counters often encounter unusual photopeaks, some of which may be attributed to nuclear medicine radiopharmaceuticals recently received by the subject. This article lists the most common radiopharmaceuticals used in nuclear medicine, their common uses, their half-lives and principal decay energies, and the half-lives and decay energies of any contaminants or daughter products they may contain. The purpose is to help the in-vivo counter operator track down and eliminate causes of such unusual photopeaks.

  16. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  17. Nuclear Medicine in the Philippines: A Glance at the Past, a Gaze at the Present, and a Glimpse of the Future

    PubMed Central

    Bautista, Patricia A.; Luis, Teofilo O.L. San

    2016-01-01

    While the introduction of radioactive tracers in the study of metabolic pathways has been well-documented in clinical thyroidology as early as 1924, the widespread utilization in other clinical specialties has been hampered by slow developments in radiation-detecting devices and in the production of appropriate radiopharmaceuticals, in addition to the morbid fear of radiation. In the Philippines, the first radioisotope laboratory was established in 1956. Ten years later, the Philippine Society of Nuclear Medicine was formed. Through the years, challenges were overcome, foundations were laid down, growth was encouraged, friendships with other organizations were built, adjustments were made, and rules were enforced. To date, there are approximately 58 nuclear medicine centers randomly distributed from north to south of the Philippines, 7 accredited nuclear medicine training institutions, 95 board-certified nuclear medicine physicians (a few of whom are also internationally recognized), and a regionally-indexed Philippine Journal of Nuclear Medicine. Qualifying examinations for technologists were also recently instated. International relations are constantly strengthened by sending trainees abroad and accepting foreign trainees here, as well as participating in conferences and other endeavors. While the cost of putting up nuclear medicine centers in the Philippines is still prohibitive, it should not pose too much of a constraint as there are foreign and local parties willing to help. With appropriate instrumentation, targeting radiopharmaceuticals and trained human resources, nuclear medicine can indeed contribute much to health care delivery. PMID:27408901

  18. An Environmental Scan of Academic Emergency Medicine at the 17 Canadian Medical Schools: Why Does this Matter to Emergency Physicians?

    PubMed

    Stiell, Ian G; Artz, Jennifer D; Lang, Eddy S; Sherbino, Jonathan; Morrison, Laurie J; Christenson, James; Perry, Jeffrey J; Topping, Claude; Woods, Robert; Green, Robert S; Lim, Rodrick; Magee, Kirk; Foote, John; Meckler, Garth; Mensour, Mark; Field, Simon; Chung, Brian; Kuuskne, Martin; Ducharme, James; Klein, Vera; McEwen, Jill

    2017-01-01

    We sought to conduct a major objective of the CAEP Academic Section, an environmental scan of the academic emergency medicine programs across the 17 Canadian medical schools. We developed an 84-question questionnaire, which was distributed to academic heads. The responses were validated by phone by the lead author to ensure that the questions were answered completely and consistently. Details of pediatric emergency medicine units were excluded from the scan. At eight of 17 universities, emergency medicine has full departmental status and at two it has no official academic status. Canadian academic emergency medicine is practiced at 46 major teaching hospitals and 13 specialized pediatric hospitals. Another 69 Canadian hospital EDs regularly take clinical clerks and emergency medicine residents. There are 31 full professors of emergency medicine in Canada. Teaching programs are strong with clerkships offered at 16/17 universities, CCFP(EM) programs at 17/17, and RCPSC residency programs at 14/17. Fourteen sites have at least one physician with a Master's degree in education. There are 55 clinical researchers with salary support at 13 universities. Sixteen sites have published peer-reviewed papers in the past five years, ranging from four to 235 per site. Annual budgets range from $200,000 to $5,900,000. This comprehensive review of academic activities in emergency medicine across Canada identifies areas of strengths as well as opportunities for improvement. CAEP and the Academic Section hope we can ultimately improve ED patient care by sharing best academic practices and becoming better teachers, educators, and researchers.

  19. 131I INTERNAL CONTAMINATION AND COMMITTED DOSE ASSESSMENT AMONG NUCLEAR MEDICINE MEDICAL PERSONNEL.

    PubMed

    Brudecki, K; Kluczewska-Galka, A; Mróz, T; Jarzab, B; Zagrodzki, P; Janowski, P

    2018-05-01

    This study presents 131I thyroid activity measurements of 56 employees of the Department of Nuclear Medicine and Endocrine Oncology, Centre for Oncology in Gliwice. The research instrument was a whole-body spectrometer. In 44 out of 56 examined staff members, the determined 131I activity was found to be above the detection limit. The measured activities ranged from 6 ± 2 to 457 ± 118 Bq. The maximum estimated committed effective dose reached was 1.5 mSv/y. The results were compared with previous measurements conducted in another Polish nuclear medical unit. From this comparison, we can see that radiological safety among nuclear medicine personnel can be improved by appropriate work organisation. Reducing exposure of workers can be achieved by properly organised turnovers concerning the most vulnerable worksites. In addition, to lower the radiation risk, it is essential to comply strictly with the isolation regime for the patients.

  20. The American College of nuclear physicians 18th annual meeting and scientific sessions DOE day: Substance abuse and nuclear medicine abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    Despite the enormous personal and social cost Of substance abuse, there is very little knowledge with respect to the mechanisms by which these drugs produce addiction as well as to the mechanisms of toxicity. Similarly, there is a lack of effective therapeutic intervention to treat the drug abusers. In this respect, nuclear medicine could contribute significantly by helping to gather information using brain imaging techniques about mechanisms of drug addiction which, in turn, could help design better therapeutic interventions, and by helping in the evaluation and diagnosis of organ toxicity from the use of drugs of abuse. This volume containsmore » six short descriptions of presentations made at the 18th Meeting of the American College of Nuclear Physicians -- DOE Day: Substance Abuse and Nuclear Medicine.« less

  1. Using structured light three-dimensional surface scanning on living individuals: Key considerations and best practice for forensic medicine.

    PubMed

    Shamata, Awatif; Thompson, Tim

    2018-04-01

    Non-contact three-dimensional (3D) surface scanning methods have been applied to forensic medicine to record injuries and to mitigate ordinary photography shortcoming. However, there are no literature concerning practical guidance for 3D surface scanning of live victims. This paper aimed to investigate key 3D scanning issues of the live body to develop a series of scanning principles for future use on injured victims. The Pico Scan 3D surface scanner was used on live test subjects. The work focused on analysing the following concerns: (1) an appropriate 3D scanning technique to scan different body areas, (2) the ideal number of scans, (3) scanning approaches to access various areas of the body and (4) elimination of environmental background noise in the acquired data. Results showed that scanning only a required surface of the body area in the stable manner was more efficient when compared to complete 360°-scanning; therefore, it used as a standard 3D scanning technique. More than three scans were sufficient when trying to obtain an optimal wireframe mode presentation of the result. Three different approaches were suggested to provide access to the various areas of the body. Undertaking scanning using a black background eliminated the background noise. The work demonstrated that the scanner will be promising to reconstruct injuries from different body areas, although the 3D scanning of the live subjects faced some challenges. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  2. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    PubMed

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  3. Knowledge about the availability of the pharmacist in the Nuclear Medicine Department: A questionnaire-based study among health-care professionals

    PubMed Central

    Parasuraman, Subramani; Mueen Ahmed, K.K.; Bin Hashim, Tin Soe @ Saifullah; Muralidharan, Selvadurai; Kumar, Kalaimani Jayaraja; Ping, Wu Yet; Syamittra, Balakrishnan; Dhanaraj, Sokkalingam Arumugam

    2014-01-01

    Objective: The objective of this study was to analyze the knowledge about the availability of the pharmacist in the nuclear medicine department among health-care professionals through a prospective cohort study. Methods: A total of 741 health-care professionals participated in the study by answering 10 simple questions about the role of the pharmacist in the nuclear medicine department and the availability of pharmacist in the nuclear medicine department. An online questionnaire system was used to conduct the study, and participants were invited to participate through personal communications and by promoting the study through social websites including Facebook, LinkedIn and Google (including Gmail and Google+). The study was conducted between April 2013 and March 2014 using the http://www.freeonlinesurveys.com/Webserver. Finally, the data provided by 621 participants was analyzed. Group frequency analysis was performed using Statistical Package for the Social Sciences (SPSS) version 16 (SPSS Inc. USA). Results: The participants were from Malaysia, India, Pakistan, Sri Lanka, Bangladesh, UAE and Nepal. In total, 312 (50.2%) female health-care professionals and 309 (49.8%) male health-care professionals participated in the study. Of the 621 participants, 390 were working in hospitals, and 231 were not working in hospitals. Of the participants who were working in hospitals, 57.6% were pharmacists. The proportion of study participants who were aware of nuclear pharmacists was 55.39%. Awareness about the role of the pharmacist in nuclear medicine was poor. Conclusion: The role of the pharmacist in a nuclear medicine unit needs to be highlighted and promoted among health-care professionals and hence that the nuclear medicine team can provide better pharmaceutical care. PMID:25538467

  4. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine.

    PubMed

    Haddad, Ferid; Ferrer, Ludovic; Guertin, Arnaud; Carlier, Thomas; Michel, Nathalie; Barbet, Jacques; Chatal, Jean-François

    2008-07-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ((67)Cu, (47)Sc) or alpha ((211)At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ((64)Cu, (124)I, (44)Sc), or that can be generator-produced ((82)Rb, (68)Ga) or providing the opportunity of a new imaging modality ((44)Sc) are considered to have a great interest at short term whereas (86)Y, (52)Fe, (55)Co, (76)Br or (89)Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs.

  5. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    PubMed Central

    Hada, Mahesh Singh; Chakravarty, Abhijit; Mukherjee, Partha

    2014-01-01

    Context: Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. Aim: The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. Materials and Methods: A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. Results: The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. Conclusion: ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments. PMID:25400363

  6. Documentation and analysis of traumatic injuries in clinical forensic medicine involving structured light three-dimensional surface scanning versus photography.

    PubMed

    Shamata, Awatif; Thompson, Tim

    2018-05-10

    Non-contact three-dimensional (3D) surface scanning has been applied in forensic medicine and has been shown to mitigate shortcoming of traditional documentation methods. The aim of this paper is to assess the efficiency of structured light 3D surface scanning in recording traumatic injuries of live cases in clinical forensic medicine. The work was conducted in Medico-Legal Centre in Benghazi, Libya. A structured light 3D surface scanner and ordinary digital camera with close-up lens were used to record the injuries and to have 3D and two-dimensional (2D) documents of the same traumas. Two different types of comparison were performed. Firstly, the 3D wound documents were compared to 2D documents based on subjective visual assessment. Additionally, 3D wound measurements were compared to conventional measurements and this was done to determine whether there was a statistical significant difference between them. For this, Friedman test was used. The study established that the 3D wound documents had extra features over the 2D documents. Moreover; the 3D scanning method was able to overcome the main deficiencies of the digital photography. No statistically significant difference was found between the 3D and conventional wound measurements. The Spearman's correlation established strong, positive correlation between the 3D and conventional measurement methods. Although, the 3D surface scanning of the injuries of the live subjects faced some difficulties, the 3D results were appreciated, the validity of 3D measurements based on the structured light 3D scanning was established. Further work will be achieved in forensic pathology to scan open injuries with depth information. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  8. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  9. Functional renal imaging: new trends in radiology and nuclear medicine.

    PubMed

    Durand, Emmanuel; Chaumet-Riffaud, Philippe; Grenier, Nicolas

    2011-01-01

    The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Nuclear Medicine in Diagnosis of Prosthetic Valve Endocarditis: An Update

    PubMed Central

    Musso, Maria; Petrosillo, Nicola

    2015-01-01

    Over the past decades cardiovascular disease management has been substantially improved by the increasing introduction of medical devices as prosthetic valves. The yearly rate of infective endocarditis (IE) in patient with a prosthetic valve is approximately 3 cases per 1,000 patients. The fatality rate of prosthetic valve endocarditis (PVE) remains stable over the years, in part due to the aging of the population. The diagnostic value of echocardiography in diagnosis is operator-dependent and its sensitivity can decrease in presence of intracardiac devices and valvular prosthesis. The modified Duke criteria are considered the gold standard for diagnosing IE; their sensibility is 80%, but in clinical practice their diagnostic accuracy in PVE is lower, resulting inconclusively in nearly 30% of cases. In the last years, these new imaging modalities have gained an increasing attention because they make it possible to diagnose an IE earlier than the structural alterations occurring. Several studies have been conducted in order to assess the diagnostic accuracy of various nuclear medicine techniques in diagnosis of PVE. We performed a review of the literature to assess the available evidence on the role of nuclear medicine techniques in the diagnosis of PVE. PMID:25695043

  11. Issues affecting the motivation of nuclear medicine technologists in Kuwait.

    PubMed

    Ali, Layla; Abdelsalam, Amal; Muddei, Sara; Brindhaban, Ajit

    2013-01-01

    The demand for nuclear medicine technologists (NMTs) in Kuwait has increased, especially with the introduction of multimodality imaging systems. In order to increase the number of NMTs in the workforce and retain the existing NMTs, there should be a better way to motivate them. To find out how satisfied NMTs are and the factors that motivate them. An interview was conducted with 40 randomly selected NMTs to explore deep-seated emotions and attitudes that were related to motivation. Questions about the recognition NMTs receive from the general public, whether they are acknowledged as significant contributors to health services, ways to improve the standing of NMTs in society, and the clarity of the job description were included. A questionnaire survey was then conducted with 100 randomly selected NMTs. The questions were designed to elicit wider perspective of the information obtained from the interviews. The results show a need for attention in the Ministry of Health to NMTs for recognition, motivation, and improvement. Giving the NMTs their own identity and opportunities to be part of decision-making in the health team would influence more students to join nuclear medicine departments and give more self-confidence to the existing NMTs.

  12. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    PubMed

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  14. Highlights lecture EANM 2016: "Embracing molecular imaging and multi-modal imaging: a smart move for nuclear medicine towards personalized medicine".

    PubMed

    Aboagye, Eric O; Kraeber-Bodéré, Françoise

    2017-08-01

    The 2016 EANM Congress took place in Barcelona, Spain, from 15 to 19 October under the leadership of Prof. Wim Oyen, chair of the EANM Scientific Committee. With more than 6,000 participants, this congress was the most important European event in nuclear medicine, bringing together a multidisciplinary community involved in the different fields of nuclear medicine. There were over 600 oral and 1,200 poster or e-Poster presentations with an overwhelming focus on development and application of imaging for personalized care, which is timely for the community. Beyond FDG PET, major highlights included progress in the use of PSMA and SSTR receptor-targeted radiopharmaceuticals and associated theranostics in oncology. Innovations in radiopharmaceuticals for imaging pathologies of the brain and cardiovascular system, as well as infection and inflammation, were also highlighted. In the areas of physics and instrumentation, multimodality imaging and radiomics were highlighted as promising areas of research.

  15. Java-based PACS and reporting system for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  16. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    NASA Astrophysics Data System (ADS)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  17. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine.

    PubMed

    Ballinger, J R

    2010-11-01

    Most nuclear medicine studies use (99)Tc(m), which is the decay product of (99)Mo. The world supply of (99)Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of (99)Mo supply will rely on a combination of replacing conventional reactors and developing new technologies.

  18. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Nuclear Medicine & Functional Imaging

    2018-01-23

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  19. Redundant array of independent disks: practical on-line archiving of nuclear medicine image data.

    PubMed

    Lear, J L; Pratt, J P; Trujillo, N

    1996-02-01

    While various methods for long-term archiving of nuclear medicine image data exist, none support rapid on-line search and retrieval of information. We assembled a 90-Gbyte redundant array of independent disks (RAID) system using 10-, 9-Gbyte disk drives. The system was connected to a personal computer and software was used to partition the array into 4-Gbyte sections. All studies (50,000) acquired over a 7-year period were archived in the system. Based on patient name/number and study date, information could be located within 20 seconds and retrieved for display and analysis in less than 5 seconds. RAID offers a practical, redundant method for long-term archiving of nuclear medicine studies that supports rapid on-line retrieval.

  20. [Correction of respiratory movement using ultrasound for cardiac nuclear medicine examinations: fundamental study using an X-ray TV machine].

    PubMed

    Yoda, Kazushige; Umeda, Tokuo; Hasegawa, Tomoyuki

    2003-11-01

    Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.

  1. SU-E-T-98: Towards Cell Nucleus Microdosimetry: Construction of a Confocal Laser-Scanning Fluorescence Microscope to Readout Fluorescence Nuclear Track Detectors (FNTDs).

    PubMed

    McFadden, C; Bartz, J; Akselrod, M; Sawakuchi, G

    2012-06-01

    To construct a custom confocal laser scanning microscope (CLSM) capable of resolving individual proton tracks in the volume of an Al 2 O 3 :C,Mg fluorescent nuclear track detector (FNTD). The spatial resolution of the FNTD technique is at the sub-micrometer scale. Therefore the FNTD technique has the potential to perform radiation measurements at the cell nucleus scale. The crystal volume of an FNTD contains defects which become fluorescent F 2 + centers after trapping delta electrons from ionizing radiation. These centers have an absorption band centered at 620 nm and an emission band in the near infrared. Events of energy deposition in the crystal are read-out using a CLSM with sub-micrometer spatial resolution. Excitation light from a 635 nm laser is focused in the crystal volume by an objective lens. Fluorescence is collected back through the same path, filtered through a dichroic mirror, and focused through a small pinhole onto an avalanche photodiode. Lateral scanning of the focal point is performed with a scanning mirror galvanometer, and axial scanning is performed using a stepper-motor stage. Control of electronics and image acquisition was performed using a custom built LabVIEW VI and further image processing was done using Java. The system was used to scan FNTDs exposed to a 6 MV x-ray beam and an unexposed FNTD. Fluorescence images above the unexposed background were obtained at scan depths ranging from 5 - 10 micrometer below the crystal surface using a 100 micrometer pinhole size. Further work needs to be done to increase the resolution and the signal to noise ratio of the images so that energy deposition events may be identified more easily. Natural Sciences and Engineering Research Council of Canada. © 2012 American Association of Physicists in Medicine.

  2. Short- and long-term responses to molybdenum-99 shortages in nuclear medicine

    PubMed Central

    Ballinger, J R

    2010-01-01

    Most nuclear medicine studies use 99Tcm, which is the decay product of 99Mo. The world supply of 99Mo comes from only five nuclear research reactors and availability has been much reduced in recent times owing to problems at the largest reactors. In the short-term there are limited actions that can be taken owing to capacity issues on alternative imaging modalities. In the long-term, stability of 99Mo supply will rely on a combination of replacing conventional reactors and developing new technologies. PMID:20965898

  3. Joint CDRH (Center for Devices and Radiological Health) and state quality-assurance surveys in nuclear medicine: Phase 2 - radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.R.; Evans, C.D.

    The report discusses survey results on aspects of the quality assurance of radio-pharmaceuticals from 180 nuclear-medicine facilities in the United States. Data were collected from facilities in 8 states. Demographic information about nuclear-medicine operations and quality-assurance programs was gathered by state radiation-control-program personnel. The data collected from the survey show an incomplete acceptance of quality-assurance practices for radiopharmaceuticals. Most of the facilities in the survey indicated that, because an inferior radiopharmaceutical was prepared so infrequently, they did not believe it was cost-effective to perform extensive quality-assurance testing. The Center for Devices and Radiological Health hopes that the information from themore » survey will stimulate nuclear-medicine professionals and their organizations to encourage appropriate testing of all radiopharmaceuticals.« less

  4. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    PubMed

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  5. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131

    NASA Astrophysics Data System (ADS)

    Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.

    2010-11-01

    MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.

  6. Is eye lens dosimetry needed in nuclear medicine?

    PubMed

    Wrzesień, M; Królicki, L; Albiniak, Ł; Olszewski, J

    2018-06-01

    The exact level of exposure experienced by nuclear medicine personnel, whose work often requires performing manual procedures involving radioactive isotopes, is associated with the form of radiation source used. The variety of radionuclides and medical procedures, and the yearly increase in the number of patients, as well as the change of the individual dose limit for the lens of the eye from a value of 150 mSv yr -1 to 20 mSv yr -1 , mean that issues of eye lens routine dosimetry become interesting from the radiation protection point of view. This paper presents an analysis of the exposure of the eye lenses of nuclear medicine department personnel, as well as those of personnel in the facilities that produce radiopharmaceuticals for the purpose of diagnosis by positron emission tomography, from the viewpoint of the advisability of routine eye lens exposure monitoring, taking into account changes in the dose limit for the lens of the eye. The paper considers the two most commonly used radionuclides for diagnostic purposes 99m Tc, 18 F, and-for therapeutic purposes- 131 I. Dose measurements were made using thermoluminescent detectors. The estimated exposure analysis identifies the cases when the maximum annual value of the personal dose equivalent, in terms of Hp(3), exceeds threefold the new limit value (20 mSv yr -1 ). It is recommended that Hp(3) doses be routinely monitored in the group of radiopharmacists who label pharmaceuticals with the radionuclide 99m Tc and in chemists working in 18 F-FDG quality control departments in production units, where this is carried out manually.

  7. Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.

    PubMed

    Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli

    2016-12-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.

  8. Nuclear medicine technologist education and training in Europe: literature and web-based findings.

    PubMed

    Matos, Ana C; Massa, Raquel C; Lucena, Filipa M; Vaz, Tânia R

    2015-06-01

    The education and training of a nuclear medicine technologist (NMT) is not homogeneous among European countries, which leads to different scope of practices and, therefore, different technical skills are assigned. The goal of this research was to characterize the education and training of NMT in Europe. This study was based on a literature research to characterize the education and training of NMT and support the historical evolution of this profession. It was divided into two different phases: the first phase included analysis of scientific articles and the second phase included research of curricula that allow health professionals to work as NMT in Europe. The majority of the countries [N=31 (89%)] offer the NMT curriculum integrated into the high education system and only in four (11%) countries the education is provided by professional schools. The duration in each education system is not equal, varying in professional schools (2-3 years) and high education level system (2-4 years), which means that different European Credit Transfer and Accumulation System, such as 240, 230, 222, 210 or 180 European Credit Transfer and Accumulation System, are attributed to the graduates. The professional title and scope of the practice of NMT are different in different countries in Europe. In most countries of Europe, nuclear medicine training is not specific and curriculum does not demonstrate the Nuclear Medicine competencies performed in clinical practice. The heterogeneity in education and training for NMT is an issue prevalent among European countries. For NMT professional development, there is a huge need to formalize and unify educational and training programmes in Europe.

  9. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled

  10. Survey of physician requirements in six specialties: manpower needs in anesthesiology, neurology, nuclear medicine, pathology, physical medicine and rehabilitation, radiology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, J.

    1980-07-01

    This report was prepared to assist the Graduate Medical Education National Advisory Committee (GMENAC) in its efforts to model physician manpower requirements in six specialties: anesthesiology, neurology, nuclear medicine, pathology, physical medicine and rehabilitation, and radiology. The purpose of this report is to (1) survey and present the existing literature on manpower requirements in each of these six specialties, and (2) discuss the special problems present in each specialty in modeling manpower requirements, and where possible, suggest possible avenues of resolution.

  11. EC Project 'GUIDELINES ON MPE': proposed qualification and curriculum frameworks and the MPE in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Caruana, C. J.

    2011-09-01

    The objectives of EC project 'Guidelines on Medical Physics Expert' are to provide for improved implementation of the provisions relating to the Medical Physics Expert within Council Directive 97/43/EURATOM and the proposed recast Basic Safety Standards directive. This includes harmonisation of the mission statement for Medical Physics Services as well as the education and training of the MPE. It also includes detailed knowledge-skills-competence inventories for the Medical Physics Expert in each of Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy. This paper presents the proposed Qualification and Curriculum Frameworks and their application to the Medical Physics Expert in Nuclear Medicine.

  12. Radiation risk and nuclear medicine: An interview with a Nobel Prize winner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalow, R.S.

    1995-12-01

    In a speech given years ago at the Veterans Administration Medical Center, Bronx, NY, Rosalyn S. Yalow, 1977 Nobel Prize recipient for her invention of radioimmunoassay, made several salient points on the perception of fear or hazards from exposure to low-level radiation and low-level radioactive wastes. For the past three years, Yalow has been concerned with the general fear of radiation. In this interview, Newsline solicited Yalow`s views on public perceptions on radiation risk and what the nuclear medicine community can do to emphasize the fact that, if properly managed, the use of isotopes in medicine and other cases ismore » not dangerous.« less

  13. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  14. Monte Carlo simulations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  15. Implementation of Quality Systems in Nuclear Medicine: Why It Matters. An Outcome Analysis (Quality Management Audits in Nuclear Medicine Part III).

    PubMed

    Dondi, Maurizio; Paez, Diana; Torres, Leonel; Marengo, Mario; Delaloye, Angelika Bischof; Solanki, Kishor; Van Zyl Ellmann, Annare; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Giammarile, Francesco; Pascual, Thomas

    2018-05-01

    The International Atomic Energy Agency (IAEA) developed a comprehensive program-Quality Management Audits in Nuclear Medicine (QUANUM). This program covers all aspects of nuclear medicine practices including, but not limited to, clinical practice, management, operations, and services. The QUANUM program, which includes quality standards detailed in relevant checklists, aims at introducing a culture of comprehensive quality audit processes that are patient oriented, systematic, and outcome based. This paper will focus on the impact of the implementation of QUANUM on daily routine practices in audited centers. Thirty-seven centers, which had been externally audited by experts under IAEA auspices at least 1 year earlier, were invited to run an internal audit using the QUANUM checklists. The external audits also served as training in quality management and the use of QUANUM for the local teams, which were responsible of conducting the internal audits. Twenty-five out of the 37 centers provided their internal audit report, which was compared with the previous external audit. The program requires that auditors score each requirement within the QUANUM checklists on a scale of 0-4, where 0-2 means nonconformance and 3-4 means conformance to international regulations and standards on which QUANUM is based. Our analysis covering both general and clinical areas assessed changes on the conformance status on a binary manner and the level of conformance scores. Statistical analysis was performed using nonparametric statistical tests. The evaluation of the general checklists showed a global improvement on both the status and the levels of conformances (P < 0.01). The evaluation of the requirements by checklist also showed a significant improvement in all, with the exception of Hormones and Tumor marker determinations, where changes were not significant. Of the 25 evaluated institutions, 88% (22 of 25) and 92% (23 of 25) improved their status and levels of conformance

  16. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  17. Evaluative studies in nuclear medicine research. Interim progress report, July 1, 1975--June 30, 1976. [Diagnostic value of brain scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.

    Data relating to the determination of the efficacy of radionuclide brain scanning have been analyzed. The data were gathered at a teaching hospital by use of a prospective questionnaire followed by a retrospective study of the result of the brain scan examination. Data analysis was accomplished using a method of pattern discovery which relates selected outcomes such as normal and abnormal brain scans to patient attributes (signs, symptoms, history, and previous test results). The objective of the analysis was the identification of patterns or clusters of patient attributes which have a high probability of acting as predictors of the outcomemore » of the brain scan.« less

  18. Development of departmental standard for traceability of measured activity for I-131 therapy capsules used in nuclear medicine.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Jp

    2011-01-01

    International Basic Safety Standards (International Atomic Energy Agency, IAEA) provide guidance levels for diagnostic procedures in nuclear medicine indicating the maximum usual activity for various diagnostic tests in terms of activities of injected radioactive formulations. An accuracy of ± 10% in the activities of administered radio-pharmaceuticals is being recommended, for expected outcome in diagnostic and therapeutic nuclear medicine procedures. It is recommended that the long-term stability of isotope calibrators used in nuclear medicine is to be checked periodically for their performance using a long-lived check source, such as Cs-137, of suitable activity. In view of the un-availability of such a radioactive source, we tried to develop methods to maintain traceability of these instruments, for certifying measured activities for human use. Two re-entrant chambers [(HDR 1000 and Selectron Source Dosimetry System (SSDS)] with I-125 and Ir-192 calibration factors in the Department of Radiotherapy were used to measure Iodine-131 (I-131) therapy capsules to establish traceability to Mark V isotope calibrator of the Department of Nuclear Medicine. Special nylon jigs were fabricated to keep I-131 capsule holder in position. Measured activities in all the chambers showed good agreement. The accuracy of SSDS chamber in measuring Ir-192 activities in the last 5 years was within 0.5%, validating its role as departmental standard for measuring activity. The above method is adopted because mean energies of I-131 and Ir-192 are comparable.

  19. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  20. Gap analysis survey: an aid in transitioning to standardized curricula for nuclear medicine technology.

    PubMed

    Bires, Angela Macci; Mason, Donna L; Gilmore, David; Pietrzyk, Carly

    2012-09-01

    This article discusses the process by which the Society of Nuclear Medicine Technology Section (SNMTS) is assisting educators as they transition to comply with the fourth edition of the Curriculum Guide for Educational Programs in Nuclear Medicine Technology. An electronic survey was sent to a list of nuclear medicine technology programs compiled by the educational division of the SNMTS. The collected data included committee member demographics, goals and objectives, conference call minutes, consultation discussions, transition examples, 4- and 2-y program curricula, and certificate program curricula. There were 56 responses to the survey. All respondents were program directors, with 3 respondents having more than one type of program, for a total of 59 programs. Of these, 19 (33.93%) were baccalaureate, 19 (28.57%) associate, and 21 (37.5%) certificate. Forty-eight respondents (85.71%) had accreditation through the Joint Review Commission on Educational Programs in Nuclear Medicine Technology, 6 (10.71%) had regional accreditation, and 2 (3.57%) were accredited through other entities. Thirteen categories of required general education courses were identified, and the existing program curricula of 9 (69.2%) courses were more than 50% compliant with the fourth edition Curriculum Guide. The fact that no measurable gap could be found within the didactic professional content across programs was due to the lack of a degree requirement and content standardization within the profession. The data indicated that the participating programs offer a minimum of 1-15 contact hours in emerging technology modalities. The required clinical hours ranged from 765 to 1,920 for degree or certificate completion. The average number of clinical hours required for all programs was 1,331.69. Standardization of the number and types of courses is needed both for current baccalaureate programs and for clinical education. This standardization will guide programs in transitioning from a

  1. Abass Alavi: A giant in Nuclear Medicine turns 80 and is still going strong!

    PubMed

    Høilund-Carlsen, Poul F

    2018-01-01

    him one of the most cited researchers at the University of Pennsylvania with a production of more than 1,200 articles, a similar number of published abstracts and close to 58,000 citations according to Google Scholar, of which about 20,000 since 2012 when he was 74. This is just part of an amazing story. Having turned to nuclear medicine in 1971, Alavi entered into one of the World's most ingenious and productive medical research en-vironments comprising collaboration of experts in nuclear medicine (David Kuhl) and neurology (Martin Reivich) at Penn, and in physiology and pharmacology (Louis Sokoloff) at the NIH, all of whom contributed significantly to the development of PET. Focus was on cerebral research with beta-emitting 14 C-labeled deoxyglucose for mapping regional cerebral glucose metabolism by means of autoradiography. Alavi became a junior member of this collaboration in which the idea of labeling deoxyglucose with a gamma-emitting isotope arose to allow in vivo examination of the normal and diseased human brain. They contacted Alfred Wolf at Brookhaven National Laboratory who had an interest in synthesizing positron-emitting compounds. He suggested labeling instead with 18 F-FDG and in 1975 Wolf's group including Tatsuo Ido and Joanna Fowler succeeded in synthesizing 18 F-FDG. In the meantime, investigators at Penn had developed high energy collimators for the Mark IV scanner to allow imaging with 18 F-FDG, so in August 1976, two normal volunteers were the first to receive a dose of 18 F-FDG for tomographic brain imaging showing concentration of 18 F-FDG in the gray matter while in one volunteer a "whole-body" scan from the top of the scull to mid-thigh was also obtained. A year before, investigators at Washington University, i.e., Michel Ter-Pogossian in collaboration with Michael Phelps, Edward Hoffmann, and Nizar Mullani had developed what they termed a positron-emission transaxial tomograph for nuclear imaging, i.e. a machine which was the starting

  2. Evaluation of an internet-based e-learning module to introduce nuclear medicine to medical students: a feasibility study.

    PubMed

    Diessl, Stefanie; Verburg, Frederik A; Hoernlein, Alexander; Schumann, Martin; Luster, Markus; Reiners, Christoph

    2010-12-01

    The advent of electronic learning, the so-called e-learning, offers new possibilities for instruction in addition to the traditional face-to-face teaching in the education of medical students. To evaluate the additional educational value of a voluntary e-learning module in a nuclear medicine course for third-year medical students. Twenty exemplary nuclear medicine patient cases from our department were developed for e-learning purposes and presented on the internet using the web-based training program ‘CaseTrain’. Subsequently, three selected test cases were handled and evaluated by an unselected population of third-year medical students. One hundred and twenty-eight students studied the three patient cases and filled out the evaluation questionnaire completely. The most important result is that both the interest in and the subjective feeling of the knowledge level regarding the specialized field of nuclear medicine had increased significantly after working through the three e-learning cases. Ninety-seven percent of the evaluating students considered the use of computer-based learning useful. The subjective grading of the content of the cases and the handling of the software were graded with high marks by the participants, 1.9 and 2.0, respectively, on a linear scale with 1 being the best and 6 being the worst. The addition of e-learning to face-to-face teaching as a form of ‘blended learning’ is highly appreciated by medical students, and will provide an effective medium for bringing better understanding of nuclear medicine to future colleagues.

  3. SUS in nuclear medicine in Brazil: analysis and comparison of data provided by Datasus and CNEN*

    PubMed Central

    Pozzo, Lorena; Coura Filho, George; Osso Júnior, João Alberto; Squair, Peterson Lima

    2014-01-01

    Objective To investigate the outpatient access to nuclear medicine procedures by means of the Brazilian Unified Health System (SUS), analyzing the correspondence between data provided by this system and those from Comissão Nacional de Energia Nuclear (CNEN) (National Commission of Nuclear Energy). Materials and Methods Data provided by Datasus regarding number of scintillation chambers, outpatient procedures performed from 2008 to 2012, administrative responsibility for such procedures, type of service providers and outsourced services were retrieved and evaluated. Also, such data were compared with those from institutions certified by CNEN. Results The present study demonstrated that the system still lacks maturity in terms of correct data input, particularly regarding equipment available. It was possible to list the most common procedures and check the growth of the specialty along the study period. Private centers are responsible for most of the procedures covered and reimbursed by SUS. However, many healthcare facilities are not certified by CNEN. Conclusion Datasus provides relevant data for analysis as done in the present study, although some issues still require attention. The present study has quantitatively depicted the Brazilian reality regarding access to nuclear medicine procedures offered by/for SUS. PMID:25741070

  4. SUS in nuclear medicine in Brazil: analysis and comparison of data provided by Datasus and CNEN.

    PubMed

    Pozzo, Lorena; Coura Filho, George; Osso Júnior, João Alberto; Squair, Peterson Lima

    2014-01-01

    To investigate the outpatient access to nuclear medicine procedures by means of the Brazilian Unified Health System (SUS), analyzing the correspondence between data provided by this system and those from Comissão Nacional de Energia Nuclear (CNEN) (National Commission of Nuclear Energy). Data provided by Datasus regarding number of scintillation chambers, outpatient procedures performed from 2008 to 2012, administrative responsibility for such procedures, type of service providers and outsourced services were retrieved and evaluated. Also, such data were compared with those from institutions certified by CNEN. The present study demonstrated that the system still lacks maturity in terms of correct data input, particularly regarding equipment available. It was possible to list the most common procedures and check the growth of the specialty along the study period. Private centers are responsible for most of the procedures covered and reimbursed by SUS. However, many healthcare facilities are not certified by CNEN. Datasus provides relevant data for analysis as done in the present study, although some issues still require attention. The present study has quantitatively depicted the Brazilian reality regarding access to nuclear medicine procedures offered by/for SUS.

  5. Nuclear oncology, a fast growing field of nuclear medicine

    NASA Astrophysics Data System (ADS)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  6. Role of PET/CT for precision medicine in lung cancer: perspective of the Society of Nuclear Medicine and Molecular Imaging.

    PubMed

    Greenspan, Bennett S

    2017-12-01

    This article discusses the role of PET/CT in contributing to precision medicine in lung cancer, and provides the perspective of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) on this process. The mission and vision of SNMMI are listed, along with the guidance provided by SNMMI to promote best practice in precision medicine. Basic principles of PET/CT are presented. An overview of the use of PET/CT imaging in lung cancer is discussed. In lung cancer patients, PET/CT is vitally important for optimal patient management. PET/CT is essential in determining staging and re-staging of disease, detecting recurrent or residual disease, evaluating response to therapy, and providing prognostic information. PET/CT is also critically important in radiation therapy planning by determining the extent of active disease, including an assessment of functional tumor volume. The current approach in tumor imaging is a significant advance over conventional imaging. However, recent advances suggest that therapeutic response criteria in the near future will be based on metabolic characteristics and will include the evaluation of biologic characteristics of tumors to further enhance the effectiveness of precision medicine in lung cancer, producing improved patient outcomes with less morbidity.

  7. TH-AB-206-02: Nuclear Medicine Theronostics: Wave of the Future; Pre-Clinical and Clinical Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, E.

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  8. Nuclear Scans - Multiple Languages

    MedlinePlus

    ... Cantonese dialect) (繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Japanese (日本語) Expand Section Bone Scan - 日本語 (Japanese) Bilingual ...

  9. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  10. A survey of the role of the UK physicist in nuclear medicine: a report of a joint working group of the British Institute of Radiology, British Nuclear Medicine Society, and the Institute of Physics and Engineering in Medicine.

    PubMed

    Tindale, W B; Thorley, P J; Nunan, T O; Lewington, V; Shields, R A; Williams, N R

    2003-01-01

    Guidelines for the provision of physics support to nuclear medicine were published in 1999 by a joint working group of the British Institute of Radiology, the British Nuclear Medicine Society, and the Institute of Physics and Engineering in Medicine. Following publication of the guidelines, a survey was conducted by the working group to gather data on the actual level of physicist support in UK hospitals of different types and on the activities undertaken by physicists. The data were collected in the 12 months following the publication of guidelines and cover different hospital models and seven UK regions. The results provide evidence that many of the smaller units - small teaching hospitals and, particularly, small district general hospitals - have insufficient physics support. Although, on average, there is good agreement between the guidelines and the survey data for medium and large district general hospitals, there is wide variation in the level of physics provision between hospitals delivering apparently similar services. This emphasizes the need for national guidelines, against which institutions may be bench-marked and which may be used as a recommendation for the staffing levels necessary to ensure services are delivered safely and standards are not compromised. The complexity and variety of workload is an important factor in determining the level of physics support. As services develop, it is vital that this aspect is recognized to ensure that appropriate resources are available for the required physics input, even if any new service represents only a modest clinical throughput in terms of patient numbers.

  11. Fetal and maternal dose assessment for diagnostic scans during pregnancy

    NASA Astrophysics Data System (ADS)

    Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2016-05-01

    Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.

  12. MO-AB-207-03: ACR Update in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, B.

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  13. Cardiac nuclear medicine, part II: diagnosis of coronary artery diseas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polak, J.F.; Holman, B.L.

    Diagnosing coronary artery disease is difficult and requires careful consideration of the roles and limitations of the tests used. Standard ECG tests are not reliable indicators of the presence of disease in asymptomatic patients. Thallium stress testing to assess ischemia and exercise ventriculography to assess functional status of the heart are limited in sensitivity and specificity. This is the second of a three-part series on cardiac nuclear medicine. Part I (Med. Instrum., May-June, 1981) focused on the commonly used examinations in cardiac physiology and pathophysiology. Part III will focus on myocardial infarction and other cardiac diseases.

  14. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.

    PubMed

    Mao, Hongliang; Wang, Hao

    2017-03-01

    Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. wangh8@fudan.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets

    PubMed Central

    Mao, Hongliang

    2017-01-01

    Abstract Motivation: Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Results: Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. Availability and Implementation: The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan, implemented in PERL and supported on Linux. Contact: wangh8@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062442

  16. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals

    PubMed Central

    Novruzov, Fuad; Vinjamuri, Sobhan

    2014-01-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident. PMID:25004166

  17. Radiation accidents and their management: emphasis on the role of nuclear medicine professionals.

    PubMed

    Bomanji, Jamshed B; Novruzov, Fuad; Vinjamuri, Sobhan

    2014-10-01

    Large-scale radiation accidents are few in number, but those that have occurred have subsequently led to strict regulation in most countries. Here, different accident scenarios involving exposure to radiation have been reviewed. A triage of injured persons has been summarized and guidance on management has been provided in accordance with the early symptoms. Types of casualty to be expected in atomic blasts have been discussed. Management at the scene of an accident has been described, with explanation of the role of the radiation protection officer, the nature of contaminants, and monitoring for surface contamination. Methods for early diagnosis of radiation injuries have been then described. The need for individualization of treatment according to the nature and grade of the combined injuries has been emphasized, and different approaches to the treatment of internal contamination have been presented. The role of nuclear medicine professionals, including physicians and physicists, has been reviewed. It has been concluded that the management of radiation accidents is a very challenging process and that nuclear medicine physicians have to be well organized in order to deliver suitable management in any type of radiation accident.

  18. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Curriculum for education and training of medical physicists in nuclear medicine: recommendations from the EANM Physics Committee, the EANM Dosimetry Committee and EFOMP.

    PubMed

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy

    2013-03-01

    To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Nuclear Medicine Imaging of Prostate Cancer.

    PubMed

    Schreiter, V; Reimann, C; Geisel, D; Schreiter, N F

    2016-11-01

    The new tracer Gallium-68 prostate-specific membrane antigen (Ga-68 PSMA) yields new promising options for the PET/CT diagnosis of prostate cancer (PCa) and its metastases. To overcome limitations of hybrid imaging, known from the use of choline derivatives, seems to be possible with the use of Ga-68 PSMA for PCa. The benefits of hybrid imaging with Ga-68 PSMA for PCa compared to choline derivatives shall be discussed in this article based on an overview of the current literature. Key Points: • Ga-68 PSMA PET/CT can achieve higher detection rates of PCa lesions than PET/CT performed with choline derivatives• The new tracer Ga-68 PSMA has the advantage of high specificity, independence of PSA-level and low nonspecific tracer uptake in surrounding tissue• The new tracer Ga-68 PSMA seems very suitable for MR-PET diagnostic Citation Format: • Schreiter V, Reimann C, Geisel D et al. Nuclear Medicine Imaging of Prostate Cancer. Fortschr Röntgenstr 2016; 188: 1037 - 1044. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  2. The Role of Nuclear Medicine in the Staging and Management of Human Immune Deficiency Virus Infection and Associated Diseases.

    PubMed

    Ankrah, Alfred O; Glaudemans, Andor W J M; Klein, Hans C; Dierckx, Rudi A J O; Sathekge, Mike

    2017-06-01

    Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of

  3. Nuclear scanning in necrotizing progressive ''malignant'' external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisier, S.C.; Lucente, F.E.; Som, P.M.

    1982-09-01

    The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.

  4. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine Program. Part 2: Analysis of Results.

    PubMed

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Ordonez, Felix Barajas; Paez, Diana; Pascual, Thomas

    2017-11-01

    The International Atomic Energy Agency has developed a program, named Quality Management Audits in Nuclear Medicine (QUANUM), to help its Member States to check the status of their nuclear medicine practices and their adherence to international reference standards, covering all aspects of nuclear medicine, including quality assurance/quality control of instrumentation, radiopharmacy (further subdivided into levels 1, 2, and 3, according to complexity of work), radiation safety, clinical applications, as well as managerial aspects. The QUANUM program is based on both internal and external audits and, with specifically developed Excel spreadsheets, it helps assess the level of conformance (LoC) to those previously defined quality standards. According to their level of implementation, the level of conformance to requested standards; 0 (absent) up to 4 (full conformance). Items scored 0, 1, and 2 are considered non-conformance; items scored 3 and 4 are considered conformance. To assess results of the audit missions performed worldwide over the last 8 years, a retrospective analysis has been run on reports from a total of 42 audit missions in 39 centers, three of which had been re-audited. The analysis of all audit reports has shown an overall LoC of 73.9 ± 8.3% (mean ± standard deviation), ranging between 56.6% and 87.9%. The highest LoC has been found in the area of clinical services (83.7% for imaging and 87.9% for therapy), whereas the lowest levels have been found for Radiopharmacy Level 2 (56.6%); Computer Systems and Data Handling (66.6%); and Evaluation of the Quality Management System (67.6%). Prioritization of non-conformances produced a total of 1687 recommendations in the final audit report. Depending on the impact on safety and daily clinical activities, they were further classified as critical (requiring immediate action; n = 276; 16% of the total); major (requiring action in relatively short time, typically from 3 to 6 months; n = 604

  5. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science). Progress report, January 1, 1984-December 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This report presents progress in the areas of cardiac nuclear medicine, other imaging studies, investigations with biomolecules, and assessment of risks associated with the clinical use of radiopharmaceuticals. (ACR)

  6. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  7. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    PubMed

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  8. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  9. Population radiation dose from diagnostic nuclear medicine procedures in the Tehran population in 1999-2003: striking changes in only one decade.

    PubMed

    Tabeie, Faraj; Mohammadi, Hooshang; Asli, Isa Neshandar

    2013-02-01

    Use of unsealed radiopharmaceuticals in Iran's nuclear medicine centers has expanded rapidly in the last decade. As part of a nationwide survey, this study was undertaken to estimate the radiation risk due to the diagnostic nuclear medicine procedures performed in Tehran in 1999-2003. During the five years of the study, the data of 101,540 yearly examinations of diagnostic nuclear medicine were obtained for 34 (out of 40) active nuclear medicine centers in Tehran. The patients studied were aged 1 y, 5 y, 10 y, 15 y, and adults (>15 y). Compared to an earlier investigation in 1989 (which was published in 1995), striking changes were found to be occurring in the trends of nuclear medicine in Tehran in a matter of a decade. The frequency of cardiac examinations increased from less than 1% in 1989 to 43.2% (mean of 5 y) in 2003; thyroid examinations, with the relative frequency of higher than 80% in 1989, decreased to 26.7% in the current investigation (averaged for 2001); and the number of overall examinations per 1,000 population of Tehran increased from 1.9 in 1989 to 8.8 in this study (about fourfold). The decrease in relative frequency of thyroid examinations could be attributed to the lower referral policy (mainly by specialists), decreased incidence of goiter due to implementation of programs for iodine enrichment diets, introduction of fine needle aspiration (FNA), and sonography techniques for diagnosis of thyroid disease. The large increase in relative frequency of cardiac examinations could be due to the increase in the number of single photon emission computerized tomography (SPECT) systems in recent years as compared to 1989 in Tehran. The collective effective dose increased from 400 (person-Sv) in 1999 to 529 (person-Sv) in 2003, and the effective dose per capita increased from 34.80 μSv in 1999 to 44.06 μSv in 2003 (average, 35.60 μSv).

  10. Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan

    PubMed Central

    Zhang, Zhaoqiang; Ibrahim, Mohamed; Fu, Yang; Wu, Xujia; Ren, Fei; Chen, Lei

    2018-01-01

    Three-dimensional (3D) printing is a new developing technology for printing individualized materials swiftly and precisely in the field of biological medicine (especially tissue-engineered materials). Prior to printing, it is necessary to scan the structure of the natural biological tissue, then construct the 3D printing digital model through optimizing the scanned data. By searching the literatures, magazines at home and abroad, this article reviewed the current status, main processes and matters needing attention of confocal laser scanning microscope (LSCM) in the application of soft tissue fine structure 3D scanning, empathizing the significance of LSCM in this field. PMID:29755838

  11. Finger doses for staff handling radiopharmaceuticals in nuclear medicine.

    PubMed

    Pant, Gauri S; Sharma, Sanjay K; Rath, Gaura K

    2006-09-01

    Radiation doses to the fingers of occupational workers handling 99mTc-labeled compounds and 131I for diagnostic and therapeutic procedures in nuclear medicine were measured by thermoluminescence dosimetry. The doses were measured at the base of the ring finger and the index finger of both hands in 2 groups of workers. Group 1 (7 workers) handled 99mTc-labeled radiopharmaceuticals, and group 2 (6 workers) handled 131I for diagnosis and therapy. Radiation doses to the fingertips of 3 workers also were measured. Two were from group 1, and 1 was from group 2. The doses to the base of the fingers for the radiopharmacy staff and physicians from group 1 were observed to be 17+/-7.5 (mean+/-SD) and 13.4+/-6.5 microSv/GBq, respectively. Similarly, the dose to the base of the fingers for the 3 physicians in group 2 was estimated to be 82.0+/-13.8 microSv/GBq. Finger doses for the technologists in both groups could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts that accumulated in 1 wk. The doses to the fingertips of the radiopharmacy worker and the physician in group 1 were 74.3+/-19.8 and 53.5+/-21.9 microSv/GBq, respectively. The dose to the fingertips of the physician in group 2 was 469.9+/-267 microSv/GBq. The radiation doses to the fingers of nuclear medicine staff at our center were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y), except for a physician who handled large quantities of 131I for treatment. Because all of these workers are on rotation and do not constantly handle radioactivity throughout the year, the doses to the base of the fingers or the fingertips should not exceed the prescribed annual limit of 500 mSv.

  12. Automatic classification of DMSA scans using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.

  13. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis.

    PubMed

    Stats, Miriam A; Stone, James R

    2016-01-01

    Recently, there has been much interest in using nuclear medicine studies to noninvasively identify and subtype cardiac amyloidosis. In particular, modified bone scans using (99m)Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ((99m)Tc-DPD) and (99m)Tc-pyrophosphate ((99m)Tc-PYP) are being used to selectively identify patients with ATTR amyloidosis rather than AL amyloidosis. The morphologic basis underlying the selectivity of these imaging modalities for ATTR amyloidosis has been unclear. To determine if variations in microcalcifications and/or macrophages within ATTR and AL amyloidosis might be responsible for the selectivity for these imaging modalities, 8 endomyocardial biopsies of ATTR amyloidosis and 7 endomyocardial biopsies of AL amyloidosis were stained with von Kossa calcium stains and with immunohistochemistry for the macrophage marker CD68. Compared with AL amyloidosis, there was a greater density of small microcalcifications in cases of ATTR amyloidosis (mean=16.8 vs. 6.5 per 200× field, P=.008). In contrast, there were fewer macrophages in ATTR amyloidosis compared with AL amyloidosis (mean=2.5 vs. 11.7 per 200× field, P=.0004). The density of microcalcifications within each group was not related to patient age, echocardiographic features of cardiac function, or serum levels of calcium and creatinine. These data suggest that microcalcifications but not macrophages likely underlie the selectivity of modified bone scans for ATTR amyloidosis and suggest that other pathologic entities containing microcalcifications might also result in positive scans with these imaging modalities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  15. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  16. DICOM image quantification secondary capture (DICOM IQSC) integrated with numeric results, regions, and curves: implementation and applications in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-03-01

    In this paper, we describe an enhanced DICOM Secondary Capture (SC) that integrates Image Quantification (IQ) results, Regions of Interest (ROIs), and Time Activity Curves (TACs) with screen shots by embedding extra medical imaging information into a standard DICOM header. A software toolkit of DICOM IQSC has been developed to implement the SC-centered information integration of quantitative analysis for routine practice of nuclear medicine. Primary experiments show that the DICOM IQSC method is simple and easy to implement seamlessly integrating post-processing workstations with PACS for archiving and retrieving IQ information. Additional DICOM IQSC applications in routine nuclear medicine and clinic research are also discussed.

  17. Patient dosimetry audit for establishing local diagnostic reference levels for nuclear medicine CT.

    PubMed

    Gardner, Matthew; Katsidzira, Ngonidzashe M; Ross, Erin; Larkin, Elizabeth A

    2017-03-01

    To establish a system for patient dosimetry audit and setting of local diagnostic reference levels (LDRLs) for nuclear medicine (NM) CT. Computed radiological information system (CRIS) data were matched with NM paper records, which provided the body region and dose mode for NMCT carried out at a large UK hospital. It was necessary to divide data in terms of the NM examination type, body region and dose mode. The mean and standard deviation dose-length products (DLPs) for common NMCT examinations were then calculated and compared with the proposed National Diagnostic Reference Levels (NDRLs). Only procedures which have 10 or more patients will be used to suggest LDRLs. For most examinations, the mean DLPs do not exceed the proposed NDRLs. The bone single-photon emission CT/CT lumbar spine data clearly show the need to divide data according to the purpose of the scan (dose mode), with mean (±standard error) DLPs ranging from 51 ± 5 mGy cm (low dose) to 1086 ± 124 mGy cm (metal dose). A system for NMCT patient dose audit has been developed, but there are non-trivial challenges which make the process labour intensive. These include limited information provided by CRIS downloads, dependence on paper records and limited number of examinations available owing to the need to subdivide data. Advances in knowledge: This article demonstrates that a system can be developed for NMCT patient dose audit, but also highlights the challenges associated with such audit, which may not be encountered with more routine audit of radiology CT.

  18. Diffusion processes in tumors: A nuclear medicine approach

    NASA Astrophysics Data System (ADS)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  19. Diffusion processes in tumors: A nuclear medicine approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Helman, E-mail: haamayae@unal.edu.co

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and {sup 18}F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer softwaremore » was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical {sup 18}F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.« less

  20. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  1. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE ACCREDITATION OF EDUCATIONAL PROGRAMS FOR AND THE CREDENTIALING OF RADIOLOGIC PERSONNEL Pt. 75... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the... excess of, those of a graduate of an accredited educational program. C. Examination A criterion...

  2. Treatment of glioblastoma with herbal medicines.

    PubMed

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Darko; Trogrlić, Amina Kadrić

    2018-02-13

    In the latest years, a lot of research studies regarding the usage of active agents from plants in the treatment of tumors have been published, but there is no data about successful usage of herbal remedies in the treatment of glioblastoma in humans. The phytotherapy involved five types of herbal medicine which the subjects took in the form of tea, each type once a day at regular intervals. Three patients took herbal medicine along with standard oncological treatment, while two patients applied for phytotherapy after completing medical treatment. The composition of herbal medicine was modified when necessary, which depended on the results of the control scans using the nuclear magnetic resonance technique and/or computed tomography. Forty-eight months after the introduction of phytotherapy, there were no clinical or radiological signs of the disease, in three patients; in one patient, the tumor was reduced and his condition was stable, and one patient lived for 48 months in spite of a large primary tumor and a massive recurrence, which developed after the treatment had been completed. The results achieved in patients in whom tumor regression occurred exclusively through the use of phytotherapy deserve special attention. In order to treat glioblastoma more effectively, it is necessary to develop innovative therapeutic strategies and medicines that should not be limited only to the field of conventional medicine. The results presented in this research paper are encouraging and serve as a good basis for further research on the possibilities of phytotherapy in the treatment of glioblastoma.

  3. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    NASA Astrophysics Data System (ADS)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  4. Effectiveness of medicines authentication technology to detect counterfeit, recalled and expired medicines: a two-stage quantitative secondary care study.

    PubMed

    Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Chapman, Stephen; Brindley, David

    2016-12-09

    To identify the authentication and detection rate of serialised medicines using medicines authentication technology. 4192 serialised medicines were entered into a hospital dispensary over two separate 8-week stages in 2015. Medicines were authenticated using secure external database cross-checking, triggered by the scanning of a two-dimensional data matrix with a unit specific 12-digit serial code. 4% of medicines included were preprogrammed with a message to identify the product as either expired, pack recalled, product recalled or counterfeit. A site within a large UK National Health Service teaching hospital trust. Accredited checking staff, pharmacists and dispensers in a pharmacy department. Authentication and detection rate of counterfeit expired and recalled medicines. The operational detection rate of counterfeit, recalled and expired medicines scanned as a combined group was 81.4% (stage 1 (S1)) and 87% (stage 2 (S2)). The technology's technical detection rate (TDR) was 100%; however, not all medicines were scanned and of those that were scanned not all that generated a warning message were quarantined. Owing to an operational authentication rate (OAR) of 66.3% (over both stages), only 31.8% of counterfeit medicines, 58% of recalled drugs and 64% of expired medicines were detected as a proportion of those entered into the study. Response times (RTs) of 152 ms (S1) and 165 ms (S2) were recorded, meeting the falsified medicines directive-mandated 300 ms limit. TDRs and RTs were not a limiting factor in this study. The suboptimal OAR poses significant quality and safety issues with this detection approach. Authentication at the checking stage, however, demonstrated higher OARs. There is a need for further qualitative research to establish the reasons for less than absolute authentication and detection rates in the hospital environment to improve this technology in preparation for the incumbent European Union regulative deadline. Published by the BMJ

  5. Effectiveness of medicines authentication technology to detect counterfeit, recalled and expired medicines: a two-stage quantitative secondary care study

    PubMed Central

    Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Chapman, Stephen; Brindley, David

    2016-01-01

    Objectives To identify the authentication and detection rate of serialised medicines using medicines authentication technology. Design and intervention 4192 serialised medicines were entered into a hospital dispensary over two separate 8-week stages in 2015. Medicines were authenticated using secure external database cross-checking, triggered by the scanning of a two-dimensional data matrix with a unit specific 12-digit serial code. 4% of medicines included were preprogrammed with a message to identify the product as either expired, pack recalled, product recalled or counterfeit. Setting A site within a large UK National Health Service teaching hospital trust. Participants Accredited checking staff, pharmacists and dispensers in a pharmacy department. Primary outcome measures Authentication and detection rate of counterfeit expired and recalled medicines. Results The operational detection rate of counterfeit, recalled and expired medicines scanned as a combined group was 81.4% (stage 1 (S1)) and 87% (stage 2 (S2)). The technology's technical detection rate (TDR) was 100%; however, not all medicines were scanned and of those that were scanned not all that generated a warning message were quarantined. Owing to an operational authentication rate (OAR) of 66.3% (over both stages), only 31.8% of counterfeit medicines, 58% of recalled drugs and 64% of expired medicines were detected as a proportion of those entered into the study. Response times (RTs) of 152 ms (S1) and 165 ms (S2) were recorded, meeting the falsified medicines directive-mandated 300 ms limit. Conclusions TDRs and RTs were not a limiting factor in this study. The suboptimal OAR poses significant quality and safety issues with this detection approach. Authentication at the checking stage, however, demonstrated higher OARs. There is a need for further qualitative research to establish the reasons for less than absolute authentication and detection rates in the hospital environment to improve this

  6. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  7. A study on evaluation of the dependences of the function and the shape in a 99 m Tc-DMSA renal scan on the difference in acquisition count

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Shim, Dong-Oh; Kim, Ho-Sung; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2013-02-01

    In a nuclear medicine examination, methods to acquire a static image include the preset count method and the preset time method. The preset count method is used mainly in a static renal scan that utilizes 99 m Tc-DMSA (dimoercaptosuccinic acid) whereas the preset time method is used occasionally. When the preset count method is used, the same number of acquisition counts is acquired for each time, but the scan time varies. When the preset time method is used, the scan time is constant, but the number of counts acquired is not the same. Therefore, this study examined the dependence of the difference in information on the function and the shape of both sides of the kidneys on the counts acquired during a renal scan that utilizes 99 m Tc-DMSA. The study involved patients who had 40-60% relative function of one kidney among patients who underwent a 99 m Tc-DMSA renal scan in the Nuclear Medicine Department during the period from January 11 to March 31, 2012. A gamma camera was used to obtain the acquisition count continuously using 100,000 counts and 300,000 counts, and an acquisition time of 7 minutes (exceeding 300,000 counts). The function and the shape of the kidney were evaluated by measuring the relative function of both sides of the kidneys, the geometric mean, and the size of kidney before comparative analysis. According to the study results, neither the relative function nor the geometric mean of both sides of the kidneys varied significantly with the acquisition count. On the other hand, the size of the kidney tended to be larger with increasing acquisition count.

  8. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists D Appendix D to Part 75 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING STANDARDS FOR THE ACCREDITATION OF...

  9. Online Appointment Scheduling for a Nuclear Medicine Department in a Chinese Hospital

    PubMed Central

    Feng, Ya-bing

    2018-01-01

    Nuclear medicine, a subspecialty of radiology, plays an important role in proper diagnosis and timely treatment. Multiple resources, especially short-lived radiopharmaceuticals involved in the process of nuclear medical examination, constitute a unique problem in appointment scheduling. Aiming at achieving scientific and reasonable appointment scheduling in the West China Hospital (WCH), a typical class A tertiary hospital in China, we developed an online appointment scheduling algorithm based on an offline nonlinear integer programming model which considers multiresources allocation, the time window constraints imposed by short-lived radiopharmaceuticals, and the stochastic nature of the patient requests when scheduling patients. A series of experiments are conducted to show the effectiveness of the proposed strategy based on data provided by the WCH. The results show that the examination amount increases by 29.76% compared with the current one with a significant increase in the resource utilization and timely rate. Besides, it also has a high stability for stochastic factors and bears the advantage of convenient and economic operation. PMID:29849748

  10. Nuclear Medicine Imaging

    MedlinePlus

    ... rayos-X, revelan solamente la estructura anatómica. Existen más de 100 exámenes diferentes de medicina nuclear para ... se le permite abandonar el hospital y regresar más tarde para el procedimiento del estudio de imagen. ...

  11. Advances in nuclear medicine.

    PubMed

    Selberg, Kurt; Ross, Michael

    2012-12-01

    Nuclear scintigraphy is a mainstay of diagnostic imaging and has preserved its relevance in the imaging of acute and chronic trauma. It is particularly useful in the evaluation of athletic injuries. Pitfalls of interpretation, false negatives and false positives exist as with many imaging modalities. Synthesis of physical exam findings, lameness evaluation and, when possible, diagnostic analgesia in combination with nuclear scintigraphy imaging findings, will allow for the most information to be applied to the patient's clinical problem. Published by Elsevier Inc.

  12. An alternate approach to the production of radioisotopes for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  13. An alternate approach to the production of radioisotopes for nuclear medicine applications.

    PubMed

    D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  14. Role of nuclear medicine in clinical urology and nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaufox, M.D.; Fine, E.; Lee, H.B.

    The application of radionuclide studies to nephrologic and urologic practice has reached a measurable degree of maturity during the past several years. In spite of this, the utilization of these techniques in many institutions in the United States continues to be far less frequent than one would expect from the clinical advantages. The aim of this editorial is to try to place the role of nuclear medicine in urology and nephrology in perspective. At the present time, in spite of the large number of renal agents that have been developed, there is no practical ideal radiopharmaceutical that can serve asmore » a universal agent. Arbitrarily, one may reduce the chief armamentarium to only four radiopharmaceuticals; technetium-99m DTPA, I-131 OIH (orthoiodohippurate), technetium-99m glucoheptonate and technetium-99m DMSA. These agents are discussed with their relative advantages and disadvantages.« less

  15. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  16. Liver function testing with nuclear medicine techniques is coming of age.

    PubMed

    Bennink, Roelof J; Tulchinsky, Mark; de Graaf, Wilmar; Kadry, Zakiyah; van Gulik, Thomas M

    2012-03-01

    Liver function is a broad term, as the organ participates in a multitude of different physiological and biochemical processes, including metabolic, synthetic, and detoxifying functions. However, it is the function of the hepatocyte that is central to sustaining normal life and dealing with disease states. When the liver begins to fail in severely ill patients, it forecasts a terminal outcome. However, unlike the glomerular filtration rate which clearly quantifies the key renal function, at most practice sites, there is no clinically available quantitative test for liver function. Although it is commonplace to assess indirect evidence of that function (by measuring blood levels of its end products and by-products) and to detect an acute injury (by following rising transaminases), a widely available test that would directly measure hepatocellular function is lacking. This article reviews current knowledge on liver function studies and focuses on those nuclear medicine tests available to study the whole liver and regional liver function. The clinical application driving these tests, prediction of remnant liver function after partial hepatectomy for primary liver malignancy or metastatic disease, is addressed here in detail. The test was recently validated for this specific application and was shown to be better than the current standard of practice (computed tomography volumetry), particularly in patients with hepatic comorbidities like cirrhosis, steatosis, or cholestasis. Furthermore, early assessment of regional liver function increase after preoperative portal vein embolization becomes possible with this technology. The limiting factor to a wider acceptance of this test is based on the lack of clinical software that would allow calculation of liver function parameters. This article provides information that enables a clinical nuclear medicine facility to provide this test using readily available equipment. Furthermore, it addresses emerging clinical applications

  17. Thymic pathologies in myasthenia gravis: a preoperative assessment of CAT scan and nuclear based imaging.

    PubMed

    Jordan, Berit; Kellner, Juliane; Jordan, Karin; Bähre, Manfred; Behrmann, Curd; Zierz, Stephan

    2016-04-01

    Precise diagnostic work up of a suspected thymic pathology in patients with myasthenia gravis (MG) is very important for potential surgical implications and further disease course. In this study the diagnostic value of combined preoperative radiological (CAT scan) and nuclear based imaging (octreotide and thallium scintigraphy) in patients with MG was evaluated. Twenty four patients were included. Histopathology revealed thymoma in nine patients, thymic carcinoma (TC) in one patient, lymphofollicular hyperplasia in seven patients, and involuted thymus in another seven patients. Diagnostic sensitivity for detecting thymoma/TC was 80 % in CAT scan as well as in somatostatin scintigraphy; the combination of both procedures reached 90 %. However, the diagnostic specifity to exclude thymoma in CAT scan was 100 % and in octreotide scintigraphy 85.7 %. Semiquantitative octreotide uptake significantly correlated with histological grading of thymoma/TC (r = 0.764) and histological proliferation rate Ki67 (r = 0.894). Thallium scintigraphy was positive only in one out of four thymoma cases. In this study, somatostatin scintigraphy has been shown to be a useful additional diagnostic technique in detecting thymic malignancies in patients with MG. These results might be especially helpful in patients with late onset MG as these patients are in general no candidates for thymectomy.

  18. Scanning of vehicles for nuclear materials

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.

  19. Pitfalls in classical nuclear medicine: myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Fragkaki, C.; Giannopoulou, Ch

    2011-09-01

    Scintigraphic imaging is a complex functional procedure subject to a variety of artefacts and pitfalls that may limit its clinical and diagnostic accuracy. It is important to be aware of and to recognize them when present and to eliminate them whenever possible. Pitfalls may occur at any stage of the imaging procedure and can be related with the γ-camera or other equipment, personnel handling, patient preparation, image processing or the procedure itself. Often, potential causes of artefacts and pitfalls may overlap. In this short review, special interest will be given to cardiac scintigraphic imaging. Most common causes of artefact in myocardial perfusion imaging are soft tissue attenuation as well as motion and gating errors. Additionally, clinical problems like cardiac abnormalities may cause interpretation pitfalls and nuclear medicine physicians should be familiar with these in order to ensure the correct evaluation of the study. Artefacts or suboptimal image quality can also result from infiltrated injections, misalignment in patient positioning, power instability or interruption, flood field non-uniformities, cracked crystal and several other technical reasons.

  20. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  1. Scanning of vehicles for nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J. I.

    2014-05-09

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost andmore » disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.« less

  2. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  3. Skeletal Scintigraphy (Bone Scan)

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  4. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  5. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Job-sharing in nuclear medicine: an 8-year experience (1998-2006).

    PubMed

    Als, Claudine; Brautigam, Peter

    2006-01-01

    Job-sharing is generally defined as a situation in which a single professional position is held in common by two separate individuals, who alternatively, on a timely basis, deal with the workload and the responsibilities. The aim of the present paper is to discuss prerequisites and characteristics of job-sharing by medical doctors and implications in a department of nuclear medicine. Job-sharing facilitates the combination of family life with professional occupation and prevents burnout. The time schedule applied by job-sharers is relevant: will both partners work for half-days, half-weeks, or rather alternatively during one to two consecutive weeks? This crucial choice, depending on personal as well as on professional circumstances, certainly influences the workflow of the department.

  7. Textbook of respiratory medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis.

  8. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  9. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  10. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  11. Applications of nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  12. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    PubMed Central

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  13. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  14. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H. H.; Dong, S. L.; Yang, H. J.

    2011-07-01

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by thismore » system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)« less

  15. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  16. Midi-maxi computer interaction in the interpretation of nuclear medicine procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlapper, G.A.

    1977-01-01

    A study of renal function with an Anger Gamma Camera coupled with a Digital Equipment Corporation Gamma-11 System and an IBM System 370 demonstrates the potential of quantitative determinations of physiological function through the application of midi-maxi computer interaction in the interpretation of nuclear medicine procedures. It is shown that radiotracers can provide an opportunity to assess physiological processes of renal function by noninvasively following the path of a tracer as a function of time. Time-activity relationships obtained over seven anatomically defined regions are related to parameters of a seven compartment model employed to describe the renal clearance process. Themore » values obtained for clinically significant parameters agree with known renal pathophysiology. Differentiation of failure of acute, chronic, and obstructive forms is indicated.« less

  17. Applications of Micro-CT scanning in medicine and dentistry: Microstructural analyses of a Wistar Rat mandible and a urinary tract stone

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Sari, D. S.; Fitri, L. A.

    2017-08-01

    High-resolution tomographic imaging by means of x-ray micro-computed tomography (μCT) has been widely utilized for morphological evaluations in dentistry and medicine. The use of μCT follows a standard procedure: image acquisition, reconstruction, processing, evaluation using image analysis, and reporting of results. This paper discusses methods of μCT using a specific scanning device, the Bruker SkyScan 1173 High Energy Micro-CT. We present a description of the general workflow, information on terminology for the measured parameters and corresponding units, and further analyses that can potentially be conducted with this technology. Brief qualitative and quantitative analyses, including basic image processing (VOI selection and thresholding) and measurement of several morphometrical variables (total VOI volume, object volume, percentage of total volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity) were conducted on two samples, the mandible of a wistar rat and a urinary tract stone, to illustrate the abilities of this device and its accompanying software package. The results of these analyses for both samples are reported, along with a discussion of the types of analyses that are possible using digital images obtained with a μCT scanning device, paying particular attention to non-diagnostic ex vivo research applications.

  18. [Creation and Evaluation of Educational Programs for Additional Delayed Scan of FDG-PET/CT].

    PubMed

    Wada, Ryota; Kamiya, Takashi; Fujino, Kouichi; Ueda, Junpei; Isohashi, Kayako; Tatsumi, Mitsuaki; Hatazawa, Jun

    Generally, FDG-PET/CT image is acquired at the 60th minute after tracer administration. Depending on the clinical case, additional delayed scans may be useful. However, it is difficult to judge whether additional delayed scan is useful or not. The purposes of this study were creation and evaluation of educational programs to help radiological technologists to decide the usefulness of additional delayed scan of FDG-PET/CT. Educational programs consisted of the instructional materials and the judgment test of clinical cases. The instructional materials provided the valuable findings for differentiation between uptake in the wall of the colon and colon content, distinction between uptake in the lymph node and urinary tract, and evaluation of malignancy. The judgment test of clinical cases consisted of 10 cases selected by a nuclear medicine physician (for 5 of that cases additional delayed scan was decided to be useful). Five experienced technologists and five inexperienced technologists scored the volubility of additional delayed scan pre- and post-training using the instructional materials (the full marks of score is 5). After the educational programs using the instructional materials, the score was improved with the significant difference in both experienced (pre: 3.6±1.4, post: 4.0±1.2) and inexperienced (pre: 2.8±1.5, post: 3.7±1.5) groups (p<0.05). According to the educational programs, technologist might be able to decide whether the additional delayed scan is useful or not. The successful results of this study may improve the interpretation or reduce the total exposure dose of the PET/CT scan.

  19. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  20. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  1. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  2. Clinical importance of re-interpretation of PET/CT scanning in patients referred to a tertiary care medical centre.

    PubMed

    Löfgren, Johan; Loft, Annika; Barbosa de Lima, Vinicius Araújo; Østerlind, Kell; von Benzon, Eric; Højgaard, Liselotte

    2017-03-01

    To evaluate, in a controlled prospective manner with double-blind read, whether there are differences in interpretations of PET/CT scans at our tertiary medical centre, Rigshospitalet, compared to the external hospitals. Ninety consecutive patients referred to our department who had an external F-18-FDG PET/CT scan were included. Only information that had been available at the time of the initial reading at the external hospital was available at re-interpretation. Teams with one radiologist and one nuclear medicine physician working side by side performed the re-interpretation in consensus. Two oncologists subsequently and independently compared the original reports with the re-interpretation reports. In case of 'major discordance', the oncologists assessed the respective reports validities. The interpretations were graded as 'accordant' in 43 patients (48%), 'minor discordance' in 30 patients (33%) and 'major discordance' in 17 patients (19%). In 11 (65%) of the 17 cases graded as 'major discordance', it was possible to determine which report that was most correct. In 9 of these 11 cases (82%), the re-interpretation was most correct; in one case, the original report and in another case, both interpretations were incorrect. Major discordant interpretations were frequent [19% (17 of 90 cases)]. In those cases where follow-up could assess the validity, the re-interpretation at Rigshospitalet was most correct in 9 of 11 cases (82%), indicating that there is a difference in expertise in interpreting PET/CT at a tertiary referral hospital compared to primary local hospitals. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  3. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less

  4. TREATMENT OF PROGRESSION OF DIFFUSE ASTROCYTOMA BY HERBAL MEDICINE: CASE REPORT.

    PubMed

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Zoran

    2016-01-01

    The paper presents the results of the use of phytotherapy in a 33-year-old woman who, after finishing the oncological treatment of diffuse astrocytoma, had tumour progression. Phytotherapy was introduced after the tumour had progressed. It consisted of 4 types of herbal medicine which the subject was taking in form of tea once a day at regular intervals. The patient started phytotherapy along with temozolomide, which was the only oncological treatment she was under after the tumour had progressed. Following the finished chemotherapy, the patient continued the treatment with herbal medicine only. She regularly took phytotherapy without interruption and to the fullest extent for 30 months, and the results of treatment were monitored by periodic scanning using nuclear magnetic resonance technique. The control scanning that was conducted after the end of combined treatment with temozolomide and phytotherapy showed tumour regression. The patient continued with phytotherapy after finishing chemotherapy and, during the following 24 months, it was the sole treatment option. In that period, the regression of the tumour continued, until a control examination 30 months after the introduction of phytotherapy showed no clinical and radiological signs of tumour. The results presented in this research paper clearly indicate the potential of phytotherapy in the treatment of some types of brain tumours. A complete regression of tumour following the treatment with nothing but herbal medicine offers support for such claim. Future research should demonstrate the effectiveness of phytotherapy, as a supplementary form of brain tumour treatment, and the results of this research should be compared with the existing information on the effectiveness of the protocols currently used in the treatment of these types of tumour.

  5. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.

    PubMed

    Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki

    2011-06-01

    Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.

  6. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  7. Nuclear weapons and medicine: some ethical dilemmas.

    PubMed Central

    Haines, A; de B White, C; Gleisner, J

    1983-01-01

    The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war. PMID:6668585

  8. Nuclear weapons and medicine: some ethical dilemmas.

    PubMed

    Haines, A; de B White, C; Gleisner, J

    1983-12-01

    The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war.

  9. RadNuc: A graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator

    PubMed Central

    Pasternack, Jordan B.; Howell, Roger W.

    2012-01-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668

  10. RadNuc: a graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator.

    PubMed

    Pasternack, Jordan B; Howell, Roger W

    2013-02-01

    The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Incidence of a single subsegmental mismatched perfusion defect in single-photon emission computed tomography and planar ventilation/perfusion scans.

    PubMed

    Stubbs, Matthew; Chan, Kenneth; McMeekin, Helena; Navalkissoor, Shaunak; Wagner, Thomas

    2017-02-01

    This study aims to compare the incidence of ventilation/perfusion (V/Q) scans interpreted as indeterminate for the diagnosis of pulmonary embolism (PE) using single-photon emission computed tomography (SPECT) versus planar scintigraphy and to consider the effect of variable interpretation of single subsegmental V/Q mismatch (SSM). A total of 1300 consecutive V/Q scans were retrospectively reviewed. After exclusion and matching for age and sex, 542 SPECT and 589 planar scans were included in the analysis. European Association of Nuclear Medicine guidelines were used to interpret the V/Q scans, initially interpreting SSM as negative scans. Patients with SSM were followed up for 3 months and further imaging for PE was collected. Indeterminate scans were significantly fewer in the SPECT than the planar group on the basis of the initial report (7.7 vs. 12.2%, P<0.05). This is irrespective of classification of SSM as a negative scan (4.6 vs. 12.1%, P<0.0001) or an indeterminate scan (8.3 vs. 12.2%, P<0.05). Of the 21 patients who had SSM, 19 underwent computer tomography pulmonary angiogram and embolism was found in one patient. None of these patients died at the 3-month follow-up. V/Q SPECT has greater diagnostic certainty of PE, with a 41% reduction in an indeterminate scan compared with planar scintigraphy. This is irrespective of the clinician's interpretation of SSM as negative or intermediate probability. Patients with SSM would not require further computer tomography pulmonary angiogram imaging.

  12. Implementation of a Flipped Classroom for Nuclear Medicine Physician CME.

    PubMed

    Komarraju, Aparna; Bartel, Twyla B; Dickinson, Lisa A; Grant, Frederick D; Yarbrough, Tracy L

    2018-06-21

    Increasingly, emerging technologies are expanding instructional possibilities, with new methods being adopted to improve knowledge acquisition and retention. Within medical education, many new techniques have been employed in the undergraduate setting, with less utilization thus far in the continuing medical education (CME) sphere. This paper discusses the use of a new method for CME-the "flipped classroom," widely used in undergraduate medical education. This method engages learners by providing content before the live ("in class") session that aids in preparation and fosters in-class engagement. A flipped classroom method was employed using an online image-rich case-based module and quiz prior to a live CME session at a national nuclear medicine meeting. The preparatory material provided a springboard for in-depth discussion at the live session-a case-based activity utilizing audience response technology. Study participants completed a survey regarding their initial experience with this new instructional method. In addition, focus group interviews were conducted with session attendees who had or had not completed the presession material; transcripts were qualitatively analyzed. Quantitative survey data (completed by two-thirds of the session attendees) suggested that the flipped method was highly valuable and met attendee educational objectives. Analysis of focus group data yielded six themes broadly related to two categories-benefits of the flipped method for CME and programmatic considerations for successfully implementing the flipped method in CME. Data from this study have proven encouraging and support further investigations around the incorporation of this innovative teaching method into CME for nuclear imaging specialists.

  13. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Masahiro; Nakano, Toshiyuki; Komatani, Ryosuke; Kawahara, Hiroaki

    2017-10-01

    Automatic nuclear emulsion readout systems have seen remarkable progress since the original idea was developed almost 40 years ago. After the success of its full application to a large-scale neutrino experiment, OPERA, a much faster readout system, the hyper-track selector (HTS), has been developed. HTS, which has an extremely wide-field objective lens, reached a scanning speed of 4700 cm^2/h, which is nearly 100 times faster than the previous system and therefore strongly promotes many new experimental projects. We will describe the concept, specifications, system structure, and achieved performance in this paper.

  14. Get the Facts about Radiation

    MedlinePlus

    ... through the other side. Another imaging method called nuclear medicine uses compounds that emit radiation, which can ... potentially riskier to not get the scan or nuclear medicine procedure than to get it.” Sgouros and ...

  15. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review

    PubMed Central

    Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria

    2015-01-01

    Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site

  17. Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review.

    PubMed

    Isidori, Andrea M; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria; Pivonello, Rosario

    2015-09-01

    Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18Ffluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga- DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). The analysis comprised 231 patients (females, 50.2%; age, 42.617 y). Overall, 52.4%(121/231) had "overt" ECS,18.6% had "occult" ECS, and 29% had "covert" ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized byCTin66.2%(137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPAPET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTRPET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was

  18. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A; Poli, G; Beykan, S

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be

  19. Occupational radiation exposure in nuclear medicine department in Kuwait

    NASA Astrophysics Data System (ADS)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  20. Application of nuclear physics in medical physics and nuclear medicine

    NASA Astrophysics Data System (ADS)

    Hoehr, Cornelia

    2016-09-01

    Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.

  1. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion.

    PubMed

    Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G

    2015-12-01

    Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants

  2. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F; Di Dia, A; Pedroli, G

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK),more » quantifying the energy deposition all around a point isotropic source, is often the one.Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10–3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8·RCSDA and 0.9·RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8·X90 and 0.9·X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9·RCSDA and 0.9·X90 for electrons and isotopes, respectively.Results: Concerning monoenergetic electrons, within 0.8·RCSDA (where 90%–97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in

  3. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E; Nelson, J; Hangiandreou, N

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  4. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    PubMed

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards. Copyright © 2014. Published by Elsevier GmbH.

  5. A 3D Scan Model and Thermal Image Data Fusion Algorithms for 3D Thermography in Medicine

    PubMed Central

    Klima, Ondrej

    2017-01-01

    Objectives At present, medical thermal imaging is still considered a mere qualitative tool enabling us to distinguish between but lacking the ability to quantify the physiological and nonphysiological states of the body. Such a capability would, however, facilitate solving the problem of medical quantification, whose presence currently manifests itself within the entire healthcare system. Methods A generally applicable method to enhance captured 3D spatial data carrying temperature-related information is presented; in this context, all equations required for other data fusions are derived. The method can be utilized for high-density point clouds or detailed meshes at a high resolution but is conveniently usable in large objects with sparse points. Results The benefits of the approach are experimentally demonstrated on 3D thermal scans of injured subjects. We obtained diagnostic information inaccessible via traditional methods. Conclusion Using a 3D model and thermal image data fusion allows the quantification of inflammation, facilitating more precise injury and illness diagnostics or monitoring. The technique offers a wide application potential in medicine and multiple technological domains, including electrical and mechanical engineering. PMID:29250306

  6. Unravelling the molecular structure and packing of a planar molecule by combining nuclear magnetic resonance and scanning tunneling microscopy.

    PubMed

    Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M

    2013-12-21

    The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.

  7. Nuclear medicine in urology and nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, P.H.; Shields, R.A.; Testa, H.J.

    This edition on radionuclide techniques in urology and nephrology reflects the many advances since 1979. Emphasis has been given to diuretic renography and studies of urinary reflux. A new chapter discusses the diagnosis of lower urinary tract problems. The editors have divided the book into three sections. The first part presents a description of the techniques and their interpretation. Renography, renal scanning, clearance studies, and bone scanning are covered. The second section gives an in-depth discussion of the application of these techniques to obstructive uropathy, urologic tumors, renal transplantation, trauma, and lower urinary tract, pediatric, and nephrologic problems. The lastmore » part of the book deals with basic principles. It expands on the relevant theoretical and technical aspects not covered in detail in part 1. In this last portion of the book the editors have grouped together the chapters on physics, instrumentation, radiopharmaceuticals, and radiation dosimetry.« less

  8. Production and characterization of monoclonal antibodies specific for canine CD138 (syndecan-1) for nuclear medicine preclinical trials on spontaneous tumours.

    PubMed

    Diab, M; Nguyen, F; Berthaud, M; Maurel, C; Gaschet, J; Verger, E; Ibisch, C; Rousseau, C; Chérel, M; Abadie, J; Davodeau, F

    2017-09-01

    We isolated 11 antibodies specific for canine CD138 (cCD138) to validate the interest of CD138 antigen targeting in dogs with spontaneous mammary carcinoma. The affinity of the monoclonal antibodies in the nanomolar range is suitable for immunohistochemistry and nuclear medicine applications. Four distinct epitopes were recognized on cCD138 by this panel of antibodies. CD138 expression in canine healthy tissues is comparable to that reported in humans. CD138 is frequently expressed in canine mammary carcinomas corresponding to the human triple negative breast cancer subtype, with cytoplasmic and membranous expression. In canine diffuse large B-cell lymphoma, CD138 expression is associated with the 'non-germinal center' phenotype corresponding to the most aggressive subtype in humans. This homology of CD138 expression between dogs and humans confirms the relevance of tumour-bearing dogs as spontaneous models for nuclear medicine applications, especially for the evaluation of new tumour targeting strategies for diagnosis by phenotypic imaging and radio-immunotherapy. © 2016 John Wiley & Sons Ltd.

  9. [The psychodynamics of work with iodine-131 in nuclear medicine].

    PubMed

    da Silveira, Leila Cunha; Guilam, Maria Cristina Rodrigues; de Oliveira, Sergio Ricardo

    2013-11-01

    This paper seeks to demonstrate to what extent alternative forms adopted in the working process of professionals with iodine-131 in nuclear medicine can assist in managing risks of ionizing radiation. The design is based on the main theoretical concepts of the psychodynamics of work in relation to workers' health. In the case study, data were gathered from 15 workers of a public health institution in the city of Rio de Janeiro by means of semi-structured individual interviews and non-systematic direct observation. Bardin's content analysis method was used for the data analysis. When comparing the results obtained with standard prescribed models, it was found that the respondents had changed their approach. They developed individual defense mechanisms, such as denial of risk, and collective defensive strategies, leading them to tackle the greatest danger as a form of defense. The defensive role of ideologies of the profession are manifest. On the contrary, the acquired knowledge derived from prudence proved effective in minimizing the risks of radiation exposure. The authors discuss the limitations of security management that does not consider the workers' subjectivity and inherent knowledge.

  10. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  11. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  12. 3D surface and body documentation in forensic medicine: 3-D/CAD Photogrammetry merged with 3D radiological scanning.

    PubMed

    Thali, Michael J; Braun, Marcel; Wirth, Joachim; Vock, Peter; Dirnhofer, Richard

    2003-11-01

    A main goal of forensic medicine is to document and to translate medical findings to a language and/or visualization that is readable and understandable for judicial persons and for medical laymen. Therefore, in addition to classical methods, scientific cutting-edge technologies can and should be used. Through the use of the Forensic, 3-D/CAD-supported Photogrammetric method the documentation of so-called "morphologic fingerprints" has been realized. Forensic, 3-D/CAD-supported Photogrammetry creates morphologic data models of the injury and of the suspected injury-causing instrument allowing the evaluation of a match between the injury and the instrument. In addition to the photogrammetric body surface registration, the radiological documentation provided by a volume scan (i.e., spiral, multi-detector CT, or MRI) registers the sub-surface injury, which is not visible to Photogrammetry. The new, combined method of merging Photogrammetry and Radiology data sets creates the potential to perform many kinds of reconstructions and postprocessing of (patterned) injuries in the realm of forensic medical case work. Using this merging method of colored photogrammetric surface and gray-scale radiological internal documentation, a great step towards a new kind of reality-based, high-tech wound documentation and visualization in forensic medicine is made. The combination of the methods of 3D/CAD Photogrammetry and Radiology has the advantage of being observer-independent, non-subjective, non-invasive, digitally storable over years or decades and even transferable over the web for second opinion.

  13. Radioimmunotherapy in non-Hodgkin lymphoma: opinions of nuclear medicine physicians and radiation oncologists.

    PubMed

    Schaefer, Niklaus G; Huang, Peng; Buchanan, Julia W; Wahl, Richard L

    2011-05-01

    Despite approval by the Food and Drug Administration and consistent reports of the efficacy and safety of (90)Y-ibritumomab tiuxetan and (131)I-tositumomab, these therapies are infrequently used. This study investigates the opinions and patterns of the use of radioimmunotherapy by nuclear physicians, affiliated researchers, nuclear medicine technologists, and radiation oncologists and aims to identify possible barriers to the use of this promising therapy. An e-mail-based survey with 13 broad questions related to radioimmunotherapy was sent electronically to 13,221 Society of Nuclear Medicine members and radiation oncologists throughout the United States. Six hundred thirteen individuals (4.6%) responded to the electronic survey. Two hundred fifty-one responders (40.9%) had treated patients with non-Hodgkin lymphoma (NHL) with radioimmunotherapy in the last 24 mo. Of the responders, 29.5% used only (90)Y-ibritumomab tiuxetan, 7.6% used only (131)I-tositumomab, and 24.9% used both radiopharmaceuticals; 37.9% did not treat NHL with radioimmunotherapy. Most responders said their patients came from university hospitals (33.9%) or private offices (25.6%), and they mainly treated in a second-line (42.9%), third-line (35.6%), or consolidation (23.5%) setting. Major concerns were that referring oncologists and hematologists wanted to treat by themselves with nonradioactive compounds (mean ± SD, 3.418 ± 1.49) and that (90)Y-ibritumomab tiuxetan and (131)I-tositumomab were expensive (mean ± SD, 3.413 ± 1.35). Of the responders and involved physicians, 40.4% and 35.2%, respectively, did not know if their institution accepted Medicare patients for radioimmunotherapy. Almost 30% (29.6%) of the responders thought radioimmunotherapy would probably grow and 38.0% thought it would grow in importance in the future. Responders who did not administer radioimmunotherapy for NHL thought it took too much time to administer radioimmunotherapy (P < 0.01) and had concerns about the

  14. The Beatles, the Nobel Prize, and CT scanning of the chest.

    PubMed

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  15. Preablation 131-I scans with SPECT/CT contribute to thyroid cancer risk stratification and 131-I therapy planning.

    PubMed

    Avram, Anca M; Esfandiari, Nazanene H; Wong, Ka Kit

    2015-05-01

    The use of preablation diagnostic radioiodine scans for risk stratification and radioiodine therapy planning for differentiated thyroid cancer (DTC) remains controversial. The objective was to assess the contribution of preablation diagnostic 131-I scans with SPECT/CT (Dx 131-I scan) to (1) the risk stratification and (2) the postoperative management of DTC. The study was designed as a prospective sequential patient series. The study was conducted at a University hospital. Three hundred twenty patients (pts) with DTC (219F; 101M, mean age 47.3 ± 16.4 y, range 10-90) were studied. Using clinical and histopathology information an endocrinologist performed risk stratification and determined postoperative management with respect to radioiodine therapy (RAI) planning. The decision to withhold or to administer RAI, and the recommended low, medium or high therapeutic 131-I activity were recorded. Dx 131-I scans were performed and interpreted by two nuclear medicine physicians as showing thyroid remnant, cervical nodal, or distant metastases. The endocrinologist then reperformed risk stratification and reformulated management after consideration of Dx 131-I scans and stimulated thyroglobulin (Tg) information. Main outcome measures were changes in risk stratification and management after Dx 131-I scans. Detection of unsuspected nodal and distant metastases and elevated stimulated Tg levels resulted in a change in the estimated risk of recurrence in 15% of patients, and management in 31% of patients, as compared to initial risk stratification and management based on histopathology alone. Both imaging data and stimulated thyroglobulin levels acquired at the time of Dx 131-I scans are consequential for 131-I therapy planning, providing information that changes risk stratification in 15% of patients as compared to recurrence risk estimation based on histopathology alone. Dx 131-I scans contribute to risk stratification by defining residual nodal and distant metastatic disease

  16. Recommendations to minimize diagnostic nuclear medicine exposure to the embryo, fetus, and infant; availability of final recommendations--FDA. Notice.

    PubMed

    1986-02-19

    Food and Drug Administration (FDA) is announcing the availability of final recommendations to minimize diagnostic nuclear medicine exposure to the embryo, fetus, and breastfeeding infant. The final recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), include the agency's rationale for the recommendations as well as the endorsement of the recommendations by several professional organizations. The final recommendations are being published in a pamphlet that is being made available to interested persons.

  17. The utility of Xenon-133 liver scan in the diagnosis and management of nonalcoholic fatty liver disease.

    PubMed

    Al-Busafi, Said A; Ghali, Peter; Wong, Philip; Novales-Diaz, Javier A; Deschênes, Marc

    2012-03-01

    Nonalcoholic fatty liver disease (NAFLD) is an important and common condition affecting approximately 20% of the general population. Given the limitation of radiological investigations, diagnosis often requires a liver biopsy. To compare Xenon-133 (Xe-133) liver scanning with ultrasonography in the diagnosis of NAFLD. From January 2003 to February 2007, 258 consecutive patients with suspected NAFLD underwent Xe-133 liver scanning at Royal Victoria Hospital (Montreal, Quebec). Of these, 43 patients underwent ultrasonography and liver biopsy for the evaluation of NAFLD. Patients with other liver diseases and significant alcohol consumption were excluded. Two nuclear medicine physicians assessed liver Xe-133 uptake and measured the grade of steatosis using a standardized protocol. The degree of steatosis was determined from biopsy specimens assessed by two hepatopathologists. NAFLD was identified by liver biopsy in 35 of 43 patients (81.4%). Xe-133 scan demonstrated 94.3% sensitivity (95% CI 81.4% to 98.4%) and 87.5% specificity (95% CI 52.9% to 99.4%) for the presence of NAFLD. The positive and negative predictive values for detection of steatosis by Xe-133 scan were 97.1% (95% CI 85.1% to 99.8%) and 77.8% (95% CI 45.3% to 93.7%), respectively. The positive and negative likelihood ratios were 7.54 (95% CI 1.20 to 47.26) and 0.07 (95% CI 0.02 to 0.26), respectively. Two patients with NAFLD (5.7%) who had a negative Xe-133 scan result had histologically mild steatosis (<10%). The grade of steatosis on liver biopsy was highly correlated with the results of the Xe-133 scan (r=0.87; P<0.001). The sensitivity and specificity of ultrasound in diagnosing steatosis were 62.9% and 75%, respectively. Xe-133 liver scan proved to be a safe, reliable, noninvasive method for diagnosing and quantifying hepatic steatosis, and was superior to ultrasound.

  18. A work observation study of nuclear medicine technologists: interruptions, resilience and implications for patient safety

    PubMed Central

    Larcos, George; Prgomet, Mirela; Georgiou, Andrew; Westbrook, Johanna

    2017-01-01

    Background Errors by nuclear medicine technologists during the preparation of radiopharmaceuticals or at other times can cause patient harm and may reflect the impact of interruptions, busy work environments and deficient systems or processes. We aimed to: (a) characterise the rate and nature of interruptions technologists experience and (b) identify strategies that support safety. Methods We performed 100 hours of observation of 11 technologists at a major public hospital and measured the proportions of time spent in eight categories of work tasks, location of task, interruption rate and type and multitasking (tasks conducted in parallel). We catalogued specific safety-oriented strategies used by technologists. Results Technologists completed 5227 tasks and experienced 569 interruptions (mean, 4.5 times per hour; 95% CI 4.1 to 4.9). The highest interruption rate occurred when technologists were in transit between rooms (10.3 per hour (95% CI 8.3 to 12.5)). Interruptions during radiopharmaceutical preparation occurred a mean of 4.4 times per hour (95% CI 3.3 to 5.6). Most (n=426) tasks were interrupted once only and all tasks were resumed after interruption. Multitasking occurred 16.6% of the time. At least some interruptions were initiated by other technologists to convey important information and/or to render assistance. Technologists employed a variety of verbal and non-verbal strategies in all work areas (notably in the hot-lab) to minimise the impact of interruptions and optimise the safe conduct of procedures. Although most were due to individual choices, some strategies reflected overt or subliminal departmental policy. Conclusions Some interruptions appear beneficial. Technologists' self-initiated strategies to support safe work practices appear to be an important element in supporting a resilient work environment in nuclear medicine. PMID:27707869

  19. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F.; Mairani, A.; Battistoni, G.

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernelmore » (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic

  20. [Application of precursor ion scanning method in rapid screening of illegally added phosphodiesterase-5 inhibitors and their unknown derivatives in Chinese traditional patent medicines and health foods].

    PubMed

    Sun, Jing; Cao, Ling; Feng, Youlong; Tan, Li

    2014-11-01

    The compounds with similar structure often have similar pharmacological activities. So it is a trend for illegal addition that new derivatives of effective drugs are synthesized to avoid the statutory test. This bring challenges to crack down on illegal addition behavior, however, modified derivatives usually have similar product ions, which allow for precursor ion scanning. In this work, precursor ion scanning mode of a triple quadrupole mass spectrometer was first applied to screen illegally added drugs in complex matrix such as Chinese traditional patent medicines and healthy foods. Phosphodiesterase-5 inhibitors were used as experimental examples. Through the analysis of the structure and mass spectrum characteristics of the compounds, phosphodiesterase-5 inhibitors were classified, and their common product ions were screened by full scan of product ions of typical compounds. Then high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with precursor ion scanning mode was established based on the optimization of MS parameters. The effect of mass parameters and the choice of fragment ions were also studied. The method was applied to determine actual samples and further refined. The results demonstrated that this method can meet the need of rapid screening of unknown derivatives of phosphodiesterase-5 inhibitors in complex matrix, and prevent unknown derivatives undetected. This method shows advantages in sensitivity, specificity and efficiency, and is worth to be further investigated.

  1. Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.

    PubMed

    Choi, Hongyoon

    2018-04-01

    Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.

  2. 18F-fluorodeoxyglucose-positron emission tomography scanning is more useful in followup than in the initial assessment of patients with Erdheim-Chester disease.

    PubMed

    Arnaud, Laurent; Malek, Zoulikha; Archambaud, Frédérique; Kas, Aurélie; Toledano, Dan; Drier, Aurélie; Zeitoun, Delphine; Cluzel, Philippe; Grenier, Philippe A; Chiras, Jacques; Piette, Jean-Charles; Amoura, Zahir; Haroche, Julien

    2009-10-01

    Erdheim-Chester disease (ECD) is a rare form of non-Langerhans' cell histiocytosis. The aim of this study was to assess the value of whole-body scanning with (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) in a large cohort of ECD patients from a single center. We retrospectively reviewed all PET scans performed on 31 patients with ECD who were referred to our department between 2005 and 2008. PET images were reviewed by 2 independent nuclear medicine specialist physicians and were compared with other imaging modalities performed within 15 days of each PET scan. Thirty-one patients (10 women and 21 men; median age 59.5 years) underwent a total of 65 PET scans. Twenty-three patients (74%) were untreated at the time of the initial PET scan, whereas 30 of the 34 followup PET scans (88%) were performed in patients who were undergoing immunomodulatory therapy. Comparison of the initial and followup PET scans with other imaging modalities revealed that the sensitivity of PET scanning varied greatly among the different organs studied (range 4.3-100%), while the specificity remained high (range 69.2-100%). Followup PET scans were particularly helpful in assessing central nervous system (CNS) involvement, since the PET scan was able to detect an early therapeutic response of CNS lesions, even before magnetic resonance imaging showed a decrease in their size. PET scanning was also very helpful in evaluating the cardiovascular system, which is a major prognostic factor in ECD, by assessing the heart and the entire vascular tree during a single session. The results of our large, single-center, retrospective study suggest that the findings of a FDG-PET scan may be interesting in the initial assessment of patients with ECD, but its greater contribution is in followup of these patients.

  3. Radiopharmaceuticals in nuclear medicine practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalsky, R.J.; Perry, J.R.

    1987-01-01

    This book discusses the basic principles and clinical applications of radiopharmaceuticals. Topics include atomic physics as applied to radiopharmaceuticals, radionuclide generator function, nuclear pharmacy and safety, and radiopharmaceutical use in evaluating the major organ systems of the body. For each body system the author explains rationale for use, typical procedures, current agents of choice, and interpretation of results. Images, tables, and graphs illustrate normal and abnormal studies.

  4. One-year clinical experience with a fully digitized nuclear medicine department: organizational and economical aspects

    NASA Astrophysics Data System (ADS)

    Anema, P. C.; de Graaf, C. N.; Wilmink, J. B.; Hall, David R.; Hoekstra, A. G.; van Rijk, P. P.; Van Isselt, J. W.; Viergever, Max A.

    1991-07-01

    At the department of nuclear medicine of the University Hospital Utrecht a single-modality PACS has been operational since mid-1990. After one year of operation the functionality, the organizational and economical consequences, and the acceptability of the PACS were evaluated. The functional aspects reviewed were: viewing facilities, patient data management, connectivity, reporting facilities, archiving, privacy, and security. It was concluded that the improved quality of diagnostic viewing and the potential integration with diagnosis, reporting, and archiving are highly appreciated. The many problems that have occurred during the transition period, however, greatly influence the appreciation and acceptability of the PACS. Overall, it is felt that in the long term there will be a positive effect on the quality and efficiency of the work.

  5. Dose received by occupationally exposed workers at a nuclear medicine department

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Sánchez-Uribe, N. A.; Rodríguez-Laguna, A.; Medina, L. A.; Estrada, E.; Buenfil, A. E.; Brandan, M. E.

    2012-10-01

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of "Instituto Nacional de Cancerología" (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are 131I, 18F, 68Ga, 99mTc, 111In and 11C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of "Instituto Nacional de Investigaciones Nucleares" (ININ), Mexico. Every occupational worker used dark containers with three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the "Reglamento General de Seguridad Radiológica", México (50 mSv), as well as within the lower limit recommended by the "International Commission on Radiation Protection" (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.

  6. Dose received by occupationally exposed workers at a nuclear medicine department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, O.; Sanchez-Uribe, N. A.; Rodriguez-Laguna, A.

    2012-10-23

    Personal Dose Equivalent (PDE) values were determined for occupational exposed workers (OEW) at the Nuclear Medicine Department (NMD) of 'Instituto Nacional de Cancerologia' (INCan), Mexico, using TLD-100 thermoluminescent dosemeters. OEW at NMD, INCan make use of radiopharmaceuticals for diagnosis and treatment of diseases. Radionuclides associated to a pharmaceutical compound used at this Department are {sup 131}I, {sup 18}F, {sup 68}Ga, {sup 99m}Tc, {sup 111}In and {sup 11}C with main gamma emission energies between 140 and 511 keV. Dosemeter calibration was performed at the metrology department of 'Instituto Nacional de Investigaciones Nucleares' (ININ), Mexico. Every occupational worker used dark containers withmore » three dosimeters which were replaced monthly for a total of 5 periods. Additionally, control dosemeters were also placed at a site free of radioactive sources in order to determine the background radiation. Results were adjusted to find PDE/day and estimating annual PDE values in the range between 2 mSv (background) and 9 mSv. The mean annual value is 3.51 mSv and the standard deviation SD is 0.78 mSv. Four of the 16 OEW received annual doses higher than the average +1 SD (4.29 mSv). Results depend on OEW daily activities and were consistent for each OEW for the 5 studied periods as well as with PDE values reported by the firm that performs the monthly service. All obtained values are well within the established annual OEW dose limit stated in the {sup R}eglamento General de Seguridad Radiologica{sup ,} Mexico (50 mSv), as well as within the lower limit recommended by the 'International Commission on Radiation Protection' (ICRP), report no.60 (20 mSv). These results verify the adequate compliance of the NMD at INCan, Mexico with the norms given by the national regulatory commission.« less

  7. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, O.; Torres-Ulloa, C. L.; Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-542, 04510, DF

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placedmore » during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).« less

  8. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.

    PubMed

    Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi

    2016-04-01

    As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.

  9. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis

    PubMed Central

    Chen, Yu-Cheng; Tan, Xiaotian; Sun, Qihan; Chen, Qiushu; Wang, Wenjie; Fan, Xudong

    2017-01-01

    Detection of nuclear biomarkers such as nucleic acids and nuclear proteins is critical for early-stage cancer diagnosis and prognosis. Conventional methods relying on morphological assessment of cell nuclei in histopathology slides may be subjective, whereas colorimetric immunohistochemical and fluorescence-based imaging are limited by strong light absorption, broad-emission bands and low contrast. Here, we describe the development and use of a scanning laser-emission-based microscope that maps lasing emissions from nuclear biomarkers in human tissues. 41 tissue samples from 35 patients labelled with site-specific and biomarker-specific antibody-conjugated dyes were sandwiched in a Fabry-Pérot microcavity while an excitation laser beam built a laser-emission image. We observed multiple sub-cellular lasing emissions from cancer cell nuclei, with a threshold of tens of μJ/mm2, sub-micron resolution (<700 nm), and a lasing band in the few-nanometre range. Different lasing thresholds of nuclei in cancer and normal tissues enabled the identification and multiplexed detection of nuclear proteomic biomarkers, with a high sensitivity for early-stage cancer diagnosis. Laser-emission-based cancer screening and immunodiagnosis might find use in precision medicine and facilitate research in cell biology. PMID:29204310

  10. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  11. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  12. Training in Techniques and Translation: Novel Nuclear Medicine Imaging Agents for Oncology and Neurology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Zhude

    The goal of this grant was to provide critical interdisciplinary research training for the next generation of radiochemists and nuclear medicine physicians through a collaboration between basic science and clinical faculty who are actively involved in the development, application, and translation of radiopharmaceuticals. Following the four year funding support period, the 10 postdocs, graduate students, as well as clinical physicians who received training have become faculty members, or senior radiochemists at different academic institutes or industry. With respect to scientific accomplishments, 26 peer-reviewed articles have been published to date as well as numerous poster and oral presentations. The goals ofmore » all four scientific projects were completed and several promising radiotracers identified for transfer into clinical investigation for human use. Some preliminary data generated from this training grant led several successful NIH grant proposals for the principal investigators.« less

  13. A work observation study of nuclear medicine technologists: interruptions, resilience and implications for patient safety.

    PubMed

    Larcos, George; Prgomet, Mirela; Georgiou, Andrew; Westbrook, Johanna

    2017-06-01

    Errors by nuclear medicine technologists during the preparation of radiopharmaceuticals or at other times can cause patient harm and may reflect the impact of interruptions, busy work environments and deficient systems or processes. We aimed to: (a) characterise the rate and nature of interruptions technologists experience and (b) identify strategies that support safety. We performed 100 hours of observation of 11 technologists at a major public hospital and measured the proportions of time spent in eight categories of work tasks, location of task, interruption rate and type and multitasking (tasks conducted in parallel). We catalogued specific safety-oriented strategies used by technologists. Technologists completed 5227 tasks and experienced 569 interruptions (mean, 4.5 times per hour; 95% CI 4.1 to 4.9). The highest interruption rate occurred when technologists were in transit between rooms (10.3 per hour (95% CI 8.3 to 12.5)). Interruptions during radiopharmaceutical preparation occurred a mean of 4.4 times per hour (95% CI 3.3 to 5.6). Most (n=426) tasks were interrupted once only and all tasks were resumed after interruption. Multitasking occurred 16.6% of the time. At least some interruptions were initiated by other technologists to convey important information and/or to render assistance. Technologists employed a variety of verbal and non-verbal strategies in all work areas (notably in the hot-lab) to minimise the impact of interruptions and optimise the safe conduct of procedures. Although most were due to individual choices, some strategies reflected overt or subliminal departmental policy. Some interruptions appear beneficial. Technologists' self-initiated strategies to support safe work practices appear to be an important element in supporting a resilient work environment in nuclear medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Methods of increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity.

    PubMed

    Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc

    2014-06-10

    Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to

  15. To Determine the Best Means of Providing a Diagnostic Nuclear Medicine Capability at U.S. Darnall Army Hospital, Fort Hood, Texas.

    DTIC Science & Technology

    1979-07-01

    decision quicker, without submitting the patient to in- crea_,ed trauma, discomfort, or hazard. Many different body organs and functions can now be...care field, has created much discus- sion in the past few years. Unlike technology in other industries, which has the effect of reducing manpower and...Definitions Nuclear medicine. --The use of radioisotopes, that have been entered into the patient’s body , for the diagnosis and treatment of human

  16. Injections of Intravenous Contrast for Computerized Tomography Scans Precipitate Migraines in Hereditary Hemorrhagic Telangiectasia Subjects at Risk of Paradoxical Emboli: Implications for Right-to-Left Shunt Risks.

    PubMed

    Patel, Trishan; Elphick, Amy; Jackson, James E; Shovlin, Claire L

    2016-11-01

    To evaluate if injection of intravenous particles may provoke migraines in subjects with right-to-left shunts due to pulmonary arteriovenous malformations (AVMs). Migraine headaches commonly affect people with hereditary hemorrhagic telangiectasia (HHT), especially those with pulmonary AVMs that provide right-to-left shunts. In our clinical practice, patients occasionally reported acute precipitation of migraine headaches following injection of technetium-labeled albumin macroaggregates for nuclear medicine scans. Self-reported migraine features and exacerbations were examined in HHT subjects with and without pulmonary AVMs, for a series of noninvasive and invasive investigations, using an unbiased online survey. One hundred and sixty-six subjects were classified as having both HHT and migraines. HHT subjects with migraines were more likely to have pulmonary AVMs (P < .0001). HHT subjects with pulmonary AVMs were more likely to report photophobia (P = .010), "flashes of light" (P = .011), or transient visual loss (P = .040). Pulse oximetry, x-rays, ultrasound, and computerized tomography (CT) scans without intravenous contrast medium rarely, if ever, provoked migraines, but unenhanced magnetic resonance imaging (MRI) was reported to exacerbate migraines by 14/124 (11.2%) subjects. One hundred and fourteen subjects had both enhanced and unenhanced CT examinations: studies with contrast media were more commonly reported to start (9/114 [7.8%]), and/or worsen migraines (18/114 [15.7%]), compared to those undertaken without contrast medium (P < .01), or after simple blood tests (P < .05). Additionally, migraine exacerbation was reported by 9/90 (10%) after contrast echocardiography, 2/44 (4.5%) after nuclear medicine scans, and 10/154 (6.5%) after blood tests. HHT subjects frequently report migraine exacerbation following blood tests, contrast echocardiograms, MRI imaging, and CT studies performed with intravenous contrast medium. Since air

  17. Injections of Intravenous Contrast for Computerized Tomography Scans Precipitate Migraines in Hereditary Hemorrhagic Telangiectasia Subjects at Risk of Paradoxical Emboli: Implications for Right‐to‐Left Shunt Risks

    PubMed Central

    Patel, Trishan; Elphick, Amy; Jackson, James E.

    2016-01-01

    Objective To evaluate if injection of intravenous particles may provoke migraines in subjects with right‐to‐left shunts due to pulmonary arteriovenous malformations (AVMs). Background Migraine headaches commonly affect people with hereditary hemorrhagic telangiectasia (HHT), especially those with pulmonary AVMs that provide right‐to‐left shunts. In our clinical practice, patients occasionally reported acute precipitation of migraine headaches following injection of technetium‐labeled albumin macroaggregates for nuclear medicine scans. Methods Self‐reported migraine features and exacerbations were examined in HHT subjects with and without pulmonary AVMs, for a series of noninvasive and invasive investigations, using an unbiased online survey. Results One hundred and sixty‐six subjects were classified as having both HHT and migraines. HHT subjects with migraines were more likely to have pulmonary AVMs (P < .0001). HHT subjects with pulmonary AVMs were more likely to report photophobia (P = .010), “flashes of light” (P = .011), or transient visual loss (P = .040). Pulse oximetry, x‐rays, ultrasound, and computerized tomography (CT) scans without intravenous contrast medium rarely, if ever, provoked migraines, but unenhanced magnetic resonance imaging (MRI) was reported to exacerbate migraines by 14/124 (11.2%) subjects. One hundred and fourteen subjects had both enhanced and unenhanced CT examinations: studies with contrast media were more commonly reported to start (9/114 [7.8%]), and/or worsen migraines (18/114 [15.7%]), compared to those undertaken without contrast medium (P < .01), or after simple blood tests (P < .05). Additionally, migraine exacerbation was reported by 9/90 (10%) after contrast echocardiography, 2/44 (4.5%) after nuclear medicine scans, and 10/154 (6.5%) after blood tests. Conclusions HHT subjects frequently report migraine exacerbation following blood tests, contrast echocardiograms, MRI imaging, and

  18. Healing a Sick World: Psychiatric Medicine and the Atomic Age.

    PubMed

    Zwigenberg, Ran

    2018-01-01

    The onset of nuclear warfare in Hiroshima and Nagasaki had far-reaching implications for the world of medicine. The study of the A-bomb and its implications led to the launching of new fields and avenues of research, most notably in genetics and radiation studies. Far less understood and under-studied was the impact of nuclear research on psychiatric medicine. Psychological research, however, was a major focus of post-war military and civilian research into the bomb. This research and the perceived revolutionary impact of atomic energy and warfare on society, this paper argues, played an important role in the global development of post-war psychiatry. Focusing on psychiatrists in North America, Japan and the United Nations, this paper examines the reaction of the profession to the nuclear age from the early post-war period to the mid 1960s. The way psychiatric medicine related to atomic issues, I argue, shifted significantly between the immediate post-war period and the 1960s. While the early post-war psychiatrists sought to help society deal with and adjust to the new nuclear reality, later psychiatrists moved towards a more radical position that sought to resist the establishment's efforts to normalise the bomb and nuclear energy. This shift had important consequences for research into the psychological trauma suffered by victims of nuclear warfare, which, ultimately, together with other research into the impact of war and systematic violence, led to our current understanding of Post-Traumatic Stress Disorder (PTSD).

  19. Scanning system for angle-resolved low-coherence interferometry.

    PubMed

    Steelman, Zachary A; Ho, Derek; Chu, Kengyeh K; Wax, Adam

    2017-11-15

    Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5  mm 2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100  mm 2 without repositioning. By utilizing a reflection-only three-optic rotator prism and a two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health.

  20. Hospital Nuclear Pharmacy Survey: Preliminary Aspects In Brazil

    PubMed Central

    Brasil, Marcelo Pau; de Barros, Marcio Paes; Antunes, Leila Jorge; Santos-Oliveira, Ralph

    2012-01-01

    Radiopharmaceuticals are special drugs that in the composition preserve one or more radionuclides which can be used as diagnostic or therapeutic tools in Nuclear Medicine Units. This study evaluated hospitals and clinics which have nuclear medicines services at the city of Rio de Janeiro from August to November 2010. The data were obtained through a longitudinal research. The results showed that most of the hospitals (>80%) did not have pharmacist and all them (100%) considered that a pharmacist in the nuclear pharmacy is not required. PMID:23493051

  1. Discovery of rhenium and masurium (technetium) by Ida Noddack-Tacke and Walter Noddack. Forgotten heroes of nuclear medicine.

    PubMed

    Biersack, H-J; Stelzner, F; Knapp, F F

    2015-01-01

    The history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the subsequent use of rhenium-188 (beta/gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine.

  2. Mössbauer Magnetic Scan experiments

    NASA Astrophysics Data System (ADS)

    Pasquevich, G. A.; Mendoza Zélis, P.; Lencina, A.; Veiga, A.; Fernández van Raap, M. B.; Sánchez, F. H.

    2014-06-01

    We report an application of the Mössbauer Effect designed to retrieve specific information on the magnetic response of iron-containing materials. It consists in the measurement of the nuclear absorption of gamma-rays as a function of an external magnetic field for a specific nuclear transition between magnetically-split nuclear levels. The experiments, here termed Mössbauer Magnetic Scan experiments, were carried out recording the absorption of 57Fe 14.4 keV gamma-ray in α-Fe at constant Doppler energies coincident with some of the spectral lines of the magnetically split Mössbauer spectrum. Due to the dependence of the transition probabilities on the relative orientation between the nuclear magnetic moment and the gamma-ray direction, the present application results in a useful method to study the magnetic-field evolution of the distribution of atomic-magnetic-moment orientations. The proposed technique inherit from the Mössbauer Spectroscopy the chemical-element selectiveness as well as the ability to differentiate responses from iron atoms located at inequivalent site or at different phases. In this work, we show that the data analysis for these experiments depends on the sample thickness that the gamma-ray has to cross. For thin samples (i.e.samples with Mössbauer effective thicknesses lower than one) the magnetic-field dependence of the second-order-moment of the orientation distribution in the direction of the gamma ray is obtained. On the other hand, for thicker samples, although the data analysis is more complex, the dependences of the three second-order-moments of the orientation distribution are obtained. The experiments were performed on two α-Fe foils of different Mössbauer effective thicknesses. They were chosen to represent the cases of thin and thick Mössbauer absorbers. The magnetic evolution of the orientations distribution is compared with results obtained from magnetometric measurements showing a good agreement as well indicating the

  3. Nuclear cardiac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  4. Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine.

    PubMed

    Andersson, Martin; Eckerman, Keith; Mattsson, Sören

    2017-11-21

    The aim of this study is to implement lifetime attributable risk (LAR) predictions of cancer for patients of various age and gender, undergoing diagnostic investigations or treatments in nuclear medicine and to compare the outcome with a population risk estimate using effective dose and the International Commission on Radiological Protection risk coefficients. The radiation induced risk of cancer occurrence (incidence) or death from four nuclear medicine procedures are estimated for both male and female between 0 and 120 years. Estimations of cancer risk are performed using recommended administered activities for two diagnostic ( 18 F-FDG and 99m Tc-phosphonate complex) and two therapeutic ( 131 I-iodide and 223 Ra-dichloride) radiopharmaceuticals to illustrate the use of cancer risk estimations in nuclear medicine. For 18 F-FDG, the cancer incidence for a male of 5, 25, 50 and 75 years at exposure is 0.0021, 0.0010, 0.0008 and 0.0003, respectively. For 99m Tc phosphonates complex the corresponding values are 0.000 59, 0.000 34, 0.000 27 and 0.000 13, respectively. For an 131 I-iodide treatment with 3.7 GBq and 1% uptake 24 h after administration, the cancer incidence for a male of 25, 50 and 75 years at exposure is 0.041, 0.029 and 0.012, respectively. For 223 Ra-dichloride with an administration of 21.9 MBq the cancer incidence for a male of 25, 50 and 75 years is 0.31, 0.21 and 0.09, respectively. The LAR estimations are more suitable in health care situations involving individual patients or specific groups of patients than the health detriment based on effective dose, which represents a population average. The detriment consideration in effective dose adjusts the cancer incidence for suffering of non-lethal cancers while LAR predicts morbidity (incidence) or mortality (cancer). The advantages of these LARs are that they are gender and age specific, allowing risk estimations for specific patients or subgroups thus better representing individuals in

  5. Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Eckerman, Keith; Mattsson, Sören

    2017-12-01

    The aim of this study is to implement lifetime attributable risk (LAR) predictions of cancer for patients of various age and gender, undergoing diagnostic investigations or treatments in nuclear medicine and to compare the outcome with a population risk estimate using effective dose and the International Commission on Radiological Protection risk coefficients. The radiation induced risk of cancer occurrence (incidence) or death from four nuclear medicine procedures are estimated for both male and female between 0 and 120 years. Estimations of cancer risk are performed using recommended administered activities for two diagnostic (18F-FDG and 99mTc-phosphonate complex) and two therapeutic (131I-iodide and 223Ra-dichloride) radiopharmaceuticals to illustrate the use of cancer risk estimations in nuclear medicine. For 18F-FDG, the cancer incidence for a male of 5, 25, 50 and 75 years at exposure is 0.0021, 0.0010, 0.0008 and 0.0003, respectively. For 99mTc phosphonates complex the corresponding values are 0.000 59, 0.000 34, 0.000 27 and 0.000 13, respectively. For an 131I-iodide treatment with 3.7 GBq and 1% uptake 24 h after administration, the cancer incidence for a male of 25, 50 and 75 years at exposure is 0.041, 0.029 and 0.012, respectively. For 223Ra-dichloride with an administration of 21.9 MBq the cancer incidence for a male of 25, 50 and 75 years is 0.31, 0.21 and 0.09, respectively. The LAR estimations are more suitable in health care situations involving individual patients or specific groups of patients than the health detriment based on effective dose, which represents a population average. The detriment consideration in effective dose adjusts the cancer incidence for suffering of non-lethal cancers while LAR predicts morbidity (incidence) or mortality (cancer). The advantages of these LARs are that they are gender and age specific, allowing risk estimations for specific patients or subgroups thus better representing individuals in health care

  6. A scanning system for angle-resolved low-coherence interferometry

    PubMed Central

    Steelman, Zachary A.; Ho, Derek; Chu, Kengyeh K.; Wax, Adam

    2018-01-01

    Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm2 without repositioning. By utilizing a reflection-only three-optic rotator (ROTOR) prism and two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health. PMID:29140317

  7. On the consistency among different approaches for nuclear track scanning and data processing

    NASA Astrophysics Data System (ADS)

    Inozemtsev, K. O.; Kushin, V. V.; Kodaira, S.; Shurshakov, V. A.

    2018-04-01

    The article describes various approaches for space radiation track measurement using CR-39™ detector (Tastrak). The results of comparing different methods for track scanning and data processing are presented. Basic algorithms for determination of track parameters are described. Every approach involves individual set of measured track parameters. For two sets, track scanning is sufficient in the plane of detector surface (2-D measurement), third set requires scanning in the additional projection (3-D measurement). An experimental comparison of considered techniques was made with the use of accelerated heavy ions Ar, Fe and Kr.

  8. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  9. An overview of radioactive waste disposal procedures of a nuclear medicine department

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  10. Preliminary investigations of active pixel sensors in Nuclear Medicine imaging

    NASA Astrophysics Data System (ADS)

    Ott, Robert; Evans, Noel; Evans, Phil; Osmond, J.; Clark, A.; Turchetta, R.

    2009-06-01

    Three CMOS active pixel sensors have been investigated for their application to Nuclear Medicine imaging. Startracker with 525×525 25 μm square pixels has been coupled via a fibre optic stud to a 2 mm thick segmented CsI(Tl) crystal. Imaging tests were performed using 99mTc sources, which emit 140 keV gamma rays. The system was interfaced to a PC via FPGA-based DAQ and optical link enabling imaging rates of 10 f/s. System noise was measured to be >100e and it was shown that the majority of this noise was fixed pattern in nature. The intrinsic spatial resolution was measured to be ˜80 μm and the system spatial resolution measured with a slit was ˜450 μm. The second sensor, On Pixel Intelligent CMOS (OPIC), had 64×72 40 μm pixels and was used to evaluate noise characteristics and to develop a method of differentiation between fixed pattern and statistical noise. The third sensor, Vanilla, had 520×520 25 μm pixels and a measured system noise of ˜25e. This sensor was coupled directly to the segmented phosphor. Imaging results show that even at this lower level of noise the signal from 140 keV gamma rays is small as the light from the phosphor is spread over a large number of pixels. Suggestions for the 'ideal' sensor are made.

  11. Radiation in medicine: Origins, risks and aspirations

    PubMed Central

    Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H.

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies. PMID:25780797

  12. Radiation in medicine: Origins, risks and aspirations.

    PubMed

    Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies.

  13. Follow-up bone scan in breast cancer patients: what is the appropriate interpretation of purely rib uptake?

    PubMed

    Seo, Minjung; Ko, Byung Kyun; Tae, Soon Young; Koh, Su-Jin; Noh, Young Ju; Choi, Hye-Jeong; Bae, Kyungkyg; Bang, Minseo; Jun, Sungmin; Park, Seol Hoon

    2016-12-01

    Although rib uptake is frequently detected in follow-up bone scans of breast cancer patients, few studies have assessed its clinical significance. Among 1208 breast cancer patients who underwent a bone scan between 2011 and 2014, 157 patients presented with newly detected rib uptake at follow-up. Patients who had underlying bone metastases (n=8) or had simultaneous new uptake in sites other than the rib (n=13) were excluded. The patients enrolled finally were those who had purely rib uptakes. The location, intensity, and final diagnosis of the uptake were evaluated by nuclear medicine physicians. A total of 275 new instances of rib uptake were detected in follow-up bone scans of 136 patients. These were more frequently located on the ipsilateral side of the breast cancer (61.1%) and the anterior arc (65.1%), and they presented as moderate to intense (93.1%) uptakes. Among these, 265 lesions in 130 patients turned out to be benign fractures (96.4%), whereas only 10 lesions in six patients were metastases. The proportion of metastases was significantly higher if the uptake was linear or if the patient had recurrence. It was marginally higher if the uptake was located in the posterior arc. The proportion of metastases within the radiation field was significantly lower in patients with a history of irradiation. Newly detected purely rib uptake on a follow-up bone scan in patients who have been treated for breast cancer is mostly because of fractures and rarely signals metastasis. However, if the patient has disease recurrence, metastasis should strongly be suspected, particularly when uptake is linear or located in the posterior arc.

  14. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  15. Healing a Sick World: Psychiatric Medicine and the Atomic Age

    PubMed Central

    Zwigenberg, Ran

    2018-01-01

    The onset of nuclear warfare in Hiroshima and Nagasaki had far-reaching implications for the world of medicine. The study of the A-bomb and its implications led to the launching of new fields and avenues of research, most notably in genetics and radiation studies. Far less understood and under-studied was the impact of nuclear research on psychiatric medicine. Psychological research, however, was a major focus of post-war military and civilian research into the bomb. This research and the perceived revolutionary impact of atomic energy and warfare on society, this paper argues, played an important role in the global development of post-war psychiatry. Focusing on psychiatrists in North America, Japan and the United Nations, this paper examines the reaction of the profession to the nuclear age from the early post-war period to the mid 1960s. The way psychiatric medicine related to atomic issues, I argue, shifted significantly between the immediate post-war period and the 1960s. While the early post-war psychiatrists sought to help society deal with and adjust to the new nuclear reality, later psychiatrists moved towards a more radical position that sought to resist the establishment’s efforts to normalise the bomb and nuclear energy. This shift had important consequences for research into the psychological trauma suffered by victims of nuclear warfare, which, ultimately, together with other research into the impact of war and systematic violence, led to our current understanding of Post-Traumatic Stress Disorder (PTSD). PMID:29199929

  16. Structural domains and conformational changes in nuclear chromatin: a quantitative thermodynamic approach by differential scanning calorimetry.

    PubMed

    Balbi, C; Abelmoschi, M L; Gogioso, L; Parodi, S; Barboro, P; Cavazza, B; Patrone, E

    1989-04-18

    A good deal of information on the thermodynamic properties of chromatin was derived in the last few years from optical melting experiments. The structural domains of the polynucleosomal chain, the linker, and the core particle denature as independent units. The differential scanning calorimetry profile of isolated chromatin is made up of three endotherms, at approximately 74, 90, and 107 degrees C, having an almost Gaussian shape. Previous work on this matter, however, was mainly concerned with the dependence of the transition enthalpy on external parameters, such as the ionic strength, or with the melting of nuclei from different sources. In this paper we report the structural assignment of the transitions of rat liver nuclei, observed at 58, 66, 75, 92, and 107 degrees C. They are representative of the quiescent state of the cell. The strategy adopted in this work builds on the method developed for the investigation of complex biological macromolecules. The heat absorption profile of the nucleus was related to the denaturation of isolated nuclear components; electron microscopy and electrophoretic techniques were used for their morphological and molecular characterization. The digestion of chromatin by endogenous nuclease mimics perfectly the decondensation of the higher order structure and represented the source of several misinterpretations. This point was carefully examined in order to define unambiguously the thermal profile of native nuclei. The low-temperature transitions, centered around 58 and 66 degrees C, arise from the melting of scaffolding structures and of the proteins associated with heterogeneous nuclear RNA.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Emergency medicine summary code for reporting CT scan results: implementation and survey results.

    PubMed

    Lam, Joanne; Coughlin, Ryan; Buhl, Luce; Herbst, Meghan; Herbst, Timothy; Martillotti, Jared; Coughlin, Bret

    2018-06-01

    The purpose of the study was to assess the emergency department (ED) providers' interest and satisfaction with ED CT result reporting before and after the implementation of a standardized summary code for all CT scan reporting. A summary code was provided at the end of all CTs ordered through the ED from August to October of 2016. A retrospective review was completed on all studies performed during this period. A pre- and post-survey was given to both ED and radiology providers. A total of 3980 CT scans excluding CTAs were ordered with 2240 CTs dedicated to the head and neck, 1685 CTs dedicated to the torso, and 55 CTs dedicated to the extremities. Approximately 74% CT scans were contrast enhanced. Of the 3980 ED CT examination ordered, 69% had a summary code assigned to it. Fifteen percent of the coded CTs had a critical or diagnostic positive result. The introduction of an ED CT summary code did not show a definitive improvement in communication. However, the ED providers are in consensus that radiology reports are crucial their patients' management. There is slightly increased satisfaction with the providers with less than 5 years of experience with the ED CT codes compared to more seasoned providers. The implementation of a user-friendly summary code may allow better analysis of results, practice improvement, and quality measurements in the future.

  18. A horizon scan of global conservation issues for 2012.

    PubMed

    Sutherland, William J; Aveling, Ros; Bennun, Leon; Chapman, Eleanor; Clout, Mick; Côté, Isabelle M; Depledge, Michael H; Dicks, Lynn V; Dobson, Andrew P; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Lindenmayer, David B; Monk, Kathryn A; Norris, Kenneth; Peck, Lloyd S; Prior, Stephanie V; Scharlemann, Jörn P W; Spalding, Mark; Watkinson, Andrew R

    2012-01-01

    Our aim in conducting annual horizon scans is to identify issues that, although currently receiving little attention, may be of increasing importance to the conservation of biological diversity in the future. The 15 issues presented here were identified by a diverse team of 22 experts in horizon scanning, and conservation science and its application. Methods for identifying and refining issues were the same as in two previous annual scans and are widely transferable to other disciplines. The issues highlight potential changes in climate, technology and human behaviour. Examples include warming of the deep sea, increased cultivation of perennial grains, burning of Arctic tundra, and the development of nuclear batteries and hydrokinetic in-stream turbines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. MEASUREMENTS OF THE IONISING RADIATION LEVEL AT A NUCLEAR MEDICINE FACILITY PERFORMING PET/CT EXAMINATIONS.

    PubMed

    Tulik, P; Kowalska, M; Golnik, N; Budzynska, A; Dziuk, M

    2017-05-01

    This paper presents the results of radiation level measurements at workplaces in a nuclear medicine facility performing PET/CT examinations. This study meticulously determines the staff radiation exposure in a PET/CT facility by tracking the path of patient movement. The measurements of the instantaneous radiation exposure were performed using an electronic radiometer with a proportional counter that was equipped with the option of recording the results on line. The measurements allowed for visualisation of the staff's instantaneous exposure caused by a patient walking through the department after the administration of 18F-FDG. An estimation of low doses associated with each working step and the exposure during a routine day in the department was possible. The measurements were completed by determining the average radiation level using highly sensitive thermoluminescent detectors. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  1. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  2. Eye doses to staff in a nuclear medicine department.

    PubMed

    Summers, Elizabeth C; Brown, Janis L E; Bownes, Peter J; Anderson, Shona E

    2012-05-01

    Occupational radiation doses to the Nuclear Medicine Department staff at Mount Vernon Hospital are routinely measured using optically stimulated luminescence dosemeters for whole-body effective dose and ring thermoluminescence dosemeters (TLDs) for finger dose. In 2002, a project was carried out using LiF:Mg,Cu,P Chinese TLDs to measure the dose to the lens of the eye received by staff during normal working procedures. Separate pairs of TLDs were worn by staff on their forehead between their eyes while dispensing and releasing in the radiopharmacy, injecting, and when administering I-131 capsules to patients. The dose received was calculated using calibration data from identical TLDs irradiated with Tc-99m, I-131, and the Ir-192 source of a Gammamed High Dose Rate (HDR) treatment unit. Data were collected over a 5-month period and the mean dose to the eye was calculated for each procedure. Using a typical yearly workload, the annual dose to the eye for a single member of staff was calculated and found to be 4.5 mSv. The occupational eye dose limit was, at the time, 150 mSv; therefore, staff were well below the level (3/10th of this limit) that would have required them to be classified. However, there have been large increases in radiopharmacy production and I-131 therapies administered at Mount Vernon in subsequent years. It is therefore expected that the eye dose received by staff will have increased to be significantly higher than 4.5 mSv and will in fact be greater than 6 mSv, which is 3/10th of the proposed new dose limit and would require these staff to become classified workers.

  3. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology.

    PubMed

    2017-10-01

    This joint position paper illustrates the role and the correct use of echocardiography, radionuclide imaging with 18F-fluorodeoxyglucose positron emission tomography, radionuclide myocardial perfusion imaging and cardiovascular magnetic resonance imaging for the evaluation and management of patients with known or suspected cardiac sarcoidosis. This position paper will aid in standardizing imaging for cardiac sarcoidosis and may facilitate clinical trials and pooling of multi-centre data on cardiac sarcoidosis. Proposed flow charts for the work up and management of cardiac sarcoidosis are included. Copyright © 2017 European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology.

  4. Nuclear medicine imaging of locally advanced laryngeal and hypopharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Medvedeva, A.; Chernov, V.; Zeltchan, R.; Sinilkin, I.; Bragina, O.; Chijevskaya, S.; Choynzonov, E.; Goldberg, A.

    2017-09-01

    The diagnostic capabilities of nuclear medicine imaging in the detection and assessment of the spread of laryngeal/hypopharyngeal cancer were studied. A total of 40 patients with histologically verified laryngeal and hypopharyngeal cancer and 20 patients with benign laryngeal lesions were included into the study. Submucosal injections of 99mTc-MIBI and 99mTc-Alotech were made around the tumor. Single photon emission computed tomography (SPECT) was performed 20 minutes after the injection of 99mTc-MIBI. Sentinel lymph nodes (SLNs) were detected in 26 patients. In 18 hours after the injection of 99mTc-Alotech, SPECT was performed. In 24 hours after the injection of 99mTc-Alotech, intraoperative SLN detection was performed using Gamma Finder II. SPECT with 99mTc-MIBI revealed laryngeal and hypopharyngeal tumors in 38 of the 40 patients. The 99mTc-MIBI uptake in metastatic lymph nodes was visualized in 2 (17%) of the 12 patients. Twenty eight SLNs were detected by SPECT and 31 SLNs were identified using the intraoperative gamma probe. The percentage of 99mTc-Alotech in the SLN was 5-10% of the radioactivity in the injection site by SPECT and 18-33% by intraoperative gamma probe detection. Thus, SPECT with 99mTc-MIBI is an effective tool for the diagnosis of laryngeal/hypopharyngeal cancer. The sensitivity, specificity and accuracy of this technique were 95%, 80% and 92%, respectively. The use of 99mTc-Alotech for the detection of SLNs in patients with laryngeal/hypopharyngeal cancer is characterized by 92.8% sensitivity.

  5. How the confocal laser scanning microscope entered biological research.

    PubMed

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  6. The nuclear lion: What every citizen should know about nuclear power and nuclear war

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagger, J.

    1991-01-01

    The stupendous energy in the atomic nucleus can be used to advance human welfare, and it has been so used ever since we learned how to release it. Nuclear medicine has revolutionized medical diagnosis and treatment, notably in dealing with cancer. Nuclear reactors have provided us with valuable radioactive atoms (radioisotopes) for use in research and industry, and they have given us cheap, clean power, which can drive a ship around the world on a tiny charge of fuel. On the other hand, we have unleashed the awesome power of nuclear weapons, and we must now face the almost incomprehensiblemore » devastation that awaits the world as it contemplates nuclear war. An all-out nuclear war would end modern civilization, and might well end humankind, to say nothing of countless other species of plants and animals. It would be, without question the greatest disaster of the last million years of the history of the Earth.« less

  7. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mobile-Dose: A Dose-Meter Designed for Use in Automatic Machineries for Dose Manipulation in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    de Asmundis, Riccardo; Boiano, Alfonso; Ramaglia, Antonio

    2008-06-01

    Mobile-Dose has been designed for a very innovative use: the integration in a robotic machinery for automatic preparation of radioactive doses, to be injected to patients in Nuclear Medicine Departments, with real time measurement of the activity under preparation. Mobile-Dose gives a constant measurement of the dose during the filling of vials or syringes, triggering the end of the filling process based on a predefined dose limit. Several applications of Mobile-Dose have been delivered worldwide, from Italian hospitals and clinics to European and Japanese ones. The design of such an instrument and its integration in robotic machineries, was required by an Italian company specialised in radiation protection tools for nuclear applications, in the period 2001-2003. At the time of its design, apparently no commercial instruments with a suitable interfacing capability to the external world existed: we designed it in order to satisfy all the strict requirements coming from the medical aspects (precision within 10%, repeatability, stability, time response) and from the industrial conceiving principles that are mandatory to ensure a good reliability in such a complicated environment. The instrument is suitable to be used in standalone mode too, thanks to its portability and compactness and to the intelligent operator panel programmed for this purpose.

  9. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  10. Dynamic scan control in STEM: Spiral scans

    DOE PAGES

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...

    2016-06-13

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  11. Dynamic scan control in STEM: Spiral scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  12. Biological Implications of the Nuclear Age.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    Reported are the proceedings of an interdisciplinary symposium on the effects on the biosphere of the release of radiation from the use of nuclear energy. Papers given include discussions of the use of radioisotopes in medicine, the benefits and possible consequences of peaceful applications of nuclear explosives, methods of estimating maximum…

  13. [Introduction of a quality management system compliant with DIN EN 9001:2000 in a university department of nuclear medicine].

    PubMed

    Jansen-Schmidt, V; Paschen, U; Kröger, S; Bohuslavizki, K H; Clausen, M

    2001-12-01

    In 1995, the management of the University Clinic Hamburg-Eppendorf proposed to establish a total quality assurance (QA) system. A revised QA-system has been introduced stepwise in the department of nuclear medicine since 1997, and certification was achieved in accordance with DIN EN ISO 9001:2000 on February 14, 2001. The QA-handbook is divided into two parts. The first part contains operational (diagnostic and therapeutic) procedures in so-called standard operating procedures (SOP). They describe the indication of procedures as well as the competences and time necessary in a standardized manner. Up to now, more than 70 SOPs have been written as a collaborative approach between technicians and physicians during daily clinical routine after analysing and discussing the procedures. Thus, the results were more clearly defined processes and more satisfied employees. The second part consists of general rules and directions concerning the security of work and equipment as well as radiation protection tasks, hygiene etc. as it is required by the law. This part was written predominantly by the management of the department of nuclear-medicine and the QA-coordinator. Detailed information for the patients, documentation of the work-flows as well as the medical report was adopted to the QM-system. Although in the introduction phase of a QA-system a vast amount of time is necessary, some months later a surplus for the clinical workday will become available. The well defined relations of competences and procedures will result in a gain of time, a reduction of costs and a help to ensure the legal demands. Last but not least, the QA-system simply helps to build up confidence and acceptance both by the patients and the referring physicians.

  14. Insomnia in Iranian Traditional Medicine

    PubMed Central

    Feyzabadi, Zohre; Jafari, Farhad; Feizabadi, Parvin Sadat; Ashayeri, Hassan; Esfahani, Mohammad Mahdi; Badiee Aval, Shapour

    2014-01-01

    Context: Insomnia is one of the most prevalent sleep disorders characterized by sleep difficulty that impairs daily functioning and reduces quality of life. The burden of medical, psychiatric, interpersonal, and societal consequences of insomnia expresses the importance of diagnosing and treatment of insomnia. The aim of study was to investigate causes of insomnia from the viewpoint of Iranian traditional medicine. Evidence Acquisition: In this review study, we searched insomnia in a few of the most famous ancient textbooks of Iranian traditional medicine from different centuries. This books includeThe Canon of Medicine by Avicenna (the first version of Beirut), Zakhire Kharazmshahi by Jurjani (the scanned version of Bonyade Farhang-e Iran), Malfaregh by Razes (the first version of Iran University of Medical Sciences), and Aqili’s cure by Aqili (the first version of Iran University of Medical Sciences). Results: This study found that in Iranian traditional medicine manuscripts, insomnia was called sahar and even though many factors induce insomnia, most of them act through causing brain dystemperament. Conclusions: The brain dystemperament is considered one of the main causes of insomnia and insomnia can be well managed with an organized line of treatment, by correcting the brain dystemperament through elimination of causes. This study helps to find new solutions to treat insomnia. PMID:24829786

  15. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. The smiling scan technique: Facially driven guided surgery and prosthetics.

    PubMed

    Pozzi, Alessandro; Arcuri, Lorenzo; Moy, Peter K

    2018-04-11

    To introduce a proof of concept technique and new integrated workflow to optimize the functional and esthetic outcome of the implant-supported restorations by means of a 3-dimensional (3D) facially-driven, digital assisted treatment plan. The Smiling Scan technique permits the creation of a virtual dental patient (VDP) showing a broad smile under static conditions. The patient is exposed to a cone beam computed tomography scan (CBCT), displaying a broad smile for the duration of the examination. Intraoral optical surface scanning (IOS) of the dental and soft tissue anatomy or extraoral optical surface scanning (EOS) of the study casts are achieved. The superimposition of the digital imaging and communications in medicine (DICOM) files with standard tessellation language (STL) files is performed using the virtual planning software program permitting the creation of a VDP. The smiling scan is an effective, easy to use, and low-cost technique to develop a more comprehensive and simplified facially driven computer-assisted treatment plan, allowing a prosthetically driven implant placement and the delivery of an immediate computer aided design (CAD) computer aided manufacturing (CAM) temporary fixed dental prostheses (CAD/CAM technology). Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    PubMed

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. SCAN+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing formore » automatic unattended cask scanning that may take several hours.« less

  19. The Physics of Physical Examinations.

    ERIC Educational Resources Information Center

    Patterson, James D.

    1989-01-01

    Discussed are several topics on medical imaging including x-rays and Computer Assisted Tomography (CAT) scans, magnetic resonance imaging, fiber optics endoscopy, nuclear medicine and bone scans, positron-emission tomography, and ultrasound. The concepts of radiation dosage, electrocardiograms, and laser therapy are included. (YP)

  20. A New Look to Nuclear Data

    DOE PAGES

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    2017-03-30

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  1. A New Look to Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  2. MO-AB-206-00: Nuclear Medicine Physics and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT

  3. The opinions of radiographers, nuclear medicine technologists and radiation therapists regarding technology in health care: a qualitative study.

    PubMed

    Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline

    2017-03-01

    New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might

  4. Application of modern autoradiography to nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods

  5. Application of modern autoradiography to nuclear forensic analysis

    DOE PAGES

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...

    2018-05-20

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods

  6. Application of modern autoradiography to nuclear forensic analysis.

    PubMed

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this

  7. Characterisation of crystal matrices and single pixels for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Herbert, D. J.; Belcari, N.; Camarda, M.; Guerra, A. Del; Vaiano, A.

    2005-01-01

    Commercially constructed crystal matrices are characterised for use with PSPMT detectors for PET system developments and other nuclear medicine applications. The matrices of different scintillation materials were specified with pixel dimensions of 1.5×1.5 mm2 in cross-section and a length corresponding to one gamma ray interaction length at 511 keV. The materials used in this study were BGO, LSO, LYSO, YSO and CsI(Na). Each matrix was constructed using a white TiO loaded epoxy that forms a 0.2 mm septa between each pixel. The white epoxy is not the optimum choice in terms of the reflective properties, but represents a good compromise between cost and the need for optical isolation between pixels. We also tested a YAP matrix that consisted of pixels of the same size specification but was manufactured by a different company, who instead of white epoxy, used a thin aluminium reflective layer for optical isolation that resulted in a septal thickness of just 0.01 mm, resulting in a much higher packing fraction. The characteristics of the scintillation materials, such as the light output and energy resolution, were first studied in the form of individual crystal elements by using a single pixel HPD. A comparison of individual pixels with and without the epoxy/dielectric coatings was also performed. Then the matrices themselves were coupled to a PSPMT in order to study the imaging performance. In particular, the system pixel resolution and the peak to valley ratio were measured at 511 and 122 keV.

  8. Focal hot spot induced by a central subclavian line on bone scan.

    PubMed

    Moslehi, Masood; Cheki, Mohsen; Dehghani, Tohid; Eftekhari, Mansoureh

    2014-01-01

    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality.

  9. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.

  10. Mathematics in medicine: tumor detection, radiation dosimetry, and simulation in psychotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellman, R.; Kashef, B.; Smith, C.P.

    1975-05-01

    Work done in the application of mathematics to medicine over the last 20 years is briefly reviewed. Scan-rescan processes, radiation dosimetry, and medical interviewing are discussed. The first uses dynamic programming, the second invariant imbedding, and the third simulation. (ACR)

  11. [Scanning electron microscopy of heat-damaged bone tissue].

    PubMed

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  12. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  13. E-learning for medical imaging specialists: introducing blended learning in a nuclear medicine specialist course.

    PubMed

    Haslerud, Torjan; Tulipan, Andreas Julius; Gray, Robert M; Biermann, Martin

    2017-07-01

    While e-learning has become an important tool in teaching medical students, the training of specialists in medical imaging is still dominated by lecture-based courses. To assess the potential of e-learning in specialist education in medical imaging. An existing lecture-based five-day course in Clinical Nuclear Medicine (NM) was enhanced by e-learning resources and activities, including practical exercises. An anonymized survey was conducted after participants had completed and passed the multiple choice electronic course examination. Twelve out of 15 course participants (80%) responded. Overall satisfaction with the new course format was high, but 25% of the respondents wanted more interactive elements such as discussions and practical exercises. The importance of lecture handouts and supplementary online material such as selected original articles and professional guidelines was affirmed by all the respondents (92% fully, 8% partially), while 75% fully and 25% partially agreed that the lectures had been interesting and relevant. E-learning represents a hitherto unrealized potential in the education of medical specialists. It may expedite training of medical specialists while at the same time containing costs.

  14. [Improvement in nuclear medicine diagnosis of kidney function using 99m technetium mercaptoacetyltriglycine (MAG3)].

    PubMed

    Erpenbach, K; Ebert, A; Wieler, H

    1991-03-01

    Renal scintigraphy and clearance measurement are indispensable in nephro-urologic disorders. A continuous series of 103 sequential scintigraphies and clearance measurements were performed with the new technetium-labelled agent MAG3 (Gamma-kamera, Phillips Tomo Diagnost) and 131I-orthohippuric acid (OIH) using the Oberhausen method (Nucleopan, Siemens). The time-activity curves obtained with the two radionuclides agreed exactly. Reaching a tubular excretion rate of nearly 90%, the clearance of MAG3 differed by no more than 6% from the OIH clearance in 95% of the cases. The factor between clearances of the two radionuclides was determined by means of a commercially available software according to the Oberhausen method and amounted to 0.59 +/- 0.09. The favorable physical properties and high activity of MAG3 permit exact examination of tubular function and better assessment of renal morphology than hippuran-labelled radionuclides. The low radiation dose combined with a better spatial resolution, especially, the constant availability in a nuclear medicine department should give the preference to MAG3.

  15. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  16. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  17. The shelf-life of airborne laser scanning data for enhancing forest inventory inferences

    Treesearch

    Ronald E. McRoberts; Qi Chen; Dale D. Gormanson; Brian F. Walters

    2018-01-01

    The term shelf-life is used to characterize the elapsed time beyond which a commodity loses its usefulness. The term is most often used with reference to foods and medicines, but herein it is used to characterize the elapsed time beyond which airborne laser scanning (ALS) data are no longer useful for enhancing inferences for forest inventory...

  18. The F-SCAN system of foot pressure analysis.

    PubMed

    Young, C R

    1993-07-01

    The age of computerized gait analysis is here. There are several systems available to meet the needs of the podiatric practitioner. This author believes that the F-SCAN technology system makes a significant contribution to the practice of podiatric medicine. The system is user friendly, accurate, reproducible, and affordable. Its graphic display capabilities are colorfully attractive and easily understood. The primary focus of the F-SCAN system is that of peak pressure distribution over time. Vertical plantar pressure dispersion across the plantar surface of the foot is recorded, processed, and graphically displayed in terms of sequential gait changes. The system further allows for the manipulation of the accumulated data to present it in a more comprehensive manner. Future updates on the F-SCAN software are already close at hand and are expected to enhance the diagnostic capabilities of the system further. The four primary areas of clinical application for F-SCAN have been identified and briefly discussed. The recognition of certain biomechanical abnormalities, monitoring preorthotic and postorthotic use, evaluation of the diabetic or neuropathic foot, and presurgical and postsurgical functional examinations constitute this group. The F-SCAN system largely helps to remove some of the unavoidable guess work from essential diagnostic and therapeutic procedures. As we increase our understanding of the pathomechanics of these clinical problems, so too will we improve our management of the associated complications. Years ago, at the time when computerized gait analysis was being introduced to the podiatric profession, a frequently asked question was: What does it tell me that I don't already know or can't see by watching the patient walk?(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Anemone medicinal plants: ethnopharmacology, phytochemistry and biology.

    PubMed

    Hao, Da-Cheng; Gu, Xiaojie; Xiao, Peigen

    2017-03-01

    The Ranunculaceae genus Anemone (order Ranunculales), comprising more than 150 species, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine. Various medicinal compounds have been found in Anemone plants, especially triterpenoid saponins, some of which have shown anti-cancer activities. Some Anemone compounds and extracts display immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial activities. More than 50 species have ethnopharmacological uses, which provide clues for modern drug discovery. Anemone compounds exert anticancer and other bioactivities via multiple pathways. However, a comprehensive review of the Anemone medicinal resources is lacking. We here summarize the ethnomedical knowledge and recent progress on the chemical and pharmacological diversity of Anemone medicinal plants, as well as the emerging molecular mechanisms and functions of these medicinal compounds. The phylogenetic relationships of Anemone species were reconstructed based on nuclear ITS and chloroplast markers. The molecular phylogeny is largely congruent with the morphology-based classification. Commonly used medicinal herbs are distributed in each subgenus and section, and chemical and biological studies of more unexplored taxa are warranted. Gene expression profiling and relevant "omics" platforms could reveal differential effects of phytometabolites. Genomics, transcriptomics, proteomics, and metabolomics should be highlighted in deciphering novel therapeutic mechanisms and utilities of Anemone phytometabolites.

  20. [Medicine in notafilia--Part III].

    PubMed

    Babić, Rade R; Babić, Gordana Stanković

    2013-01-01

    Notafilia is the study of paper money. Only a few countries in the world have issued banknotes with portraits of well-known scientists who brought international fame to their own people and medicine. PORTRAITS OF SCIENTISTS ON THE BANKNOTES OF YUGOSLAVIA, SERBIA AND MONTENEGRO AND SERBIA. Nikola Tesla and Mihailo Pupin Idvorski were the ingenious inventors and scientists of our time who made special contributions to radiology. Nikola Tesla (1856-1943) pioneered the use of X-rays for medical purposes, thus effectively laying the foundations of radiology and radiography, and revealed the existence of harmful effects of X-rays on the human body. Mihailo Pupin Idvorski (1854-1935) was worldwide famous for applying physics in practice, as well as in the basis of telephone and telegraph transmissions. He also studied the nature of X-rays and contributed to establishing of radiology. PORTRAITS OF SCIENTISTS ON THE BANKNOTES OF THE WORLD: Maria Sklodowska Curie (1867-1934) was the first woman to gain the academic title of the Academy of Medicine, Paris. Together with her husband Pierre Curie (1859-1906) she gave an outstanding contribution to science and medicine. The discovery of the radioactive elements introduced the concept of "radioactivity" into physics and "radiotherapy" as a new discipline in medicine, thus creating the conditions for the development of nuclear medicine, oncology, and mobile diagnostic radiology. This paper presents the banknotes featuring the portraits of Nikola Tesla, Mihailo Pupin Idvorski, Maria Sklodowska Curie and Pierre Curie, the world renowned scientists, who made enormous contributions to medicine and laid the foundation for radiology.

  1. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  2. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    PubMed

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05). Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  3. Integrating workplace exposure databases for occupational medicine services and epidemiologic studies at a former nuclear weapons facility.

    PubMed

    Ruttenber, A J; McCrea, J S; Wade, T D; Schonbeck, M F; LaMontagne, A D; Van Dyke, M V; Martyny, J W

    2001-02-01

    We outline methods for integrating epidemiologic and industrial hygiene data systems for the purpose of exposure estimation, exposure surveillance, worker notification, and occupational medicine practice. We present examples of these methods from our work at the Rocky Flats Plant--a former nuclear weapons facility that fabricated plutonium triggers for nuclear weapons and is now being decontaminated and decommissioned. The weapons production processes exposed workers to plutonium, gamma photons, neutrons, beryllium, asbestos, and several hazardous chemical agents, including chlorinated hydrocarbons and heavy metals. We developed a job exposure matrix (JEM) for estimating exposures to 10 chemical agents in 20 buildings for 120 different job categories over a production history spanning 34 years. With the JEM, we estimated lifetime chemical exposures for about 12,000 of the 16,000 former production workers. We show how the JEM database is used to estimate cumulative exposures over different time periods for epidemiological studies and to provide notification and determine eligibility for a medical screening program developed for former workers. We designed an industrial hygiene data system for maintaining exposure data for current cleanup workers. We describe how this system can be used for exposure surveillance and linked with the JEM and databases on radiation doses to develop lifetime exposure histories and to determine appropriate medical monitoring tests for current cleanup workers. We also present time-line-based graphical methods for reviewing and correcting exposure estimates and reporting them to individual workers.

  4. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts includemore » the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.« less

  5. Looking into future: challenges in radiation protection in medicine.

    PubMed

    Rehani, M M

    2015-07-01

    Radiation protection in medicine is becoming more and more important with increasing wider use of X-rays, documentation of effects besides the potential for long-term carcinogenic effects. With computed tomography (CT) likely to become sub-mSv in coming years, positron emission tomography (PET), single photon emission computed tomography (SPECT) and some of the nuclear medical examination will become focus of attraction as high-dose examinations, even though they are less-frequent ones. Clarity will be needed on radiation effects at levels of radiation doses encountered in a couple of CT scans and if effects are really cumulative. There is challenge to develop radiation metrics that can be used as easily as units of temperature and length and avoidance of multiple meaning of a single dose metric. Other challenges include development of biological indicators of radiation dose, transition from dose to a representative phantom to dose to individual patient, system for tracking of radiation exposure history of patient, avoidance of radiation-induced skin injury in patients and radiation cataract in staff, cutting down inappropriate referrals for radiological examinations, confidence building in patient and patient safety in radiotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  7. E-learning for medical imaging specialists: introducing blended learning in a nuclear medicine specialist course

    PubMed Central

    Haslerud, Torjan; Tulipan, Andreas Julius; Gray, Robert M

    2017-01-01

    Background While e-learning has become an important tool in teaching medical students, the training of specialists in medical imaging is still dominated by lecture-based courses. Purpose To assess the potential of e-learning in specialist education in medical imaging. Material and Methods An existing lecture-based five-day course in Clinical Nuclear Medicine (NM) was enhanced by e-learning resources and activities, including practical exercises. An anonymized survey was conducted after participants had completed and passed the multiple choice electronic course examination. Results Twelve out of 15 course participants (80%) responded. Overall satisfaction with the new course format was high, but 25% of the respondents wanted more interactive elements such as discussions and practical exercises. The importance of lecture handouts and supplementary online material such as selected original articles and professional guidelines was affirmed by all the respondents (92% fully, 8% partially), while 75% fully and 25% partially agreed that the lectures had been interesting and relevant. Conclusion E-learning represents a hitherto unrealized potential in the education of medical specialists. It may expedite training of medical specialists while at the same time containing costs. PMID:28804642

  8. Fast scanning mode and its realization in a scanning acoustic microscope

    NASA Astrophysics Data System (ADS)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  9. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...

  10. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...

  11. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

    PubMed

    Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A

    2010-12-21

    Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

  12. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...

  13. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  14. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  15. A horizon scan of global conservation issues for 2013.

    PubMed

    Sutherland, William J; Bardsley, Sarah; Clout, Mick; Depledge, Michael H; Dicks, Lynn V; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Margerison, Ceri; Monk, Kathryn A; Norris, Kenneth; Peck, Lloyd S; Prior, Stephanie V; Scharlemann, Jörn P W; Spalding, Mark D; Watkinson, Andrew R

    2013-01-01

    This paper presents the findings of our fourth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity. The 15 issues were identified via an iterative, transferable process by a team of professional horizon scanners, researchers, practitioners, and a journalist. The 15 topics include the commercial use of antimicrobial peptides, thorium-fuelled nuclear power, and undersea oil production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  17. Neck and whole-body scanning with 5-mCi dose of (123)I as diagnostic tracer in patients with well-differentiated thyroid cancer.

    PubMed

    Gulzar, Z; Jana, S; Young, I; Bukberg, P; Yen, V; Naddaf, S; Abdel-Dayem, H M

    2001-01-01

    To determine whether a 5-mCi dose of 123I can be used as an effective radiotracer for assessing the presence of remnant thyroid tissue and for searching for metastatic lesions in patients with well-differentiated thyroid cancer as well as to attempt to ascertain whether a scan performed only at 4 hours is sufficient for accurate diagnosis and might replace the conventional protocol of scanning at both 4 hours and 24 hours. We prospectively studied 27 patients who had undergone near-total thyroidectomy and had a documented diagnosis of well-differentiated thyroid carcinoma. Patients underwent scanning after receiving a 5-mCi dose of 123I, at a time when they had discontinued thyroid replacement therapy and had a thyrotropin level in excess of 30 mIU/mL. Whole-body images at 4 hours and 24 hours were obtained and were compared with posttherapy scans obtained 5 to 7 days after administration of 131I. Scans were interpreted by two board-certified nuclear medicine physicians. Of the 27 patients, 2 (7.4%) showed discordance between the 123I scan performed at 24 hours and the posttherapy 131I scan. When 4-hour images after administration of 123I were compared with the posttherapy 131I scans, a discordance rate of 14.8% (4 of 27 patients) was noted. In addition, two of these four patients showed lesions on the 24-hour images that were not seen on the 4-hour images (one with new lung metastatic involvement and the other with a local recurrence in the lower neck area). The prognosis and treatment of these two patients were substantially changed by the result of the 24-hour images. On comparison of scans obtained after administration of a 5-mCi dose of 123I with those obtained after 131I therapy, we conclude that 5 mCi of 123I produces images that have excellent quality and resolution and also compare favorably with those obtained after 131I therapy. Furthermore, a decrease in the dose of 123I from 10 mCi to 5 mCi lowered the cost of the study without compromising the

  18. Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine.

    PubMed

    Asgari, Afrouz; Ashoor, Mansour; Sohrabpour, Mostafa; Shokrani, Parvaneh; Rezaei, Ali

    2015-05-01

    Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with solid water slab phantom (RW3) and Teflon bone phantoms have been compared, and Matlab software and Monte Carlo N-Particle (MCNP4C) code were modified to simulate these methods and obtaining the amounts of FWHM and full width at tenth maximum (FWTM) using line spread functions (LSFs). The experimental data were obtained from the Orbiter Scintron gamma camera. Based on the results of the simulation as well as experimental work, the performance of WH and ASW display of the results, lowest scatter fraction as well as constant linear attenuation coefficient as a function of phantom thickness. WH and ASW were optimal windows in nuclear medicine imaging for Tc-99m in RW3 phantom and Sm-153 in Teflon bone phantom. Attenuation correction was done for WH and ASW optimal windows and for these radionuclides using filtered back projection algorithm. Results of simulation and experimental show that very good agreement between the set of experimental with simulation as well as theoretical values with simulation data were obtained which was nominally less than 7.07 % for Tc-99m and less than 8.00 % for Sm-153. Corrected counts were not affected by the thickness of scattering material. The Simulated results of Line Spread Function (LSF) for Sm-153 and Tc-99m in phantom based on four windows and TEW method were

  19. Ultrasound use in Australasian emergency departments: a survey of Australasian College for Emergency Medicine Fellows and Trainees.

    PubMed

    Craig, Simon; Egerton-Warburton, Diana; Mellett, Tanya

    2014-06-01

    To describe current practice of EDUS by ACEM Trainees and Fellows; to describe potential barriers to US use in the Australasian setting; to determine compliance with current college guidelines regarding US credentialing. Data were collected by a cross-sectional online survey. Respondents were Trainees and Fellows of the ACEM. Outcome measures included the percentage of respondents currently undergoing or that had completed US credentialing for Focused Assessment with Sonography for Trauma (FAST) and assessment of abdominal aortic aneurysm (AAA) scans. The perceived barriers to use of emergency US were explored. There were 512 survey respondents, giving an overall response rate of 15%. Fellows were more likely to be credentialed compared with Trainees. There were 61% of respondents not credentialed for FAST and assessment of AAA scans. However, a significant proportion performed these scans regularly, and did not routinely seek independent confirmation of their findings. Barriers to credentialing included limited time and no credentialing programme at the individual's hospital. The present study showed that only a minority of ACEM Trainees and Fellows are credentialed to perform routine ED scans. Many non-credentialed ACEM Trainees and Fellows are performing scans, many without independent confirmation of their findings. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  20. An interchangeable scanning Hall probe/scanning SQUID microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a widemore » range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.« less

  1. Development and validation of a rebinner with rigid motion correction for the Siemens PET-MR scanner: Application to a large cohort of [11C]-PIB scans.

    PubMed

    Reilhac, Anthonin; Merida, Ines; Irace, Zacharie; Stephenson, Mary; Weekes, Ashley; Chen, Christopher; Totman, John; Townsend, David W; Fayad, Hadi; Costes, Nicolas

    2018-04-13

    Objective: Head motion occuring during brain PET studies leads to image blurring and to bias in measured local quantities. Our first objective was to implement an accurate list-mode-based rigid motion correction method for PET data acquired with the mMR synchronous Positron Emission Tomography/Magnetic Resonance (PET/MR) scanner. Our second objective was to optimize the correction for [ 11 C]-PIB scans using simulated and actual data with well-controlled motions. Results: An efficient list-mode based motion correction approach has been implemented, fully optimized and validated using simulated as well as actual PET data. The average spatial resolution loss induced by inaccuracies in motion parameter estimates as well as by the rebinning process was estimated to correspond to a 1 mm increase in Full Width Half Maximum (FWHM) with motion parameters estimated directly from the PET data with a temporal frequency of 20 secs. The results show that it can be safely applied to the [ 11 C]-PIB scans, allowing almost complete removal of motion induced artifacts.The application of the correction method on a large cohort of 11C-PIB scans led to the following observations: i) more than 21% of the scans were affected by a motion greater than 10 mm (39% for subjects with Mini-Mental State Examination -MMSE scores below 20) and ii), the correction led to quantitative changes in Alzheimer-specific cortical regions of up to 30%. Conclusion: The rebinner allows an accurate motion correction at a cost of minimal resolution reduction. The application of the correction to a large cohort of [ 11 C]-PIB scans confirmed the necessity to systematically correct for motion for quantitative results. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Dosimetric factors for diagnostic nuclear medicine procedures in a non-reference pregnant phantom.

    PubMed

    Rafat-Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2018-05-01

    This study was evaluated the impact of using non-reference fetal models on the fetal radiation dose from diagnostic radionuclide administration. The 6 month pregnant phantoms including fetal models at 10th and 90th growth percentiles were constructed at either end of the normal range around the 50th percentile and implemented in the Monte Carlo N-Particle code version MCNPX 2.6. The code have been used then to evaluate the 99mTc S factors of interested target organs as the most common used radionuclide in nuclear medicine procedures. Substantial variations were observed in the S factors between the 10th/90th percentile phantoms from the 50th percentile phantom, with the greatest difference being 38.6 %. When the source organs were in close proximity to, or inside the fetal body, the 99mTc S factors presented strong statistical correlations with fetal body habitus. The trends observed in the S factors and the differences between various percentiles were justified by the source organs' masses, and chord length distributions (CLDs). The results of this study showed that fetal body habitus had a considerable effect on fetal dose (on average up to 8.4%) if constant fetal biokinetic data was considered for all fetal weight percentiles. However, an almost smaller variation on fetal dose (up to 5.3%) was obtained if the available biokinetic data for the reference fetus was scaled by fetal mass. © 2018 IOP Publishing Ltd.

  3. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  4. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...

  5. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    NASA Astrophysics Data System (ADS)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  6. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    PubMed

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.

  7. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  8. Evaluative studies in nuclear medicine research: positron computed tomography assessment. Final report, January 1, 1982-December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A. Reinhard, D.K.

    Results are reported of the final phase of the study effort generally titled Evaluative Studies in Nuclear Medicine Research. The previous work is reviewed and extended to an assessment providing perspectives on medical applications of positron emission tomographic (PET) systems, their technological context, and the related economic and marketing environment. Methodologies developed and used in earlier phases of the study were continued, but specifically extended to include solicitation of opinion from commercial organizations deemed to be potential developers, manufacturers and marketers of PET systems. Several factors which influence the demand for clinical uses of PET are evaluated and discussed. Themore » recent Federal funding of applied research with PET systems is found to be a necessary and encouraging event toward a determination that PET either is a powerful research tool limited to research, or whether it also presents major clinical utility. A comprehensive, updated bibliography of current literature related to the development, applications and economic considerations of PET technology is appended.« less

  9. Radioprotective agents in medicine.

    PubMed

    Duraković, A

    1993-12-01

    The diminished probability of strategic nuclear confrontation alleviates some of the global concerns about large numbers of radiation casualties in the event of a nuclear war. As a result of the protection of the environment, the management of smaller numbers of radiation casualties assumes a more predictable and more specific role confined to accidents in nuclear energy projects, industry, technology and science. Recent experience of the consequences of accidents in nuclear power plants, in the field of radiotherapy and in the disposal of radioactive waste and spent fuel, present the medical and scientific communities with formidable problems if such events are to lead to minimal adverse effects on the biosphere. Whereas it is not possible to predict a nuclear or radiation accident, radioprotection is hardly an issue of health science alone, but rather an issue of the strictest quality assurance in all aspects of the utilization of nuclear energy and ionizing radiation. Thus, the medical community concerned with radioprotection will have to confine its emphasis on the management of radiation-induced alterations of the human organism from acute radiation syndromes to the stochastic concepts of chronic alterations of radiosensitive organic systems. Current multidisciplinary research in the field of radioprotection involves all aspects of basic and clinical research ranging from the subatomic mechanisms of free radical formation, macromolecular and intracellular radiation-induced alterations, biochemical and physiological homeostatic mechanisms and organ level manifestations to the clinical management of radiation casualties in a controlled hospital environment. Radioprotective agents, although widely studied in the past four decades and including several thousand agents, have not reached the level of providing the field of medicine with an agent that conforms to all criteria of an optimal radioprotectant, including effectiveness, toxicity, availability, specificity

  10. [Ethical aspects of regenerative medicine, with special reference to embryonic stem cells and therapeutic cloning].

    PubMed

    Imura, Hiroo

    2003-03-01

    Regenerative medicine is expected to be new therapeutic means for treating incurable diseases but requires serious bioethical consideration. Embryonic stem(ES) cells, that are pleuripotent cells suitable to regenerative medicine, can be used in Japan for investigative use under a strict control by guide-lines. On the other hand, use of embryo produced by nuclear transfer has not been allowed in Japan and further serious consideration is required. Some other ethical aspects of regenerative medicine are also discussed.

  11. Identification and Imaging of Special Nuclear Materials and Contraband using Active x-ray Interrogation

    NASA Astrophysics Data System (ADS)

    Van Liew, Seth; Bertozzi, William; D'Olympia, Nathan; Franklin, Wilbur A.; Korbly, Stephen E.; Ledoux, Robert J.; Wilson, Cody M.

    A x-ray inspection system utilizing a continuous-wave 9 MeV rhodotron x-ray source for scanning cargo containers is presented. This system scans for contraband, anomalies, stowaway passengers, and nuclear threats for trucks and towed cargo containers. A transmission image is generated concurrently with a 3D image of the cargo, the latter presenting material information in the form of atomic number and density. Neutrons from photofission are also detected during each scan. In addition, nuclear resonance fluorescence detectors are capable of identifying specific isotopes. This system has recently been deployed at the Port of Boston.

  12. Activities report in nuclear physics and particle acceleration

    NASA Astrophysics Data System (ADS)

    Jansen, J. F. W.; Demeijer, R. J.

    1984-04-01

    Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.

  13. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    PubMed

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  14. Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neudecker, Denise

    2015-06-17

    Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.

  15. Multivendor nuclear medicine PACS provide fully digital clinical operation at the University of Miami/Jackson Memorial Hospital

    NASA Astrophysics Data System (ADS)

    Georgiou, Mike F.; Sfakianakis, George N.; Johnson, Gary; Douligeris, Christos; Scandar, Silvia; Eisler, E.; Binkley, B.

    1994-05-01

    In an effort to improve patient care while considering cost-effectiveness, we developed a Picture Archiving and Communication System (PACS), which combines imaging cameras, computers and other peripheral equipment from multiple nuclear medicine vectors. The PACS provides fully-digital clinical operation which includes acquisition and automatic organization of patient data, distribution of the data to all networked units inside the department and other remote locations, digital analysis and quantitation of images, digital diagnostic reading of image studies and permanent data archival with the ability for fast retrieval. The PACS enabled us to significantly reduce the amount of film used, and we are currently proceeding with implementing a film-less laboratory. Hard copies are produced on paper or transparent sheets for non-digitally connected parts of the hospital. The PACS provides full-digital operation which is faster, more reliable, better organized and managed, and overall more efficient than a conventional film-based operation. In this paper, the integration of the various PACS components from multiple vendors is reviewed, and the impact of PACS, with its advantages and limitations on our clinical operation is analyzed.

  16. Investigation of public exposure resulted from the radioiodine delay tank facility of nuclear medicine department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Ali, Abdul Muhaimin Mat; Abdullah, Reduan

    The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the {sup 131}I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patientmore » and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of {sup 131}I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.« less

  17. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    NASA Astrophysics Data System (ADS)

    2014-12-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243

  18. Rapid scanning system for fuel drawers

    DOEpatents

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  19. Rapid scanning system for fuel drawers

    DOEpatents

    Caldwell, John T.; Fehlau, Paul E.; France, Stephen W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  20. BioChroma – A New and Patented Technology for Processing Radioactive Wastewater from Nuclear Medicine Therapy Facilities in Hospitals and Clinics

    PubMed Central

    Rodríguez, José Canga

    2012-01-01

    After undergoing radionuclide therapy, patients generate wastewater with a considerable amount of radioactivity, which can reach levels of as much as 90% of the administered dose. Due to the risk of accumulation after discharge into the sewer, it is advisable to collect this effluent for its treatment prior to final discharge. Delay and decay (natural decomposition of the isotope) is the most commonly used technical method of abating radioactive iodine, but it is frequently criticized as being complex and very expensive. BioChroma is a technology that has been developed as an alternative to these complicated and expensive systems. This paper describes this new technology and presents, as an example, a system that was installed and successfully commissioned in the middle of 2008 in a nuclear medicine ward with 12 beds in Stuttgart (Germany). Based on existing legislation, the responsible authorities and the company that operated the hospital agreed on a maximum activity level of 5 Bq/l. If a typical delay and decay system would have been installed, the 180 m3 treatment plant that was already available in the hospital cellar would have to be extended by additional 150 m3. By implementing the patented BioChroma process, the space requirements were reduced by 75%. For instance, since the new system was integrated into the existing installation, tanks accounting for 120 m³ could be used as buffering volume in the new wastewater treatment plant. The operation of the referred plant is currently producing very good results with values below the specified limit of 5 Bq/l for the isotope 131I. In addition, 90Y has been reported to be eliminated at the same time. Over the past 2 years of operation, the wastewater treatment plant has been able to achieve a maximum processing capacity of more than 2,000 l/day, which equates to a nuclear medicine ward with approx. 20 beds. The highest level recorded during the test period (of 180 days after start-up) was a peak of nearly 2

  1. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic

  2. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  3. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  4. Effectiveness and usability of Scanning Wizard software: a tool for enhancing switch scanning.

    PubMed

    Koester, Heidi Horstmann; Simpson, Richard C

    2017-11-24

    Scanning Wizard software helps scanning users improve the setup of their switch and scanning system. This study evaluated Scanning Wizard's effectiveness and usability. Ten people who use switch scanning and ten practitioners used Scanning Wizard in the initial session. Usability was high, based on survey responses averaging over 4.5 out of 5, and qualitative feedback was very positive. Five switch users were able to complete the multi-week protocol, using settings on their own scanning system that were recommended from the Scanning Wizard session. Using these revised settings, text entry rates improved by an average of 71%, ranging from 29% to 172% improvement. Results suggest that Scanning Wizard is a useful tool for improving the configuration of scanning systems for people who use switch scanning to communicate. Implications for Rehabilitation Some individuals with severe physical impairments use switch scanning for spoken and written communication. Scanning Wizard software helps scanning users improve the setup of their switch and scanning system. This study demonstrated high usability of Scanning Wizard (with 10 switch userpractitioner teams) and increased text entry rate by an average of 71% (for five switch users). Results suggest that Scanning Wizard is a useful tool for improving the configuration of scanning systems for people who use switch scanning to communicate.

  5. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  6. Nuclear medicine in breast cancer diagnostics: Primary tumor and lymphatic metastasis

    NASA Astrophysics Data System (ADS)

    Sinilkin, I.; Medvedeva, A.; Chernov, V.; Slonimskaya, E.; Zelchan, R.; Bragina, O.

    2017-09-01

    The purpose of the study: to assess the possibility of using nuclear medicine techniques at the stages of diagnosis and treatment of breast cancer. Materials and Methods: The study included 290 patients with breast cancer and 70 patients with benign breast tumors. The study was used as a radiopharmaceutical 99mTc-MIBI, 199Tl for imaging tumors and colloid 99mTc-Aloteh for visualization sentinel lymph nodes (SLN), colloid was injected peritumoral in four points to 80 MBq one day prior to the planned operation. Results: The sensitivity of SPECT using both 99mTc-MIBI and 199Tl for breast cancer detection was shown to be rather high, being 98.5% and 98%, respectively. It should be noted that the sensitivity of SPECT in detection of small tumors (less than 1 cm in diameter) and multicentric tumors was not high irrespective of the radioisotope used (60% and 65% with 99mTc-MIBI and 65% and 59% with 199Tl, respectively). The difference in the sensitivity was found between 99mTc-MIBI and 199T for the detection of regional lymph node metastasis (91% vs 70%). SLN were detected in 31 patients. The most commonly SLN were defined in the axillary region of 96.7%. In 22 (70.9%) patients there was no metastasis SLN. The sensitivity of the method was 91.2%, specificity of 100%. Conclusion: The specificity of SPECT with 199Tl was higher than that with 99mTc-MIBI. The data obtained show that SPECT with 199Tl can be recommended for its use as an additional breast cancer detection method in cases when other imaging techniques and histological findings are not accurate enough. The clinical study of 99mTc-Aloteh, a new radiopharmaceutical agent, has shown that the studied colloid has high uptake level in SLN and can be successfully used for visualization of SLN in patients with breast cancer.

  7. Nuclear forensics of a non-traditional sample: Neptunium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  8. Nuclear forensics of a non-traditional sample: Neptunium

    DOE PAGES

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-05-16

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  9. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer.

    PubMed

    Ahn, Byeong-Cheol

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging.

  10. Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane.

    PubMed

    Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji

    2018-06-15

    The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.

  11. Development and Validation of the Suprathreshold Stochastic Resonance-Based Image Processing Method for the Detection of Abdomino-pelvic Tumor on PET/CT Scans.

    PubMed

    Saroha, Kartik; Pandey, Anil Kumar; Sharma, Param Dev; Behera, Abhishek; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    The detection of abdomino-pelvic tumors embedded in or nearby radioactive urine containing 18F-FDG activity is a challenging task on PET/CT scan. In this study, we propose and validate the suprathreshold stochastic resonance-based image processing method for the detection of these tumors. The method consists of the addition of noise to the input image, and then thresholding it that creates one frame of intermediate image. One hundred such frames were generated and averaged to get the final image. The method was implemented using MATLAB R2013b on a personal computer. Noisy image was generated using random Poisson variates corresponding to each pixel of the input image. In order to verify the method, 30 sets of pre-diuretic and its corresponding post-diuretic PET/CT scan images (25 tumor images and 5 control images with no tumor) were included. For each sets of pre-diuretic image (input image), 26 images (at threshold values equal to mean counts multiplied by a constant factor ranging from 1.0 to 2.6 with increment step of 0.1) were created and visually inspected, and the image that most closely matched with the gold standard (corresponding post-diuretic image) was selected as the final output image. These images were further evaluated by two nuclear medicine physicians. In 22 out of 25 images, tumor was successfully detected. In five control images, no false positives were reported. Thus, the empirical probability of detection of abdomino-pelvic tumors evaluates to 0.88. The proposed method was able to detect abdomino-pelvic tumors on pre-diuretic PET/CT scan with a high probability of success and no false positives.

  12. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  13. Use of nonimaging nuclear medicine techniques to assess the effect of flunixin meglumine on effective renal plasma flow and effective renal blood flow in healthy horses.

    PubMed

    Held, J P; Daniel, G B

    1991-10-01

    The effect of flunixin meglumine on renal function was studied in 6 healthy horses by use of nonimaging nuclear medicine techniques. Effective renal plasma flow (ERPF) and effective renal blood flow (ERBF) were determined by plasma clearance of 131I-orthoiodohippuric acid before and after administration of flunixin meglumine. Mean ERPF and ERBF was 6.03 ml/min/kg and 10.7 ml/min/kg, respectively, before treatment and was 5.7 ml/min/kg and 9.7 ml/min/kg, respectively, after treatment. Although ERPF and ERBF decreased after flunixin meglumine administration, the difference was not statistically significant.

  14. Current Status of Nuclear Medicine Practice in the Middle East.

    PubMed

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  15. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  16. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  17. Integrative Medicine in Preventive Medicine Education

    PubMed Central

    Jani, Asim A.; Trask, Jennifer; Ali, Ather

    2016-01-01

    During 2012, the USDHHS’s Health Resources and Services Administration funded 12 accredited preventive medicine residencies to incorporate an evidence-based integrative medicine curriculum into their training programs. It also funded a national coordinating center at the American College of Preventive Medicine, known as the Integrative Medicine in Preventive Medicine Education (IMPriME) Center, to provide technical assistance to the 12 grantees. To help with this task, the IMPriME Center established a multidisciplinary steering committee, versed in integrative medicine, whose primary aim was to develop integrative medicine core competencies for incorporation into preventive medicine graduate medical education training. The competency development process was informed by central integrative medicine definitions and principles, preventive medicine’s dual role in clinical and population-based prevention, and the burgeoning evidence base of integrative medicine. The steering committee considered an interdisciplinary integrative medicine contextual framework guided by several themes related to workforce development and population health. A list of nine competencies, mapped to the six general domains of competence approved by the Accreditation Council of Graduate Medical Education, was operationalized through an iterative exercise with the 12 grantees in a process that included mapping each site’s competency and curriculum products to the core competencies. The competencies, along with central curricular components informed by grantees’ work presented elsewhere in this supplement, are outlined as a roadmap for residency programs aiming to incorporate integrative medicine content into their curricula. This set of competencies adds to the larger efforts of the IMPriME initiative to facilitate and enhance further curriculum development and implementation by not only the current grantees but other stakeholders in graduate medical education around integrative medicine

  18. [Effect of compound Chinese traditional medicine on infected root canal bacteria biofilm].

    PubMed

    Ma, Rui; Huang, Li-li; Xia, Wen-wei; Zhu, Cai-lian; Ye, Dong-xia

    2010-08-01

    To assess the efficacy of compound Chinese traditional medicine(CTM), which composed of gallic acid, magnolol and polysaccharide of Blettila striata, against the infected root canal bacterial biofilm. Actinomyces viscosus (Av), Enterococcus faecalis (Ef), Fusobacterium nucleatum (Fn) were composed to form biofilm, then confocal laser scan microscope (CLSM) was used to observe and study the bacterial activity. SAS6.12 software package was used for statistical analysis. The biofilm thickness reduced after treatment by both CTM and ZnO (P>0.05),while there was a significant decrease of the percentage of vital bacterias after treatment by CTM (P<0.01). The compound Chinese traditional medicine is effective on biofilm control, so that it would be an effective disinfecting drug for root canal sealers. Supported by Research Fund of Bureau of Traditional Chinese Medicine of Shanghai Municipality (Grant No.2008L008A).

  19. Comparison of avian biochemical test results with Abaxis VetScan and Hitachi 911 analyzers.

    PubMed

    Greenacre, Cheryl B; Flatland, Bente; Souza, Marcy J; Fry, Michael M

    2008-12-01

    To compare results of clinical biochemical analysis using an Abaxis VetScan bench-top analyzer with reagents specifically marketed for avian use and a Hitachi 911 analyzer, plasma (both methods) and whole blood (VetScan method) samples from 20 clinically healthy Hispaniolan Amazon parrots (Amazona ventralis) were analyzed. Correlation between methods was very high (r = 0.9-1.0) for aspartate aminotransferase (AST), calcium, glucose, and uric acid; high (r = 0.7-0.89) for creatine kinase (CK), phosphorus, potassium, and total protein; moderate (r = 0.5-0.69) for globulin; and low (r = 0.3-0.49) for albumin and sodium. VetScan analyzer results for globulin, sodium, and uric acid had a constant negative bias (values below those from the Hitachi method). Based on difference plot analysis, results for AST, calcium, CK, and glucose are comparable. Because 16 of 20 values fell below the lower detection limit of the VetScan analyzer, bile acid data were excluded from analysis. By using a relatively small sample size (0.1 ml whole blood or plasma), the VetScan analyzer offers rapid in-house results, compact size, and ease of operation. For 4 of the most clinically relevant biochemical analytes used in avian medicine (AST, calcium, CK, glucose), it offers reliable values. For an additional 4 analytes (phosphorous, potassium, total protein, uric acid), establishing analyzer-specific reference intervals is recommended. Neither the VetScan nor the Hitachi method is recommended to assess albumin and globulin concentrations.

  20. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  1. Public-private partnerships in translational medicine: concepts and practical examples.

    PubMed

    Luijten, Peter R; van Dongen, Guus A M S; Moonen, Chrit T; Storm, Gert; Crommelin, Daan J A

    2012-07-20

    The way forward in multidisciplinary research according to former NIH's director Elias Zerhouni is to engage in predictive, personalized, preemptive and participatory medicine. For the creation of the optimal innovation climate that would allow for such a strategy, public-private partnerships have been widely proposed as an important instrument. Public-private partnerships have become an important instrument to expedite translational research in medicine. The Netherlands have initiated three large public-private partnerships in the life sciences and health area to facilitate the translation of valuable basic scientific concepts to new products and services in medicine. The focus of these partnerships has been on drug development, improved diagnosis and regenerative medicine. The Dutch model of public-private partnership forms the blueprint of a much larger European initiative called EATRIS. This paper will provide practical examples of public-private partnerships initiated to expedite the translation of new technology for drug development towards the clinic. Three specific technologies are in focus: companion diagnostics using nuclear medicine, the use of ultra high field MRI to generate sensitive surrogate endpoints based on endogenous contrast, and MRI guidance for High Intensity Focused Ultrasound mediated drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...

  3. Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.

    A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.

  4. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  5. [Consequences for military medicine of new nuclear weapons developments].

    PubMed

    Vogler, H

    1985-01-15

    The development and production of qualitatively new nuclear weapons (e.g. neutron weapons) has consequences also for the medical protection under conditions of war. In the present paper the peculiarities of these new systems of arms as well as the profile of injured persons which is to be expected after use of neutron weapons are analysed and general conclusions for the medical service are drawn.

  6. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  7. Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3.

    PubMed

    Schwerdt, Ian J; Brenkmann, Alexandria; Martinson, Sean; Albrecht, Brent D; Heffernan, Sean; Klosterman, Michael R; Kirkham, Trenton; Tasdizen, Tolga; McDonald Iv, Luther W

    2018-08-15

    The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO 3 , in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO 3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with

  8. Nuclear decay data files of the Dosimetry Research Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.

    1993-12-01

    This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission onmore » Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less

  9. Accuracy in Dental Medicine, A New Way to Measure Trueness and Precision

    PubMed Central

    Ender, Andreas; Mehl, Albert

    2014-01-01

    Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes. PMID:24836007

  10. Highlights lecture EANM 2014: "Gimme gimme gimme those nuclear Super Troupers".

    PubMed

    de Jong, Marion; Van Laere, Koen

    2015-04-01

    The EANM Congress 2014 took place in Gothenburg, Sweden, from 18 to 22 October under the presidency of Prof. Wim Oyen, chair of the EANM Scientific Committee. Prof. Peter Gjertsson chaired the Local Organizing Committee, according to the standardized EANM congress structure. The meeting was a highlight for the multidisciplinary community that forms the heart and soul of nuclear medicine; attendance was exceptionally high. In total almost 5,300 participants came to Gothenburg, and 1,397 colleagues participated via the EANM LIVE sessions ( http://eanmlive.eanm.org/index.php ). Participants from all continents were presented with an excellent programme consisting of symposia, scientific and featured sessions, CME sessions, and plenary lectures. These lectures were devoted to nuclear medicine therapy, hybrid imaging and molecular life sciences. Two tracks were included in the main programme, clustering multi-committee involvement: the 5th International Symposium on Targeted Radionuclide-therapy and Dosimetry (ISTARD) and the first Molecules to Man (M2M) track, an initiative of the EANM Committees for Translational Molecular Imaging, Radiopharmacy and Drug Development. The industry made a substantial contribution to the success of the congress demonstrating the latest technology and innovations in the field. During the closing Highlights Lecture, a selection of the best-rated abstracts was presented including diverse areas of nuclear medicine: physics and instrumentation, radiopharmacy, preclinical imaging, oncology (with a focus on the clinical application of newly developed tracers) and radionuclide therapy, cardiology and neurosciences. This Highlights Lecture could only be a brief summary of the large amount of data presented and discussed during the meeting, which can be found in much greater detail in the congress proceedings book, published as Volume 41, Supplement 2 of the European Journal of Nuclear Medicine and Molecular Imaging in October 2014.

  11. CT scan

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003330.htm CT scan To use the sharing features on this page, please enable JavaScript. A computed tomography (CT) scan is an imaging method that uses x- ...

  12. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  13. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  14. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  15. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  16. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE PAGES

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  17. Incidence of Brain Metastases on Follow-up 18F-FDG PET/CT Scans of Non-Small Cell Lung Cancer Patients: Should We Include the Brain?

    PubMed

    Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H

    2017-09-01

    Nuclear Medicine and Molecular Imaging.

  18. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.

  19. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  20. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...