Analysis of Power Planning Deviation Influence on the Non-fossil Energy Development Goal
NASA Astrophysics Data System (ADS)
Xu, Wei-ting; Li, Ting; Ye, Qiang; Mi, Zhu; Ying, Liu; Tao, Yu-xuan
2017-05-01
Due to the international circumstances changes and domestic economic restructuring, the policies and planning of energy development have been adjusting in recent years, especially in energy power industry. Under these influences, the Chinese energy development goal “non-fossil energy accounts for 15% of the primary energy consumption” which planned to be realized in 2020 becomes uncertain. To ensure the goal can be achieved, a new energy power planning scheme is provided. Based on this planning scheme, the sensitivity analysis method and the maximum deviation method are proposed to quantify the influence of planning deviation on the target percentage. At the same time, the energy replacement is provided to fill the deviation. Research results shows that the main influence factors of target percentage is the hydro and nuclear power develop scale and their output channel construction. If the hydro and nuclear power capacity can’t reach their target scale, wind and solar power capacity can fill the vacancy instead. But if the vacancy of hydropower exceeds 58GW, or vacancy of nuclear power exceeds 27GW, the “15% goal” would be very difficult to achieve. Accelerating the construction of the hydropower output transmission lines helps to guarantee the "15% goal".
Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction.
Zhao, Yao; Schreiner, Sarah M; Koo, Peter K; Colombi, Paolo; King, Megan C; Mochrie, Simon G J
2016-07-12
Many aspects of chromatin biology are influenced by the nuclear compartment in which a locus resides, from transcriptional regulation to DNA repair. Further, the dynamic and variable localization of a particular locus across cell populations and over time makes analysis of a large number of cells critical. As a consequence, robust and automatable methods to measure the position of individual loci within the nuclear volume in populations of cells are necessary to support quantitative analysis of nuclear position. Here, we describe a three-dimensional membrane reconstruction approach that uses fluorescently tagged nuclear envelope or endoplasmic reticulum membrane marker proteins to precisely map the nuclear volume. This approach is robust to a variety of nuclear shapes, providing greater biological accuracy than alternative methods that enforce nuclear circularity, while also describing nuclear position in all three dimensions. By combining this method with established approaches to reconstruct the position of diffraction-limited chromatin markers-in this case, lac Operator arrays bound by lacI-GFP-the distribution of loci positions within the nuclear volume with respect to the nuclear periphery can be quantitatively obtained. This stand-alone image analysis pipeline should be of broad practical utility for individuals interested in various aspects of chromatin biology, while also providing, to our knowledge, a new conceptual framework for investigators who study organelle shape. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N.; Tsuji, H.
2015-12-15
Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 casesmore » each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.« less
Cognitive Consistency in Beliefs about Nuclear Weapons.
ERIC Educational Resources Information Center
Nelson, Linden
The paper details a study supporting the hypothesis that people's opinions about nuclear arms control are influenced by their logically relevant beliefs about nuclear weapons, nuclear war, and the Soviet Union. The hypothesis should not be construed to imply that these beliefs are the only influences or the most powerful influences on arms control…
FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI
Dounce, Alexander L.; Monty, Kenneth J.
1955-01-01
1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437
NASA Astrophysics Data System (ADS)
Moskvin, L. N.; Rakov, V. T.
2015-06-01
The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.
NASA Astrophysics Data System (ADS)
Nesterov, V. O.
2018-06-01
In the framework of the energy density method with the use of the wave function of the two-center shell model, the influence of the simultaneous account for the Pauli exclusion principle and the monopole and quadrupole polarizations of nuclei on the nuclear part of the potential of their interaction by the example of the 40Ca +40Ca system is considered. The calculations performed in the framework of the adiabatic approximation show that the consideration of the Pauli exclusion principle and the polarization of nuclei, especially the quadrupole one, essentially affects the nucleus-nucleus interaction potential.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Influence of organizational factors on safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, S.B.; Metlay, D.S.; Crouch, D.A.
There is a need for a better understanding of exactly how organizational management factors at a nuclear power plant (NPP) affect plant safety performance, either directly or indirectly, and how these factors might be observed, measured, and evaluated. The purpose of this research project is to respond to that need by developing a general methodology for characterizing these organizational and management factors, systematically collecting information on their status and integrating that information into various types of evaluative activities. Research to date has included the development of the Nuclear Organization and Management Analysis Concept (NOMAC) of a NPP, the identification ofmore » key organizational and management factors, and the identification of the methods for systematically measuring and analyzing the influence of these factors on performance. Most recently, two field studies, one at a fossil fuel plant and the other at a NPP, were conducted using the developed methodology. Results are presented from both studies highlighting the acceptability, practicality, and usefulness of the methods used to assess the influence of various organizational and management factors including culture, communication, decision-making, standardization, and oversight. 6 refs., 3 figs., 1 tab.« less
Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.
2012-01-01
Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.
Di Donato, Guido; Laufer-Amorim, Renée; Palmieri, Chiara
2017-10-01
Ten normal prostates, 22 benign prostatic hyperplasia (BPH) and 29 prostate cancer (PC) were morphometrically analyzed with regard to mean nuclear area (MNA), mean nuclear perimeter (MNP), mean nuclear diameter (MND), coefficient of variation of the nuclear area (NACV), mean nuclear diameter maximum (MDx), mean nuclear diameter minimum (MDm), mean nuclear form ellipse (MNFe) and form factor (FF). The relationship between nuclear morphometric parameters and histological type, Gleason score, methods of sample collection, presence of metastases and survival time of canine PC were also investigated. Overall, nuclei from neoplastic cells were larger, with greater variation in nuclear size and shape compared to normal and hyperplastic cells. Significant differences were found between more (small acinar/ductal) and less (cribriform, solid) differentiated PCs with regard to FF (p<0.05). MNA, MNP, MND, MDx, and MDm were significantly correlated with the Gleason score of PC (p<0.05). MNA, MNP, MDx and MNFe may also have important prognostic implications in canine prostatic cancer since negatively correlated with the survival time. Biopsy specimens contained nuclei that were smaller and more irregular in comparison to those in prostatectomy and necropsy specimens and therefore factors associated with tissue sampling and processing may influence the overall morphometric evaluation. The results indicate that nuclear morphometric analysis in combination with Gleason score can help in canine prostate cancer grading, thus contributing to the establishment of a more precise prognosis and patient's management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariella, R
The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physicalmore » and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.« less
Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa
2016-01-01
Public support for nuclear power generation has decreased in Japan since the Fukushima Daiichi nuclear accident in March 2011. This study examines how the factors influencing public acceptance of nuclear power changed after this event. The influence factors examined are perceived benefit, perceived risk, trust in the managing bodies, and pro-environmental orientation (i.e., new ecological paradigm). This study is based on cross-sectional data collected from two online nationwide surveys: one conducted in November 2009, before the nuclear accident, and the other in October 2011, after the accident. This study's target respondents were residents of Aomori, Miyagi, and Fukushima prefectures in the Tohoku region of Japan, as these areas were the epicenters of the Great East Japan Earthquake and the locations of nuclear power stations. After the accident, trust in the managing bodies was found to have a stronger influence on perceived risk, and pro-environmental orientation was found to have a stronger influence on trust in the managing bodies; however, perceived benefit had a weaker positive influence on public acceptance. We also discuss the theoretical and practical implications of these findings. © 2015 Society for Risk Analysis.
Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells
Leitch, Andrew R.
2000-01-01
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Kosson, D.
2009-11-30
Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focusmore » of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various chapters contain both a description of the mechanism or and a discussion of the current approaches to modeling the phenomena.« less
Jannink, I; Bennen, J N; Blaauw, J; van Diest, P J; Baak, J P
1995-01-01
This study compares the influence of two different nuclear sampling methods on the prognostic value of assessments of mean and standard deviation of nuclear area (MNA, SDNA) in 191 consecutive invasive breast cancer patients with long term follow up. The first sampling method used was 'at convenience' sampling (ACS); the second, systematic random sampling (SRS). Both sampling methods were tested with a sample size of 50 nuclei (ACS-50 and SRS-50). To determine whether, besides the sampling methods, sample size had impact on prognostic value as well, the SRS method was also tested using a sample size of 100 nuclei (SRS-100). SDNA values were systematically lower for ACS, obviously due to (unconsciously) not including small and large nuclei. Testing prognostic value of a series of cut off points, MNA and SDNA values assessed by the SRS method were prognostically significantly stronger than the values obtained by the ACS method. This was confirmed in Cox regression analysis. For the MNA, the Mantel-Cox p-values from SRS-50 and SRS-100 measurements were not significantly different. However, for the SDNA, SRS-100 yielded significantly lower p-values than SRS-50. In conclusion, compared with the 'at convenience' nuclear sampling method, systematic random sampling of nuclei is not only superior with respect to reproducibility of results, but also provides a better prognostic value in patients with invasive breast cancer.
IBA studies of helium mobility in nuclear materials revisited
NASA Astrophysics Data System (ADS)
Trocellier, P.; Agarwal, S.; Miro, S.; Vaubaillon, S.; Leprêtre, F.; Serruys, Y.
2015-12-01
The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for 3He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for 4He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.
Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd
2015-03-01
Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.
Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.
2016-04-07
The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This paper uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random sizemore » obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Finally, quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.« less
Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M
2010-01-01
Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.
LUNA, an underground nuclear astrophysics laboratory: recent results and future perspectives
NASA Astrophysics Data System (ADS)
Corvisiero, P.
2005-05-01
It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.
Versaevel, Marie; Riaz, Maryam; Corne, Tobias; Grevesse, Thomas; Lantoine, Joséphine; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; De Vos, Winnok H.; Gabriele, Sylvain
2017-01-01
ABSTRACT The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures. PMID:27111836
Versaevel, Marie; Riaz, Maryam; Corne, Tobias; Grevesse, Thomas; Lantoine, Joséphine; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; De Vos, Winnok H; Gabriele, Sylvain
2017-01-02
The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.
Fission Dynamics with Microscopic Level Densities
Ward, D.; Carlsson, B. G.; Dossing, Th.; ...
2017-01-01
We present a consistent framework for treating the energy and angularmomentum dependence of the shape evolution in the nuclear fission. It combines microscopically calculated level densities with the Metropolis-walk method, has no new parameters, and can elucidate the energy-dependent influence of pairing and shell effects on the dynamics of warm nuclei.
Processing of uranium dioxide nuclear fuel pellets using spark plasma sintering
NASA Astrophysics Data System (ADS)
Ge, Lihao
Uranium dioxide (UO2), one of the most common nuclear fuels, has been applied in most of the nuclear plant these days for electricity generation. The main objective of this research is to introduce a novel method for UO 2 processing using spark plasma sintering technique (SPS). Firstly, an investigation into the influence of processing parameters on densification of UO2 powder during SPS is presented. A broad range of sintering temperatures, hold time and heating rates have been systematically varied to investigate their influence on the sintered pellet densification process. The results revealed that up to 96% theoretical density (TD) pellets can be obtained at a sintering temperature of 1050 °C for 30s hold time and a total run time of only 10 minutes. A systematic study is performed by varying the sintering temperature between 750°C to 1450°C and hold time between 0.5 min to 20 min to obtain UO2 pellets with a range of densities and grain sizes. The microstructure development in terms of grain size, density and porosity distribution is investigated. The Oxygen/Uranium (O/U) ratio of the resulting pellets is found to decrease after SPS. The mechanical and thermal properties of UO2 are evaluated. For comparable density and grain size, Vickers hardness and Young's modulus are in agreement with the literature value. The thermal conductivity of UO2 increases with the density but the grain size in the investigated range has no significant influence. Overall, the mechanical and thermal properties of UO2 are comparable with the one made using conventional sintering methods. Lastly, the influence of chromium dioxide (Cr2O3) and zirconium diboride (ZrB2) on the grain size of doped UO 2 fuel pellet is performed to investigate the feasibility of producing large-grain-size nuclear fuel using SPS. The benefits of using SPS over the conventional sintering of UO2 are summarized. The future work of designing macro-porous UO2 pellet and thorium dioxide (ThO 2) cored UO2 pellet is also proposed.
Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lingyu
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less
Examining Factors Affecting Attitudes toward Nuclear Power in Taiwan
NASA Astrophysics Data System (ADS)
Chan, Tzu-Jen
Nuclear power has become a major issue in Taiwan for several decades. The objective of the present study is to obtain evidence about the major determinants contributing to attitudes toward nuclear power, by investigating socioeconomic factors, environmental attitudes, knowledge of issues, trust, and risk perception, in shaping nuclear attitudes. A face-to-face survey was conducted using paper-based questionnaires from July 2014 to September 2014. Finally, 364 surveys were collected, of which 356 met validation requirements. The findings showed (1) knowledge of issues, trust in university scientists, trust in environmental groups, and risk perception directly influence attitudes toward nuclear power. (2) Risk perception is directly influenced by trust in nuclear authorities, trust in environmental groups, environmental attitudes, and party preference. (3) Gender, age, and party preference directly influence knowledge, trust in nuclear authorities, or trust in university scientists. The potential explanations and implications of findings are discussed.
ENVIRONMENTAL INFLUENCES ON GENETIC DIVERSITY OF CREEK CHUBS IN THE MID-ATLANTIC REGION OF THE USA
Analysis of genetic diversity within and among populations of stream fishes may provide a powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA sequences (590 bases of cytochrome B) and nuclear DNA loci (109 amp...
NASA Astrophysics Data System (ADS)
Chuvilskaya, T. V.; Shirokova, A. A.
2018-03-01
The results of calculation of 63Cu + p differential cross sections at incident-proton energies between 10 and 200 MeV and a comparative analysis of these results are presented as a continuation of the earlier work of our group on developing methods for calculating the contribution of nuclear reactions to radiative effects arising in the onboard spacecraft electronics under the action of high-energy cosmic-ray protons on 63Cu nuclei (generation of single-event upsets) and as a supplement to the earlier calculations performed on the basis of the TALYS code in order to determine elastic- and inelastic-scattering cross sections and charge, mass, and energy distributions of recoil nuclei (heavy products of the 63Cu + p nuclear reaction). The influence of various mechanisms of the angular distributions of particles emitted in the 63Cu + p nuclear reaction is also discussed.
Khoma, Mykhaylo; Jaquet, Ralph
2017-09-21
The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .
Nuclear physics in particle therapy: a review
NASA Astrophysics Data System (ADS)
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Nuclear physics in particle therapy: a review.
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Semi-automated potentiometric titration method for uranium characterization.
Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T
2012-07-01
The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence and Interest: How a Belligerent Dictator Resists Current Methods
2018-04-09
Economics , Security (Boulder, CO: Lynne Rienner Publishers Inc, 2009), 12. 10 Mark Bowden, “How to Deal With North Korea: There are No Good Options...nuclear, energy, economic and diplomatic benefits in exchange for halting North Korea’s nuclear program.”6 The Clinton Administration was not able to get...aimed at Chinese leadership as much as North Korea.31 The second part of the Trump Administration’s multifaceted approach is to apply economic pressure
DNA barcode analysis: a comparison of phylogenetic and statistical classification methods.
Austerlitz, Frederic; David, Olivier; Schaeffer, Brigitte; Bleakley, Kevin; Olteanu, Madalina; Leblois, Raphael; Veuille, Michel; Laredo, Catherine
2009-11-10
DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods). These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci--nuclear genes--improved the predictive performance of most methods. The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR
NASA Astrophysics Data System (ADS)
Macor, A.; de Rijk, E.; Annino, G.; Alberti, S.; Ansermet, J.-Ph.
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.
Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
2000-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...
Family Structure and Social Influence.
ERIC Educational Resources Information Center
Olson, Dawn R.
Regardless of family form, there is a universal belief that one's family is the most powerful agent of socialization. A sample of 38 junior high school students from single parent and nuclear families completed a questionnaire in order to examine the relative effects of peer influence and family influence in single parent and nuclear families.…
Mume, Eskender; Lynch, Daniel E; Uedono, Akira; Smith, Suzanne V
2011-06-21
Understanding how the size, charge and number of available pores in porous material influences the uptake and release properties is important for optimising their design and ultimately their application. Unfortunately there are no standard methods for screening porous materials in solution and therefore formulations must be developed for each encapsulated agent. This study investigates the potential of a library of radiotracers (nuclear sensors) for assessing the binding properties of hollow silica shell materials. Uptake and release of Cu(2+) and Co(2+) and their respective complexes with polyazacarboxylate macrocycles (dota and teta) and a series of hexa aza cages (diamsar, sarar and bis-(p-aminobenzyl)-diamsar) from the hollow silica shells was monitored using their radioisotopic analogues. Coordination chemistry of the metal (M) species, subtle alterations in the molecular architecture of ligands (Ligand) and their resultant complexes (M-Ligand) were found to significantly influence their uptake over pH 3 to 9 at room temperature. Positively charged species were selectively and rapidly (within 10 min) absorbed at pH 7 to 9. Negatively charged species were preferentially absorbed at low pH (3 to 5). Rates of release varied for each nuclear sensor, and time to establish equilibrium varied from minutes to days. The subtle changes in design of the nuclear sensors proved to be a valuable tool for determining the binding properties of porous materials. The data support the development of a library of nuclear sensors for screening porous materials for use in optimising the design of porous materials and the potential of nuclear sensors for high through-put screening of materials.
Plutonium in the arctic marine environment--a short review.
Skipperud, Lindis
2004-06-18
Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.
Low energy cross sections and underground laboratories
NASA Astrophysics Data System (ADS)
Corvisiero, P.; LUNA Collaboration
2005-04-01
It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years [C. Rolfs, W.S. Rodney, Cauldrons in the cosmos, University of Ghicago Press, Chicago (1988)]. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.
NASA Astrophysics Data System (ADS)
Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.
2014-10-01
Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.
NASA Astrophysics Data System (ADS)
Su, Jun; Zhu, Long; Guo, Chenchen
2018-05-01
Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration
Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
1999-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperaÂtures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...
NASA Astrophysics Data System (ADS)
Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.
2015-07-01
This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR.
Macor, A; de Rijk, E; Annino, G; Alberti, S; Ansermet, J-Ph
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids. Copyright © 2011 Elsevier Inc. All rights reserved.
ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site
Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu
2013-01-01
A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted on 29 August 1949, with the maximum detected excess dose being 430 ± 93 mGy. A maximum dose of 268 ± 79 mGy was determined from the settlements located close to radioactive fallout trace resulting from surface nuclear tests on 24 August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya and Gagarino). An accidental dose of 56 ± 42 mGy was found in Kurchatov city residents located close to fallout trace after the nuclear test on 7 August 1962. This method was applied to human tooth enamel to obtain individual absorbed doses of residents of the Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan–Chinese border due to the influence of nuclear tests (1964–1981) at Lop Nor. The highest dose was 123 ± 32 mGy. PMID:23404205
ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site.
Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu
2013-07-01
A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted on 29 August 1949, with the maximum detected excess dose being 430 ± 93 mGy. A maximum dose of 268 ± 79 mGy was determined from the settlements located close to radioactive fallout trace resulting from surface nuclear tests on 24 August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya and Gagarino). An accidental dose of 56 ± 42 mGy was found in Kurchatov city residents located close to fallout trace after the nuclear test on 7 August 1962. This method was applied to human tooth enamel to obtain individual absorbed doses of residents of the Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border due to the influence of nuclear tests (1964-1981) at Lop Nor. The highest dose was 123 ± 32 mGy.
Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P
2008-04-01
In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn
2014-09-29
In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
Job Prospects for Nuclear Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1987-01-01
Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)
Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania
2016-09-01
Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Dosimetry study of East Kazakhstan residents by tooth enamel EPR spectroscopy
NASA Astrophysics Data System (ADS)
Zhumadilov, Kassym; Ivannikov, Alexander; Skvortsov, Valeriy; Stepanenko, Valeriy; Rakhypbekov, Tolebay; Hoshi, Masaharu
2017-11-01
The tooth enamel electron paramagnetic resonance (EPR) dosimetry method was used to determine accidental doses of population of settlements in the vicinity of the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The influence of four explosions to the populations was included into this report. The distances between investigated settlements and Ground Zero (SNTS) are in the range of 70-200 km from SNTS. Most of settlements (Dolon, Mostik, Bodene, Cheremushki, Kanonerka) are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted in 29, August 1949. The other settlements located close to radioactive fallout trace result in a surface nuclear tests in 24, August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya, Gagarino), in 12 august 1953 (Sarzhal) and in 7, August 1962 (Akzhar, Kurchatov, Begen, Semenovka, Buras, Grachi). Tooth samples were extracted according to medical recommendations in a course of ordinary dental treatment.
Khomenko, I M; Zakladna, N V; Orlova, N M
2017-12-01
To evaluate the health status of adult population living in the Ukrainian nuclear power industry obser vation zone on the example of Zaporizhzhia Nuclear Power Plant. System review, analytic, sociological survey and statistical methods. There was established an increase in the incidence of digestive diseases among adult population in Nikopol of Dnipropetrovsk region, which is included in the Zaporizhzhia NPP observation zone. The highest increase was observed in the incidence of peptic ulcer, gastritis and duodenitis, cholecystitis and cholangitis by 340 %, 305 % and 83 %, respectively. In connection with the residence in industrially developed region and NPP life extension in Ukraine, the possible influence of harmful factors on health status of the population of observation zones, an increase in the incidence of digestive diseases among adult population, there is required continuous monitoring and detailed study of public health. I. M. Khomenko, N. V. Zakladna, N. M. Orlova.
Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y
2014-09-15
Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, J R
A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.
Zhang, Luyuan; Hou, Xiaolin; Li, Hong-Chun; Xu, Xiaomei
2018-02-01
The influence of human nuclear activities on environmental radioactivity is not well known at low latitude regions that are distant from nuclear test sites and nuclear facilities. A sediment core collected from Taal Lake in the central Philippines was analyzed for 129 I and 127 I to investigate this influence in a low-latitude terrestrial system. A baseline of 129 I/ 127 I atomic ratios was established at (2.04-5.14) × 10 -12 in the pre-nuclear era in this region. Controlled by the northeasterly equatorial trade winds, increased 129 I/ 127 I ratios of (20.1-69.3) × 10 -12 suggest that atmospheric nuclear weapons tests at the Pacific Proving Grounds in the central Pacific Ocean was the major source of 129 I in the sediment during 1956-1962. The 129 I/ 127 I ratios, up to 157.5 × 10 -12 after 1964, indicate a strong influence by European nuclear fuel reprocessing plants. The East Asian Winter Monsoon is found to be the dominant driving force in the atmospheric dispersion of radioactive iodine ( 129 I) from the European nuclear fuel reprocessing plants to Southeast Asia, which is also important for dispersion of other airborne pollutants from the middle-high to low latitude regions. A significant 129 I/ 127 I peak at 42.8 cm in the Taal Lake core appears to be the signal of the Chernobyl accident in 1986. In addition, volcanic activities are reflected in the iodine isotope profiles in the sediment core, suggesting the potential of using iodine isotopes as an indicator of volcanic eruptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Mystery and problems of cloning].
Nikitin, V A
2010-01-01
The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.
Locus of Control and Likelihood of Nuclear War: Two Studies.
ERIC Educational Resources Information Center
Erdahl, Paul; Rounds, James B.
The Nuclear Locus of Control (NLOC) scales were constructed to assess beliefs as to whether nuclear war and nuclear policy decisions are, or can be, influenced by oneself, powerful others, or chance. Three scales measuring internal, powerful others, and chance nuclear LOC show internal consistency estimates (Cronbach's Alpha) of .87, .76, and .85,…
The US nuclear weapon infrastructure and a stable global nuclear weapon regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Immele, John D; Wagner, Richard L
2009-01-01
US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weaponsmore » policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.« less
NASA Astrophysics Data System (ADS)
Piruzyan, L. A.
2005-08-01
Nowadays an attention is paid to pathbreaking approaches to the therapy of different pathologies with EPR, NMR and NGR dialysis and mechanisms of physical factors influence in prophylactics and therapy of a number of diseases. Any pathology is evidently begins its development in atomic-molecular levels earlier then any morphologic alterations in tissues can be detected. We have studied the alterations of FR content in liver, spleen and brain in hypoxia and hyperoxia conditions. Under hypoxia and hyperoxia the FR concentrations are equal in all organs and tissues. However this ratio is different for some forms of leucosis. For different leucosis types gas mixtures the most adequate for the current pathology should be developed. Then we represent the method of biologic objects treatment with the energy of super-high frequency field (SIT) and the instrument for its performance. The study of magnetic heterogeneity of biologic systems proposes the new approach and a set of methods for medical and scientific purpose. Application of combined with chemotherapy extraction of anionic and cationic radicals from bloodstream using EPRD, NMRD and NGRD influence and also the single ions separate extraction using NGRD are able to detect and perhaps to cure their appearance in a period before neoformation. These studies should be carried out experimentally and clinically.
Influence of gamma-ray skyshine on nuclear facilities design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, M.; Tsuji, M.; Kimura, Y.
1986-01-01
In safety analysis of nuclear facilities, skyshine dose rate at site boundary is one of the most important shielding design problems. For nuclear power stations in Japan, the skyshine dose rate at the site boundary has been specified not to exceed 5 mR/yr by the authorities, including total dose contribution from all structures on site, and this guide is commonly applied to other nuclear fuel cycle facilities. Therefore the design criterion dose of each structure on site is, considering plot planning, shielding condition, and so on, defined as a value <5 mR/yr. The purpose of this study is to investigatemore » how skyshine dose standards or other factors have an influence on the design of nuclear facilities, in a parametric survey of gamma-ray skyshine.« less
Gehrmann, Thies; Pelkmans, Jordi F; Ohm, Robin A; Vos, Aurin M; Sonnenberg, Anton S M; Baars, Johan J P; Wösten, Han A B; Reinders, Marcel J T; Abeel, Thomas
2018-04-24
Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation. Copyright © 2018 the Author(s). Published by PNAS.
Student attitudes toward the threat of nuclear war: Friends as influential reference persons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marasch, M.J.
A renewed interest in research into the psychology of the threat of nuclear war occurred in the past decade as national attention focused increasingly on the arms race between the US and the USSR. Some of this research began the task of exploring the social influences upon attitudes and responses to the nuclear threat. Research on friends as potential influences upon nuclear attitudes was minimal. The present study investigated the role of college friends as potential reference persons in the formation of nuclear attitudes. A battery of questionnaires addressing various nuclear war and non-nuclear war attitudes was completed by 200more » student-friend dyads from introductory psychology and sociology courses at the University of North Dakota. Three hypotheses were presented in this study. One hypothesis was that students would perceive their friends as having similar attitudes toward the threat of nuclear war. A second hypothesis was that the actual attitudes between pairs of students and friends would be similar. The third hypothesis was that the attitudes would have become more similar over the course of the development of the friendship (as measured retrospectively). The first hypothesis was borne out by the data. The second and third hypotheses were not supported. There are several implications of the findings. One implication is that the nuclear issue may not be as salient to college students as other, more immediate, issues. Another implication is that a relative lack of communication between college students on political issues precludes more effective mutual influence upon the development and change of such attitudes. A false consensus bias appeared to be operative when the students perceived that their attitudes were similar. Further discussion is presented in regard to past and future psychological research upon nuclear war attitudes.« less
Setup for potential bias experiments on the Saha Institute of Nuclear Physics tokamak
NASA Astrophysics Data System (ADS)
Ghosh, J.; Pal, R.; Chattopadhyay, P. K.
1999-12-01
An experimental setup for studying the influence of the radial electric field on very low qa plasma on the Saha Institute of Nuclear Physics tokamak is presented. A high current, high voltage pulsed power supply, using a semiconductor controlled rectifier (SCR) as a dc switch is developed and used to bias a tungsten electrode inserted inside the plasma. The electrode's exposed length and its position inside the plasma are controlled by a double bellows assembly to optimize the electrode-exposed length. We show that using the force commutation method to turn the SCR off to get the power pulse desired has good potential for carrying out similar kinds of studies, especially in a low budget small tokamak.
NASA Astrophysics Data System (ADS)
Graven, H. D.; Gruber, N.
2011-12-01
The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.
Fail-safe reactivity compensation method for a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.
The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less
H2: the benchmark molecule for ultrafast science and technologies
NASA Astrophysics Data System (ADS)
Ibrahim, Heide; Lefebvre, Catherine; Bandrauk, André D.; Staudte, André; Légaré, François
2018-02-01
This review article focuses on imaging and controlling ultrafast dynamics of the hydrogen molecule and its cation, initiated by ultrashort laser pulses. We discuss the mechanisms underlying these dynamics and theoretical methods to describe them. A broad variety of defining and influencing theoretical and experimental results is presented. We put special emphasis on the required experimental techniques, many of which have been developed in view of imaging the fastest of all nuclear dynamics.
A powerful approach for association analysis incorporating imprinting effects
Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam
2011-01-01
Motivation: For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. Results: In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy–Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. Contact: wingfung@hku.hk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21798962
A powerful approach for association analysis incorporating imprinting effects.
Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam
2011-09-15
For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy-Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. wingfung@hku.hk Supplementary data are available at Bioinformatics online.
The nuclear question: rethinking species importance in multi-species animal groups.
Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel
2010-09-01
1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in shaping species importance. 5. Our view of nuclearity provides predictive power in examining species roles in a variety of situations (e.g. predicting leadership in differently composed communities), and can be applied to examine a broad range of ecological and evolutionary questions pertinent to multi-species groups in general.
SkyNet: Modular nuclear reaction network library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-10-01
The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.
Studying Nuclear Receptor Complexes in the Cellular Environment.
Schaufele, Fred
2016-01-01
The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.
Mulder, J. W.; Offerhaus, G. J.; de Feyter, E. P.; Floyd, J. J.; Kern, S. E.; Vogelstein, B.; Hamilton, S. R.
1992-01-01
The relationship of abnormal nuclear morphology to molecular genetic alterations that are important in colorectal tumorigenesis is unknown. Therefore, Feulgen-stained isolated nuclei from 22 adenomas and 42 carcinomas that had been analyzed for ras gene mutations and allelic deletions on chromosomes 5q, 18q, and 17p were characterized by computerized image analysis. Both nuclear area and the nuclear shape factor representing irregularity correlated with adenoma-carcinoma progression (r = 0.57 and r = 0.52, P < 0.0001), whereas standard nuclear texture, a parameter of chromatin homogeneity, was inversely correlated with progression (r = -0.80, P < 0.0001). The nuclear parameters were strongly interrelated (P < 0.0005). In multivariate analysis, the nuclear parameters were predominantly associated with adenoma-carcinoma progression (P < or = 0.0001) and were not influenced significantly by the individual molecular genetic alterations. Nuclear texture, however, was inversely correlated with fractional allelic loss, a global measure of genetic changes, in carcinomas (r = -0.39, P = 0.011). The findings indicate that nuclear morphology in colorectal neoplasms is strongly related to tumor progression. Nuclear morphology and biologic behavior appear to be influenced by accumulated alterations in cancer-associated genes. Images Figure 1 PMID:1357973
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riemer, R.L.
The Panel on Basic Nuclear Data Compilations believes that it is important to provide the user with an evaluated nuclear database of the highest quality, dependability, and currency. It is also important that the evaluated nuclear data are easily accessible to the user. In the past the panel concentrated its concern on the cycle time for the publication of A-chain evaluations. However, the panel now recognizes that publication cycle time is no longer the appropriate goal. Sometime in the future, publication of the evaluated A-chains will evolve from the present hard-copy Nuclear Data Sheets on library shelves to purely electronicmore » publication, with the advent of universal access to terminals and the nuclear databases. Therefore, the literature cut-off date in the Evaluated Nuclear Structure Data File (ENSDF) is rapidly becoming the only important measure of the currency of an evaluated A-chain. Also, it has become exceedingly important to ensure that access to the databases is as user-friendly as possible and to enable electronic publication of the evaluated data files. Considerable progress has been made in these areas: use of the on-line systems has almost doubled in the past year, and there has been initial development of tools for electronic evaluation, publication, and dissemination. Currently, the nuclear data effort is in transition between the traditional and future methods of dissemination of the evaluated data. Also, many of the factors that adversely affect the publication cycle time simultaneously affect the currency of the evaluated nuclear database. Therefore, the panel continues to examine factors that can influence cycle time: the number of evaluators, the frequency with which an evaluation can be updated, the review of the evaluation, and the production of the evaluation, which currently exists as a hard-copy issue of Nuclear Data Sheets.« less
Goal direction and effectiveness, emotional maturity, and nuclear family functioning.
Klever, Phillip
2009-07-01
Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and effectiveness and emotional maturity. A qualitative analysis of participants' goals demonstrated that couples with higher functioning developing nuclear families, when compared with couples with lower functioning families, placed more emphasis on family goals, had more balance between family and personal goals, and pursued more goals over the 5 years. The quantitative analysis supported the hypothesis that goal effectiveness and emotional maturity influenced variation in nuclear family functioning. In addition, couple goal effectiveness and emotional maturity were associated with nuclear family functioning more strongly than individual goal effectiveness and emotional maturity were associated with individual functioning.
Developing the radiation protection safety culture in the UK.
Cole, P; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; Marsh, A; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A
2014-06-01
In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration.In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses.The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures.The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants.Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C. William
This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
Parnikoza, I Yu; Loro, P; Miryuta, N Yu; Kunakh, V A; Kozeretska, I A
2011-01-01
Under the environmental conditions of the Point Thomas Oasis (King George Island, the South Shetland Islands), we studied the influence of month-long artificial treatment with fresh water, salt water, and guano solution on the biometric characteristics, chlorophyll content, as well as the nuclear area of leaf parenchymal cells and nuclear DNA content, in a maritime Antarctic aboriginal plant Deschampsia antarctica. The modeled factors induced an increase in the generative shoot height and the length of the largest leaf, but did not influence the number of flowers. Treatment with guano caused an increase in the chlorophyll a and b contents, while fresh water treatment only led to some increase in chlorophyll a. Fluctuations of physiologically significant traits, such as the nuclear area and DNA content in the leaf parenchyma cells of D. antarctica, have been traced under the influence of the studied factors. Understanding of the hierarchy of influence of these factors as well as and sensitivity of plants of this species to external agents require further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosemann, Peter; Kaoumi, Djamel
Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspectsmore » can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation.« less
Hrncir, Tomas; Strazovec, Roman; Zachar, Matej
2017-09-07
The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C
2012-01-01
Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation severely compressed basal branch lengths obtained from mitochondrial DNA compared with nuclear DNA. The effects of mitochondrial saturation were not ameliorated by analyzing a combined nuclear and mitochondrial data set. Although removing the third codon positions from the mitochondrial coding regions did not ameliorate saturation effects in the single-fossil cross-validations, it did in the Bayesian multicalibration analyses. Saturation significantly influenced the fossils that were selected as most reliable for all three methods evaluated. Our findings highlight the need to critically evaluate the fossils selected by data with different rates of nucleotide substitution and how data with different evolutionary rates affect the results of each method for evaluating fossils. Our empirical evaluation demonstrates that the advantages of using multiple independent fossil calibrations significantly outweigh any disadvantages.
Colombani, Juliette; Chauvet, Elodie; Amat, Sandrine; Dupuy, Nathalie; Gigmes, Didier
2017-04-01
The effects of radiation on polymeric materials are a topic of concern in a wide range of industries including the sterilization, and the nuclear power industry. While much work has concentrated on systems like polyolefins that are radiation sterilized, some work has been done on epoxy systems. The epoxy system studied is an epoxy/amine paint which is representative of the paint that covers the inner surfaces of the French nuclear reactor containment buildings. In case of a severe accident on a Nuclear Power Plant, fission products can be released from the nuclear fuel to the reactor containment building. Among them, volatile iodine (I 2 ) can be produced and can interact with the epoxy-paint. This paint is also subjected to gamma radiation damages (due to the high dose in the containment coming from radionuclides released from the fuel). So the epoxy-paint studied was exposed to gamma radiation under air atmosphere after being loaded with I 2 or not. The aim of this study is to characterize by FTIR spectroscopy the iodine-paint interactions, then to identify the radiation damages on the epoxy-paint, and to check their effects on these iodine-paint interactions. This work shows the potential of multi-block analysis method (ANOVA-PCA and COMDIM = AComDim) for such a study as it allows to identify the nature of iodine/epoxy-paint interactions and to characterize the gamma radiation damages on the epoxy-paint. AComDim method conduces to the extraction of Common Components to different tables and highlights factors of influence and their interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
U.S.-Latin American Nuclear Relations: From Commitment to Defiance
2012-09-01
domestic legislation to increase the levels of 3 nuclear transparency and accountability by relying extensively on technical and scientific...which some say was influenced by environmental groups), President Bachelet delayed the decision to build a nuclear power until 2010, when Sebastian...currently engaged in nuclear trafficking, the risk is there. According to Alex Sánchez, in 2008, Colombian security forces discovered that the
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Overview of nuclear energy: Present and projected use
NASA Astrophysics Data System (ADS)
Stanculescu, Alexander
2012-06-01
Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.
Statistical methods for nuclear material management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen W.M.; Bennett, C.A.
1988-12-01
This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less
Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import
Azimi, Mohammad; Mofrad, Mohammad R. K.
2013-01-01
Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617
Radiochemistry and the Study of Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less
Takeda, Saeka; Orita, Makiko; Fukushima, Yoshiko; Kudo, Takashi; Takamura, Noboru
2016-01-01
Objective To conduct a survey among non-medical employees working at the time of the Fukushima Daiichi Nuclear Power Station accident, in order to determine the factors associated with their intentions to leave their jobs during the nuclear disaster. Participants We asked 287 employees (166 men and 121 women) in the study. Methods We asked about their intentions to leave their jobs after the nuclear disaster. We also asked about relevant factors, including the participants’ demographic factors, living situations and working environments. Results We found that in employees younger than 40 (OR=4.73, 95% CI 1.74 to 12.85, p=0.002), being married (OR=3.18, 95% CI 1.03 to 9.79, p=0.044), measurements of the ambient dose rates in their homes after the accident (OR=5.32, 95% CI 1.65 to 17.14, p=0.005), anxiety about their relationships with their colleagues after the accident (OR=3.91, 95% CI 1.51 to 10.16, p=0.005) and the influence of radiation on the workplace (OR=0.33, 95% CI 0.14 to 0.80, p=0.014) were independently associated with the non-medical employees’ intentions to leave their jobs after the nuclear disaster. Conclusions Our results suggest the need for continuous risk communication regarding such factors and the provision of information about the health effects of radiation exposure to non-medical employees after nuclear disasters. PMID:27436669
Yoo, Jae-Gyu; Kim, Byeong-Woo; Park, Mi-Rung; Kwon, Deug-Nam; Choi, Yun-Jung; Shin, Teak-Soon; Cho, Byung-Wook; Seo, Jakyeom; Kim, Jin-Hoi; Cho, Seong-Keun
2017-01-01
Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups (31.4±8.3 to 33.4±11.1). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell. PMID:27764913
Nuclear transmutation in steels
NASA Astrophysics Data System (ADS)
Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.
2009-05-01
The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.
Political Influence on Japanese Nuclear and Security Policy: New Forces Face Large Obstacles
2014-02-01
Fukushima incident immediately triggered a resurgence of the anti- nuclear power movement in Japan, and quickly enlarged it to national scale.80...Bottom-up Activism,” Asia-Pacific Issues 103 (January 2012). 57 time passes after the Fukushima incidents. Anti- nuclear -power sentiment in Japan...spread well beyond the areas immediately affected by either the Fukushima disasters themselves or by other nuclear plants
JPRS Report, Nuclear Developments
1990-12-06
ban on that flail away at each other in maneuvers designed to nuclear tests (sic), even for peaceful purposes, across build up influence . Whatever...uranium and develop reactors for nuclear can help Mr. Collor nudge (away from the nuclear submarines. program) his fractious military along by suspending...two and a half years to behaviour to qualify for a certificate. WASHINGTON permit the second six-year aid package for 1988-93, was POST has meanwhile
Volume regulation and shape bifurcation in the cell nucleus
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.
2015-01-01
ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474
Volume regulation and shape bifurcation in the cell nucleus.
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X
2015-09-15
Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.
Bärmann, Eva Verena; Rössner, Gertrud Elisabeth; Wörheide, Gert
2013-05-01
Antilopini (gazelles and their allies) are one of the most diverse but phylogenetically controversial groups of bovids. Here we provide a molecular phylogeny of this poorly understood taxon using combined analyses of mitochondrial (CYTB, COIII, 12S, 16S) and nuclear (KCAS, SPTBN1, PRKCI, MC1R, THYR) genes. We explore the influence of data partitioning and different analytical methods, including Bayesian inference, maximum likelihood and maximum parsimony, on the inferred relationships within Antilopini. We achieve increased resolution and support compared to previous analyses especially in the two most problematic parts of their tree. First, taxa commonly referred to as "gazelles" are recovered as paraphyletic, as the genus Gazella appears more closely related to the Indian blackbuck (Antilope cervicapra) than to the other two gazelle genera (Nanger and Eudorcas). Second, we recovered a strongly supported sister relationship between one of the dwarf antelopes (Ourebia) and the Antilopini subgroup Antilopina (Saiga, Gerenuk, Springbok, Blackbuck and gazelles). The assessment of the influence of taxon sampling, outgroup rooting, and data partitioning in Bayesian analyses helps explain the contradictory results of previous studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Secrecy, Simultaneous Discovery, and the Theory of Nuclear Reactors
ERIC Educational Resources Information Center
Weart, Spencer
1977-01-01
Discusses the simultaneous discovery of the four-factor formula in various countries, the influence of secrecy in preventing the sharing of discovery, and the resultant direction in the development of nuclear reactor theory. (SL)
Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei
2018-02-01
A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.
Explaining nuclear energy pursuance: A comparison of the United States, Germany, and Japan
NASA Astrophysics Data System (ADS)
McKee, Lauren Emily
Energy is critical to the functioning of the global economy and seriously impacts global security as well. What factors influence the extent to which countries will pursue nuclear energy in their overall mix of energy approaches? This dissertation explores this critical question by analyzing the nuclear energy policies of the United States, Germany and Japan. Rather than citizen opposition or proximity to nuclear disasters, it seems that a country's access to other resources through natural endowments or trading relationships offers the best explanation for nuclear energy pursuance.
Bouteille, Romain; Perez, Jeanne; Khifer, Farid; Jouan-Rimbaud-Bouveresse, Delphine; Lecanu, Bruno; This, Hervé
2013-04-01
Dairy gels (DG), such as yoghurts, contain both solid and liquid fats at the time of consumption, as their temperature rises to anything between 10 and 24 °C after being introduced into the mouth at 4 °C. The mass ratio between solid and liquid fats, which depends on the temperature, impacts the organoleptic properties of DG. As the ordinary methods for determining this ratio can only be applied to samples consisting mainly in fat materials, a fat extraction step needs to be added into the analytical process when applied to DG, which prevents the study of the potential impact of their colloidal structure on milk fat fusion behavior. In situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR) was investigated as a method for direct measurements in DG: at temperatures between 20.0 and 70.0 °C, the liquid fat content and the composition of triacylglycerols of the liquid phase (in terms of alkyl chains length) were determined. Spectra of isolated milk fat also enable the quantification of the double bonds of triacylglycerols. Statistical tests showed no significant difference between isolated milk fat and milk fat inside a DG in terms of melting behavior: the fat globule membrane does not seem to have a significant influence on the fat melting behavior. © 2013 Institute of Food Technologists®
Microbiologically Influenced Corrosion in Copper and Nickel Seawater Piping Systems
1990-09-01
Influenced Tipton, D. G. and Kain, R. M. 1980. Effect of temperature onCorosiope in Nuclear Power Plants atudy a Mical Gnuide the resistance to pitting of...Monel alloy 400 in seawater. In:Corrosion in Nuclear Power Plants anda Practical ie fr Proceedings of Corrosion . Chicago, Illinois: National...Sons Ltd. 441 pp. Quimica . Verink, E.D. and Pourbaix, M. 1971. Use of electrochemical Pope, D. H., Duquette, D. J., Johannes, A. H., and Wayner
Effect of nuclear shielding in collision of positive charged helium ions with helium atoms
NASA Astrophysics Data System (ADS)
Ghavaminia, Hoda; Ghavaminia, Shirin
2018-03-01
Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.
Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B
2004-01-01
A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.
Nanotopographical Modulation of Cell Function through Nuclear Deformation
Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong
2016-01-01
Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, J., E-mail: JMitchell16@slb.com; Chandrasekera, T. C.
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{supmore » k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.« less
Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.
Nefiodov, A V; Plunien, G; Soff, G
2002-08-19
The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.
ERIC Educational Resources Information Center
Oak Ridge National Lab., TN.
These proceedings contain program highlights as well as 45 papers given during six sessions of the Symposium on Training of Nuclear Facility Personnel. The six sessions are entitled: (1) the training challenge; (2) influences on nuclear training; (3) the human factors--training partnership and factors affecting job performance; (4) current…
Martínez-Soriano, F; Armañanzas, E; Ruiz-Torner, A; Valverde-Navarro, A A
2002-01-01
Morphological and physiological studies suggest a possible division of the pineal parenchyma into an external or "cortical" and another central or "medullar" layer. We have studied the possible influence of the light/dark, seasonal and lunar cycles on the nuclear size of the pinealocytes of the rat in both the hypothetical "cortical" and "medullar" layers. Forty male Wistar rats were used. Experiment was carried out in two seasons, winter and spring, two lunar phases, full moon and new moon, and the two circadian phases, photophase and scotophase. The nuclear volume of the pinealocytes, calculated from the Jacobj's formula, was the karyometric parameter used as measurement of the nuclear size. Main results showed that nuclear volume of the cortical pinealocytes was greater than that of the medullar pinealocytes only during the photophases of winter new-moon days and spring full moon days, whereas in all the remaining situations, the greater nuclear sizes were found in the pinealocytes of the medullar layer. These results support the existence of independent morphological variations of the pinealocyte in the central and peripheral zones of the pineal gland.
Compositions and methods for treating nuclear fuel
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M
2013-08-13
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
Compositions and methods for treating nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
2017-01-01
Background: Prostate-specific membrane antigen (PSMA) has gained high attention as a useful biomarker in the imaging evaluation of prostate cancer with positron emission tomography (PET) during recent years. [68Ga]-labeled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]-PSMA-HBED-CC) is a novel PSMA inhibitor radiotracer which has demonstrated its suitability in detecting prostate cancer. Preparation conditions may influence the quality and in vivo behavior of this tracer, and no standard procedure for the quality control (QC) is available. The aim of this study was to develop a new rapid and simple high-pressure liquid chromatography method of analysis for the routine QCs of [68Ga]-PSMA-HBED-CC to guarantee the high quality of the radiopharmaceutical product before release. Methods: A stepwise approach was used based on the quality by design concept of the International Conference of Harmonisation Q2 (R1) and Q8 (Pharmaceutical Development) guidelines in accordance with the regulations and requirements of European Association of Nuclear Medicine, Society of Nuclear Medicine, International Atomic Energy Agency, World Health Organization, and Italian Association of Nuclear Medicine and Molecular Imaging. The developed analytical test method was validated because a specific monograph in the pharmacopoeia is not available for [68Ga]-PSMA-HBED-CC. Results: The purity and quality of the radiopharmaceutical obtained according to the proposed method resulted high enough to safely administrate it to patients. An excellent linearity was found between 0.8 and 5 μg/mL, with a detection limit of 0.2 μg/mL. Assay imprecision (% CV) was <2%. Conclusions: The developed method to assess the radiochemical and chemical purity of [68Ga]-PSMA-HBED-CC is rapid, accurate, and reproducible, allowing routinely the use of this PET tracer as a diagnostic tool for imaging prostate cancer and also assuring patient safety. PMID:29520394
Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.
Herbst, Eric A F; Bonen, Arend; Holloway, Graham P
2015-10-01
Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.
NASA Astrophysics Data System (ADS)
Carroy, Glenn; Lemaur, Vincent; Henoumont, Céline; Laurent, Sophie; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal
2018-01-01
Supramolecular mass spectrometry has emerged in the last decade as an orthogonal method to access, at the molecular level, the structures of noncovalent complexes extracted from the condensed phase to the rarefied gas phase using electrospray ionization. It is often considered that the soft nature of the ESI source confers to the method the capability to generate structural data comparable to those in the condensed phase. In the present paper, using the ammonium ion/cucurbituril combination as a model system, we investigate using ion mobility and computational chemistry the influence of the instrumental parameters on the topology, i.e., internal versus external association, of gaseous host/guest complex ions. MS and theoretical data are confronted to condensed phase data derived from nuclear magnetic resonance spectroscopy to assess whether the instrumental parameters can play an insidious role when trying to derive condensed phase data from mass spectrometry results. [Figure not available: see fulltext.
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
NASA Astrophysics Data System (ADS)
Kirsch, L. E.; Bernstein, L. A.
2018-06-01
A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.
Persistence of uranium emission in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.
2014-04-28
Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less
Development of monolithic nuclear fuels for RERTR by hot isostatic pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jue, J.-F.; Park, Blair; Chapple, Michael
2008-07-15
The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less
Impact of the 26mAl(p, γ) reaction to galactic 26Al yield
NASA Astrophysics Data System (ADS)
Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.
2018-04-01
Astrophysical observables that are directly linked to nuclear physics inputs provide critical and stringent constraints on nucleosynthetic models. As 26Al was the first specific radioactivity observed in the Galaxy, its origin has fascinated the nuclear astrophysics community for nearly forty years. Despite extensive research, the precise origins of 26Al remain elusive. At present, the sum of all putative stellar contributions generally overestimates the 26Al mass in the interstellar medium. Among the many reactions that influence the yield of 26Al, radiative proton capture on its isomer 26mAl is one of the least constrained reactions by experimental data. To this end, we developed a 26Al isomeric beam and performed proton elastic scattering to search for low-spin states in 27Si. The experimental method and the preliminary results of this on-going study will be presented.
NASA Astrophysics Data System (ADS)
Milton, Kimball A.
2007-01-01
Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.
Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J
2002-06-01
Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Nuclear stopping in central Xe+Sn collisions: Confrontation with experimental data
NASA Astrophysics Data System (ADS)
Rajni, Vermani, Yogesh K.
2018-05-01
The influence of symmetry energy and cross section on nuclear stopping is studied in central 54129Xe+50 120Sn Sn collisions at Fermi energies (Elab≈ 20-100 MeV/nucleon). The analysis is conducted using isospin dependent quantum molecular dynamics (IQMD) transport model. Model calculations are done using reduced isospin dependent nucleon-nucleon cross section (σiso) and isospin independent cross section (σnoiso). Calculations using the two versions of cross section are analyzed with and without symmetry energy (Esym). The results are then compared with the experimental data taken with 4π multidetector INDRA. From this comparison, we conclude that nuclear stopping and related production of light charged particles (LCPs) are strongly influenced by isospin dependence of nucleon-nucleon cross section.
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
Nuclear Lipids in the Nervous System: What they do in Health and Disease.
Garcia-Gil, Mercedes; Albi, Elisabetta
2017-02-01
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Creating NDA working standards through high-fidelity spent fuel modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E
2012-01-01
The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is beingmore » performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent calculations performed using SCALE and MCNP. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.« less
What factors shape genetic diversity in cetaceans?
Vachon, Felicia; Whitehead, Hal; Frasier, Timothy R
2018-02-01
Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.
Farahati, J; Mörtl, M; Reiners, C
2000-01-01
The impact of lymph node metastases on prognosis of differentiated thyroid cancer is discussed controversially. Therefore the data of 596 patients with papillary or follicular thyroid cancer are analysed retrospectively, which have been treated between 1980 and 1995 at the Clinic and Policlinic for Nuclear Medicine of the University of Würzburg. The influence of lymph node metastases on prognosis with respect to survival is analysed with the univariate Kaplan-Meier-method and with the multivariate discriminant analysis. In addition, the influence of the prognostic factor "lymph node involvement" on distant metastases is analysed by a stratified comparison and an univariate test. In papillary thyroid cancer, the 15 year-survival-rate for stage pN1 is significantly lower (p < 0.001) with 88.7% as compared to stage pN0 (99.4%). In patients with follicular thyroid cancer this difference is even more pronounced (64.7% versus 97.2%, p < 0.001). However, the multivariate discriminant analysis shows that the only prognostic factors are tumour stage and distant metastases, and--in papillary thyroid cancer--patient's age. So lymph node metastases are not an independent prognostic factor concerning survival. However, lymph node metastases have a prognostic unfavourable influence with respect to distant metastases especially in papillary thyroid cancer stage pT4 (distant metastases in patients with negative lymph nodes 0% and in patients with positive lymph nodes 35.3% [p < 0.001]).
Robust nuclear lamina-based cell classification of aging and senescent cells
Righolt, Christiaan H.; van 't Hoff, Merel L.R.; Vermolen, Bart J.; Young, Ian T.; Raz, Vered
2011-01-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders. PMID:22199022
Robust nuclear lamina-based cell classification of aging and senescent cells.
Righolt, Christiaan H; van 't Hoff, Merel L R; Vermolen, Bart J; Young, Ian T; Raz, Vered
2011-12-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.
Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice
Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.
2014-01-01
Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559
Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.
Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M
2014-07-15
NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.
Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira
2002-07-01
With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus themore » benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)« less
Wang, Ya-Xuan; Gao, Ying-Lian; Liu, Jin-Xing; Kong, Xiang-Zhen; Li, Hai-Jun
2017-09-01
Identifying differentially expressed genes from the thousands of genes is a challenging task. Robust principal component analysis (RPCA) is an efficient method in the identification of differentially expressed genes. RPCA method uses nuclear norm to approximate the rank function. However, theoretical studies showed that the nuclear norm minimizes all singular values, so it may not be the best solution to approximate the rank function. The truncated nuclear norm is defined as the sum of some smaller singular values, which may achieve a better approximation of the rank function than nuclear norm. In this paper, a novel method is proposed by replacing nuclear norm of RPCA with the truncated nuclear norm, which is named robust principal component analysis regularized by truncated nuclear norm (TRPCA). The method decomposes the observation matrix of genomic data into a low-rank matrix and a sparse matrix. Because the significant genes can be considered as sparse signals, the differentially expressed genes are viewed as the sparse perturbation signals. Thus, the differentially expressed genes can be identified according to the sparse matrix. The experimental results on The Cancer Genome Atlas data illustrate that the TRPCA method outperforms other state-of-the-art methods in the identification of differentially expressed genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa
2015-07-01
The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less
Nuclear Forensics Applications of Principal Component Analysis on Micro X-ray Fluorescence Images
analysis on quantified micro x-ray fluorescence intensity values. This method is then applied to address goals of nuclear forensics . Thefirst...researchers in the development and validation of nuclear forensics methods. A method for determining material homogeneity is developed and demonstrated
Research on digital system design of nuclear power valve
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye
2018-04-01
With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.
Visa, Neus; Percipalle, Piergiorgio
2010-01-01
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components. PMID:20452941
129I in the environment of the La Hague nuclear fuel reprocessing plant--from sea to land.
Fréchou, C; Calmet, D
2003-01-01
In recent years, particular attention was paid to the long-lived radionuclides discharged with authorized low-level radioactive liquid and gaseous effluents by the nuclear spent fuel reprocessing plants of La Hague and Sellafield. The knowledge of (129)I (half-life=15.7 x 10(6) a) distribution in the environment is required to assess the radiological impact to the environment and population living in the area under the direct influence of La Hague NRP discharges. Measurement difficulties of (129)I in environmental matrices, where it is usually present at trace level, limited data published on (129)I activity levels in the European and more particularly in the French territory. Studies conducted to qualify a new alternative measurement method, direct gamma-X spectrometry with experimental self-absorption correction, led to test samples collected in the La Hague marine and terrestrial environment : seaweeds, lichens, grass, bovine thyroids, etc. All these results, often already published separately for analytical purposes and treated for intercomparison exercises, are presented here together in a radioecological manner. The levels of (129)I activity and (129)I/(127)I ratios in these samples show the spatial and temporal influence of the La Hague NRP in its local near-field environment as well as at the regional scale along the French Channel coast.
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.
1969-01-01
Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.
Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning.
Kurome, Mayuko; Fujimura, Tatsuya; Murakami, Hiroshi; Takahagi, Yoichi; Wako, Naohiro; Ochiai, Takashi; Miyazaki, Koji; Nagashima, Hiroshi
2003-01-01
This paper methodologically compares the electro-fusion (EF) and intracytoplasmic injection (ICI) methods, as well as simultaneous fusion/activation (SA) and delayed activation (DA), in somatic nuclear transfer in pigs using fetal fibroblast cells. Comparison of the remodeling pattern of donor nuclei after nuclear transfer by ICI or EF showed that a high rate (80-100%) of premature chromosome condensation occurred in both cases whether or not Ca2+ was present in the fusion medium. Formation of pseudo-pronuclei tended to be lower for nuclear transfer performed by the ICI method (65% vs. 85-97%, p < 0.05). In vitro developmental potential of nuclear transfer embryos reconstructed with IVM oocytes using the EF method was higher than that of those produced by the ICI method (blastocyst formation: 19 vs. 5%, p < 0.05), and it was not improved using in vivo-matured oocytes as recipient cytoplasts. Embryos produced using SA protocol developed to blastocysts with the same degree of efficiency as those produced under the DA protocol (11 vs. 12%). Use of the EF method in conjunction with SA was shown to be an efficient method for producing cloned pigs based on producing a cloned normal pig fetus. However, subtle differences in nuclear remodeling patterns between the SA and DA protocols may imply variations in their nuclear reprogramming efficiency.
Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V
2000-01-01
Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.
Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.
2010-01-01
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548
Qing Liu; Zhihui Lai; Zongwei Zhou; Fangjun Kuang; Zhong Jin
2016-01-01
Low-rank matrix completion aims to recover a matrix from a small subset of its entries and has received much attention in the field of computer vision. Most existing methods formulate the task as a low-rank matrix approximation problem. A truncated nuclear norm has recently been proposed as a better approximation to the rank of matrix than a nuclear norm. The corresponding optimization method, truncated nuclear norm regularization (TNNR), converges better than the nuclear norm minimization-based methods. However, it is not robust to the number of subtracted singular values and requires a large number of iterations to converge. In this paper, a TNNR method based on weighted residual error (TNNR-WRE) for matrix completion and its extension model (ETNNR-WRE) are proposed. TNNR-WRE assigns different weights to the rows of the residual error matrix in an augmented Lagrange function to accelerate the convergence of the TNNR method. The ETNNR-WRE is much more robust to the number of subtracted singular values than the TNNR-WRE, TNNR alternating direction method of multipliers, and TNNR accelerated proximal gradient with Line search methods. Experimental results using both synthetic and real visual data sets show that the proposed TNNR-WRE and ETNNR-WRE methods perform better than TNNR and Iteratively Reweighted Nuclear Norm (IRNN) methods.
Fully ceramic nuclear fuel and related methods
Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis
2016-03-29
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
NASA Astrophysics Data System (ADS)
Grosse, E.; Junghans, A. R.; Wilson, J. N.
2017-11-01
The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.
NASA Astrophysics Data System (ADS)
Mavrodiev, S. Cht.; Deliyergiyev, M. A.
We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker. It was solved in a step-by-step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6MeV, starting from the number of protons and number of neutrons equal to 1. The explicit form of unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified least χ2 procedure, that realized in the algorithms which were developed by Lubomir Aleksandrov to solve the nonlinear systems of equations via the Gauss-Newton method, lets us to choose the better one between two functions with same χ2. In the obtained generalized model, the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. The obtained results were compared with the predictions of other models.
Radiation induced corrosion of copper for spent nuclear fuel storage
NASA Astrophysics Data System (ADS)
Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats
2013-11-01
The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia
2016-05-05
Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG),more » glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.« less
Neural net controlled tag gas sampling system for nuclear reactors
Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.
1997-01-01
A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.
NASA Astrophysics Data System (ADS)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul
2015-09-01
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.
Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.
2018-02-13
Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.
Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less
Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W
2018-06-01
The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Growing up with the threat of nuclear war: some indirect effects on personality development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escalona, S.K.
1982-10-01
The effects of the nuclear peril upon youngsters in middle childhood are considered, with particular emphasis on the extent to which ego strengths and weaknesses are influenced by adult behavior. It is suggested that the adult response to a pervasive danger such as the nuclear arms build-up shapes children's views of the trustworthiness of adult society and defines the limits of their growth and development.
2011-03-01
author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A__________...18 5. Lead Up to the Fission Device Test 1974 .........................................22 6. Maintaining Nuclear Policy 1974-1998...out to produce nuclear energy for research and civilian energy consumption. Its government maintained a policy of peace nuclear energy usage unless
Ricciardi, Sara; Kilstrup-Nielsen, Charlotte; Bienvenu, Thierry; Jacquette, Aurélia; Landsberger, Nicoletta; Broccoli, Vania
2009-12-01
Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause severe neurodevelopmental disorders including infantile spasms, encephalopathy, West-syndrome and an early-onset variant of Rett syndrome. CDKL5 is a serine/threonine kinase whose involvement in Rett syndrome can be inferred by its ability to directly bind and mediate phosphorylation of MeCP2. However, it remains to be elucidated how CDKL5 exerts its function. Here, we report that CDKL5 localizes to specific nuclear foci referred to as nuclear speckles in both cell lines and tissues. These sub-nuclear structures are traditionally considered as storage/modification sites of pre-mRNA splicing factors. Interestingly, we provide evidence that CDKL5 regulates the dynamic behaviour of nuclear speckles. Indeed, CDKL5 overexpression leads to nuclear speckle disassembly, and this event is strictly dependent on its kinase activity. Conversely, its down-regulation affects nuclear speckle morphology leading to abnormally large and uneven speckles. Similar results were obtained for primary adult fibroblasts isolated from CDKL5-mutated patients. Altogether, these findings indicate that CDKL5 controls nuclear speckle morphology probably by regulating the phosphorylation state of splicing regulatory proteins. Nuclear speckles are dynamic sites that can continuously supply splicing factors to active transcription sites, where splicing occurs. Notably, we proved that CDKL5 influences alternative splicing, at least as proved in heterologous minigene assays. In conclusion, we provide evidence that CDKL5 is involved indirectly in pre-mRNA processing, by controlling splicing factor dynamics. These findings identify a biological process whose disregulation might affect neuronal maturation and activity in CDKL5-related disorders.
Chasing the ghost particle: The long and winding road toward the detection of solar neutrinos
NASA Astrophysics Data System (ADS)
Leone, Matteo; Robotti, Nadia
2015-10-01
One of the great achievements of neutrino physics was the discovery of solar neutrinos in 1968 through the Homestake underground experiment. This experiment exploited a radiochemical method based on the chlorine-argon process of inverse beta decay suggested by Bruno Pontecorvo in 1946 during his work in the classified Canadian nuclear project. In this paper, we study the emergence of the method. We focus on the role played by the problematic status of the neutrino and its antiparticle in its field of application and the influence exerted by the contemporary models of energy production in the sun. We also provide evidence that a first germ of this radiochemical method, in the form of a chlorine-sulfur process, was suggested in a paper published by Richard Crane in late 1930s.
Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.
2009-01-01
Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086
26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... an elective method for taking into account nuclear decommissioning costs for Federal income tax... accrual method of accounting that do not elect the application of section 468A are not allowed a deduction... nuclear power plant means any nuclear power reactor that is used predominantly in the trade or business of...
Influence of deformed surface diffuseness on alpha decay half-lives of actinides and lanthanides
NASA Astrophysics Data System (ADS)
Dahmardeh, S.; Alavi, S. A.; Dehghani, V.
2017-07-01
By using semiclassical WKB method and taking into account the Bohr-Sommerfeld quantization condition, the alpha decay half-lives of some deformed lanthanide (with 151 ≤ A ≤ 160 and 66 ≤ Z ≤ 73) and rare-earth nuclei (with 217 ≤ A ≤ 261 and 92 ≤ Z ≤ 104) have been calculated. The effective potential has been considered as sum of deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential. The influence of deformed surface diffuseness on the potential barrier, transmission coefficient at each angle, assault frequency, and alpha decay half-lives has been investigated. Good agreement between calculated half-lives with deformed surface diffuseness and experiment is observed. Relative differences between calculated half-lives with deformed surface diffuseness and with constant surface diffuseness were significant.
Method and apparatus for close packing of nuclear fuel assemblies
Newman, Darrell F.
1993-01-01
The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.
Method and apparatus for close packing of nuclear fuel assemblies
Newman, D.F.
1993-03-30
The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.
NASA Astrophysics Data System (ADS)
Wang, Difeng; Pan, Delu; Li, Ning
2009-07-01
The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.
Building Nuclear Communities: The Hanford Education Action League.
ERIC Educational Resources Information Center
Ratliff, Jeanne; Salvador, Michael
Many scholars have examined the jeremiad in American rhetoric and political discourse. The Hanford Education Action League (HEAL), which influenced policy changes in the operations of the Hanford Nuclear Reservation in Washington, is a social movement organization whose founding members used the jeremiad to create a symbolic community which…
Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, J. D.; Tonks, M. R.; Chockalingam, K.
2015-03-01
Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less
The influence of powdered coconut water (ACP-318®) in in vitro maturation of canine oocytes.
Silva, A E F; Cavalcante, L F; Rodrigues, B A; Rodrigues, J L
2010-12-01
The objective of this study was to determine the influence of powdered coconut water (ACP-318(®)) diluted in high glucose (11.0 mM) TCM199 in the achievement of nuclear in vitro maturation (IVM) of canine oocytes. Cumulus oocyte complexes (COCs) (n = 632) were randomly allocated into three experimental groups named as group 1 (control group), group 2 (5% powdered coconut water) and group 3 (10% powdered coconut water). The percentage of meiotic resumption (MR) (GVBD to MII) was 39.1% (81/207), 50.2% (108/215) and 46.6% (98/210) for groups 1, 2 and 3 respectively (p < 0.05). There were no differences in MR rates among groups 2 and 3. The medium with ACP-318(®) slightly enhanced the nuclear maturation of canine oocytes when a comparison was established with rates of maturation exhibited by oocytes in the experimental group 1 without ACP-318(®) (p < 0.05). The results suggest that oocytes' nuclear morphology integrity and meiosis achievement were positively influenced when exposed to high glucose TCM199 supplemented with 5% powdered coconut water. Further investigation must be performed for a better understanding of powdered coconut water influence in cellular events during IVM of dog oocytes. © 2009 Blackwell Verlag GmbH.
Björner, Sofie; Rosendahl, Ann H; Simonsson, Maria; Markkula, Andrea; Jirström, Karin; Borgquist, Signe; Rose, Carsten; Ingvar, Christian; Jernström, Helena
2017-01-01
The prognostic importance of tumor-specific nuclear insulin receptor (InsR) expression in breast cancer is unclear, while membrane and cytoplasmic localization of InsR is better characterized. The insulin signaling network is influenced by obesity and may interact with the estrogen receptor α (ERα) signaling. The purpose was to investigate the interplay between nuclear InsR, ER, body mass index (BMI), and prognosis. Tumor-specific expression of nuclear InsR was evaluated by immunohistochemistry in tissue microarrays from 900 patients with primary invasive breast cancer without preoperative treatment, included in a population-based cohort in Sweden (2002-2012) in relation to prognosis. Patients were followed for up to 11 years during which 107 recurrences were observed. Nuclear InsR + expression was present in 214 patients (23.8%) and increased with longer time between surgery and staining ( P < 0.001). There were significant effect modifications by ER status and BMI in relation to clinical outcomes. Nuclear InsR + conferred higher recurrence-risk in patients with ER + tumors, but lower risk in patients with ER - tumors ( P interaction = 0.003). Normal-weight patients with nuclear InsR + tumors had higher recurrence-risk, while overweight or obese patients had half the recurrence-risk compared to patients with nuclear InsR - tumors ( P interaction = 0.007). Normal-weight patients with a nuclear InsR - /ER + tumor had the lowest risk for recurrence compared to all other nuclear InsR/ER combinations [HR adj 0.50, 95% confidence interval (CI): 0.25-0.97], while overweight or obese patients with nuclear InsR - /ER - tumors had the worst prognosis (HR adj 7.75, 95% CI: 2.04-29.48). Nuclear InsR was more prognostic than ER among chemotherapy-treated patients. In summary, nuclear InsR may have prognostic impact among normal-weight patients with ER + tumors and in overweight or obese patients with ER - tumors. Normal-weight patients with nuclear InsR - /ER + tumors may benefit from less treatment than normal-weight patients with other nuclear InsR/ER combinations. Overweight or obese patients with nuclear InsR - /ER - tumors may benefit from more tailored treatment or weight management.
Neural net controlled tag gas sampling system for nuclear reactors
Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.
1997-02-11
A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.
Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M
2015-05-01
Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Power quality considerations for nuclear spectroscopy applications: Grounding
NASA Astrophysics Data System (ADS)
García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.
2013-11-01
Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Guidelines for radioiodinated MIBG scintigraphy in children.
Olivier, Pierre; Colarinha, Paula; Fettich, Jure; Fischer, Sibylle; Frökier, Jörgen; Giammarile, Francesco; Gordon, Isky; Hahn, Klaus; Kabasakal, Levent; Mann, Mike; Mitjavila, Mercedes; Piepsz, Amy; Porn, Ute; Sixt, Rune; van Velzen, Jeannette
2003-05-01
These guidelines on the use of radioiodinated (99m)Tc-MIBG scintigraphy in children, which summarise the views of the Paediatric Committee of the European Association of Nuclear Medicine, provide a framework which may prove helpful to nuclear medicine teams in daily practice. They have been influenced by the conclusions of the "Consensus Guidelines for MIBG Scintigraphy" (Paris, November 6, 1997) of the European Neuroblastoma Group and by those of the Oncological Committee of the French Society of Nuclear Medicine. The guidelines should be taken in the context of "good practice" and any local/national rules which apply to nuclear medicine examinations.
Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji
2018-06-15
The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.
2006-10-31
International Security and Arms Control;: Stanford University Press, 1994. Lin, Chong-Pin. China’s Nuclear Weapons Strategy : Tradition within Evolution ...analysts tend to posit interests, emphasize strategic interaction , and discount bureaucratic influence. - Paul DiMaggio, “Culture and Cognition...Additional Sources - Henry Rowen, "The Evolution of Strategic Nuclear Doctrine," in Laurence Martin, ed., Strategic Thought in the Nuclear Age
Soil vulnerability for cesium transfer.
Vandenhove, Hildegarde; Sweeck, Lieve
2011-07-01
The recent events at the Fukushima Daiichi nuclear power plant in Japan have raised questions about the accumulation of radionuclides in soils and the possible impacts on agriculture surrounding nuclear power plants. This article summarizes the knowledge gained after the nuclear power plant accident in Chernobyl, Ukraine, on how soil parameters influence soil vulnerability for radiocesium bioavailability, discusses some potential agrochemical countermeasures, and presents some predictions of radiocesium crop concentrations for areas affected by the Fukushima accident. Copyright © 2011 SETAC.
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs
Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L
2017-01-01
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation. PMID:28990926
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs.
Zhou, Hao; Bulek, Katarzyna; Li, Xiao; Herjan, Tomasz; Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L; Li, Xiaoxia
2017-10-09
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.
Dual personality of Mad1: regulation of nuclear import by a spindle assembly checkpoint protein.
Cairo, Lucas V; Ptak, Christopher; Wozniak, Richard W
2013-01-01
Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id
2015-09-30
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less
NASA Astrophysics Data System (ADS)
Dunn, Michael
2008-10-01
For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.
Non-nuclear methods for HMA density measurements : final report, June 2008.
DOT National Transportation Integrated Search
2008-05-01
Non-nuclear methods for the measurement of hot-mix asphalt (HMA) density offer the ability to take numerous density readings in a very short period of time, without the need for intensive licensing, training, and maintenance efforts common to nuclear...
The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.
ERIC Educational Resources Information Center
King, Roy W.; Williams, Kathryn R.
1989-01-01
Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)
Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.
2018-01-01
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071
Lång, Anna; Øye, Alexander; Eriksson, Jens; Rowe, Alexander D; Lång, Emma; Bøe, Stig Ove
2018-05-15
During cell division, a large number of nuclear proteins are released into the cytoplasm due to nuclear envelope breakdown. Timely nuclear import of these proteins following exit from mitosis is critical for establishment of the G1 nuclear environment. Dysregulation of post-mitotic nuclear import may affect the fate of newly divided stem or progenitor cells and may lead to cancer. Acute promyelocytic leukemia (APL) is a malignant disorder that involves a defect in blood cell differentiation at the promyelocytic stage. Recent studies suggest that pharmacological concentrations of the APL therapeutic drugs, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), affect post-mitotic nuclear import of the APL-associated oncoprotein PML/RARA. In the present study, we have investigated the possibility that ATRA and ATO affect post-mitotic nuclear import through interference with components of the nuclear import machinery. We observe reduced density and impaired integrity of nuclear pore complexes after ATRA and/or ATO exposure. Using a post-mitotic nuclear import assay, we demonstrate distinct import kinetics among different nuclear import pathways while nuclear import rates were similar in the presence or absence of APL therapeutic drugs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
2010-12-01
Comprehensive Test Ban Treaty DF Deng Feng (“East Wind”) EASR East Asia Strategy Review GPALS Global Protection Against Limited Attacks ICBM......massive retaliation because it provided little recourse other than a global nuclear war. These fears were underscored during the Berlin Crisis of
Goal Direction and Effectiveness, Emotional Maturity, and Nuclear Family Functioning
ERIC Educational Resources Information Center
Klever, Phillip
2009-01-01
Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and…
Knowledge and Opinion on the Nuclear Freeze: A Test of Three Models.
ERIC Educational Resources Information Center
Tankard, James W., Jr.
To explore how knowledge influences opinion in foreign policy, results of a survey on voter familiarity with and attitude toward nuclear policy issues were compared with three theoretical models of the knowledge/opinion relationship: (1) the enlightenment model--as knowledge increases, support for belligerent foreign policy stands decreases; (2)…
Understanding r-process Nucleosynthesis through Nuclear Data
NASA Astrophysics Data System (ADS)
Surman, Rebecca
2018-06-01
The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.
Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi
2004-01-01
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.
Delayed entanglement echo for individual control of a large number of nuclear spins
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.
2017-01-01
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508
Delayed entanglement echo for individual control of a large number of nuclear spins.
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B
2017-03-03
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.
Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald Laurids
2015-09-01
ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cantmore » for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.« less
Ferrage, Fabien; Reichel, Amy; Battacharya, Shibani; Cowburn, David; Ghose, Ranajeet
2013-01-01
Measurement of steady-state 15N-{1H} nuclear Overhauser effects forms a cornerstone of most methods to determine protein backbone dynamics from spin-relaxation data, since it is the most reliable probe of very fast motions on the ps-ns timescale. We have, in two previous publications (J. Magn. Reson. 192 (2008), 302-313; J. Am. Chem. Soc. 131 (2009), 6048-6049) reevaluated spin-dynamics during steady-state (or “saturated”) and reference experiments, both of which are required to determine the NOE ratio. Here we assess the performance of several windowed and windowless sequences to achieve effective saturation of protons in steady-state experiments. We also evaluate the influence of the residual water signal due to radiation damping on the NOE ratio. We suggest a recipe that allows one to determine steady-state 15N-{1H} NOE's without artifacts and with the highest possible accuracy. PMID:20951618
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
Kirsch, L. E.; Bernstein, L. A.
2018-03-04
In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, L. E.; Bernstein, L. A.
In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauman, A F
1979-01-01
The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies aremore » the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.« less
Lewis, Emily M.; Fant, Jeremie B.; Moore, Michael J.; Hastings, Amy P.; Larson, Erica L.; Agrawal, Anurag A.; Skogen, Krissa A.
2016-01-01
Premise of the study: Eleven nuclear and four plastid microsatellite markers were screened for two gypsum endemic species, Oenothera gayleana and O. hartwegii subsp. filifolia, and tested for cross-amplification in the remaining 11 taxa within Oenothera sect. Calylophus (Onagraceae). Methods and Results: Microsatellite markers were tested in two to three populations spanning the ranges of both O. gayleana and O. hartwegii subsp. filifolia. The nuclear microsatellite loci consisted of both di- and trinucleotide repeats with one to 17 alleles per population. Several loci showed significant deviation from Hardy–Weinberg equilibrium, which may be evidence of chromosomal rings. The plastid microsatellite markers identified one to seven haplotypes per population. The transferability of these markers was confirmed in all 11 taxa within Oenothera sect. Calylophus. Conclusions: The microsatellite loci characterized here are the first developed and tested in Oenothera sect. Calylophus. These markers will be used to assess whether pollinator foraging distance influences population genetic parameters in predictable ways. PMID:26949578
Enhanced Component Performance Study. Emergency Diesel Generators 1998–2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2014-11-01
This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2013 and maintenance unavailability (UA) performance data using Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2013. The objective is to present an analysis of factors that could influence the system and component trends in addition to annual performance trends of failure rates and probabilities. The factors analyzed for the EDG component are the differences in failuresmore » between all demands and actual unplanned engineered safety feature (ESF) demands, differences among manufacturers, and differences among EDG ratings. Statistical analyses of these differences are performed and results showing whether pooling is acceptable across these factors. In addition, engineering analyses were performed with respect to time period and failure mode. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating.« less
NASA Astrophysics Data System (ADS)
Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek
2018-04-01
In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.
Lu, Yi; Ishikawa, Hiroto; Kwon, Yeondae; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2018-02-14
Fermented milk products are rising in popularity throughout the world as a result of their health benefits, including improving digestion, normalizing the function of the immune system, and aiding in weight management. This study applies an in situ quantitative nuclear magnetic resonance method to monitor chemical changes in three kinds of fermented milk products, Bulgarian yogurt, Caspian Sea yogurt, and kefir, during fermentation. As a result, the concentration changes in nine organic compounds, α/β-lactose, α/β-galactose, lactic acid, citrate, ethanol, lecithin, and creatine, were monitored in real time. This revealed three distinct metabolic processes in the three fermented milk products. Moreover, pH changes were also determined by variations in the chemical shift of citric acid during the fermentation processes. These results can be applied to estimate microbial metabolism in various flora and help guide the fermentation and storage of various fermented milk products to improve their quality, which may directly influence human health.
Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information
Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish
2014-01-01
The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370
NASA Astrophysics Data System (ADS)
Sharma, Prashant
2017-12-01
The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.
Vyncke, Bart; Perko, Tanja; Van Gorp, Baldwin
2017-03-01
The media play an important role in risk communication, providing information about accidents, both nearby and far away. Each media source has its own presentation style, which could influence how the audience perceives the presented risk. This study investigates the explanatory power of 12 information sources (traditional media, new media, social media, and interpersonal communication) for the perceived risk posed by radiation released from the damaged Fukushima nuclear power plant on respondents' own health and that of the population in general. The analysis controlled for attitude toward nuclear energy, gender, education, satisfaction with the media coverage, and duration of attention paid to the coverage. The study uses a large empirical data set from a public opinion survey, which is representative for the Belgian population with respect to six sociodemographic variables. Results show that three information sources are significant regressors of perceived health-related risk of the nuclear accident: television, interpersonal communication, and the category of miscellaneous online sources. More favorable attitudes toward nuclear power, longer attention to the coverage, and higher satisfaction with the provided information lead to lower risk perception. Taken together, the results suggest that the media can indeed have a modest influence on how the audience perceives a risk. © 2016 Society for Risk Analysis.
Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm
NASA Astrophysics Data System (ADS)
Rodríguez-Prieto, Álvaro; Camacho, Ana María; Sebastián, Miguel Ángel
2016-02-01
An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.
Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke
2012-01-01
This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.
LUNA: Nuclear Astrophysics Deep Underground
NASA Astrophysics Data System (ADS)
Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto
2010-11-01
Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso National Laboratory, the cross sections of the key reactions of the proton-proton chain and of the carbon-nitrogen-oxygen cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. We review the main results obtained by LUNA during the past 20 years and discuss their influence on our understanding of the properties of the neutrino, the Sun, and the universe itself. Future directions of underground nuclear astrophysics toward the study both of helium and carbon burning and of stellar neutron sources in stars are outlined.
Designing a Double-Pole Nanoscale Relay Based on a Carbon Nanotube: A Theoretical Study
NASA Astrophysics Data System (ADS)
Mu, Weihua; Ou-Yang, Zhong-can; Dresselhaus, Mildred S.
2017-08-01
We theoretically investigate a novel and powerful double-pole nanoscale relay based on a carbon nanotube, which is one of the nanoelectromechanical switches being able to work under the strong nuclear radiation, and analyze the physical mechanism of the operating stages in the operation, including "pull in," "connection," and "pull back," as well as the key factors influencing the efficiency of the devices. We explicitly provide the analytical expression of the two important operation voltages, Vpull in and Vpull back , therefore clearly showing the dependence of the material properties and geometry of the present devices by the analytical method from basic physics, avoiding complex numerical calculations. Our method is easy to use in preparing the design guide for fabricating the present device and other nanoelectromechanical devices.
NASA Astrophysics Data System (ADS)
Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau
2017-12-01
We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.
Nuclear ``pasta'' phase within density dependent hadronic models
NASA Astrophysics Data System (ADS)
Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.
2009-03-01
In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
Jelenkovic, Aline; Poveda, Alaitz; Rebato, Esther
2011-07-01
It is well established that variation of soft-tissue traits is less influenced by the genetic component than skeletal traits. However, it is still unclear whether heritabilities (h(2)) of obesity-related phenotypes present a common pattern across populations. To estimate familial resemblance and heritability of body size, shape and composition phenotypes and to compare these results with those from other populations. The subject group consisted of 533 nuclear families living in Greater Bilbao and included 1702 individuals aged 2-61 years. Familial correlations and h(2) were estimated for 29 anthropometric phenotypes (19 simple measures, three derived factors, four obesity indices and the three Heath-Carter somatotype components) using MAN and SOLAR programmes. All phenotypes were influenced by additive genetic factors with narrow sense heritabilities ranging from 0.28-0.69. In general, skeletal traits exhibited the highest h(2), whereas phenotypes defining the amount of adipose tissue, particularly central fat, were less determined by genetic factors. Familial correlations and heritability estimates of body morphology and composition from the Greater Bilbao sample were within the range observed in other studies. The lower heritability detected for central fat has also been found in some other populations, but further investigations in different populations using the same anthropometric traits and estimation methods are needed in order to obtain more robust conclusions.
NASA Astrophysics Data System (ADS)
Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor
2017-10-01
The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.
Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.
Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo
2014-07-01
This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong
2012-11-01
Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
How to Stimulate Students' Interest in Nuclear Physics?
ERIC Educational Resources Information Center
Elbanowska-Ciemuchowska, Stefania; Giembicka, Magdalena Anna
2011-01-01
Teaching nuclear physics in secondary schools offers us a unique possibility to increase our students' awareness of the influence that modern science and its achievements have on the everyday life of contemporary people. Students gain an opportunity to learn in what ways the outcome of laboratory research is put to use in such fields as medicine,…
Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology
Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.
2012-01-01
Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523
Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.
Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A
2012-11-01
Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.
Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; ...
2015-05-01
The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 10 15 cm -2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less
A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia.
Gonçalves, Vanessa F; Cappi, Carolina; Hagen, Christian M; Sequeira, Adolfo; Vawter, Marquis P; Derkach, Andriy; Zai, Clement C; Hedley, Paula L; Bybjerg-Grauholm, Jonas; Pouget, Jennie G; Cuperfain, Ari B; Sullivan, Patrick F; Christiansen, Michael; Kennedy, James L; Sun, Lei
2018-05-01
The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovic, P.; Layman, M.; Flynn, J.H.
1990-11-01
In July, 1989 the authors produced a report titled Perceived Risk, Stigma, and Potential Economic Impacts of a High-Level Nuclear-Waste Repository in Nevada (Slovic et al., 1989). That report described a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. It was concluded that adverse economic impacts potentially may result from two related social processes. Specifically, the study by Slovic et al. employed analyses of imagery in order to overcome concerns about the validity ofmore » direct questions regarding the influence of a nuclear-waste repository at Yucca Mountain upon a person`s future behaviors. During the latter months of 1989, data were collected in three major telephone surveys, designed to achieve the following objectives: (1) to replicate the results from the Phoenix, Arizona, surveys using samples from other populations that contribute to tourism, migration, and development in Nevada; (2) to retest the original Phoenix respondents to determine the stability of their images across an 18-month time period and to determine whether their vacation choices subsequent to the first survey were predictable from the images they produced in that original survey; (3) to elicit additional word-association images for the stimulus underground nuclear waste repository in order to determine whether the extreme negative images generated by the Phoenix respondents would occur with other samples of respondents; and (4) to develop and test a new method for imagery elicitation, based upon a rating technique rather than on word associations. 2 refs., 8 figs., 13 tabs.« less
Evacuation behavior and Three Mile Island.
Cutter, S; Barnes, K
1982-06-01
The responses of the residents to the nuclear power plant arcident at Three Mile Island, Pennsylvania illustrate the factors influencing pre-impact coping responses of populations exposed to technological hazards. Confusion itnd ambiguous information influenced both the decision to evaluate and to remain in place. Proximity to the facility, stage in life cycle and the actions of friends and neighbors influenced the decision to evacuate.
Conventional nuclear strategy and the American doctrine of counterforce
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, C.P.
Debate over nuclear weapons still lingers and one cause of this trend, as suggested by this thesis, is the rise of conventional nuclear strategy or, in other words, the attempt by the US government to apply through the counterforce doctrine a conventional weapons strategy in an age of nuclear weapons. That debate is analyzed, as well as the thinking underlining conventional nuclear strategy, and explains why conventionalization has become popular in US nuclear weapons policies. A feature of the American nuclear debate has been the unresolved tension between two approaches to nuclear strategy, namely: the apocalyptic approach and the conventionalmore » approach. The confrontation between these camps has resulted over the years in a gradual but steady erosion of the strategic consensus to the point where, under the Reagan administration, the conventional camp appears to have emerged as a clear winner from the nuclear debate. The attractiveness of conventional nuclear strategy can be attributed to the influence and working of an American style of nuclear strategy, i.e., a specific approach to the phenomena of nuclear weapons. The author concludes that the conventional and official strategic view that nuclear problems can be solved by technological progress may, in fact, contribute to worsen rather than improve the thermonuclear condition of the world.« less
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
76 FR 66089 - Access Authorization Program for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0245] Access Authorization Program for Nuclear Power... Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to... Regulations (10 CFR), section 73.56, ``Personnel Access Authorization Requirements for Nuclear Power Plants...
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; ...
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey
NASA Technical Reports Server (NTRS)
Sanger, George F.
1988-01-01
A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.
Crosslinked Aspartic Acids as Helix-Nucleating Templates.
Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang
2016-09-19
Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A.
Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally,more » we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.« less
Effects of gravity on contractile proteins
NASA Technical Reports Server (NTRS)
Henney, H. R., Jr.
1979-01-01
A method was established for the isolation and purification of nuclei in high yield from the microplasmodia of Physarum flavicomum. Purified nuclei were resistant to breakage by methods commonly employed for isolated plant and animal nuclei. Several methods for the extraction of nuclear protein were compared. Incubation of nuclear lysates with either 2 M NaCl, with or without 5 M urea, or 1 M CaCl2 resulted in the extraction of nuclear action together with histones. The histones were chemically fractionated into the 5 basic groups common to other eucaryotic tissue. Amino acid analyses of the total histone were also performed. Nuclear actin was found to have a molecular weight of 41,000 ? 4,000 daltons as determined by SDS polyacrylamide gel electrophoresis. The amino acid composition of the nuclear action was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd
2015-05-21
Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
NASA Technical Reports Server (NTRS)
Roberts, W. E.
1984-01-01
The effects of 18.5 days of weightlessness aboard a satellite, stress of restricted feeding, stress of noise and vibration to simulate space flight and 21 days of head down suspension via the Morey-Holton model for simulated weightlessness was studied. Nuclear size of fibroblastlike cells in PDL on the anterior surface of maxillary first molars was classified as: (1) A-cells, self perpetuating precursors with a nuclear volume 80 micron B-cells, nonosteogenic fibroblasts with a nuclear volume of 80-119 micron 3, C-cells, preosteoblasts that are in G1 stage of the cell cycle with a nuclear size of 120-170 micro, and D-cells, preosteoblasts that are in G2 stage of the cell cycle with a nuclear size 170 micro.
Nuclear pasta phases within the quark-meson coupling model
NASA Astrophysics Data System (ADS)
Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.
2017-05-01
In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
NASA Astrophysics Data System (ADS)
Henstra, A.; Wenckebach, W. Th.
1991-02-01
A review is given of newly developed pulsed Electron Spin Resonance (ESR) methods for dynamic polarization of nuclear spins. The application of two of these methods, Nuclear Orientation Via Electron spin Locking (NOVEL) and the Integrated Solid Effect (ISE), for the polarization of nuclear spins in semiconductors is discussed in more detail. It is proposed to use these methods to study the ESR spectrum of unpaired electrons in the vicinity of muons that are bound in a solid. Thus, ESR would be observed with a sensitivity which is enhanced by about ten orders of magnitude compared to conventional ESR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika
This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
..., and 52 [NRC-2011-0297] General Site Suitability Criteria for Nuclear Power Stations AGENCY: Nuclear... Suitability Criteria for Nuclear Power Stations.'' This guide describes a method that the NRC staff considers acceptable to implement the site suitability requirements for nuclear power stations. DATES: Submit comments...
A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change
NASA Astrophysics Data System (ADS)
Winslow, Anne
2011-06-01
The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.
A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winslow, Anne
2011-06-28
The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittencymore » of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.« less
NASA Astrophysics Data System (ADS)
Fujii, Yoshiaki
2011-04-01
This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.
TLA — markers and nuclear scanning method for wear rate monitoring
NASA Astrophysics Data System (ADS)
Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Ivanov, E.; Dudu, D.; Catana, M.; Roman, M.
1994-08-01
Two new extensions of the TLA-direct measuring method are presented: the TLA-markers for wear control and the nuclear scanning method for monitoring wear non-uniformity on large surfaces. Both methods were applied to measure the material loss on the surface of railway car brake disks.
Nuclear States with Abnormally Large Radii (size Isomers)
NASA Astrophysics Data System (ADS)
Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.
2015-06-01
Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.
Method for forming nuclear fuel containers of a composite construction and the product thereof
Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.
1984-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Fatal attraction: Explaining Russia's sensitive nuclear transfers to Iran
NASA Astrophysics Data System (ADS)
Kuchinsky, Leah R.
This paper explores Russia's sensitive nuclear assistance to Iran in an effort to determine why a supplier state might proliferate against its own apparent security interests. The goal is to help readers understand the supply-side dynamics of nuclear proliferation. Through careful reconstruction of the historical narrative, using open source data, this study tests the plausibility of a "fatalistic calculus" explanation, identified by Stephen Sestanovich as a possible driver for Russia's behavior. According to the hypothesis, Russia has cooperated with Iran as a way both to stay in the good graces of a neighbor that is suspected of developing nuclear weapons and to win short-term influence and profits. The paper also examines the role of other factors advanced in the existing supply-side literature, such as economic motives identified by physicist and nonproliferation scholar David Albright. The findings show that bureaucratic, economic and fatalistic factors have each played a role in motivating Russia's cooperation with Iran, with their relative importance shifting over time. Fatalism begets a strategy of Russian "minimaxing," in the lexicon of Russia scholar Robert Freedman, wherein Russia attempts to minimize damage to its relationship with the U.S. while maximizing influence in Iran via nuclear cooperation. Fatalism, as actualized by minimaxing, best explains Russia's behavior after former Russian president Vladmir Putin came to power, when the bureaucratic and economic arguments become less cogent.
Conditional Depletion of Nuclear Proteins by the Anchor Away System (ms# CP-10-0125)
Fan, Xiaochun; Geisberg, Joseph V.; Wong, Koon Ho; Jin, Yi
2011-01-01
Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. Here we describe a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from nucleus. PMID:21225637
The nuclear dynamo; Can a nuclear tornado annihilate nations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, J.R. Jr.
1991-01-01
This paper reports on the development of the hypothesis of a nuclear dynamo for a controlled nuclear fusion reactor. This dynamo hypothesis suggests properties for a nuclear tornado that could annihilate nations if accidentally triggered by a single high yield to weight nuclear weapon detonation. The formerly classified reports on ignition of the atmosphere, the properties of a nuclear dynamo, methods to achieve a nuclear dynamo in the laboratory, and the analogy of a nuclear dynamo to a nuclear tornado are discussed. An unclassified international study of this question is urged.
Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.
2015-12-29
Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Nondestructive Examination Guidance for Dry Storage Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Suffield, Sarah R.; Hirt, Evelyn H.
In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority ofmore » the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific components.« less
Retention Quick Polls of Three Navy Communities
2011-03-01
decisions for Nuclear officers SWO(N) Submarine Influencers to Stay in the Navya Loyalty to nation/service 85% 86% Retirement benefits 85% 84...Operations/Special Warfare Enlisted Officer SO SB EOD ND Rescue Swimmer SEAL EOD Influencers to Stay in the Navya Loyalty to nation/service 88% 85% 84
NASA Astrophysics Data System (ADS)
Pinheiro, T.; Pallon, J.; Alves, L. C.; Veríssimo, A.; Filipe, P.; Silva, J. N.; Silva, R.
2007-07-01
The permeability of skin to nanoparticles of titanium dioxide (TiO 2) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO 2 nanoparticles permeation depth.
Many-body kinetics of dynamic nuclear polarization by the cross effect
NASA Astrophysics Data System (ADS)
Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.
2018-03-01
Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
NASA Technical Reports Server (NTRS)
Darras, R.
1979-01-01
The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.
NASA Astrophysics Data System (ADS)
Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.
2018-05-01
The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.
Nuclear fuel particles and method of making nuclear fuel compacts therefrom
DeVelasco, Rubin I.; Adams, Charles C.
1991-01-01
Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.
1997-08-01
77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically
Thin layer activation techniques at the U-120 cyclotron of Bucharest
NASA Astrophysics Data System (ADS)
Constantinescu, B.; Ivanov, E. A.; Pascovici, G.; Popa-Simil, L.; Racolta, P. M.
1994-05-01
The Thin Layer Activation (TLA) technique is a nuclear method especially used for different types of wear (or corrosion) investigations. Experimental results for selection criteria of nuclear reactions for various tribological studies, using the IPNE U-120 classical variable energy Cyclotron are presented. Measuring methods for the main types of wear phenomena and home made instrumentations dedicated for TLA industrial applications are also reported. Some typical TLA tribological applications, a nuclear scanning method to obtain wear profile of piston-rings are presented as well.
Attitudes and reactions to nuclear weapons: responses to fear arousal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, K.L.
This study employed a pre-posttest design to investigate how degree of commitment to a preventive nuclear war strategy, and various demographic characteristics influence nuclear-war-related factors. Two hundred sixteen college students were assigned to one of four groups. Subjects in the first two groups completed the pretest, and waited three weeks before receiving the posttest. The posttest asked subjects in the first group to imagine and write about what might happen to them in the event of a major nuclear war, and re-administered the pretest research questions. Individuals in the second group responded to a fantasy on earthquakes, followed by themore » posttest. Subjects in the third group responded only to the nuclear was fantasy and theposttest, while those individuals in the fourth group were administered the posttest only. Subjects committed to a strategy considered their chance of death by nuclear war more likely after the nuclear-war fantasy than after the earthquake fantasy. Subjects uncommitted viewed their chance of death by nuclear was as less likely after the nuclear war fantasy than after the earthquake fantasy. This supports previous research indicating that cognitive strategies may be employed to reduce fear arousal. Women reported greater (a) chance of death by nuclear war, (b) nuclear anxiety, (c) nuclear concern, and (d) fear of the future than men. Subjects committed to a strategy expressed greater nuclear concern, greater nuclear anxiety, and employed less nuclear denial than those who were uncommitted.« less
Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A
2009-12-01
The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee, E-mail: micngml@nus.edu.sg
2009-11-06
West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiencymore » of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.« less
Croft, Stephen; Favalli, Andrea
2016-09-21
Here, we extend the familiar Bӧhnel point-model equations, which are routinely used to interpret neutron coincidence counting rates, by including the contribution of delayed neutrons. After developing the necessary equations we use them to show, by providing some numerical results, what the quantitative impact of neglecting delayed neutrons is across the full range of practical nuclear safeguards applications. The influence of delayed neutrons is predicted to be small for the types of deeply sub-critical assay problems which concern the nuclear safeguards community, smaller than uncertainties arising from other factors. This is most clearly demonstrated by considering the change in themore » effective (α,n)-to-spontaneous fission prompt-neutron ratio that the inclusion of delayed neutrons gives rise to. That the influence of delayed neutrons is small is fortunate, and our results justify the long standing practice of simply neglecting them in the analysis of field measurements.« less
Application of nuclear physics in medical physics and nuclear medicine
NASA Astrophysics Data System (ADS)
Hoehr, Cornelia
2016-09-01
Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.
2016-08-01
The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, P; Thomson, R
2015-06-15
Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variationsmore » in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program (CRC), and the Ontario Ministry of Training, Colleges and Universities.« less
Reducing the blame culture through clinical audit in nuclear medicine: a mixed methods study.
Ross, P; Hubert, J; Wong, W L
2017-02-01
To identify the barriers and facilitators of doctors' engagement with clinical audit and to explore how and why these factors influenced doctors' decisions to engage with the NHS National Clinical Audit Programme. A single-embedded case study. Mixed methods sequential approach with explorative pilot study and follow-up survey. Pilot study comprised 13 semi-structured interviews with purposefully selected consultant doctors over a six-month period. Interview data coded and analysed using directed thematic content analysis with themes compared against the study's propositions. Themes derived from the pilot study informed the online survey question items. Exploratory factor analysis using STATA and descriptive statistical methods applied to summarise findings. Data triangulation techniques used to corroborate and validate findings across the different methodological techniques. NHS National PET-CT Clinical Audit Programme. Doctors reporting on the Audit Programme. Extent of engagement with clinical audit, factors that influence engagement with clinical audit. Online survey: 58/59 doctors responded (98.3%). Audit was found to be initially threatening (79%); audit was reassuring (85%); audit helped validate professional competence (93%); participation in audit improved reporting skills (76%). Three key factors accounted for 97.6% of the variance in survey responses: (1) perception of audit's usefulness, (2) a common purpose, (3) a supportive blame free culture of trust. Factor 1 influenced medical engagement most. The study documents performance feedback as a key facilitator of medical engagement with clinical audit. It found that medical engagement with clinical audit was associated with reduced levels of professional anxiety and higher levels of perceived self-efficacy.
Influence of breakup on elastic and α-production channels in the 6Li+ 116Sn reaction
NASA Astrophysics Data System (ADS)
Patel, D.; Mukherjee, S.; Deshmukh, N.; Lubian, J.; Wang, Jian-Song; Correa, T.; Nayak, B. K.; Yang, Yan-Yun; Ma, Wei-Hu; Biswas, D. C.; Gupta, Y. K.; Santra, S.; Mirgule, E. T.; Danu, L. S.; Singh, N. L.; Saxena, A.
2017-10-01
The effects of breakup reactions on elastic and α-production channels for the 6Li+116Sn system have been investigated at energies below and near the Coulomb barrier. The angular distributions of α-particle production differential cross sections have been obtained at several projectile energies between 22 and 40 MeV. The measured breakup α-particle differential cross sections and elastic scattering angular distributions have been compared with the predictions of continuum-discretized coupled channels (CDCC) calculations. The influence of breakup coupling has also been investigated by extracting dynamic polarization potentials (DPP) from the CDCC calculations. From the predictions of CDCC calculations the relative importance of the nuclear, Coulomb, and total breakup contributions have also been investigated. The nuclear breakup couplings are observed to play an important role in comparison to the Coulomb breakup for the direct breakup mechanisms associated in the reaction of 6Li projectile with 116Sn target nuclei. The influence of strong nuclear breakup coupling exhibits suppression in the Coulomb-nuclear interference peak. The direct breakup cross sections from the CDCC calculations under-predict the measured α-particle differential cross sections at all energies. This suggests that the measured α particles may also have contributions from other possible breakup reaction channels. One of the authors (SM) would like to thank DAE-BRNS for financial assistance through a major research project. This work is supported by National Natural Science Foundation of China (U1432247, 11575256, U1632138, 11605253) and China Postdoctoral Science Foundation (2016M602906)
Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP
Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.
2014-01-01
The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098
Accurate diagnosis of thyroid follicular lesions from nuclear morphology using supervised learning.
Ozolek, John A; Tosun, Akif Burak; Wang, Wei; Chen, Cheng; Kolouri, Soheil; Basu, Saurav; Huang, Hu; Rohde, Gustavo K
2014-07-01
Follicular lesions of the thyroid remain significant diagnostic challenges in surgical pathology and cytology. The diagnosis often requires considerable resources and ancillary tests including immunohistochemistry, molecular studies, and expert consultation. Visual analyses of nuclear morphological features, generally speaking, have not been helpful in distinguishing this group of lesions. Here we describe a method for distinguishing between follicular lesions of the thyroid based on nuclear morphology. The method utilizes an optimal transport-based linear embedding for segmented nuclei, together with an adaptation of existing classification methods. We show the method outputs assignments (classification results) which are near perfectly correlated with the clinical diagnosis of several lesion types' lesions utilizing a database of 94 patients in total. Experimental comparisons also show the new method can significantly outperform standard numerical feature-type methods in terms of agreement with the clinical diagnosis gold standard. In addition, the new method could potentially be used to derive insights into biologically meaningful nuclear morphology differences in these lesions. Our methods could be incorporated into a tool for pathologists to aid in distinguishing between follicular lesions of the thyroid. In addition, these results could potentially provide nuclear morphological correlates of biological behavior and reduce health care costs by decreasing histotechnician and pathologist time and obviating the need for ancillary testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, S Seirin; Tashiro, S; Awazu, A; Kobayashi, R
2017-01-01
Specific features of nuclear architecture are important for the functional organization of the nucleus, and chromatin consists of two forms, heterochromatin and euchromatin. Conventional nuclear architecture is observed when heterochromatin is enriched at nuclear periphery, and it represents the primary structure in the majority of eukaryotic cells, including the rod cells of diurnal mammals. In contrast to this, inverted nuclear architecture is observed when the heterochromatin is distributed at the center of the nucleus, which occurs in the rod cells of nocturnal mammals. The inverted architecture found in the rod cells of the adult mouse is formed through the reorganization of conventional architecture during terminal differentiation. Although a previous experimental approach has demonstrated the relationship between these two nuclear architecture types at the molecular level, the mechanisms underlying long-range reorganization processes remain unknown. The details of nuclear structures and their spatial and temporal dynamics remain to be elucidated. Therefore, a comprehensive approach, using mathematical modeling, is required, in order to address these questions. Here, we propose a new mathematical approach to the understanding of nuclear architecture dynamics using the phase-field method. We successfully recreated the process of nuclear architecture reorganization, and showed that it is robustly induced by physical features, independent of a specific genotype. Our study demonstrates the potential of phase-field method application in the life science fields.
Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program
NASA Astrophysics Data System (ADS)
Westfall, R. M.; McKnight, R. D.
2005-05-01
The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.
Adaptation and Integration in the Nuclear Family: Some Thoughts on the Current Status of the Theory.
ERIC Educational Resources Information Center
O'Neill, Michael
The paper briefly outlines some of the factors which influence the differentiation of leadership roles in the nuclear family, such that it may or may not occur, and that it may or may not occur along lines of sexual identity. Three general categories of factors are discussed: (1) the impact of individual differences in the family members; (2) the…
A Comparative Study of the Impact of Students' Feelings regarding the Use of Nuclear Energy
ERIC Educational Resources Information Center
Maharaj-Sharma, Rawatee
2011-01-01
This article presents the results of a comparative study of two groups of learners--group 1 (25 non-science students) and group 2 (25 A-level physics students). It explores the extent to which their feelings and emotions in conjunction with their knowledge about nuclear energy impacts and influences their views and feelings about the use of…
Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*
Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.
2015-01-01
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Smith, Aaron G; Muscat, George E O
2005-10-01
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand
Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied asmore » an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 'Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors' [2]. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods:? Point method? Range method. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhoff, J. F.; Rao, G. V.; Stein, A.
2012-07-01
The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Duemore » to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)« less
Norman, Eric B.; Prussin, Stanley G.
2007-10-02
A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Systems and methods for processing irradiation targets through a nuclear reactor
Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.
2016-05-03
Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.
NASA Astrophysics Data System (ADS)
Takamatsu, k.; Tanaka, h.; Shoji, d.
2012-04-01
The Fukushima Daiichi nuclear disaster is a series of equipment failures and nuclear meltdowns, following the T¯o hoku earthquake and tsunami on 11 March 2011. We present a new method for visualizing nuclear reactors. Muon radiography based on the multiple Coulomb scattering of cosmic-ray muons has been performed. In this work, we discuss experimental results obtained with a cost-effective simple detection system assembled with three plastic scintillator strips. Actually, we counted the number of muons that were not largely deflected by restricting the zenith angle in one direction to 0.8o. The system could discriminate Fe, Pb and C. Materials lighter than Pb can be also discriminated with this system. This method only resolves the average material distribution along the muon path. Therefore the user must make assumptions or interpretations about the structure, or must use more than one detector to resolve the three dimensional material distribution. By applying this method to time-dependent muon radiography, we can detect changes with time, rendering the method suitable for real-time monitoring applications, possibly providing useful information about the reaction process in a nuclear reactor such as burnup of fuels. In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. Monitoring the burnup of fuels as a nondestructive inspection technique can contribute to safer operation. In nuclear reactor, the total mass is conserved so that the system cannot be monitored by conventional muon radiography. A plastic scintillator is relatively small and easy to setup compared to a gas or layered scintillation system. Thus, we think this simple radiographic method has the potential to visualize a core directly in cases of normal operations or meltdown accidents. Finally, we considered only three materials as a first step in this work. Further research is required to improve the ability of imaging the material distribution in a mass-conserved system.
Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.
Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo
2015-11-01
We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells. © 2015 Wiley Periodicals, Inc.
Physics in the Confrontation of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Toevs, James
2011-03-01
Had the detonations on 9/11 involved nuclear explosives rather than jet fuel the number of deaths and the costs would have been multiplied by 100 or 1,000. This talk will briefly describe the nuclear threat and then focus on the technologies, both extant and evolving, for the detection and interdiction of clandestine trafficking of nuclear weapons and nuclear and radiological material. The methods vary from passive detection of heat, gamma radiation, neutrons, or other signatures from nuclear material, through radiological approaches to examine contents of vehicles and cargo containers, to active interrogation concepts that are under development. All of these methods have major physics components ranging from simple gamma ray detection as learned in a senior undergraduate lab to the latest ideas in muon production and acceleration.
[Costing nuclear medicine diagnostic procedures].
Markou, Pavlos
2005-01-01
To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, William H.
2017-09-15
The objectives for this presentation are to describe the method that the IAEA uses to determine a sampling plan for nuclear material measurements; describe the terms detection probability and significant quantity; list the three nuclear materials measurement types; describe the sampling method applied to an item facility; and describe multiple method sampling.
Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.
Deng, Qi; Wang, Yaling; Sun, Lijun; Li, Jianrong; Fang, Zhijia; Gooneratne, Ravi
2018-06-15
Water and protein are major constituents of shrimp, any changes in protein and the state of water influence the quality of shrimp. Therefore, a study to examine the law of moisture migration and protein denaturation under different freezing and thawing conditions is important. The proton density images of thawed frozen-shrimp revealed that the water loss during quick-freezing was much greater than that during slow freezing or microfreezing. At room temperature (25 °C), the water loss from brine-thawing was more than still-water thawing and still-water thawing was more than thawing spontaneously. Freezing-thawing resulted in uniform water redistribution in shrimp muscle. Nuclear magnetic resonance technology (low field magnetic imaging) was used to directly monitor the dynamic processes of fluidity state in shrimp and indirectly monitor protein denaturation and thereby determine the optimal method of freezing-thawing shrimp. Our research showed that microfreezing preservation minimized weight loss, juice leakage and protein denaturation in shrimp muscle during thawing. Water is one of the major components in most organs and is an important factor that influences the shrimp muscle quality. Water migration patterns and subsequent effects on the shrimp muscle under different freezing and thawing conditions were examined using low field nuclear magnetic resonance (NMR) technology. This research provides a theoretical foundation for shrimp processing plants to improve the freezing and thawing process to obtain optimal quality and flavor of shrimp products. © 2018 Institute of Food Technologists®.
Presidentially Directed Relocation: Compliance Attitudes.
1980-05-01
and other alternatives for the mitigation of nuclear disaster affects. Specifically, let us examine the relationships among the following alternative...crisis relocation is only one of several methods available for the mitigation of the effects of nuclear disaster , we find that among our sample the...conclude that the extent of con- fidence in evacuation as a method of mitigating the effect of nuclear disaster , is directly related to both evacuation
Development of synthetic nuclear melt glass for forensic analysis.
Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, C J; Cook, Matthew T; Young, Stephen A; Hall, Howard L
A method for producing synthetic debris similar to the melt glass produced by nuclear surface testing is demonstrated. Melt glass from the first nuclear weapon test (commonly referred to as trinitite) is used as the benchmark for this study. These surrogates can be used to simulate a variety of scenarios and will serve as a tool for developing and validating forensic analysis methods.
INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.
Pang, Bo; Saurí Suárez, Héctor; Becker, Frank
2016-09-01
Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R
2015-10-01
An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.
Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.
2012-10-01
In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly moremore » complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.« less
Zhang, Jingyu; Li, Yongjuan; Wu, Changxu
2013-01-01
While much research has investigated the predictors of operators’ performance such as personality, attitudes and motivation in high-risk industries, its cognitive antecedents and boundary conditions have not been fully investigated. Based on a multilevel investigation of 312 nuclear power plant main control room operators from 50 shift teams, the present study investigated how general mental ability (GMA) at both individual and team level can influence task and safety performance. At the individual level, operators’ GMA was predictive of their task and safety performance and this trend became more significant as they accumulated more experience. At the team level, we found team GMA had positive influences on all three performance criteria. However, we also found a “big-fish-little-pond” effect insofar as team GMA had a relatively smaller effect and inhibited the contribution of individual GMA to workers’ extra-role behaviors (safety participation) compared to its clear beneficial influence on in-role behaviors (task performance and safety compliance). The possible mechanisms related to learning and social comparison processes are discussed. PMID:24391964
Liu, X S; Zhang, X Q; Tian, T; Liu, L; Ming, J
2008-01-01
This study aims to explore the influence of homeobox B2 (HOXB2) antisense oligodeoxynucleotides (asodn) on the biological characteristics of in vitro cultured primary human umbilical vein endothelial cells (HUVECs). The distribution of HOXB2 asodn in the HUVECs was observed by fluorescent labelling, and the influence of different concentrations of HOXB2 asodn on the DNA synthesis of HUVECs was assessed. Flow cytometry and a reverse transcriptase-polymerase chain reaction (RT- PCR) method were employed to observe the influence of HOXB2 asodn on HOXB2 expression and the HUVEC cell cycle. After the induction of liposome, the nuclear fluorescent staining of HOXB2 asodn was weaker 15 min after transfection and the staining reached the strongest level at 4-8 h but then weakened and disappeared by 16 h after transfection. This indicated that endothelial DNA synthesis could be inhibited by HOXB2 asodn in a dose-dependent manner. Furthermore, the HUVECs could be delayed in their passage from G1 to S. Simultaneously, expression of HOXB2 mRNA had decreased significantly by 24-48 h after transfection. Clearly, HOXB2 plays important roles in the proliferation of endothelial cells and also affects the cell cycle.
Triangle Universities Nuclear Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.
76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S..., ``Qualification of Connection Assemblies for Nuclear Power Plants.'' This guide describes a method that the NRC... in nuclear power plants. The environmental qualification helps ensure that connection assemblies can...
Anaplasia is rare and does not influence prognosis in adult medulloblastoma.
Giordana, Maria Teresa; D'Agostino, Carla; Pollo, Bianca; Silvani, Antonio; Ferracini, Romano; Paiolo, Anna; Ghiglione, Paolo; Chiò, Adriano
2005-10-01
Histopathologic grading based on increasing anaplasia predicts clinical behavior of pediatric medulloblastomas. The present study was aimed at grading 86 medulloblastomas of adult patients (aged 18 and older) by anaplasia and analyzing the predictive power. Nodularity, desmoplasia, nuclear size, nuclear pleomorphism, necrosis, and endothelial proliferations have been evaluated. Morphometric analysis of nuclear size was performed using the Eclipse Net program. Patients treated with standard postoperative radiotherapy (35 Gy to craniospinal axis and 50 Gy to posterior fossa) were considered for correlation with survival. Pathologic data and total survival were compared by Kaplan-Meier and logrank analysis. No correlation was found between total survival duration and individual pathologic features. Cooccurrence of nuclear pleomorphism, large nuclear diameter, microvascular proliferations, and necroses did not predict outcome. Severe nuclear pleomorphism was found in 4 of 86 cases; the only large-cell medulloblastoma was from an 18-year-old patient. Histopathologic factors have no clinical use for stratification of patients in risk groups. The histologic spectrum of medulloblastoma in adults is different from that in children.
The Yeast Nuclear Pore Complex and Transport Through It
Aitchison, John D.; Rout, Michael P.
2012-01-01
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins. PMID:22419078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cal Latin-Small-Letter-Dotless-I k, A. E., E-mail: engincalik@yahoo.com; Gerceklioglu, M.; Selam, C.
2013-05-15
Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.
A Literature Review on the Study of Moisture in Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trautschold, Olivia Carol
2016-05-25
This literature review covers the main chemical and physical interactions between moisture and the polymer matrix. Fickian versus Non-Fickian diffusion behaviors are discussed in approximating the characteristics of moisture sorption. Also, bound water and free water sorbed in polymers are distinguished. Methods to distinguish between bound and free water include differential scanning calorimetry, infrared spectroscopy, and time-domain nuclear magnetic resonance spectroscopy. The difference between moisture sorption and water sorption is considered, as well as the difficulties associated with preventing moisture sorption. Furthermore, specific examples of how moisture sorption influences polymers include natural fiber-polymer composites, starch-based biodegradable thermoplastics, and thermoset polyurethanemore » and epoxies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vita, C.; Brun, J.; Reynard-Carette, C.
2015-07-01
At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less
Prognostic significance of nuclear pSTAT3 in oral cancer.
Macha, Muzafar A; Matta, Ajay; Kaur, Jatinder; Chauhan, S S; Thakar, Alok; Shukla, Nootan K; Gupta, Siddhartha Datta; Ralhan, Ranju
2011-04-01
Aberrant nuclear accumulation of proteins influences tumor development and may predict biologic aggressiveness and disease prognosis. This study determined the prognostic significance of pSTAT3 (phosphorylayed signal transducer and activator of transcription 3) in oral squamous cell carcinomas (OSCCs). Using immunohistochemistry, a significant increase in nuclear accumulation of pSTAT3 was observed in 49 of 90 leukoplakias (54.4%) and 63/94 OSCCs (67%) (p(trend) < .001). Increased pSTAT3 was associated with tumor stage (p = .01), nodal metastasis (p = .0018), and tobacco consumption (p = .004). Kaplan-Meier analysis demonstrated that OSCC with increased nuclear pSTAT3 showed significantly reduced disease-free survival (13 months), compared with the patients with no nuclear pSTAT3 expression (64 months, p = .019). Cox regression analysis revealed nuclear pSTAT3 as the most significant predictor of poor prognosis (p = .024, hazard ratio [HR] = 2.7). Increased nuclear accumulation of pSTAT3 occurs in early premalignant stages and is a marker for poor prognosis of OSCC. Copyright © 2010 Wiley Periodicals, Inc.
Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin
2007-09-21
Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced bymore » cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.« less
Churches and nuclear deterrence
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Voorst, L.B.
In contrast to a history of support for our nation's involvement in wars, US churches are now in the process of edging toward a direct confrontation with the Reagan Administration over nuclear weapons and deterrence policy. This new attitude is attributed to two main factors: the growing awareness of the end of American strategic superiority and the concern over the Reagan Administration's attitude toward strategic nuclear issues. This newly widespread determination among the churches to challenge public policy on nuclear issues is addressed by examining the various churches and their efforts in the anti-nuclear movement. The Catholic Bishops' Draft Pastoralmore » Letter is discussed at length and is considered to be the most radical effort by any American church to define moral standards for the nuclear era. In contrast, the historical Protestant treatment differs considerably from the Catholic initiative; it started earlier but has been more fragmented and disparate. Only the American Jewish community as a whole has been, with a few notable exceptions, reluctant to become involved in the movement. The ultimate political question raised is how this religious involvement will influence American strategic nuclear doctrines. 27 references.« less
NASA Astrophysics Data System (ADS)
Roccia, S.; Gaulard, C.; Étilé, A.; Chakma, R.
2017-07-01
In the context of nuclear orientation, we propose a new method to correct the multipole mixing ratios for asymmetries in the geometry of the setup but also in the detection system. This method is also robust against temperature fluctuations, beam intensity fluctuations and uncertainties in the nuclear structure of the nuclei. Additionally, this method provides a natural way to combine data from different detectors and make good use of all available statistics. We could use this method to demonstrate the accuracy that can be reached with the PolarEx setup now installed at the ALTO facility.
Nuclear Data Uncertainty Quantification: Past, Present and Future
NASA Astrophysics Data System (ADS)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.
The Public's Needs (a la Maslow) Drive the Public's Receptivity to Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, E.N.
1999-11-14
The communication problem of the nuclear industry is the same as any other nonmonopoly provider of products or services, i.e., to show the public that nuclear electricity is superior even though nuclear electricity itself is indistinguishable from any other electricity. The public wants to know how nuclear compares with other sources of electricity in almost any other way except detailed information on the ''nuts and bolts'' of how electricity is made. They want to learn first, that there is an adequate supply of nuclear fuel and that they will not have to degrade their lifestyle unless they choose to domore » so; second, that they are safe and that meaningful consideration has been given to public safety for nuclear energy generation, including waste disposal; third, that this method is accepted by reputable scientists; fourth, that their use of this method is decreasing world societal problems, causes of war, and causes of pollution; and fifth, that this method increases their ability to accomplish the things that one's potential allows.« less
The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.
2017-01-01
The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.
Micronuclei and nuclear anomalies in Mexico's indigenous population.
Lazalde-Ramos, Blanca Patricia; Zamora-Pérez, Ana Lourdes; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Zúñiga-González, Guillermo Moisés
2017-01-01
To determine the number of micronuclei and nuclear anomalies in Mexico's indigenous population. One hundred twenty indigenous individuals were evaluated, including thirty from the ethnicities Cora, Huichol, Tarahumara and Tepehuano. The number of micronuclei (MN) and any nuclear abnormality (NA) in oral mucosa cells, including cells with nuclear buds, binucleated cells, cells with karyolysis, karyorrhetic, condensed chromatin and pyknotic cells were determined for each participant. Tepehuano and Tarahumaras showed the greatest damage to DNA. The Tepehuano group presented the highest number of MN and NA, this being a significant difference (p < 0.05) compared with the rest of the studied groups. This group also presented the highest herbicide exposure (46.7%). In relation to the smoking and drinking habits, these were more frequent in the Tarahumara group (33.3 and 50% respectively). The ethnic diversity, habits and customs may influence the DNA nuclear integrity in the Amerindian groups.
Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.
Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A
2010-12-28
H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.
NASA Technical Reports Server (NTRS)
Biggerstaff, J. A. (Editor)
1985-01-01
Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.
Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter
NASA Astrophysics Data System (ADS)
Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.
2018-06-01
We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
DOE R&D Accomplishments Database
Hoffman, Darleane C.
2001-11-01
Glenn Theodore Seaborg (1912-1999) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the US Atomic Energy Commission from 1961-71, scientific advisor to ten US presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights his profound influence on nuclear science, both in the US and in the international community.
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
Joint Force Quarterly. Issue 53, 2nd Quarter 2009
2009-04-01
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Defense University,260 Fifth Avenue, S.W. ( Building 64, Room 2505),Fort...improve the reader’s professional understand- ing or performance ? Speak to the implications from the operational to the strategic level of influence and...with building nuclear power plants. If this projection is accurate, significant energy dividends resulting from the nuclear agreement are unlikely
Robust techniques for polarization and detection of nuclear spin ensembles
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2017-11-01
Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.
Yasuda, Shun; Kyozuka, Hyo; Nomura, Yasuhisa; Fujimori, Keiya; Goto, Aya; Yasumura, Seiji; Hata, Kennichi; Ohira, Tetsuya; Abe, Masafumi
2017-12-01
The Great East Japan Earthquake and Fukushima Daiichi nuclear disaster occurred on 11 March 2011. We investigated the incidence of SGA (small for gestational age) in the Fukushima Prefecture in newborns delivered by women who were pregnant at the time of the disasters and identified any risk factors for SGA. Subjects were women who were pregnant at the time of the disasters. Questionnaires were sent to the women who lived in the Hamadori area (seaside and near to the nuclear power plant) at the time of the disasters as well as to a control group of women who lived outside the Hamadori area. The incidence of SGA was compared. Logistic regression analysis was performed to identify the risk factors for SGA. In total, 325(5.6%) women had infants with SGA. Neither area nor the trimester of pregnancy at the time of the disasters influenced the incidence of SGA. Pregnancy-induced hypertension (PIH) was higher in the SGA group. PIH was found to be an independent risk factor for SGA. We found no evidence that the Great East Japan Earthquake and the Fukushima Daiichi nuclear disaster increased the incidence of SGA in the Fukushima Prefecture.
Influence of nuclear power unit on decreasing emissions of greenhouse gases
NASA Astrophysics Data System (ADS)
Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna
2015-03-01
The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.
NASA Astrophysics Data System (ADS)
Evans, Andrew J.; Kingston, Richard; Carver, Steve
This paper elucidates the manner in which users of an online decision support system respond to spatially distributed data when assessing the solution to environmental risks, specifically, nuclear waste disposal. It presents tests for revealing whether users are responding to geographical data and whether they are influenced by their home location (Not in My Back Yard - style behavior). The tests specifically cope with problems associated with testing home-to-risk distances where both locations are constrained by the shape of the landmass available. In addition, we detail the users' wider feelings towards such a system, and reflect upon the possibilities such systems offer for participatory democracy initiatives.
26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...
26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...
26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...
26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In general...
Nuclear Energy for Water Desalting, A Bibliography.
ERIC Educational Resources Information Center
Kuhns, Helen F., Comp.; And Others
This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…
Treatment of Nuclear Data Covariance Information in Sample Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William
This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.
Composite construction for nuclear fuel containers
Cheng, Bo-Ching [Fremont, CA; Rosenbaum, Herman S [Fremont, CA; Armijo, Joseph S [Saratoga, CA
1987-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
Simulation of Nuclear Reactor Kinetics by the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gomin, E. A.; Davidenko, V. D.; Zinchenko, A. S.; Kharchenko, I. K.
2017-12-01
The KIR computer code intended for calculations of nuclear reactor kinetics using the Monte Carlo method is described. The algorithm implemented in the code is described in detail. Some results of test calculations are given.
Removal of hydrogen bubbles from nuclear reactors
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1980-01-01
Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.
NASA Astrophysics Data System (ADS)
Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang
2016-01-01
High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.
Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W
2011-01-01
Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preta, Giulio; Klark, Rainier de; Glas, Rickard, E-mail: rickard.glas@ki.se
2009-11-27
Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used amore » panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.« less
Preta, Giulio; de Klark, Rainier; Glas, Rickard
2009-11-27
Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to gamma-irradiation, and that nuclear expression of TPPII was present in most gamma-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after gamma-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following gamma-irradiation (at 1-4h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in gamma-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.
Ward, R W; Heyne, E G; Paulsen, G M
1983-07-01
Studies were conducted to determine the influence of the male sterility-inducing cytoplasm of Triticum timopheevii (Zhuk.) Zhuk. on response of several common winter wheat (T. aestivum L.) nuclear genotypes to photoperiod and vernalization. Comparative studies of cytoplasmic substitution lines provide information on the role of the cytoplasmic genetic mechanism in growth and development. In the case of cytoplasmic male sterility-based hybrid production systems, ubiquity of sterility-inducing cytoplasm in derived hybrids warrants thorough characterization of its influence on plant phenotype. Factorial combinations of cytoplasm (T. timopheevii and T. aestivum), nuclear genotype, and photoperiod or vernalization treatments were evaluated under hydroponic conditions in controlled environment chambers. Interaction of cytoplasm, photoperiod, and nuclear genotype was significant in one or more experiments for days to anthesis and potential spikelet number, and interaction of cytoplasm, vernalization, and nuclear genotype was significant for days to spike emergence. Long day length was associated with increased percentage seed set in one study, but interactions of photoperiod and cytoplasm were not detected for percentage seed set. Interactions involving cytoplasm and photoperiod or vernalization were interpreted as evidence of the existence of genetic factors in cytoplsam of T. timopheevii which alter photoperiod or vernalization responses of alloplasmic plants relative to responses exhibited by euplasmic plants. Since photoperiod and vernalization responses are critical to adaptation, T. timopheevii cytoplasm can alter adaptability of T. aestivum. The specific effect would be nuclear genotype dependent, and does not appear to be of a magnitude greater than that induced by nuclear genetic variability at loci conditioning photoperiod or vernalization responses or other adaptation-determining characteristics. Normal multilocation/year testing of alloplasmic hybrids should therefore adequately identify zones of adaptation.
Tran, Elizabeth J.; King, Megan C.; Corbett, Anita H.
2014-01-01
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18-23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field. PMID:25116306
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-05-05
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-01-27
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-01-06
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Recent advances in the study of gynodioecy: the interface of theory and empiricism.
McCauley, David E; Bailey, Maia F
2009-09-01
In this review we report on recent literature concerned with studies of gynodioecy, or the co-occurrence of female and hermaphrodite individuals in natural plant populations. Rather than review this literature in its entirety, our focus is on the interplay between theoretical and empirical approaches to the study of gynodioecy. Five areas of active inquiry are considered. These are the cost of restoration, the influence of population structure on spatial sex-ratio variation, the influence of inbreeding on sex expression, the signature of cyto-nuclear coevolution on the mitochondrial genome, and the consequences of mitochondrial paternal leakage. Recent advances in the study of gynodioecy have been made by considering both the ecology of female:hermaphrodite fitness differences and the genetics of sex expression. Indeed theory has guided empiricism and empiricism has guided theory. Future advances will require that some of the methods currently available only for model organisms be applied to a wider range of species.
Recent advances in the study of gynodioecy: the interface of theory and empiricism
McCauley, David E.; Bailey, Maia F.
2009-01-01
Background In this review we report on recent literature concerned with studies of gynodioecy, or the co-occurrence of female and hermaphrodite individuals in natural plant populations. Rather than review this literature in its entirety, our focus is on the interplay between theoretical and empirical approaches to the study of gynodioecy. Scope Five areas of active inquiry are considered. These are the cost of restoration, the influence of population structure on spatial sex-ratio variation, the influence of inbreeding on sex expression, the signature of cyto-nuclear coevolution on the mitochondrial genome, and the consequences of mitochondrial paternal leakage. Conclusions Recent advances in the study of gynodioecy have been made by considering both the ecology of female:hermaphrodite fitness differences and the genetics of sex expression. Indeed theory has guided empiricism and empiricism has guided theory. Future advances will require that some of the methods currently available only for model organisms be applied to a wider range of species. PMID:19515690
Coldwell, T; Cole, P; Edwards, C; Makepeace, J; Murdock, C; Odams, H; Whitcher, R; Willis, S; Yates, L
2015-12-01
The safety culture of any organisation plays a critical role in setting the tone for both effective delivery of service and high standards of performance. By embedding safety at a cultural level, organisations are able to influence the attitudes and behaviours of stakeholders. To achieve this requires the ongoing commitment of heads of organisations and also individuals to prioritise safety no less than other competing goals (e.g. in universities, recruitment and retention are key) to ensure the protection of both people and the environment. The concept of culture is the same whatever the sector, e.g. medical, nuclear, industry, education, and research, but the higher education and research sectors within the UK are a unique challenge in developing a strong safety culture. This report provides an overview of the challenges presented by the sector, the current status of radiation protection culture, case studies to demonstrate good and bad practice in the sector and the practical methods to influence change.
Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules
NASA Astrophysics Data System (ADS)
Valiev, R. R.; Minaev, B. F.
2017-07-01
The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.
Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.
Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V
2016-11-28
Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
Missile’s Guidance Head Anti-Nuclear Electromagnetic Pulse Reinforcement,
1996-11-18
electromagnetic pulse bomb is one of them. This kind of nuclear bomb is mainly used to interfere or damage un-reinforced electric and electronic... electromagnetic pulse , the damaging mechanism of the nuclear electromagnetic pulse to the guidance head, and the response of electronic devices to...the nuclear electromagnetic pulse , at last introduces the guidance heads defense method to the nuclear electromagnetic pulse .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowlkes, Jason Davidson; Owens, Elizabeth T; Standaert, Robert F
2009-01-01
Identifying and characterizing protein interactions are fundamental steps towards understanding and modeling biological networks. Methods that detect protein interactions in intact cells rather than buffered solutions are likely more relevant to natural systems since molecular crowding events in the cytosol can influence the diffusion and reactivity of individual proteins. One in vivo, imaging-based method relies on the co-localization of two proteins of interest fused to DivIVA, a cell division protein from Bacillus subtilis, and green fluorescent protein (GFP). We have modified this imaging-based assay to facilitate rapid cloning by constructing new vectors encoding N- and C-terminal DivIVA or GFP molecularmore » tag fusions based on site-specific recombination technology. The sensitivity of the assay was defined using a well-characterized protein interaction system involving the eukaryotic nuclear import receptor subunit, Importin (Imp ) and variant nuclear localization signals (NLS) representing a range of binding affinities. These data demonstrate that the modified co-localization assay is sensitive enough to detect protein interactions with Kd values that span over four orders of magnitude (1nM to 15 M). Lastly, this assay was used to confirm numerous protein interactions identified from mass spectrometry-based analyses of affinity isolates as part of an interactome mapping project in Rhodopseudomonas palustris« less
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K.; Bi, Jun; Liu, Yang
2013-01-01
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public’s attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies. PMID:24248341
Out of (South) Africa: Pretoria`s nuclear weapons experience. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, R.E.
1998-04-01
The primary focus of this paper is the impact of key South African leaders on the successful developments and subsequent rollbacks of South Africa`s nuclear weapons capability. It highlights the key milestones in the development of South Africa`s nuclear weapon capability. It also relates how different groups within South Africa (scientists, politicians, military and technocrats) interacted to successfully produce South Africa`s nuclear deterrent. It emphasizes the pivotal influence of the senior political leadership to pursue nuclear rollback given the disadvantages of its nuclear means to achieve vital national interests. The conclusions drawn from flu`s effort are the South African nuclearmore » program was an extreme response to its own identity Crisis. Nuclear weapons became a means to achieving a long term end of a closer affiliation with the West. A South Africa yearning to be identified as a Western nation and receive guarantees of its security rationalized the need for a nuclear deterrent. The deterrent was intended to draw in Western support to counter a feared total onslaught by Communist forces in the region. Two decades later, that same South Africa relinquished its nuclear deterrent and reformed its domestic policies to secure improved economic and political integration with the West.« less
NASA Astrophysics Data System (ADS)
Sanchez, Victoria Justine
This dissertation project examines the 2011 Fukushima nuclear accident as a focusing event for policy change on nuclear energy. For example, following the accident, Germany (and much of Europe) experienced a reversal of policy on nuclear energy. Conversely, many others such as China, Russia, and France, did not exhibit such a retraction against nuclear power, albeit with public debate about the risks and consequences of accidents. Why has there been dramatic policy change in some cases but not others? The political and literal fallout of Fukushima has provoked a wave of policy change towards nuclear energy at the national level. Through qualitative and quantitative measures, we can view Fukushima as an impetus for comparing the dynamics of nuclear policy change. Quantitatively, this project employs logistic regression to explore variables such as regime type, energy security, trade supply and demand, climate change concerns, and public acceptance are related to policy outcomes and change on nuclear energy in the post-Fukushima context of 49 different countries. Qualitatively, country cases (Russia, Germany, and Canada) are assessed into three categories based on the outcome of policy decisions on nuclear energy following Fukushima for a richer analysis. Beyond the Fukushima example, we can hope to better understand how political focusing events can gain influence in an international context.
Akchata, Suman; Lavanya, K; Shivanand, Bhushan
2017-01-01
Context: Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. Aim: To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Settings and Design: Lab-simulated working surface materials. Experimental study design. Materials and Methods: Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Statistical Analysis: Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Results: Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Conclusions: Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area. PMID:28680198
Coulomb excitation with radioactive nuclear beam of 64Cu
NASA Astrophysics Data System (ADS)
Guo, Gang; Xu, Jincheng; Chen, Quan; He, Ming; Qin, Jiuchang; Shen, Dongjun; Wu, Shaoyong; Jiang, Yongliang; Cheng, Yehao
2003-09-01
The radioactive nuclear beam of 64Cu was obtained utilizing a two-stage method at the HI-13 tandem accelerator of China Institute of Atomic Energy. The B(E2) value of the first excitation state of 64Cu has been directly measured for the first time by Coulomb excitation method, using the radioactive nuclear beam of 64Cu. An upper limit of the B(E2;2 1+→1 gs+) value from the first excitation state to the ground state of 64Cu is determined to be 49 W.u., which is significantly smaller than 250±170 W.u., the value adopted by Nuclear Data Sheets. The reliability of the experimental method was verified by simultaneously performing the Coulomb excitation experiment of 181Ta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Andrew D.; Croft, Stephen; McElroy, Robert Dennis
2017-08-01
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but itmore » is recognized that greater rigor is needed and achievable using modern statistical methods.« less
Computer simulation of magnetic resonance spectra employing homotopy.
Gates, K E; Griffin, M; Hanson, G R; Burrage, K
1998-11-01
Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.
Composite construction for nuclear fuel containers
Cheng, B. C.; Rosenbaum, H. S.; Armijo, J. S.
1987-04-21
Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 AND 50-364; NRC-2012-0053] Facility Operating License Amendment From Southern Nuclear Operating, Inc., Joseph M. Farley Nuclear Plant, Units 1 and 2...-0053. You may submit comments by the following methods: Federal Rulemaking Web site: Go to http://www...
What can nuclear energy do for society?
NASA Technical Reports Server (NTRS)
Rom, F. E.
1971-01-01
The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D. L.
2015-01-01
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Nuclear Data Uncertainty Quantification: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L., E-mail: Donald.L.Smith@anl.gov
2015-01-15
An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less
Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon
2017-08-03
Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.
Molecular dynamics for dense matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi
2012-08-01
We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.
Gas inflow patterns and nuclear rings in barred galaxies
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhi
2017-06-01
Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
Quantitative imaging assay for NF-κB nuclear translocation in primary human macrophages
Noursadeghi, Mahdad; Tsang, Jhen; Haustein, Thomas; Miller, Robert F.; Chain, Benjamin M.; Katz, David R.
2008-01-01
Quantitative measurement of NF-κB nuclear translocation is an important research tool in cellular immunology. Established methodologies have a number of limitations, such as poor sensitivity, high cost or dependence on cell lines. Novel imaging methods to measure nuclear translocation of transcriptionally active components of NF-κB are being used but are also partly limited by the need for specialist imaging equipment or image analysis software. Herein we present a method for quantitative detection of NF-κB rel A nuclear translocation, using immunofluorescence microscopy and the public domain image analysis software ImageJ that can be easily adopted for cellular immunology research without the need for specialist image analysis expertise and at low cost. The method presented here is validated by demonstrating the time course and dose response of NF-κB nuclear translocation in primary human macrophages stimulated with LPS, and by comparison with a commercial NF-κB activation reporter cell line. PMID:18036607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kin, Tadahiro; Oshima, Masumi; Furutaka, Kazuyoshi
We are developing a new method to identify nuclear levels based on neutron capture reactions, named 'TELLA-2.' Measured data of prompt gamma rays from {sup 33}S(n,{gamma}){sup 34}S was used to improve the method. We will show how we obtain candidates of nuclear levels.
Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions
NASA Astrophysics Data System (ADS)
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; Jakowski, Jacek; Garashchuk, Sophya
2017-02-01
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of H2 and isotopologues on metal ions, are examined using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. The lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions. Analysis of the nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) performed for complexes of Li+ and Cu+2 with H2/D2/HD shows that the PES anharmonicity changes the ZPE by up to 9%.
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.
2013-07-01
A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrao, C.A.N.
1960-01-01
The electrical prospecting methods are described which bave been incorporated in the routine operations of the Prospecting and Mining Services. The methods are concerned with structure and are useful in prospecting for uranium, other minerals, and water. The methods were developed to complement other existing prospecting methods and to provide geological and structural information. (J.R.D.)
Mohan, Jasna Jagan; Narayan, Prashanth; Padmanabhan, Renjini Ambika; Joseph, Selin; Kumar, Pradeep G; Laloraya, Malini
2018-07-01
Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Retinal profile and structural differences between myopes and emmetropes
NASA Astrophysics Data System (ADS)
Clark, Christopher Anderson
Refractive development has been shown to be influenced by optical defocus in the eye and the interpretation of this signal appears to be localized in the retina. Optical defocus is not uniform across the retina and has been suggested as a potential cause of myopia development. Specifically hyperopic focus, i.e. focusing light behind the retina, may signal the eye to elongate, causing myopia. This non-uniform hyperopic signal appears to be due to the retinal shape. Ultimately, these signals are detected by the retina in an as yet undetermined manner. The purpose of this thesis is to examine the retinal profile using a novel method developed at Indiana University and then to examine retinal structural changes across the retina associated with myopia. Myopes exhibited more prolate retinas than hyperopes/emmetropes using the SD OCT. Using the SD OCT, this profile difference was detectable starting at 5 degrees from the fovea, which was closer than previously reported in the literature. These results agreed significantly with results found from peripheral refraction and peripheral axial length at 10 degrees. Overall, the total retina was thinner for myopes than hyperopes/emmetropes. It was also statistically significantly thinner for the Outer Nuclear Layer (ONL), Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL) but not for other retinal layers such as the Ganglion Layer. Thinning generally occurred outside of 5 degrees. The SD OCT method provided a nearly 10 fold increase in sensitivity which allowed for detection of profile changes closer to the fovea. The location of the retinal changes may be interesting as the layers that showed significant differences in thickness are also layers that contain cells believed to be associated with refractive development (amacrine, bipolar, and photoreceptor cells.) The reason for the retinal changes cannot be determined with this study, but possible theories include stretch due to axial elongation, neural remodeling due to blur, and/or direct influence on refractive development due to neural cell densities.
Akchata, Suman; Lavanya, K; Shivanand, Bhushan
2017-01-01
Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area.
Nuclear technologies for explosives detection
NASA Astrophysics Data System (ADS)
Bell, Curtis J.
1992-12-01
This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.
Pourcelot, Laurent; Masson, Olivier; Saey, Lionel; Conil, Sébastien; Boulet, Béatrice; Cariou, Nicolas
2017-05-01
In the present paper the activity of uranium isotopes measured in plants and aerosols taken downwind of the releases of three nuclear fuel settlements was compared between them and with the activity measured at remote sites. An enhancement of 238 U activity as well as 235 U/ 238 U anomalies and 236 U are noticeable in wheat, grass, tree leaves and aerosols taken at the edge of nuclear fuel settlements, which show the influence of uranium chronic releases. Further plants taken at the edge of the studied sites and a few published data acquired in the same experimental conditions show that the 238 U activity in plants is influenced by the intensity of the U atmospheric releases. Assuming that 238 U in plant is proportional to the intensity of the releases, we proposed empirical relationships which allow to characterize the chronic releases on the ground. Other sources of U contamination in plants such as accidental releases and "delayed source" of uranium in soil are also discussed in the light of uranium isotopes signatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)
NASA Astrophysics Data System (ADS)
Stoyanov, Chavdar; Dimitrova, Sevdalina
2014-09-01
The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in nuclear waste treatment. Nuclear methods for applications. A special session in honor of the late Mario Stoitsov, was also part of the program. Many colleagues of Mario from all over the world came to Varna to pay tribute to this prominent scientist and loyal friend. Several colleagues contributed to the organization of the School. We would like to thank them and especially the Scientific Secretary of the School Dr Elena Stefanova and the members of the Organizing Committee Dr Dimitar Tarpanov and Peter Zivkov for their cordiality and high level assistance. We are also grateful to Dr Jacek Dobaczewski, who reached out to the collaborators of Mario Stoitsov on behalf of the conference. Sofia, 20 March 2014 Co-chair persons of the Organizing Committee Prof Dr Sc Ch Stoyanov Prof Dr Sc S Dimitrova Details of the committees are available in the PDF.
METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR
Layer, E.H. Jr.; Peet, C.S.
1962-01-23
A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritterbusch, Stanley; Golay, Michael; Duran, Felicia
2003-01-29
OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Reducing the blame culture through clinical audit in nuclear medicine: a mixed methods study
Ross, P; Hubert, J
2017-01-01
Objectives To identify the barriers and facilitators of doctors’ engagement with clinical audit and to explore how and why these factors influenced doctors’ decisions to engage with the NHS National Clinical Audit Programme. Design A single-embedded case study. Mixed methods sequential approach with explorative pilot study and follow-up survey. Pilot study comprised 13 semi-structured interviews with purposefully selected consultant doctors over a six-month period. Interview data coded and analysed using directed thematic content analysis with themes compared against the study’s propositions. Themes derived from the pilot study informed the online survey question items. Exploratory factor analysis using STATA and descriptive statistical methods applied to summarise findings. Data triangulation techniques used to corroborate and validate findings across the different methodological techniques. Setting NHS National PET-CT Clinical Audit Programme. Participants Doctors reporting on the Audit Programme. Main Outcome measures Extent of engagement with clinical audit, factors that influence engagement with clinical audit. Results Online survey: 58/59 doctors responded (98.3%). Audit was found to be initially threatening (79%); audit was reassuring (85%); audit helped validate professional competence (93%); participation in audit improved reporting skills (76%). Three key factors accounted for 97.6% of the variance in survey responses: (1) perception of audit’s usefulness, (2) a common purpose, (3) a supportive blame free culture of trust. Factor 1 influenced medical engagement most. Conclusions The study documents performance feedback as a key facilitator of medical engagement with clinical audit. It found that medical engagement with clinical audit was associated with reduced levels of professional anxiety and higher levels of perceived self-efficacy. PMID:28210493
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping
2017-10-01
The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2015-12-01
In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.
New applications of renormalization group methods in nuclear physics.
Furnstahl, R J; Hebeler, K
2013-12-01
We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P. A.; Santos, J. A. M., E-mail: joao.santos@ipoporto.min-saude.pt; Serviço de Física Médica do Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto
2014-07-15
Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a carefulmore » analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half-life radionuclides.« less
THE FINE STRUCTURE OF Streptomyces coelicolor
Hopwood, David A.; Glauert, Audrey M.
1960-01-01
Colonies and spore suspensions of Streptomyces coelicolor were fixed for electron microscopy by the method of Kellenberger, Ryter, and Séchaud (1958). In thin sections the nuclear regions have a lower average density than the cytoplasm and the outlines of these regions correspond well with the profiles of the chromatinic bodies observed with the light microscope. The nuclear regions contain fibrils, about 5 mµ in diameter. In contrast, after fixation by the method of Palade (1952) the nuclear material is coagulated into irregular dense masses and tubular structures about 20 mµ in diameter, lying in a nuclear "vacuole." The significance of these observations is discussed in relation to the observations of other workers on the fine structure of the nuclear material of other bacteria and the chromosomes of higher cells. PMID:13715794
Buhmann, Caecilie Böck
2007-01-01
The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.
Kunii, Yasuto; Suzuki, Yuriko; Shiga, Tetsuya; Yabe, Hirooki; Yasumura, Seiji; Maeda, Masaharu; Niwa, Shin-ichi; Otsuru, Akira; Mashiko, Hirobumi; Abe, Masafumi
2016-01-01
Background Following the Great East Japan Earthquake on March 11, 2011, the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant has continued to affect the mental health status of residents in the evacuation zone. To examine the mental health status of evacuee after the nuclear accident, we conducted the Mental Health and Lifestyle Survey as part of the ongoing Fukushima Health Management Survey. Methods We measured mental health status using the Kessler 6-item psychological distress scale (K6) in a total of 73,569 (response rate: 40.7%) evacuees aged 15 and over who lived in the evacuation zone in Fukushima Prefecture. We then dichotomized responders using a 12/13 cutoff on the K6, and compared the proportion of K6 scores ≥13 and ≤12 in each risk factor including demographic information, socioeconomic variables, and disaster-related variables. We also performed bivariate analyses between mental health status and possible risk factors using the chi-square test. Furthermore, we performed multivariate regression analysis using modified Poisson regression models. Results The median K6 score was 5 (interquartile range: 1–10). The number of psychological distress was 8,717 (14.6%). We found that significant differences in the prevalence of psychological distress by almost all survey items, including disaster-related risk factors, most of which were also associated with increased Prevalence ratios (PRs). Additionally, we found that psychological distress in each evacuation zone was significantly positively associated with the radiation levels in their environment (r = 0.768, p = 0.002). Conclusion The earthquake, tsunami and subsequent nuclear accident likely caused severe psychological distress among residents in the evacuation zone in Fukushima Prefecture. The close association between psychological distress and the radiation levels shows that the nuclear accident seriously influenced the mental health of the residents, which might be exacerbated by increased risk perception. To provide prompt and appropriate support, continued psychosocial intervention for evacuees is strongly recommended. PMID:27391446
SkyNet: A Modular Nuclear Reaction Network Library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-12-01
Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.
Origin and evolution of US Naval strategic nuclear policy to 1960. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreitlein, H.C.
1986-12-01
This thesis treats the impact of the atomic bomb on traditional naval strategy as that strategy had developed under the influence of Captain Alfred T. Mahan, how traditional naval strategy was modified by the development of naval aviation, the lessons of World War II, and the leadership of James Forrestal, and how the adoption of atomic weapons into naval strategic planning was integrally tied to naval aviation. The growth of the Soviet Union as a threat to world peace, and interservice rivalry over roles and missions are compared as factors that influenced the development of post-World War II naval strategicmore » thinking. The Navy's reaction to the adoption of massive retaliation as the foundation of the national strategic nuclear policy is discussed and analyzed.« less
Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal
NASA Astrophysics Data System (ADS)
Kollar, Lenka
Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be; Watanabe, Noboru
The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point outmore » in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.« less
Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores
NASA Technical Reports Server (NTRS)
Edwards, E. S.; Roux, S. J.
1998-01-01
The polarity of germinating single-celled spores of the fern Ceratopteris richardii Brogn. is influenced by gravity during a time period prior to the first cellular division designated a "polarity-determination window". After this window closes, control of polarity is seen in the downward (with respect to gravity) migration of the nucleus along the proximal face of the spore and the subsequent downward growth of the primary rhizoid. When spores are germinated on a clinostat the direction of nuclear migration and subsequent primary rhizoid growth is random. However, in each case the direction of nuclear migration predicts the direction of rhizoid elongation. Although it is the most obvious movement, the downward migration is not the first movement of the nucleus. During the polarity-determination window, the nucleus moves randomly within a region centered behind the trilete marking. While the polarity of many fern spores has been reported to be controlled by light, spores of C. richardii are the first documented to have their polarity influenced by gravity. Directional white light also affects the polarity of these spores, but this influence is slight and is secondary to that of gravity.
Association of Diet With Skin Histological Features in UV-B-Exposed Mice.
Bhattacharyya, Tapan K; Hsia, Yvonne; Weeks, David M; Dixon, Tatiana K; Lepe, Jessica; Thomas, J Regan
2017-09-01
Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B-exposed animals who received the obesity diet. Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. NA.
Nuclear speckles: molecular organization, biological function and role in disease
Galganski, Lukasz; Urbanek, Martyna O.
2017-01-01
Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640
Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeydina, O.; Koning, A.J.; Soppera, N.
2014-06-15
Automated methods are presented for the verification of large experimental and evaluated nuclear reaction databases (e.g. EXFOR, JEFF, TENDL). These methods allow an assessment of the overall consistency of the data and detect aberrant values in both evaluated and experimental databases.
Scanning of vehicles for nuclear materials
NASA Astrophysics Data System (ADS)
Katz, J. I.
2014-05-01
Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.
Scanning of vehicles for nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, J. I.
2014-05-09
Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost andmore » disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.« less
Cost effective nuclear commercial grade dedication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maletz, J.J.; Marston, M.J.
1991-01-01
This paper describes a new computerized database method to create/edit/view specification technical data sheets (mini-specifications) for procurement of spare parts for nuclear facility maintenance and to develop information that could support possible future facility life extension efforts. This method may reduce cost when compared with current manual methods. The use of standardized technical data sheets (mini-specifications) for items of the same category improves efficiency. This method can be used for a variety of tasks, including: Nuclear safety-related procurement; Non-safety related procurement; Commercial grade item procurement/dedication; Evaluation of replacement items. This program will assist the nuclear facility in upgrading its procurementmore » activities consistent with the recent NUMARC Procurement Initiative. Proper utilization of the program will assist the user in assuring that the procured items are correct for the applications, provide data to assist in detecting fraudulent materials, minimize human error in withdrawing database information, improve data retrievability, improve traceability, and reduce long-term procurement costs.« less
3DD - Three Dimensional Disposal of Spent Nuclear Fuel - 12449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorakova, Marketa; Slovak, Jiri
2012-07-01
Three dimensional disposal is being considered as a way in which to store long-term spent nuclear fuel in underground disposal facilities in the Czech Republic. This method involves a combination of the two most common internationally recognised disposal methods in order to practically apply the advantages of both whilst, at the same time, eliminating their weaknesses; the method also allows easy removal in case of potential re-use. The proposed method for the disposal of spent nuclear fuel will reduce the areal requirements of future deep geological repositories by more than 30%. It will also simplify the container handling process bymore » using gravitational forces in order to meet requirements concerning the controllability of processes and ensuring operational and nuclear safety. With regard to the issue of the efficient potential removal of waste containers, this project offers an ingenious solution which does not disrupt the overall stability of the original disposal complex. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu
2005-06-03
The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structuralmore » integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform.Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. The journal manuscript titled, "Structural Integrity Monitoring of Steam generator Tubing Using Transient Acoustic Signal Analysis," was published in IEEE Trasactions on Nuclear Science, Vol. 52, No. 1, February 2005. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.« less
Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei
2018-02-15
The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
A combined TLD/emulsion method of sampling dosimetry applied to Apollo missions
NASA Technical Reports Server (NTRS)
Schaefer, H. J.
1979-01-01
A system which simplifies the complex monitoring methods used to measure the astronaut's radiation exposure in space is proposed. The excess dose equivalents of trapped protons and secondary neutrons, protons, and alpha particles from local nuclear interactions are determined and a combined thermoluminescent dosimeter (TLD)/nuclear emulsion method which measures the absorbed dose with thermoluminescent dosimeter chips is presented.
Progress on plutonium stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, D.
1996-05-01
The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.
Supernovae neutrino pasta interaction
NASA Astrophysics Data System (ADS)
Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke
2017-01-01
In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.
Kostakis, George E; Blatov, Vladislav A; Proserpio, Davide M
2012-04-21
A novel method for the topological description of high nuclearity coordination clusters (CCs) was improved and applied to all compounds containing only manganese as a metal center, the data on which are collected in the CCDC (CCDC 5.33 Nov. 2011). Using the TOPOS program package that supports this method, we identified 539 CCs with five or more Mn centers adopting 159 topologically different graphs. In the present database all the Mn CCs are collected and illustrated in such a way that can be searched by cluster topological symbol and nuclearity, compound name and Refcode. The main principles for such an analysis are described herein as well as useful applications of this method.
Method for shearing spent nuclear fuel assemblies
Weil, Bradley S.; Watson, Clyde D.
1977-01-01
A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.
[Use of lithium carbonate as a leukocyte stimulant in acute radiation sickness in humans].
Konchalovskiĭ, M V; Shishkova, T V; Chotiĭ, V G; Baranov, A E
1989-03-01
A total of 50 patients, who had suffered from acute radiation sickness (I-III degree of severity) as a result of the accident at the Chernobyl Nuclear Power Plant, were followed up for hematological changes. The absorbed dose of relatively even gamma-irradiation assessed by karyometry fluctuated from 0.5 to 5.7 Gy. In 17 of the patients the influence of lithium carbonate on the course of radiation neutropenia was evaluated. No appreciable effect of the agent administration in a dose of 900 mg/patient/day was recorder from 9 to 42 day after irradiation. The authors have also considered the correlations of the values of irradiation doses calculated by varying methods of biological dosimetry.
Methodology and issues of integral experiments selection for nuclear data validation
NASA Astrophysics Data System (ADS)
Tatiana, Ivanova; Ivanov, Evgeny; Hill, Ian
2017-09-01
Nuclear data validation involves a large suite of Integral Experiments (IEs) for criticality, reactor physics and dosimetry applications. [1] Often benchmarks are taken from international Handbooks. [2, 3] Depending on the application, IEs have different degrees of usefulness in validation, and usually the use of a single benchmark is not advised; indeed, it may lead to erroneous interpretation and results. [1] This work aims at quantifying the importance of benchmarks used in application dependent cross section validation. The approach is based on well-known General Linear Least Squared Method (GLLSM) extended to establish biases and uncertainties for given cross sections (within a given energy interval). The statistical treatment results in a vector of weighting factors for the integral benchmarks. These factors characterize the value added by a benchmark for nuclear data validation for the given application. The methodology is illustrated by one example, selecting benchmarks for 239Pu cross section validation. The studies were performed in the framework of Subgroup 39 (Methods and approaches to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data files) established at the Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD).
"Other" indirect methods for nuclear astrophysics
NASA Astrophysics Data System (ADS)
Trache, Livius
2018-01-01
In the house of Trojan Horse Method (THM), I will say a few words about "other" indirect methods we use in Nuclear Physics for Astrophysics. In particular those using Rare Ion Beams that can be used to evaluate radiative proton capture reactions. I add words about work done with the Professore we celebrate today. With a proposal, and some results with TECSA, for a simple method to produce and use isomeric beam of 26mAl.
Spin temperature concept verified by optical magnetometry of nuclear spins
NASA Astrophysics Data System (ADS)
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.
2018-01-01
We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.
DOT National Transportation Integrated Search
1988-06-17
Use of nuclear asphalt content gauges for determining asphalt content of asphaltic concrete pavement are gaining acceptance as an alternative method to the vacuum extraction process. The reasons nuclear asphalt content gauges are considered promising...
METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR
Hauth, J.J.; Anicetti, R.J.
1962-12-01
A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Cruz, D. F.; Rochman, D.; Koning, A. J.
2012-07-01
This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {supmore » 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)« less
Mapping Quantitative Traits in Unselected Families: Algorithms and Examples
Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David
2009-01-01
Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016
The Influence of Hyperons and Strong Magnetic Field in Neutron Star Properties
NASA Astrophysics Data System (ADS)
Lopes, L. L.; Menezes, D. P.
2012-12-01
Neutron stars are among of the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the mass-radius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic field to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in β equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M ⊙, a natural explanation of why we do not know pulsars with masses above 2.0 M ⊙ arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field.
Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.
2014-02-01
The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.
Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.
Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A
2014-02-21
The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.
Winteringham, Louise N; Endersby, Raelene; Kobelke, Simon; McCulloch, Ross K; Williams, James H; Stillitano, Justin; Cornwall, Scott M; Ingley, Evan; Klinken, S Peter
2006-12-15
Myeloid leukemia factor 1 (MLF1) is an oncoprotein associated with hemopoietic lineage commitment and acute myeloid leukemia. Here we show that Mlf1 associated with a novel binding partner, Mlf1-associated nuclear protein (Manp), a new heterogeneous nuclear ribonucleoprotein (hnRNP) family member, related to hnRNP-U. Manp localized exclusively in the nucleus and could redirect Mlf1 from the cytoplasm into the nucleus. The nuclear content of Mlf1 was also regulated by 14-3-3 binding to a canonical 14-3-3 binding motif within the N terminus of Mlf1. Significantly Mlf1 contains a functional nuclear export signal and localized primarily to the nuclei of hemopoietic cells. Mlf1 was capable of binding DNA, and microarray analysis revealed that it affected the expression of several genes, including transcription factors. In summary, this study reveals that Mlf1 translocates between nucleus and cytoplasm, associates with a novel hnRNP, and influences gene expression.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1983-01-01
The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.
A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Auria, F; Rohatgi, Upendra S.
The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.
The impact of a port on the surrounding seashores based on the 13-year monitoring results
NASA Astrophysics Data System (ADS)
Tõnisson, Hannes; Orviku, Kaarel; Kont, Are
2017-04-01
The study was carried out in the vicinity of Sillamäe town and industrial port, located on the north-eastern coast of Estonia in the south-eastern part of the Gulf of Finland (The Baltic Sea). Sillamäe was potentially one of the most serious threats for the whole Baltic Sea environment. The town was founded together with the construction of a highly specialized chemical and metallurgy plant in 1946, where fuel rods and nuclear materials for the Soviet nuclear power plants and weapons were produced. The current study is focusing on the shore processes and the coastal sea fronting Sillamäe. The town is located east of the port. It is the region with the highest potential impact of the port. Until the town was founded and the factory with its nuclear waste depository was constructed, the shores near the town were described as one litho-dynamic system with a good natural balance. Major human influence (construction of the port, waste depository, etc.) and additionally climate warming has taken place since then. The shores in front of the nuclear waste depository are well protected today. However, the rapidly expanding port is the major obstacle of the longshore sediment transport since 2001. The aim of the study is to analyze the impact of the port to the changes in coastal evolution and sediment budget in the vicinity of the port based on the regular monitoring results. The dynamics of the seashores was assessed using remote methods and in situ measurements. Remote methods included the analyses of shoreline changes and changes in scarp positions in space and time using orthophotos. The study is also based on the measurements of scarp edges, shorelines and shore profiles conducted in 2004-2016. The measurements were carried out using Leica GS09 RTK-GPS and Leica level. The volume of sediments in the active zone of each profile was calculated. The active zone was defined as the zone from the mean shoreline to the elevation where storm waves were still able to influence the shore processes. The results suggest that either a stable geomorphic state or a slow accumulation has prevailed along major part of the studied coast. After stronger storms, occasional erosion events were registered in several sections of the study site. However, these changes were mostly temporary and a stable state was usually restored soon after the erosion event. There are two exceptions on profiles 1 and 9. The first of them has experienced a gradual increase in the volume of sediments (the most distant from the port) while the second one has gradually lost the sediments (the closest to the port). The reason of the loss is directly attributable to the unsuitable hard defence measures established during the Soviet period but still influencing the shore processes. The effect of the new port has been of minor importance but might increase in the future. Therefore, the need for monitoring coastal processes is still recommended. ACKNOWLEDGMENTS: This work has been funded by the Estonian Ministry of Education and Research and by the Estonian Science Foundation grants No. 8549, 9191 and IUT18-9.
NASA Astrophysics Data System (ADS)
Lahaye, S.; Huynh, T. D.; Tsilanizara, A.
2016-03-01
Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.
NASA Astrophysics Data System (ADS)
Bosco, Carlos A. C.; Maciel, Glauco S.; Rakov, Nikifor; de Araújo, Cid B.; Acioli, Lúcio H.; Simas, Alfredo M.; Athayde-Filho, Petrônio F.; Miller, Joseph
2007-11-01
The third-order non-linear optical response of mesoionic compounds (MIC) in dimethylsulfoxide (DMSO) and methanol solutions was investigated by use of collinear pump and probe technique with chirp-controlled femtosecond pulses. The experiments allowed the investigation of non-instantaneous nuclear processes and thermal effects induced by two-photon absorption (TPA). We found that the nuclear non-linearity of MIC in DMSO is ˜1/5 the benzene, which was used as a reference material. This result is attributed to the large inertia of MIC to rotation, compared to benzene. The results for MIC in methanol indicate the influence of thermal effects due to TPA.
Perturbation of nuclear architecture by long-distance chromosome interactions.
Dernburg, A F; Broman, K W; Fung, J C; Marshall, W F; Philips, J; Agard, D A; Sedat, J W
1996-05-31
Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.
The intriguing plant nuclear lamina.
Ciska, Malgorzata; Moreno Díaz de la Espina, Susana
2014-01-01
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access.
Uzer, Gunes; Bas, Guniz; Sen, Buer; Xie, Zhihui; Birks, Scott; Olcum, Melis; McGrath, Cody; Styner, Maya; Rubin, Janet
2018-06-06
βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rock-Magnetic Method for Post Nuclear Detonation Diagnostics
NASA Astrophysics Data System (ADS)
Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.
2011-12-01
A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.
Designed porosity materials in nuclear reactor components
Yacout, A. M.; Pellin, Michael J.; Stan, Marius
2016-09-06
A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.
Method for assigning sites to projected generic nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holter, G.M.; Purcell, W.L.; Shutz, M.E.
1986-07-01
Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less
NASA Astrophysics Data System (ADS)
Luis, Josep M.; Duran, Miquel; Andrés, José L.
1997-08-01
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.
Policke, Timothy A; Nygaard, Eric T
2014-05-06
The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.
NASA Astrophysics Data System (ADS)
Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.
2018-03-01
We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (B≈ 10 mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.
Nuclear norm-based 2-DPCA for extracting features from images.
Zhang, Fanlong; Yang, Jian; Qian, Jianjun; Xu, Yong
2015-10-01
The 2-D principal component analysis (2-DPCA) is a widely used method for image feature extraction. However, it can be equivalently implemented via image-row-based principal component analysis. This paper presents a structured 2-D method called nuclear norm-based 2-DPCA (N-2-DPCA), which uses a nuclear norm-based reconstruction error criterion. The nuclear norm is a matrix norm, which can provide a structured 2-D characterization for the reconstruction error image. The reconstruction error criterion is minimized by converting the nuclear norm-based optimization problem into a series of F-norm-based optimization problems. In addition, N-2-DPCA is extended to a bilateral projection-based N-2-DPCA (N-B2-DPCA). The virtue of N-B2-DPCA over N-2-DPCA is that an image can be represented with fewer coefficients. N-2-DPCA and N-B2-DPCA are applied to face recognition and reconstruction and evaluated using the Extended Yale B, CMU PIE, FRGC, and AR databases. Experimental results demonstrate the effectiveness of the proposed methods.
75 FR 16202 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
..., Revision 2, ``An Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing guide in the... nuclear power reactors. To meet these objectives, the guide describes statistical methods related to...
NASA Astrophysics Data System (ADS)
Hadi, S.; Artanti, A. N.; Rinanto, Y.; Wahyuni, D. S. C.
2018-04-01
Curcuminoid, consisting of curcumin, demethoxycurcumin and bis demethoxycurcumin, is the major compound in Curcuma longa L. and Curcuma xanthorrhiza rhizome. It has been known to have a potent antioxidants, anticancer, antibacteria activity. Those rhizomes needs to be dried beforehand which influenced the active compounds concentration. The present work was conducted to assess the curcuminoid content of C. longa L. and C. xanthorrhiza based on drying method with Nuclear Magnetic Resonance (NMR) and High Pressure Liquid Chromatography (HPLC)-UVD. Samples were collected and dried using freeze-drying and oven method. The latter is the common method applied in most drying method at herbal medicine preparation procedure. All samples were extracted using 96% ethanol and analyzed using NMR and HPLC-UVD. Curcuminoid as a bioactive compound in the sample exhibited no significant difference and weak significant difference in C. xanthorrhiza and C. longa L., respectively. HLPC-UVD as a reliable analytical method for the quantification is subsequently used to confirm of the data obtained by NMR. It resulted that curcuminoid content showed no significant difference in both samples. This replied that curcuminoids content in both samples were stable into heating process. These results are useful information for simplicia standardization method in pharmaceutical products regarding to preparation procedure.
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
Phylogeny of Celastrus L. (Celastraceae) inferred from two nuclear and three plastid markers.
Mu, Xian-Yun; Zhao, Liang-Cheng; Zhang, Zhi-Xiang
2012-09-01
This is the first comprehensive molecular investigation of the genus Celastrus L. Phylogenetic relationships within the genus were assessed based on sequences of two nuclear (ETS, ITS) and three plastid (psbA-trnH, rpl16 and trnL-F) regions using the Bayesian inference and the maximum parsimony methods. Our results show that Celastrus, together with Tripterygium, formed a maximal supported clade. Within the cluster, Celastrus is composed of a basal clade and a core Celastrus clade, and the latter is consisted of six subclades. Relationships among species are more influenced by latitude than continental distribution patterns. The cauline cyme and lunate seeds are distinct characters to one of the maximal supported subclades. Their close relationship, similar geographical pattern and habitat imply that C. flagellaris may be a potential invasive species threatening C. scandens in North America. Celastrus leiocarpus, C. oblanceifolius and C. rugosus are confirmed as synonyms of C. punctatus, C. aculeatus and C. glaucophyllus, respectively. Discordance between the molecular data and previous morphology-based subgeneric classifications are noted. More works are needed to clarify the relationship between Celastrus and Tripterygium and the species within Celastrus.
Influence of various factors on individual radiation exposure from the chernobyl disaster
Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M
2002-01-01
Background The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. Methods This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Results Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. Conclusion A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures. PMID:12495449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denk, J.
1987-01-01
The arms race and the proposed disarmament agreements stand at the center of this study as do how those issues are presented in various US and Western European newspapers. This study provides insight into these issues, the positions of the parties involved, and their goals and intentions. A major part focuses on how the Reykjavik Summit was used by the superpowers to achieve goals other than disarmament. The method used is content analysis, both quantitative and qualitative, with an emphasis on the latter. Analyzed and compared were articles of six major national newspapers, three from the United States and onemore » each from France, Great Britain, and West Germany. The content analysis allowed for inferences about how the superpowers prepared for the talks, carried them out and used the talks in their ongoing relationship. The study also reveals how Western European powers understand the superpowers relationship and their role in nuclear disarmament. Also, the study highlights the influence of the planned SDI program and how it might change deterrence and mutual assured destruction toward an atmosphere of greater uncertainty with respect to nuclear strategy.« less
Environmental Detection of Clandestine Nuclear Weapon Programs
NASA Astrophysics Data System (ADS)
Kemp, R. Scott
2016-06-01
Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
Sabotage at Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvis, James W.
1999-07-21
Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigationmore » conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.« less
Swelling-resistant nuclear fuel
Arsenlis, Athanasios [Hayward, CA; Satcher, Jr., Joe; Kucheyev, Sergei O [Oakland, CA
2011-12-27
A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.
The NPR, NPT and the prospects for disarmament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2010-10-04
In Prague's Hradcany Square on April 5, 2009, President Barack Obama offered a bold vision of the nuclear future that encompasses both reducing nuclear dangers and pursuing the goal of a world without nuclear weapons while maintaining, as long as nuclear weapons remain, a safe secure, and effective arsenal, to deter potential adversaries and to assure U.S. allies and other security partners that they can count on America's security commitments. The agenda put forward in Prague involves the full range of issues from deterrence to nonproliferation and disarmament. The 2010 Nuclear Posture Review (NPR) report, reflecting the twin objectives ofmore » the Prague speech, for the first time places the United States effort to lead expanded international efforts to rebuild and strengthen the global nuclear nonproliferation regime at the top the U.S. nuclear agenda. This attention underscores the fact that the top priority of the United States is to discourage additional states from acquiring nuclear weapon capabilities and to stop terrorist groups from acquiring weapon-usable nuclear materials. It also reinforced the view that positively influencing the 2010 Review Conference (RevCon) of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) was a key objective of the Obama Administration. The NPR developed both the vision and the policy, but details of implementation will need to be developed and better understood. This paper will address the Nuclear Posture Review and its implementation, as well as it's relation to, and impact on, the NPT RevCon and the long term prospects for nonproliferation and disarmament.« less
JAEA's actions and contributions to the strengthening of nuclear non-proliferation
NASA Astrophysics Data System (ADS)
Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro
2012-06-01
Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.
Nuclear cycler: An incremental approach to the deflection of asteroids
NASA Astrophysics Data System (ADS)
Vasile, Massimiliano; Thiry, Nicolas
2016-04-01
This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.
Carried by History: Cesar Lattes, Nuclear Emulsions, and the Discovery of the Pi-meson
NASA Astrophysics Data System (ADS)
Vieira, Cássio Leite; Videira, Antonio Augusto Passos
2014-03-01
We analyze the role played by the Brazilian physicist Cesar Lattes (1924-2005) in the historical development of the nuclear emulsion technique and in the co-discovery of the pion. His works influenced and gave impetus to the development of experimental physics in Brazil, the foundation of a national center dedicated to physics research, the beginnings of Brazilian "Big Science," and the inauguration of a long-lasting collaboration between Brazil and Japan in the field of comic ray physics.
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
2016-01-01
war including the use of many nuclear weapons—on the other. Although the simplifications in linear sequencing theory were adequate to help U.S. deci ...Liberation Army SDF Self -Defense Forces 1 CHAPTER ONE Time-Tested Measures Short of War This report describes a dangerous strategic weakness of the...representative of standard—and long- standing—practices in international behavior.6 The bilateral, nuclear-era Cold War theories of military escalation that
Heavy metals in the cell nucleus - role in pathogenesis.
Sas-Nowosielska, Hanna; Pawlas, Natalia
2015-01-01
People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.
Waters, R; Moustacchi, E
1975-01-01
The photoreactivability of UV-induced pyrimidine dimers in the nuclear and mitochondrial DNAs of Saccharomyces cerevisiae has been investigated in conjunction with the fate of these photoproducts following postirradiation dark incubation in saline and nutrient media. In all instances, survival and "petite" induction were measured. An attempt has been made to relate these results to present ideas on the repair of UV damages in DNA.
In-pile tests at Karlsruhe of LWR fuel-rod behavior during the heatup phase of a LOCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karb, E.H.
1980-01-01
In order to investigate the influence of a nuclar environment on the mechanisms of fuel-rod failure, in-pile tests simulating the heatup phase of a loss-of-coolant accident in a pressurized-water reactor are being conducted with irradiated and unirradiated short-length single rods in the FR2 reactor at Kernforschungszentrum karlsruhe (Karlsruhe Nuclear Reasearch Center), Federal Republic of Germany, within the Project Nuclear Safety. With nearly 70% of the scheduled tests completed, no such influences have been found. The in-pile burst and deformation data are in good agreement with results from nonnuclear tests with electrically heated fuel-rod simulators. The phenomenon of pellet disintegration, whichmore » has been observed in all tests with previously irradiated rods, needs further investigation.« less
Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores)
Fernández-Mazuecos, Mario; Blanco-Pastor, José Luis; Gómez, José M.; Vargas, Pablo
2013-01-01
Background and Aims The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ∼30 species and subspecies with highly specialized corollas. Methods A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. Key Results A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. Conclusions The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes. PMID:24142920
Terry, Alan J; Chaplain, Mark A J
2011-12-07
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fukushima Daiichi Information Repository FY13 Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis; Phelan, Cherie; Schwieder, Dave
The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describesmore » the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.« less
NASA Astrophysics Data System (ADS)
Zhe, Yang
2017-06-01
There are often mechanical problems of emergency power generation units in nuclear power plant, which bring a great threat to nuclear safety. Through analyzing the influence factors caused by mechanical failure, the existing defects of the design of mechanical support system are determined, and the design idea has caused the direction misleading in the field of maintenance and transformation. In this paper, research analysis is made on basic support design of diesel generator set, main pipe support design and important components of supercharger support design. And this paper points out the specific design flaws and shortcomings, and proposes targeted improvement program. Through the implementation of improvement programs, vibration level of unit and mechanical failure rate are reduced effectively. At the same time, it also provides guidance for design, maintenance and renovation of diesel generator mechanical support system of nuclear power plants in the future.
Pawar, Sumit; Ungricht, Rosemarie; Tiefenboeck, Peter; Leroux, Jean-Christophe
2017-01-01
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER. PMID:28826471
Taddei, Angela; Schober, Heiko; Gasser, Susan M.
2010-01-01
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704
Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neudecker, Denise
2015-06-17
Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.
Can, Nafiz Öncü; Can, Özgür Devrim; Osmaniye, Derya; Demir Özkay, Ümide
2018-03-21
Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR), ¹H Nuclear Magnetic Resonance Spectroscopy (¹H-NMR), 13 C Nuclear Magnetic Resonance Spectroscopy ( 13 C-NMR) and Electronspray Ionisation Mass Spectroscopy (ESI-MS) spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST) and modified forced swimming (MFST) methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c , 2d , 2e , 2f , 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c , 2d , 2e , 2f , 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg) was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.
Wen, Shi; Zhan, Bohan; Feng, Jianghua; Hu, Weize; Lin, Xianchao; Bai, Jianxi; Huang, Heguang
2017-11-02
The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1 H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively.
Investigation of Spatial Control Strategies for AHWR: A Comparative Study
NASA Astrophysics Data System (ADS)
Munje, R. K.; Patre, B. M.; Londhe, P. S.; Tiwari, A. P.; Shimjith, S. R.
2016-04-01
Large nuclear reactors such as the Advanced Heavy Water Reactor (AHWR), are susceptible to xenon-induced spatial oscillations in which, though the core average power remains constant, the power distribution may be nonuniform as well as it might experience unstable oscillations. Such oscillations influence the operation and control philosophy and could also drive safety issues. Therefore, large nuclear reactors are equipped with spatial controllers which maintain the core power distribution close to desired distribution during all the facets of operation and following disturbances. In this paper, the case of AHWR has been considered, for which a number of different types of spatial controllers have been designed during the last decade. Some of these designs are based on output feedback while the others are based on state feedback. Also, both the conventional and modern control concepts, such as linear quadratic regulator theory, sliding mode control, multirate output feedback control and fuzzy control have been investigated. The designs of these different controllers for the AHWR have been carried out using a 90th order model, which is highly stiff. Hence, direct application of design methods suffers with numerical ill-conditioning. Singular perturbation and time-scale methods have been applied whereby the design problem for the original higher order system is decoupled into two or three subproblems, each of which is solved separately. Nonlinear simulations have been carried out to obtain the transient responses of the system with different types of controllers and their performances have been compared.
Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming
2016-12-22
Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.
Gaudeul, Myriam; Gardner, Martin F; Thomas, Philip; Ennos, Richard A; Hollingsworth, Pete M
2014-09-05
New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives.
Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M
2014-11-01
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.
Towards a self-consistent dynamical nuclear model
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.
2017-04-01
Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Cognata, M., E-mail: lacognata@lns.infn.it; Kiss, G. G.; Mukhamedzhanov, A. M.
2015-10-15
Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization tomore » direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.« less
Tracking of Nuclear Production using Indigenous Species: Final LDRD Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.
Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show thatmore » there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.« less
Physics and instrumentation for imaging in-vivo drug distribution.
Singh, M; Waluch, V
2000-03-15
Several imaging methods are currently available to measure drugs noninvasively. Of these, two techniques are today central to such measurements: nuclear imaging and magnetic resonance imaging/spectroscopy (MRI and MRS). While other methods, such as optical techniques, are rapidly gaining in interest, they have not yet attained the degree of development that makes them effective in measuring drugs in living systems, except in a small number of examples. The following introduction provides some basic elements of the potential and the limitations of both nuclear imaging and MRI/MRS techniques, methods that will be used in the studies described in the articles in this issue. However, and for those desiring to gain a better understanding of both methods, the reader is advised to consult much more extensive reviews and books describing such methods. A suggested list of books and articles on Nuclear Imaging and MRI/MRS is given.
Nuclear medicine in cancer diagnosis and therapy
NASA Astrophysics Data System (ADS)
Chernov, V.; Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.
2017-09-01
Early cancer diagnosis remains one of the most actual problems of medicine, since it allows using the most effective methods of cancer treating. Unlike most diagnostic methods used in oncology, the methods of nuclear medicine allow assessing not so much the anatomic changes in the organ as the disturbance of metabolic processes in tumors and surrounding tissues. The authors describe the main radiopharmaceuticals used for diagnose and radiotherapy of malignant tumors.
NASA Technical Reports Server (NTRS)
Knies, R. J.; Byrn, N. R.; Smith, H. T.
1972-01-01
A study program of radiation shielding against the deleterious effects of nuclear radiation on man and equipment is reported. The methods used to analyze the radiation environment from bremsstrahlung photons are discussed along with the methods employed by transport code users. The theory and numerical methods used to solve transport of neutrons and gammas are described, and the neutron and cosmic fluxes that would be present on the gamma-ray telescope were analyzed.
Radiation doses and neutron irridation effects on human cells based on calculations
NASA Astrophysics Data System (ADS)
Radojevic, B. B.; Cukavac, M.; Jovanovic, D.
In general, main aim of our paper is to follow influence of neutron's radiation on materials, but one of possible applications of fast neutrons in therapeutical reasons i.e. their influence on carcinom cells of difficuilt geometries in human bodies too. Interactions between neutrons and human cells of tissue are analysed here. We know that the light nuclei of hydrogen, nitrogen, carbon, and oxygen are main constituents of human cells, and that different nuclear models are usually used to present interactions of nuclear particles with mentioned elements. Some of most widely used pre-equilibrium nuclear models are: intranuclear cascade model (ICN), Harp-Miller-Berne (HMB), geometry-dependent hybrid (GDH) and exciton models (EM). In this paper is studied and calculated the primary energetic spectra of the secundary particles (neutrons, protons, and gamas) emitted from this interactions, and followed by corresponding integral cross sections, based on exciton model (EM). The total emission cross-section is the sum of emissions in all stages of energies. Obtained spectra for interactions type of (n, n'), (n, p), and (n, ?), for various incident neutron energies in the interval from 3 MeV up to 30 MeV are analysed too. Some results of calculations are presented here.
Chem I Supplement: Nuclear Synthesis and Identification of New Elements.
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1985-01-01
As background material for a paper on the transuranium elements (SE 537 837), this article reviews: (1) several descriptive terms; (2) nuclear reactions; (3) radioactive decay modes; (4) chemical background; and (5) experimental methods used in this field of research and more broadly in nuclear chemistry. (Author/JN)
Biological Implications of the Nuclear Age.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
Reported are the proceedings of an interdisciplinary symposium on the effects on the biosphere of the release of radiation from the use of nuclear energy. Papers given include discussions of the use of radioisotopes in medicine, the benefits and possible consequences of peaceful applications of nuclear explosives, methods of estimating maximum…
Designing the Nuclear Energy Attitude Scale.
ERIC Educational Resources Information Center
Calhoun, Lawrence; And Others
1988-01-01
Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)
Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...
NASA Astrophysics Data System (ADS)
Wurdiyanto, G.; Candra, H.
2016-03-01
The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.
Tsuchiya, Megumi; Karim, M Rezaul; Matsumoto, Taro; Ogawa, Hidesato; Taniguchi, Hiroaki
2017-01-24
Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.
Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official Nuclear Forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with nearly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI) (Figure 1). Besidesmore » providing a network of nuclear forensics laboratories that are able to assist the global community during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. Past efforts to advance nuclear forensic science have also included scenarios that asked laboratories to adapt conventional forensics methods (e.g. DNA, fingerprints, tool marks, and document comparisons) for collecting and preserving evidence comingled with radioactive materials.« less
Environmental Hazards of Nuclear Wastes
ERIC Educational Resources Information Center
Micklin, Philip P.
1974-01-01
Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)
Sealing nuclear graphite with pyrolytic carbon
NASA Astrophysics Data System (ADS)
Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai
2013-10-01
Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).
Production of nuclear grade zirconium: A review
NASA Astrophysics Data System (ADS)
Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.
2015-11-01
Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.
NASA Astrophysics Data System (ADS)
Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.
2018-04-01
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.
[Prospects of systemic radioecology in solving innovative tasks of nuclear power engineering].
Spiridonov, S I
2014-01-01
A need of systemic radioecological studies in the strategy developed by the atomic industry in Russia in the XXI century has been justified. The priorities in the radioecology of nuclear power engineering of natural safety associated with the development of the radiation-migration equivalence concept, comparative evaluation of innovative nuclear technologies and forecasting methods of various emergencies have been identified. Also described is an algorithm for the integrated solution of these tasks that includes elaboration of methodological approaches, methods and software allowing dose burdens to humans and biota to be estimated. The rationale of using radioecological risks for the analysis of uncertainties in the environmental contamination impacts,at different stages of the existing and innovative nuclear fuel cycles is shown.
Nuclear Targeting Terms for Engineers and Scientists
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, John W.
The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less
Xiang, Xin
2017-12-11
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.
The overview of nuclear energy situation in the World and Turkey
NASA Astrophysics Data System (ADS)
Kaplan, Yusuf Alper; Karagöz, Merve; Sayılmaz, Serhat
2017-09-01
The dependence on the energy and its use has increased in every country due to the increasing population and advanced technology. As a result of it, the reserves of fossil fuel have decreased, several energy crises have occurred from time to time and the alternative energy sources have been on the focus. One of these alternative energy sources is nuclear energy. The nuclear power plants, which were built in order to get nuclear energy, have attracted the attention thanks to some disadvantages such as its high cost and emission of radiation while they do not radiate harmful gases towards environment. The nuclear power plants that have already been and are planned to be constructed by a number of countries have become problematic because of the power plant accidents. On one hand, some countries have abandoned the nuclear power plants owing to the accidents mentioned above, on the other hand some other countries have continued to operate the nuclear power plants by claiming the necessity to meet the increasing demand on energy. It is seen that conflicts and problems experienced in the geography in which Turkey is located impacts the energy security of Turkey and it is understood that this situation may have a negative influence on national security of Turkey. Because of all these reasons, actualizing nuclear energy projects are important for Turkey which is dependent in respect of energy.
Mitochondrial-Nuclear Epistasis: Implications for Human Aging and Longevity
Tranah, Gregory
2010-01-01
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear – mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability. PMID:20601194
Nuclear power industry: Tendencies in the world and Ukraine
NASA Astrophysics Data System (ADS)
Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.
2007-11-01
This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of "nonstandard" fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine's total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter ("Sarkofag") covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station's fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.
BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein
Mackenzie, Ryan J.; Besson, Arnaud; Jeng, Sophia; Carey, Alyssa; LaTocha, Dorian H.; Fleischman, Angela G.; Duquesnes, Nicolas; Eide, Christopher A.; Vasudevan, Kavin B.; Loriaux, Marc M.; Firpo, Eduardo; Cortes, Jorge E.; McWeeney, Shannon; O’Hare, Thomas; Roberts, James M.; Druker, Brian J.; Deininger, Michael W.
2014-01-01
Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a well-characterized malignancy caused by the BCR-ABL1 tyrosine kinase. p27 is predominantly cytoplasmic in CML and nuclear in normal cells. BCR-ABL1 regulates nuclear and cytoplasmic p27 abundance by kinase-dependent and -independent mechanisms, respectively. p27 knockdown in CML cell lines with predominantly cytoplasmic p27 induces apoptosis, consistent with a leukemogenic role of cytoplasmic p27. Accordingly, a p27 mutant (p27CK−) devoid of Cdk inhibitory nuclear functions enhances leukemogenesis in a murine CML model compared with complete absence of p27. In contrast, p27 mutations that enhance its stability (p27T187A) or nuclear retention (p27S10A) attenuate leukemogenesis over wild-type p27, validating the tumor-suppressor function of nuclear p27 in CML. We conclude that BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. These findings suggest that cytoplasmic mislocalization of p27 despite BCR-ABL1 inhibition by tyrosine kinase inhibitors may contribute to drug resistance, and effective therapeutic strategies to stabilize nuclear p27 must also prevent cytoplasmic mislocalization. PMID:25293778
A Cyber Security Self-Assessment Method for Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glantz, Clifford S.; Coles, Garill A.; Bass, Robert B.
2004-11-01
A cyber security self-assessment method (the Method) has been developed by Pacific Northwest National Laboratory. The development of the Method was sponsored and directed by the U.S. Nuclear Regulatory Commission. Members of the Nuclear Energy Institute Cyber Security Task Force also played a substantial role in developing the Method. The Method's structured approach guides nuclear power plants in scrutinizing their digital systems, assessing the potential consequences to the plant of a cyber exploitation, identifying vulnerabilities, estimating cyber security risks, and adopting cost-effective protective measures. The focus of the Method is on critical digital assets. A critical digital asset is amore » digital device or system that plays a role in the operation, maintenance, or proper functioning of a critical system (i.e., a plant system that can impact safety, security, or emergency preparedness). A critical digital asset may have a direct or indirect connection to a critical system. Direct connections include both wired and wireless communication pathways. Indirect connections include sneaker-net pathways by which software or data are manually transferred from one digital device to another. An indirect connection also may involve the use of instructions or data stored on a critical digital asset to make adjustments to a critical system. The cyber security self-assessment begins with the formation of an assessment team, and is followed by a six-stage process.« less