Science.gov

Sample records for nuclear microprobe techniques

  1. The proton (nuclear) microprobe

    NASA Astrophysics Data System (ADS)

    Legge, G. J. F.

    1989-04-01

    The scanning proton microprobe (SPMP) is closely related to the scanning electron microprobe (SEMP) or scanning electron microscope (SEM) with X-ray detector. Though the much greater elemental sensitivity of the SPMP is inherent in the physics, the generally inferior spatial resolution of the SPMP is not inherent and big improvements are possible, As its alternative name would imply, the SPMP is often used with heavier particle beams and with nuclear rather than atomic reactions. Its versatility and quantitative accuracy have justified greater instrumentation and computer power than that associated with other microprobes. It is fast becoming an industrially and commercially important instrument and there are few fields of scientific research in which it has not played a part. Notable contributions have been made in biology, medicine, agriculture, semiconductors, geology, mineralogy, extractive metallurgy, new materials, archaeology, forensic science, catalysis, industrial problems and reactor technology.

  2. The Lund nuclear microprobe in newsprint research

    NASA Astrophysics Data System (ADS)

    Kristiansson, P.; Malmqvist, L.; Sjöland, K. A.; Sunnerberg, G.

    1995-09-01

    The successful development and operation of a nuclear microprobe (NMP) depend very much on interdisciplinary collaboration with other areas of research or industrial development. In this paper an application of NMP measurements on newsprint and print on newsprint is presented as an example of an industrial application. A nuclear microprobe, in conjunction with the PIXE technique, has been used to study the news ink distribution of full-tone prints on newsprint on a micrometre scale. The off-axis STIM technique has been used to study mass variations, i.e. the fibrous structure, in newsprint. The method allows studies of the true distribution of ink pigment within a print. The characteristics of such distributions are demonstrated for full-tone prints on a newsprint calendered with different line loads and for full-tone prints on another type of newsprint with different amounts of ink transferred. Statistically significant differences between different distributions are found.

  3. Materials analysis with a nuclear microprobe

    SciTech Connect

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given.

  4. Biomedical application of the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1987-04-01

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9×2.9 μm 2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described.

  5. Data acquisition with a nuclear microprobe

    SciTech Connect

    Maggiore, C.

    1980-01-01

    Spatially resolved information from the near surfaces of materials can be obtained with a nuclear microprobe. The spatial resolution is determined by the optics of the instrument and radiation damage in the specimen. Two- and three-dimensional maps of elemental concentration may be obtained from the near surfaces of materials. Data are acquired by repeated scans of a constantly moving beam over the region of interest or by counting for a preset integrated charge at each specimen location.

  6. The new nuclear microprobe at Livermore

    NASA Astrophysics Data System (ADS)

    Roberts, M. L.; Bench, G. S.; Heikkinen, D. W.; Morse, D. H.; Bach, P. R.; Pontau, A. E.

    1995-09-01

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new nuclear microprobe beamline. This beamline is located on the LLNL 10 MV tandem accelerator and can be used for multidisciplinary research using PIXE, PIGE, energy loss tomography, or IBS techniques. Distinctive features of the beamline include incorporation of magnet power supplies into the accelerator control system, computer-controlled object and image slits, automated target positioning to sub-micron resolution, and video optics for beam positioning and observation. Mitigation of vibrations was accomplished with vibration isolators and a rigid beamline design while integral beamline shielding was used to shield from stray magnetic fields. Available detectors include a wavelength dispersive X-ray spectrometer, a High-Purity Germanium detector (HPGe), a Lithium-Drifted Silicon X-Ray detector (SiLi), and solid state surface barrier detectors. Along with beamline performance, results from recent measurements on determination of trace impurities in an International Thermonuclear Experimental Reactor (ITER) super conducting wire strand, determination of Ca/Sr ratios in seashells, and determination of minor and trace element concentrations in sperm cells are presented.

  7. Proton beam micromachined resolution standards for nuclear microprobes

    NASA Astrophysics Data System (ADS)

    Watt, F.; Rajta, I.; van Kan, J. A.; Bettiol, A. A.; Osipowicz, T.

    2002-05-01

    The quest for smaller spot sizes has long been the goal of many nuclear microprobe groups worldwide, and consequently there is a need for good quality resolution standards. Such standards have to be consistent with the accurate measurement of state-of-the-art nuclear microbeam spot sizes, i.e. 400 nm for high current applications such as Rutherford backscattering spectrometry and proton-induced X-ray emission, and 100 nm for low current applications such as scanning transmission ion microscopy or ion beam-induced charge. The criteria for constructing a good quality nuclear microprobe resolution standard is therefore demanding: the standard has to be three dimensional with a smooth surface, have an edge definition better than the state-of-the-art beam spot resolutions, and exhibit vertical side walls. Proton beam micromachining (PBM) is a new technique of high potential for the manufacture of precise 3D microstructures. Recent developments have shown that metallic microstructures (nickel and copper) can be formed from these microshapes. Prototype nickel PBM resolution standards have been manufactured at the Research Centre for Nuclear Microscopy, NUS and these new standards are far superior to the 2000 mesh gold grids currently in use by many groups in terms of surface smoothness, vertical walls and edge definition. Results of beam resolution tests using the new PBM standards with the OM2000 microprobe end station/HVEE Singletron system have yielded spot sizes of 290 nm×450 nm for a 50 pA beam of 2 MeV protons.

  8. Nuclear microprobe applications to radioactive waste management basic research

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Badillo, V.; Barré, N.; Bois, L.; Cachoir, C.; Gallien, J. P.; Guilbert, S.; Mercier, F.; Tiffreau, C.

    1999-10-01

    Radioactive waste management is one of the major technical and scientific challenge to be solved by industrialized countries near the beginning of the 21st century. Relevant questions arise about the extrapolation of the long term-behavior of materials from waste package, engineered barriers and near field repository. Whatever the strategical option might be, wet atmosphere or water intrusion through the different barriers constitute the two main remobilization factors for radionuclides in the geosphere and the biosphere. The study of solid alteration processes and elemental sorption phenomena on mineral surfaces is one of the most efficient basic research approaches to assess the long term performance of waste materials. Ion beam analysis and more recently nuclear microprobe techniques have been applied to investigate exchange mechanisms near representative solid/liquid interfaces such as glass/deionized water, uranium dioxide/granitic or clay water or mineral surface/aqueous solution doped with chemical elements analogue to actinide or fission products. This paper intends to describe the different works that have been carried out in Saclay using the nuclear microprobe facility. The coupling of μRBS, μPIXE and μNRA permits to determine the evolution of the surface composition induced by chemical reactions involved. Complementary observation of solid morphology and solution analysis allows to obtain a complete elemental balance on exchange processes.

  9. Applications of the nuclear microprobe in planetary science

    NASA Astrophysics Data System (ADS)

    Vis, R. D.

    1997-07-01

    Nuclear microprobes have been used in a variety of studies on extra-terrestrial materials. Although by far the most used analytical technique is micro-PIXE, valuable contributions have also been given to planetary science using other methods available among the suite of analytical techniques provided by the microprobe. Also a few studies of the application of synchrotron radiation to planetary science has been published. Research aims are either to get a full analysis of very small objects such as cosmic dust or to extract elemental profiles over areas of interest. In the latter case, these distributions may give insight into the temperature history of the objects studied. In this way single crystals, chondrules in ordinary chondrites but also phase transitions in iron-meteorites have been investigated. Being by far the oldest objects available for research and being conserved for billions of years without serious wearing and erosion as would happen on earth, their detailed studies provide knowledge about the early history of the solar system and on primary geological processes.

  10. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  11. Analysis of biological materials using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  12. Technical aspects of nuclear microprobe analysis of senile plaques from alzheimer patients

    NASA Astrophysics Data System (ADS)

    Larsson, N. P.-O.; Tapper, U. A. S.; Sturesson, K.; Odselius, R.; Brun, A.

    1990-04-01

    Alzheimer's disease, a common form of senile dementia, has been proposed to be caused by aluminium. One of the interesting structures to be studied, senile plaque cores in the brain, have centres of only about 10 μm. We have investigated the possibility of applying nuclear microprobes to sections containing senile plaques. An alternative staining procedure, TMToluidin blue staining using a spray technique, is also presented. An outline is given of a procedure for preparing senile plaque specimens for nuclear microprobe analysis. This includes a technique for accurate ion beam positioning, utilizing electron microscopy-grids. The subject may be of general interest since sample preparation is one of the most important aspects in microprobe analysis of biological matter.

  13. Imaging mass spectrometry with nuclear microprobes for biological applications

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Yamada, H.; Honda, Y.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2009-06-01

    A mass spectrometric technique using nuclear microprobes is presented in this paper for biological applications. In recent years, imaging mass spectrometry has become an increasingly important technique for visualizing the spatial distribution of molecular species in biological tissues and cells. However, due to low yields of large molecular ions, the conventional secondary ion mass spectrometry (SIMS), that uses keV primary ion beams, is typically applied for imaging of either elements or low mass compounds. In this study, we performed imaging mass spectrometry using MeV ion beams collimated to about 10 μm, and successfully obtained molecular ion images from plant and animal cell sections. The molecular ion imaging of the pollen section showed high intensities of PO3- ions in the pollen cytoplasm, compared to the pollen wall, and indicated the heterogeneous distribution in the cytoplasm. The 3T3-L1 cell image revealed the high intensity of PO3- ions, in particular from the cell nucleus. The result showed that not only the individual cell, but also the cell nucleus could be identified with the present imaging technique.

  14. Application of nuclear microprobes to material of archaeological interest

    NASA Astrophysics Data System (ADS)

    Demortier, G.

    1988-03-01

    Strongly focused nuclear microprobes have not been widely used until recently for characterization of material of archaeological interest. The main reasons are (1) the large size of many artefacts are not suitable for measurements in vacuum together with the requirement of avoiding sampling from (often) unique material; (2) the frequent surface corrosion of objects to depths thicker than the range of the incident particles; (3) the high cost of analyses when compared with the budgets of Museum's curators for scientific investigations. About ten laboratories throughout the world are concerned with nuclear milliprobe for investigation of bones, glasses, papers and parchments, potsherds, coins, iron and bronze artefacts, silver and gold jewelry. The nuclear microprobe facilities in this field of research have mostly been developed at Bartol-Delaware and Los Alamos (USA), Lower Hutt (New Zealand), Saclay (France) and LARN — Namur (Belgium).

  15. The nuclear microprobe: An insight of applications in cell biology

    NASA Astrophysics Data System (ADS)

    Moretto, Ph.; Llabador, Y.

    1997-07-01

    During the last five years, the evolution of biomedical research based upon nuclear microprobe analysis has followed the development of experimental models of cultured or isolated cells. Fundamental studies of cellular mechanisms have been approached by means of in vitro assays associated with single cell analysis. Within those groups which are involved in such programs, special emphasis has been placed on cell culture and processing techniques which fulfill the methodological requirements for intracellular ion beam analysis. Great efforts have been orientated towards the improvement of normalization procedures. It is now possible to provide reliable quantitative results expressed in such units that they can be easily cross-checked using conventional methods. Imaging techniques have been also developed for the identification of the analyzed structures. In this paper, different domains of cell biology which have been addressed during the last years are reviewed. Studies dealing with cellular physiology and pharmacology are briefly presented as are also those related to the role of trace elements. Topics under development in our group as well as ongoing investigations will be also evoked.

  16. Depth profiling of light elements using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Bodart, F.; Demortier, G.

    1999-10-01

    In this paper, we present some examples of depth profiling of light elements with a nuclear microprobe performed at LARN during the last decade. Some new possibilities of ion beam microanalysis of light elements with our 2 MV Tandetron accelerator are also discussed. The first example of application consists of depth profiling of nitrogen and aluminium on a SiAl alloy implanted with nitrogen. The nuclear microprobe was used to determine three-dimensional distribution of aluminium, silicon and nitrogen in a specific grain of the implanted alloy. The nitrogen depth profile was measured using the well known 15N(p,αγ) 12C nuclear resonant reaction at 429 keV. The aluminium depth profile was measured with the resonant nuclear reaction 27Al(p,γ) 28Si at 991.8 keV. Depth profiling of carbon and oxygen is also possible using nuclear reactions induced by 3He particles. Nuclear reactions like 12C( 3He,p i) 14N ( i=0,1,2) or 16O( 3He,α 0) 15O were used to measure local wear tracks on a diamond coating after a fretting test against a Cr steel ball. PIXE microprobe and nuclear reactions induced by deuterons were also used to characterise the gold-silicon alloy formed by the diffusion of silicon into gold foils. The nuclear reaction 28Si(d,p) 29Si in a transmission geometry was used in order to depth profile silicon especially in the grain boundaries of the gold-silicon alloy. Some new perspectives of depth profiling light elements are also presented using our new 2 MV Tandetron accelerator, such as high energy 4He microbeams for depth profiling of carbon or nitrogen.

  17. Spherical chamber effective solution for multipurpose nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Pelicon, P.; Simčič, J.; Jakšić, M.; Medunić, Z.; Naab, F.; McDaniel, F. D.

    2005-04-01

    Vacuum chambers for multipurpose nuclear microprobes must provide for the installation and servicing of several detection systems operating simultaneously, as well as sample visual control and mechanical manipulation. Detectors for X-rays, scattered ions, nuclear reaction products, secondary electrons, secondary luminescence and optical microscopes are mounted at the angles preferably larger than 120° with respect to the beam direction. Their positioning should not increase the space in the region between the ion lens and the focal point of the microprobe. Spherical chambers presented here effectively solve this problem and offer, at the same time, ports for gamma-ray detector, annular microscope, easy manual access in the sample region, ports for vertical and horizontal sample positioning and manipulation, as well as STIM and ERDA detectors at forward scattering angles and the Faraday cup. The basic construction, resulting in the three different but similar chamber designs at three nuclear microprobes worldwide, are presented. Current installation details, comments on the performance and suggested improvements are given.

  18. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.

    2003-09-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.

  19. Nuclear microprobe analysis of 14N and its application to the study of ammonium-bearing minerals

    NASA Astrophysics Data System (ADS)

    Mosbah, M.; Bastoul, A.; Cuney, M.; Pironon, J.

    1993-05-01

    Nuclear microprobe technique has been applied to the study of ammonium-bearing feldspar, biotite and muscovite crystals selected from metamorphosed black shales and pegmatite veins cross-cutting the shales sampled in the Central Jebilet (Morocco). 14N is easily detected by the nuclear reactions (d, p 0) and (d, α 0) with deuteron energy > 1.6 MeV for a better detection limit ( 14N ⩽ 50 ppm) . The experimental procedure has been developed and is detailed herein. TiN has been used for calibration. The nitrogen content measured in feldspar, biotite and muscovite crystals by the nuclear microprobe is perfectly consistent with quantitative nitrogen analysis by catharometry and semiquantitative analysis by Fourier transform infrared microspectrometry. The nuclear microprobe results can be used to calibrate complementary methods such as ion microprobe and IR microspectrometry.

  20. Nuclear microprobe and optical investigation of sparkling wine bottles

    NASA Astrophysics Data System (ADS)

    Padayachee, J.; Prozesky, V. M.; Pineda, C. A.

    1999-10-01

    Glass bottles, used for sparkling wine, are treated with freon during manufacturing to harden the inside surface. Although this type of treatment normally improves the properties of the glass, in this case the occurrence of "egg" formations (egg-shaped rough areas) on distinct areas of bottles, as well as yeast sticking to the insides of bottles at specific areas pointed to the possibility of different areas showing different properties in the same bottle. The question was whether the correct gas was used for the treatment, and secondly, whether the process was controlled well enough to obtain the correct properties for the inside of the glass. We present results of an optical microscopy and nuclear microprobe (NMP) investigation.

  1. Nuclear microprobe imaging of gallium nitrate in cancer cells

    NASA Astrophysics Data System (ADS)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  2. Nuclear microprobe analysis of lead profile in crocodile bones

    NASA Astrophysics Data System (ADS)

    Orlic, I.; Siegele, R.; Hammerton, K.; Jeffree, R. A.; Cohen, D. D.

    2003-09-01

    Elevated concentrations of lead were found in Australian free ranging saltwater crocodile ( Crocodylus porosus) bone and flesh. Lead shots were found as potential source of lead in these animals. ANSTO's heavy ion nuclear microprobe was used to measure the distribution of Pb in a number of bones and osteoderms. The aim was to find out if elevated Pb concentration remains in growth rings and if the concentration is correlated with the blood levels recorded at the time. Results of our study show a very distinct distribution of accumulated Pb in bones and osteoderms as well as good correlation with the level of lead concentration in blood. To investigate influence of ion species on detection limits measurements of the same sample were performed by using 3 MeV protons, 9 MeV He ions and 20 MeV carbon ions. Peak to background ratios, detection limits and the overall 'quality' of obtained spectra are compared and discussed.

  3. Applications of nuclear microprobe analysis to dermatological research

    NASA Astrophysics Data System (ADS)

    Pallon, Jan; Forslind, Bo; Werner-Linde, Ylva; Yang, C.; Utui, R. J.; Elfman, M.; Malmqvist, K. G.; Kristiansson, P.; Sjöland, K. A.

    1997-07-01

    The elemental distributions over epidermal skin cross sections as revealed by nuclear microprobe analysis on cryo-sections from human skin provides new insight into the physiology of skin. Recently interest has been focused on the end stage of epidermal differentiation, the programmed cell death, occurring in the uppermost layer of the viable epidermis, the stratum granulosum. Calcium is one of the important messengers that controls the events of this programmed cell death, which shares a number of characteristics with apoptosis. We have previously shown that the Ca-gradient over normal skin cross sections is compatible with the finding from cell culture of epidermal cells which need a minimum level of 0.1 mM (Ca 2+) to develop a normal stratum corneum. To gain more information from the large number of data assessed during the actual analysis we have applied multivariate statistical analysis to the complete dataset obtained at NMP analyses. This statistical method reveals covariation of several elements and in addition provides a means to interpret the quantitative data in a meaningful biological context.

  4. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  5. Electron Microprobe Techniques for Use in Tephrochronological Analyses

    NASA Astrophysics Data System (ADS)

    Fournelle, J.; Severin, K.; Wallace, K.; Beget, J.; Larsen, J.

    2006-12-01

    Tephrochronology generally assumes that a layer of volcanic ash represents a snapshot of eruption/deposition and of a region within the subvolcanic magma chamber. Correlation of tephra deposits over long distances helps establish age control for other deposits (volcanic and nonvolcanic). Reliable correlations depend on establishing similarity among tephra deposits. Although multi-parameter characterization of a tephra enhances long-distance correlations, identification and correlation of unknown tephras is often done using only geochemical analyses. Techniques vary but generally deal with chemically characterizing all (bulk) or portions (glass, crystals) of the tephra layer, with various geochemical techniques at various spatial scales. Electron probe microanalysis (EPMA) is the most commonly used analytical tool for geochemical analysis and imaging of micron-size volumes of glass and crystals, yet, despite warnings from numerous EPMA analysts dating back to at least 1992, a standard method for collecting, reducing, and reporting tephra data among and within laboratories is not common practice, making comparison of data sets problematic. We review the complexities in volcanic glass analysis, which include: 1) selection of standards (natural and synthetic, minerals and glasses, simple and complex chemistry, primary and secondary); 2) beam diameter, current level and count times; 3) time dependent element migration (volatiles Na, K, Al, Si); and 4) possible hydration of the glass. For example, there are multiple methods available for treating the volatile elements (minimizing the effect vs. not minimizing but correcting for it), and Morgan and London (1996) examined some of these for hydrous silicate glasses; we suggest continued comparisons are warranted, particularly on commonly used standards. Some published data sets are normalized to 100 wt% without an explanation of the extent of the deficiency in raw total. We review the 10 recommendations made by Froggatt

  6. Nuclear microprobe study of TiO 2-penetration in the epidermis of human skin xenografts

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Gontier, E.; Moretto, P.; Surlève-Bazeille, J.-E.; Kiss, B.; Juhász, I.; Hunyadi, J.; Kiss, Á. Z.

    2005-04-01

    Titanium-dioxide is a widely used physical photoprotective component of various cosmetic products. However, very few experiments have been carried out on its penetration through the human epidermal barrier and its possible biological effects in vivo and in vitro. In the frame of the NANODERM EU5 project, the penetration of TiO2-nanoparticles through the epidermis of human foreskin grafts transplanted into SCID mice was investigated in the Debrecen and Bordeaux nuclear microprobe laboratories using combined IBA techniques. Transmission electron microscope studies of the same samples were also carried out in the DMPFCS laboratory. The skin grafts were treated with a hydrophobic emulsion containing micronised TiO2-nanoparticles in occlusion, for different time periods. Quantitative elemental concentrations and distributions have been determined in 14-16 μm thick freeze-dried sections obtained from quick frozen punch biopsies using STIM, PIXE and RBS analytical methods. Using both microscopic methods, we have observed nanoparticles having penetrated into the corneocyte layers of stratum corneum by direct visualisation in TEM and via their chemical fingerprint in PIXE. The human skin xenograft has proved to be a model particularly well adapted to such penetration studies.

  7. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  8. Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Doubleday, Zoë; Belton, David; Pecl, Gretta; Semmens, Jayson

    2008-01-01

    By utilising targeted microprobe technology, the analysis of elements incorporated within the hard bio-mineralised structures of marine organisms has provided unique insights into the population biology of many species. As hard structures grow, elements from surrounding waters are incorporated effectively providing a natural 'tag' that is often unique to the animal's particular location or habitat. The spatial distribution of elements within octopus stylets was investigated, using the nuclear microprobe, to assess their potential for determining dispersal and population structure in octopus populations. Proton Induced X-ray Emission (PIXE) was conducted using the Dynamic Analysis method and GeoPIXE software package, which produced high resolution, quantitative elemental maps of whole stylet cross-sections. Ten elements were detected within the stylets which were heterogeneously distributed throughout the microstructure. Although Ca decreased towards the section edge, this trend was consistent between individuals and remained homogeneous in the inner region of the stylet, and thus appears a suitable internal standard for future microprobe analyses. Additional analyses used to investigate the general composition of the stylet structure suggested that they are amorphous and largely organic, however, there was some evidence of phosphatic mineralisation. In conclusion, this study indicates that stylets are suitable for targeted elemental analysis, although this is currently limited to the inner hatch region of the microstructure.

  9. Next generation data acquisition systems for the CSIRO Nuclear Microprobe: Highly scaled versus customizable

    NASA Astrophysics Data System (ADS)

    Laird, Jamie S.; Ryan, Chris G.; Kirkham, Robin; Satoh, Takahiro; Pages, Anais

    2017-08-01

    Here we detail the new data acquisition system (DAS) developed for the CSIRO Nuclear Microprobe primarily to handle large detector arrays and to work in tandem with the Maia detector system. Both systems use HYMOD FPGA-based processors. The current DAQ system and its microscopy suite and beam handling have been integrated with the HYMOD system(s) to facilitate easy access to the either system. Examples of the new scanning modes available with the combined system are highlighted on a complex Cambrian black shale sample from the Yangtze basin in Southern China.

  10. Nuclear microprobe study of a woman's skeleton from the sixth century

    NASA Astrophysics Data System (ADS)

    Boscher-Barre, Nicole; Trocellier, Patrick

    1993-03-01

    Transverse sections of femoral diaphyses originated from a VIth century woman's skeleton, discovered near Lyon, have been characterized by nuclear microprobe analysis using microPIXE, NRA and PIGE. This skeleton, which did not exhibit any lesions, was buried in a lead sarcophagus. Its carbon, nitrogen and sodium average contents are found to be nearly similar to those of a XXth century bone sample. Lead and tin were shown to be extracted from the sarcophagus and incorporated in the bone tissue leading to decreasing profiles from the periosteum to the medullary canal. Calcium, carbon, phosphorus and lead distributions suggest the formation of both lead phosphate and lead carbonate within the hydroxyapatite matrix.

  11. PIXEKLM-TPI a software package for quantitative elemental imaging with nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Uzonyi, I.; Szabó, Gy.

    2005-04-01

    An off-line true elemental mapping procedure has been implemented at the Debrecen scanning nuclear microprobe facility for particle induced X-ray emission (μPIXE) measurements. The principles of the dynamic analysis model introduced by Ryan and Jamieson were adapted and extended towards the direction of the analysis of any thickness and large area samples. For the calculations the PIXEKLM program package was upgraded and a new windows-platform program (True PIXE Imaging) developed. Elemental concentration maps can be created from Oxford-type list mode files for major and trace elements from carbon to uranium.

  12. Nuclear microprobe studies of the electronic transport properties of cadmium zinc telluride (CZT) radiation detectors

    NASA Astrophysics Data System (ADS)

    Vizkelethy, Gyorgy; Doyle, Barney L.; Walsh, David S.; James, Ralph B.

    2000-11-01

    Ion Beam Induced Charge Collection (IBICC) is a proven albeit relatively new method to measure the electronic transport properties of room temperature radiation detectors. Using an ion microbeam, the charge collection efficiency of CZT detectors can be mapped with submicron resolution and maps of the electron mobility and lifetime can be calculated. The nuclear microprobe can be used not only for characterizing detectors but also with the use of Time Resolved IBICC (TRIBICC) and lateral IBICC/TRIBICC we can deduce information about the electron and hole mobility and lifetime profiles, and about the variation of electric field along the detectors' axes. The Sandia Nuclear Microprobe has been and is being used routinely to characterize CZT detectors and measure their electronic transport properties. In this paper we will present the results of these measurements for different detectors. Furthermore the damage effects caused by the probing beam will be discussed and a simple model will be presented to explain the characteristic charge collection efficiency pattern observed after high dose irradiation.

  13. In situ titanium dioxide nanoparticles quantitative microscopy in cells and in C. elegans using nuclear microprobe analysis

    NASA Astrophysics Data System (ADS)

    Le Trequesser, Quentin; Saez, Gladys; Devès, Guillaume; Michelet, Claire; Barberet, Philippe; Delville, Marie-Hélène; Seznec, Hervé

    2014-12-01

    Detecting and tracking nanomaterials in biological systems is challenging and essential to understand the possible interactions with the living. In this context, in situ analyses were conducted on human skin cells and a multicellular organism (Caenorhabditiselegans) exposed to titanium dioxide nanoparticles (TiO2 NPs) using nuclear microprobe. Coupled to conventional methods, nuclear microprobe was found to be suitable for accurate description of chemical structure of biological systems and also for detection of native TiO2 NPs. The method presented herein opens the field to NPs exposure effects analyses and more generally to toxicological analyses assisted by nuclear microprobe. This method will show applications in key research areas where in situ imaging of chemical elements is essential.

  14. Trace Element Zoning and Incipient Metamictization in a Lunar Zircon: Application of Three Microprobe Techniques

    NASA Technical Reports Server (NTRS)

    Wopenka, Brigitte; Jollife, Bradley L.; Zinner, Ernst; Kremser, Daniel T.

    1996-01-01

    We have determined major (Si, Zr, Hf), minor (Al, Y, Fe, P), and trace element (Ca, Sc, Ti, Ba, REE, Th, U) concentrations and Raman spectra of a zoned, 200 microns zircon grain in lunar sample 14161,7069, a quartz monzodiorite breccia collected at the Apollo 14 site. Analyses were obtained on a thin section in situ with an ion microprobe, an electron microprobe, and a laser Raman microprobe. The zircon grain is optically zoned in birefringence, a reflection of variable (incomplete) metamictization resulting from zo- nation in U and Th concentrations. Variations in the concentrations of U and Th correlate strongly with those of other high-field-strength trace elements and with changes in Raman spectral parameters. Concentrations of U and Th range from 21 to 55 ppm and 6 to 31 ppm, respectively, and correlate with lower Raman peak intensities, wider Raman peaks, and shifted Si-O peak positions. Concentrations of heavy rare earth elements range over a factor of three to four and correlate with intensities of fluorescence peaks. Correlated variations in trace element concentrations reflect the original magmatic differentiation of the parental melt approx. 4 b.y. ago. Degradation of the zircon structure, as reflected by the observed Raman spectral parameters, has occurred in this sample over a range of alpha-decay event dose from approx. 5.2 x 10(exp 14) to 1.4 x 10(exp 15) decay events per milligram of zircon, as calculated from the U and Th concentrations. This dose is well below the approx. 10(exp 16) events per milligram cumulative dose that causes complete metamictization and indicates that laser Raman microprobe spectroscopy is an analytical technique that is very sensitive to the radiation-induced damage in zircon.

  15. Elemental characterization of individual glia and glioma cells in the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1982-02-01

    To investigate whether variations in levels of microelements are reflected at the cellular level, a study of cultured cells was undertaken. For elemental characterization were chosen human glia and glioma cell lines. The cells were freeze-dried and about 1000 cells of each line were analyzed in the nuclear microprobe with a probe diameter of 10 μm. Scanning of the specimens under the beam made possible heat reduction and the X-ray spectrum induced was continuously recorded and subsequently processed in the computer. Elemental maps of the cells were then generated and the information from each member of the cell populations could be considered as well as the population statistics. Mass determination was accomplished by means of the bremsstrahlung continuum intensity. The main feature resulting from the characterization was that the glioma cells in average held appreciably higher contents of copper and zinc than did the glia cells.

  16. Applications to cultural heritage diagnostics at the new nuclear microprobe beam line at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.; Demortier, G.; Maruccio, L.; D'Elia, M.

    2009-06-01

    A nuclear microprobe beam line has been installed at CEDAD (Centre for Dating and Diagnostics), University of Salento, Lecce, Italy. The beam line is connected to the -30° port of the high energy switching magnet of a 3 MV HVEE 4130HC Tandetron accelerator. It is based on an Oxford Microbeam magnetic quadrupole triplet and its general features are presented. The results of functional tests are presented showing how a lateral spatial resolution as low as ˜2 μm has been achieved in vacuum by analysing standard reference material. The results obtained in the analysis of ancient radiocarbon dated biological tissues are presented for the identification and distribution of toxic elements such as Pb.

  17. Early works on the nuclear microprobe for microelectronics irradiation tests at the CEICI (Sevilla, Spain)

    NASA Astrophysics Data System (ADS)

    Palomo, F. R.; Morilla, Y.; Mogollón, J. M.; García-López, J.; Labrador, J. A.; Aguirre, M. A.

    2011-10-01

    Particle radiation effects are a fundamental problem in the use of numerous electronic devices for space applications, which is aggravated with the technology shrinking towards smaller and smaller scales. The suitability of low-energy accelerators for irradiation testing is being considered nowadays. Moreover, the possibility to use a nuclear microprobe, with a lateral resolution of a few microns, allows us to evaluate the behavior under ion irradiation of specific elements in an electronic device. The CEICI is the new CEnter for Integrated Circuits Irradiation tests, created into the facilities at the Centro Nacional de Aceleradores (CNA) in Sevilla-Spain. We have verified that our 3 MV Tandem accelerator, typically used for ion beam characterization of materials, is also a valuable tool to perform irradiation experiments in the low LET (Linear Energy Transfer) region.

  18. The biological research programme of the nuclear microprobe at the National Accelerator Centre, Faure

    NASA Astrophysics Data System (ADS)

    Prozesky, V. M.; Pineda, C. A.; Mesjasz-Przybylowicz, J.; Przybylowicz, W. J.; Churms, C. L.; Springhorn, K. A.; Moretto, Ph; Michelet, C.; Chikte, U.; Wenzl, P.

    2000-03-01

    The nuclear microprobe (NMP) unit of the National Accelerator Centre (NAC) has initiated a focused research programme on studies of biological material, ranging from applications in medicine to agriculture and botany. During this period a state-of-the-art cryo-preparation laboratory was also developed. This research programme has resulted in a wide range of projects, and has shown how well suited the NMP is for studies of biological material in general. This paper reports on some of the problems and demands in this field, as well as some of the results obtained using particle induced X-ray spectroscopy (PIXE) and Rutherford backscattering (RBS). True elemental imaging is routinely performed using the dynamic analysis (DA) method, which forms part of the GeoPIXE suite of programmes. A collaborative project, together with the CENBG group of Bordeaux-Gradignan in France, on the development of a facility with the aim of studying effects of single-events of radiation in living cells was recently established and is discussed.

  19. Nuclear microprobe studies of elemental distributions in dormant seeds of Burkea africana

    NASA Astrophysics Data System (ADS)

    Witkowski, E. T. F.; Weiersbye-Witkowski, I. M.; Przybyłowicz, W. J.; Mesjasz-Przybyłowicz, J.

    1997-07-01

    Seed nutrient stores are vital post-germination for the establishment of seedlings in harsh and unpredictable environments. Plants of nutrient-poor environments allocate a substantial proportion of total acquired nutrients to reproduction (i.e. seeds). We propose that differential allocation of mineral resources to specific seed tissues is an indication of a species germination and establishment strategy. Burkea africana Hook is a leguminous tree typical of broad-leaved nutrient-poor savannas in southern Africa. Elemental distributions in dormant B. africana seed structures were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3.0 MeV protons were complemented by simultaneous BS and PIXE point analyses. Mineral nutrient concentrations varied greatly between seed tissues. Elevated levels of metals known to play an important role as plant enzyme co-factors were found in the seed lens and embryonic axis. Distributions of most of these metals (Ca, Mn, Fe and Zn, but not K or Cu) were positively correlated with embryonic P distribution, and probably represent phytin deposits. The distribution of metals within seed structures is 'patchy' due to their complexation with P as electron-dense globoid phytin crystals, which constrains the interpretation of PIXE point analyses.

  20. Nuclear microprobe performance in high-current proton beam mode for micro-PIXE

    NASA Astrophysics Data System (ADS)

    Vavpetič, P.; Kelemen, M.; Jenčič, B.; Pelicon, P.

    2017-08-01

    The performance of a nuclear microprobe is dominantly determined by the brightness of the injected ion beam. At Jožef Stefan Institute (JSI), negative hydrogen ion beams are created in a multicusp ion source and injected into a 2 MV tandetron accelerator. The output characteristics of the multicusp ion source were tuned in order to obtain matching proton beam intensities for the ion accelerator and for the object slits as well. For the optimal focusing of the proton beam in a high-current mode (I > 100 pA) to the sub-micrometer dimensions, dedicated thin nanostructures with sharp edges have been manufactured. Set of nanostructures was micromachined by focused ion beam (FIB) at film reference material, produced by Institute for Reference Materials and Measurements (IRMM) and constituted of 57 μg/cm2 of titanium on vitreous carbon substrate. The proton beam profiles were measured by beam scans across the nanostructures over long measuring times, indicating eventual slow drifts of the sample from a reference beam direction. Overall, proton beam dimensions of 600 nm were obtained, demonstrating appropriate stability for micro-PIXE (micro-Particle Induced X-ray Emission) at sub-micrometer resolution for elemental analysis of biological tissue samples prepared in a freeze-dried state or in a frozen-hydrated state. The resulting performance required for micro-PIXE analysis in a high current mode with a 3 MeV proton beam is presented.

  1. Nuclear microprobe - synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SCRF.

    SciTech Connect

    Ryan, C. G.; Etschmann, B. E.; Vogt, S.; Maser, J.; Harland, C. L.; van Achterbergh, E.; Legnini, D.; Experimental Facilities Division; CSIRO Exploration and Mining; Australian Synchrotron Research Program, ANSTO

    2005-01-01

    The Dynamic Analysis (DA) method, for the projection of quantitative elemental images using Proton Induced X-ray Emission (PIXE), has been extended for use with energy-dispersive Synchrotron X-ray Fluorescence (SXRF) data collected with the X-ray microprobe by making use of similarities and synergy with nuclear microscopy. The broad element sensitivity of PIXE is complemented by the selective nature of SXRF, where the beam energy can be tuned to optimize the sensitivity in a portion of the periodic table. PIXE combined with Proton Induced {gamma}-ray Emission (PIGE) in this study provided images of geological samples of 25 elements, including characteristic X-rays up to the energy of the Nd K lines (37 keV). Maximum sensitivity was achieved for elements around Z {approx} 33 with detection limits of {approx}250 ppb (in 5 h). SXRF using a 16.1 keV photon microbeam provided images of 16 elements, with optimum sensitivity around Z {approx} 35 with detection limits of {approx}70 ppb (in 11 h), an improvement of {approx}2.4 times when corrected for acquisition time.

  2. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  3. The elemental move characteristic of nickel-based alloy in molten salt corrosion by using nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan

    2017-08-01

    Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.

  4. Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

    NASA Astrophysics Data System (ADS)

    Vizkelethy, G.; King, M. P.; Aktas, O.; Kizilyalli, I. C.; Kaplar, R. J.

    2017-08-01

    Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories' nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

  5. Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

    DOE PAGES

    Vizkelethy, G.; King, M. P.; Aktas, O.; ...

    2016-12-02

    Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

  6. Characterisation of hot particles remaining in soils from Palomares (Spain) using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    López, J. García; Jiménez-Ramos, M. C.; García-León, M.; García-Tenorio, R.

    2007-07-01

    More than 40 years ago, an aircraft accident took place in Palomares (Spain) which involved the destruction of two nuclear weapons. A portion of the remaining transuranic contamination in the affected soils is present in the form of small high activity concentration particles (10-100 μm), also called "hot particles", which contain plutonium and uranium. Several hot particles have been isolated and identified from the superficial soils recently collected in the zone affected by the accident. The isolation was carried out by screening the soil using gamma-ray spectrometry, through discrimination of the high activity concentrations of 241Am in the samples which indicates the presence of plutonium. The hot particles, composed of several elements with very high atomic number, could be easily identified by scanning electron microscopy (SEM) in backscattering electron image (BSE) mode. Moreover, their morphology and size were also studied using SEM in secondary electron (SE) mode. In this work, the hot particles have been investigated with the nuclear microprobe of the National Accelerator Centre (CNA) in Seville. Compositional analysis, mapping and depth distribution of different elements have been performed by a simultaneous combination of Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS). Uranium and plutonium have been identified in the PIXE spectra as the main components of the particles, whereas the concentration of Americium is two orders of magnitude smaller. In addition, an estimation of the particles density has been obtained by comparison of the RBS results with the particles thickness directly determined by SEM.

  7. The laser microprobe: a technique for extracting carbon, nitrogen, and oxygen from solid samples for isotopic measurements.

    NASA Astrophysics Data System (ADS)

    Franchi, I. A.; Wright, I. P.; Gibson, E. K., Jr.; Pillinger, C. T.

    1986-03-01

    The laser microprobe extraction technique has been adapted for the determination of concentrations and stable isotopic compositions of carbon, nitrogen, and oxygen. Initial studies on the distribution of nitrogen in an iron meteorite (Uwet) and a carbonaceous chondrite (Murchison) have been undertaken.

  8. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  9. Nuclear microprobe analysis of iodine and iron distributions in tumor cells exposed to the anthracycline 4'-iodo-4'-deoxydoxorubicin

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Moretto, Ph.; Llabador, Y.; Simonoff, M.

    1997-07-01

    In this study, we performed nuclear microprobe analysis on cultured human ovarian cancer cells exposed to pharmacological concentrations of 4'-iodo-4'-deoxydoxorubicin (IDX), an anthracycline anticancer drug. We observed that iodine and iron cellular distributions were strongly correlated, suggesting intracellular iron chelation by the anthracycline. The average cellular iron concentration did not change during drug exposure, but the cellular distribution of iron was modified following the preferential nuclear localization of iodine, as determined by single cell microanalysis. These results are important for understanding the cellular pharmacology of anthracyclines. They suggest that iron cellular delocalization and its subsequent nuclear accumulation may participate to the overall cytotoxicity of IDX, and more generally to anthracycline antitumor activity.

  10. Application of a nuclear microprobe to the study of calcified tissues

    NASA Astrophysics Data System (ADS)

    Coote, Graeme E.; Vickridge, Ian C.

    1988-03-01

    The mineral fraction of calcified tissue is largely calcium hydroxyapatite (bones and teeth) or calcium carbonate (shells and fish otoliths). Apatite has such a strong affinity for fluoride ions that the F/Ca ratio can vary markedly with position in a bone or tooth, depending on the amount of fluoride present at the time of calcification or partial recrystallization. New biological information can be obtained by introducing extra fluoride into the diet of an animal and using a microprobe later to scan sections of bones or teeth. In suitable burial sites extra fluoride is introduced after death, and the new distribution may have applications in forensic science and archaeology. Fish otoliths are also of interest since a new carbonate layer is formed each day and the distribution of trace elements may record some aspects of the fish's life history. Results from the following studies are presented: fluorine distributions in the teeth of sheep which ingested extra fluoride for known periods; distributions of calcium and fluorine in femurs of rats which drank water high in fluoride for periods from 2 to 15 weeks; calcium and fluorine distributions in artificially-prepared lesions in tooth enamel; diffusion profiles in archaeological human teeth and animal bones; patterns in the strontium/calcium ratio in sectioned otoliths of several species of fish.

  11. The laser microprobe: A technique for extracting carbon, nitrogen, and oxygen from solid samples for isotopic measurements

    NASA Astrophysics Data System (ADS)

    Franchi, I. A.; Wright, I. P.; Gibson, E. K.; Pillinger, C. T.

    1986-09-01

    The laser microprobe extraction technique has been adapted for the determination of concentrations and stable isotopic compositions of carbon, nitrogen, and oxygen. The power from a focused laser beam is used to selectively pyrolyse, or combust, specific areas of a solid sample of interest, which is located within a vacuum extraction line. Gases released from the sample are collected, purified, and then admitted to an appropriate mass spectrometer as either molecular nitrogen (for δ15N measurements) or carbon dioxide (for δ13C and δ18O measurements). The minimum amounts of gas that can be measured isotopically are less than a nanomole. A number of samples have been analysed in order to evaluate the efficacy of the laser microprobe including two carbonate minerals (calcite and siderite), graphite, and titanium nitride. Initial studies on the distribution of nitrogen in an iron meteorite (Uwet) and a carbonaceous chondrite (Murchison) have been undertaken. Nitrogen in Uwet was found to be concentrated in the phosphide mineral schreibersite rather than in the kamacite. Laser extractions of the dark matrix of Murchison reveal 620 to 790 ppm of nitrogen with a δ15N=+38.5 to +44.7% (in agreement with stepped heating extractions of bulk Murchison) while much lower concentrations, down to 80 ppm (and δ15N=+12 to +60%), were found in the light-coloured high-temperature inclusions. For carbon-containing phases, there appears to be an isotope fractionation associated with the formation of CO2 and CO. However, preliminary results suggest that the extent of isotope fractionation may be reproducible, allowing suitable corrections to be applied to the raw data.

  12. Light detection with spectral analysis at the Legnaro nuclear microprobe: Applications in material and earth sciences

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Lo Giudice, A.; Manfredotti, C.; Egeni, G.; Rudello, V.; Rossi, P.; Gennaro, G.; Pratesi, G.; Corazza, M.

    2001-07-01

    Among the numerous ion beam analytical (IBA) techniques available for material characterisation, ionoluminescence (IL) has not attracted the interest that it should deserve. Although the importance of IL technique, particularly if combined with other IBA techniques, has been widely proven, very few apparatuses to analyse light emission spectra have been installed at the microbeam facilities. In this paper we present the new IL apparatus installed at the Legnaro (LNL) Ion Microbeam Facility. The system is a modification of the OXFORD MONOCL2 apparatus for cathodoluminescence. Light collection is performed by using a retractable parabolic mirror located at a very short distance from the sample, with a small aperture to allow the ion beam to hit the sample. Accurate positioning of the retractable mirror directly coupled to a chamber mounted high-resolution monochromator allows for high light collection efficiency. This design assures that IL can be used with low beam currents (<1 pA) with the consequent reduction of the radiation damage, which often occurs during ionoluminescence measurements. A summary of some meaningful results obtained with such an apparatus is presented. The combination of IL/PIXE was used to characterise natural silica glass, known as Libyan Desert Glass, and cubic BN grains; polycristalline CVD diamond has been studied by a synergetic combination of IBICC/IL technique.

  13. Results from the nuclear microprobe PIXE analysis of selected rare earth fluor compounds

    NASA Astrophysics Data System (ADS)

    Hollerman, William A.; Gates, Earl; Boudreaux, Philip; Glass, Gary A.

    2002-04-01

    Most previous research measures fluorescence properties over the macroscopic regime. Properties of individual microscopic grains could be significantly different than those measured over the macroscopic scale. Until recently, it was difficult to measure properties of individual fluor grains. Existing characterization techniques like scanning electron microscopy are not practical, since the resulting fluorescence masks the electron surface profile. Starting in September 2000, a research program was initiated at the Acadiana Research Laboratory to determine microscopic fluorescence properties for selected inorganic rare earth compounds. The initial phase of this program utilized microscopic proton induced X-ray emission (μPIXE) to characterize the elemental composition of individual fluor grains. Results show that both individual grains and small clusters of grains could be seen using μPIXE. Maps of this type can be used to estimate grain dimensions for the selected rare earth fluor. This technique is a new and innovative method to characterize a fluor material.

  14. Austenitic steel corrosion in IGCC environment. Characterisation by photon and nuclear microprobes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Weulersse, Katia; Regad, Belkacem; Moulin, Gérard; Barrett, Ray; Bonnin-Mosbah, Michelle; Lequien, Stéphane; Berger, Pascal

    2001-07-01

    An austenitic steel sample was treated simulating particular working conditions of an integrated gasification combined cycle (IGCC) power plant. Several classical characterisation techniques were used to investigate the oxide scales. In addition, micro-particle-induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) analyses were performed and permit us to identify several phases constitutive of the oxide. Moreover, micro-X-ray absorption near edge structure (XANES) experiments allow us to determine the valence of the vanadium incorporated in the scale in the form of microscopic islets. The comparison of all these results leads to the proposal of a corrosion mechanism for this alloy.

  15. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  16. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  17. The Study of Phosphors Efficiency and Homogeneity using a Nuclear Microprobe

    SciTech Connect

    YANG,C.; DOYLE,BARNEY L.; NIGAM,M.; EL BOUANANI,M.; DUGGAN,J.L.; MCDANIEL,F.D.

    2000-12-08

    Ion Beam Induced Luminescence (IBIL) and Ion Beam Induced Charge Collection (IBICC) have been applied in the study of the luminescence emission efficiency and investigation of the homogeneity of the luminescence emission in phosphors. The IBIL imaging was performed by using sharply focused ion beams or broad/partially-focused ion beams. The luminescence emission homogeneity in samples was examined to reveal possible distributed crystal-defects that may lead to the inhomogeneity of the luminescence emission in samples.The purpose of the study is to search for suitable luminescent thin films that have high homogeneity of luminescence emission, large IBIL efficiency under heavy ion excitation, and can be placed as a thin layer on the top of microelectronic devices to be analyzed with Ion Photon Emission Microscopy (IPEM). The emission yield was found to be low for organic materials, due to saturation of the light output dependence on the energy deposition of heavy ions. The emission yield of a typical Bicron plastic scintillator is about 70 photons/ion/micron. Inorganic materials may have higher IBIL yield under high-energy and heavy-ion excitation, but the challenging problem is the inhomogeneity of the IBIL emission. The IBIL image techniques are applied in the investigation of the homogeneity of a GaN epitaxial thin film, a zircon single crystal and a thin layer coated by Thiogallate(EuII) ceramic.

  18. Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques

    NASA Technical Reports Server (NTRS)

    Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.

    1989-01-01

    The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.

  19. Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques

    NASA Technical Reports Server (NTRS)

    Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.

    1989-01-01

    The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.

  20. Microprobe analysis in human pathology

    SciTech Connect

    Baker, D.; Kupke, K.G.; Ingram, P.; Roggli, V.L.; Shelburne, J.D.

    1985-01-01

    This tutorial paper reviews the literature on the application of microprobe analysis to practical problems in diagnostic human pathology. The goal is to allow the reader ready access to the literature on specific clinical problems. Specimen preparation and commonly encountered artifacts are also considered. It is concluded that energy dispersive x-ray microanalysis and back-scattered electron imaging are at present the most generally useful microprobe techniques for clinical work, and are no longer solely research tools. The findings often have diagnostic, therapeutic, and/or legal implications. 332 references.

  1. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials.

    PubMed

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  2. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene

    NASA Astrophysics Data System (ADS)

    Kozdon, Reinhard; Kelly, D. Clay; Kita, Noriko T.; Fournelle, John H.; Valley, John W.

    2011-09-01

    Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the δ18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high δ18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust δ18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the δ18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 μm pits with an analytical reproducibility of ±0.34‰ (2 standard deviations). In situ measurements of δ18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original δ18O is largely preserved in the basal areas of muricae, this new δ18O record indicates Early Paleogene (˜49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published δ18O record and that SSTs reached at least ˜33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments.

  3. Nuclear based techniques for detection of contraband

    SciTech Connect

    Gozani, T.

    1993-12-31

    The detection of contraband such as explosives and drugs concealed in luggage or other container can be quite difficult. Nuclear techniques offer capabilities which are essential to having effective detection devices. This report describes the features of various nuclear techniques and instrumentation.

  4. Techniques and methods in nuclear materials traceability

    SciTech Connect

    Persiani, P.J.

    1996-08-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

  5. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Canto, F.; Bucci, D.; Magnaldo, A.; Couston, L.; Broquin, J. E.

    2011-07-01

    We study the miniaturisation of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6x10{sup -3} M for the integrated sensor. At an interaction length of 10 {mu}m, it detects a minimum absorbance of AU = 6 x 10{sup -5} in a probed volume of 10 pl. (authors)

  6. Micro-fluidics and integrated optics glass sensor for in-line micro-probing of nuclear samples

    SciTech Connect

    Schimpf, A.; Bucci, D.; Broquin, J.E.; Canto, F.; Magnaldo, A.; Couston, L.

    2012-08-15

    We study the miniaturization of Thermal Lens Spectrometry (TLS) towards Lab-on-chip integration in order to reduce the volume of fluid assays in nuclear process control. TLS is of great interest in this context since it combines the advantages of optical detection methods with an inherent suitability for small-scale samples. After validating the experimental principle in a classical thermal lens crossed-beam setup, we show the integration of a Young-interferometer with a microcapillary on a glass substrate, reducing the necessary sample size to 400 nl. The interferometer translates the photo-thermally induced refractive index change in the fluid to a phase shift of the fringe pattern, which can then be detected by a camera. Measurements of Co(II) in ethanol yield a detection limit of c = 5 x 10{sup -4} M for the crossed-beam setup and c = 6 x 10{sup -3} M for the integrated sensor. At an interaction length of 10 m, it detects a minimum absorbance of K = 1.2 x 10{sup -4} in a probed volume of 14 pl. (authors)

  7. Analysis of Jordanian phosphate using nuclear techniques

    SciTech Connect

    Saleh, N.S.; Al-Saleh, K.A.

    1987-09-01

    The concentrations of major, minor and trace element content of Jordanian phosphate ores were determined using different complementary nuclear techniques. These techniques were: Gamma-Ray Spectrometry (GRS), X-Ray Fluorescence (XRF) and Proton Induced X-ray Emission (PIXE). Special emphasis was given to the determination of Uranium and rare earth element concentrations.

  8. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique.

    PubMed

    Yu, Peiqiang

    2011-09-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH(3) anti-symmetric), 2929 (CH(2) anti-symmetric), 2877 (CH(3) symmetric) and 2848 cm(-1) (CH(2) asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH(3) to CH(2) ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and

  9. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    SciTech Connect

    P Yu

    2011-12-31

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop

  10. Nuclear microprobe investigation into the trace elemental contents of carotid artery walls of apolipoprotein E deficient mice

    NASA Astrophysics Data System (ADS)

    Minqin, Ren; En, Huang; Beck, Konstanze; Rajendran, Reshmi; Wu, Ben J.; Halliwell, Barry; Watt, Frank; Stocker, Roland

    2007-07-01

    Atherosclerosis is a progressive disease that causes lesions in large and medium-sized arteries. There is increasing evidence that the function of vascular endothelial cells is impaired by oxidation reactions, and that metal ions may participate in these processes. The nuclear microscopy facility in NUS, which has the ability to focus a 2 MeV proton beam down to sub micron spot sizes, was used to investigate the trace elemental changes (e.g. Zn and Fe) in atherosclerotic lesions in the common carotid artery of apolipoprotein E deficient mice fed a high fat diet. In this preliminary study, which is part of a larger study to investigate the effects of probucol on carotid artery atherosclerosis, two sets of mice were used; a test set fed a high fat diet +1% probucol, and a control set which was fed a high fat diet only. The results show that the Zn/Fe ratio was significantly higher in the media of arteries of probucol treated animals without overlying lesion (4.3) compared to the media with overlying lesion (1.3) ( p = 0.004) for test mice. For the control mice, the arterial Zn/Fe ratio was 1.8 for media without overlying lesion, compared with 1.0 for media with overlying lesion ( p = 0.1). Thus, for media without overlying lesion, the Zn/Fe ratio was significantly higher ( p = 0.009) in probucol-treated (4.3) than control mice (1.8), whereas there was little difference in the ratios between the two groups in media with overlying lesion (1.3 compared with 1.0). These preliminary results are consistent with the idea that the levels of iron and zinc concentrations within the artery wall may influence the formation of atherosclerotic plaque in the carotid artery.

  11. Trace Analytical Techniques for Nuclear Forensics

    SciTech Connect

    Halverson, J.E.

    1999-04-28

    Over the history of the Savannah River Site, the Savannah River Technology Center (SRTC) has developed high sensitivity analytical capabilities in support of the Site's Environmental Monitoring Program and nuclear material protection process. Many of these techniques are applicable to the developing need for nuclear forensic analysis capabilities. Radiological and critically control procedures are in place at the SRTC, as well as clean room practices, to minimize the potential for a radiological evidentiary sample to contaminate personnel and the facility, as well as to minimize contaminating the sample thus rendering it useless by law enforcement agencies. Some of the trace analytical techniques available at the SRTC include ultra-low-level gamma and alpha spectrometry, high-sensitivity thermal ionization mass spectrometry, time-of-flight secondary ion mass spectrometry and trace organic analyses. These techniques have been tested during a planned domestic smuggling exercise and in the analysis of an unknown sample.In the event of an interdiction involving the illegal use or movement of radioactive material by U.S. law enforcement agencies (local, state or federal) forensic analyses will be used in developing and building a legal case against the perpetrators. The Savannah River Technology Center (SRTC) at the U.S. Department of Energy's Savannah River Site, a former nuclear production site currently conducting nuclear material stabilization missions, located in Aiken South Carolina, has a long history of performing trace analytical analyses for environmental monitoring. Many of these techniques are also applicable to nuclear forensic analyses. A summary of the trace analytical techniques used at the SRTC, which are applicable to Nuclear Forensics, is presented in this paper.Contamination control, of facilities and personnel involved in the analytical analyses, as well as preventing contamination of the sample, is a unique challenge for nuclear forensic analyses

  12. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  13. Nuclear techniques in studies of condensed matter

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1987-01-01

    Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.

  14. A Groundmass Composition for EET 79001A Using a Novel Microprobe Technique for Estimating Bulk Compositions. Lithology A as an Impact Melt?

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Hanson, B. Z.

    2011-01-01

    Petrologic investigation of the shergottites has been hampered by the fact that most of these meteorites are partial cumulates. Two lines of inquiry have been used to evaluate the compositions of parental liquids: (i) perform melting experiments at different pressures and temperatures until the compositions of cumulate crystal cores are reproduced [e.g., 1]; and (ii) use point-counting techniques to reconstruct the compositions of intercumulus liquids [e.g., 2]. The second of these methods is hampered by the approximate nature of the technique. In effect, element maps are used to construct mineral modes; and average mineral compositions are then converted into bulk compositions. This method works well when the mineral phases are homogeneous [3]. However, when minerals are zoned, with narrow rims contributing disproportionately to the mineral volume, this method becomes problematic. Decisions need to be made about the average composition of the various zones within crystals. And, further, the proportions of those zones also need to be defined. We have developed a new microprobe technique to see whether the point-count method of determining intercumulus liquid composition is realistic. In our technique, the approximating decisions of earlier methods are unnecessary because each pixel of our x-ray maps is turned into a complete eleven-element quantitative analysis. The success or failure of our technique can then be determined by experimentation. As discussed earlier, experiments on our point-count composition can then be used to see whether experimental liquidus phases successfully reproduce natural mineral compositions. Regardless of our ultimate outcome in retrieving shergottite parent liquids, we believe our pixel-bypixel analysis technique represents a giant step forward in documenting thin-section modes and compositions. For a third time, we have analyzed the groundmass composition of EET 79001, 68 [Eg]. The first estimate of Eg was made by [4] and later

  15. Integrated nuclear techniques to detect illicit materials

    SciTech Connect

    DeVolpi, A.

    1997-10-01

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  16. Mars Microprobe Entry Analysis

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    1998-01-01

    The Mars Microprobe mission will provide the first opportunity for subsurface measurements, including water detection, near the south pole of Mars. In this paper, performance of the Microprobe aeroshell design is evaluated through development of a six-degree-of-freedom (6-DOF) aerodynamic database and flight dynamics simulation. Numerous mission uncertainties are quantified and a Monte-Carlo analysis is performed to statistically assess mission performance. Results from this 6-DOF Monte-Carlo simulation demonstrate that, in a majority of the cases (approximately 2-sigma), the penetrator impact conditions are within current design tolerances. Several trajectories are identified in which the current set of impact requirements are not satisfied. From these cases, critical design parameters are highlighted and additional system requirements are suggested. In particular, a relatively large angle-of-attack range near peak heating is identified.

  17. Nuclear magnetic resonance techniques in medicine.

    PubMed

    Bradbury, E M; Radda, G K; Allen, P S

    1983-04-01

    Nuclear magnetic resonance (NMR) techniques are now finding exciting new noninvasive applications in medicine. There are two major approaches. The first is as an analytical technique using 31P NMR spectroscopy for the identification and quantitation of the more abundant phosphate metabolites in various tissues. Changes in the levels of these metabolites and in intracellular cytoplasmic pH can be followed in various ischemic and hypoxic conditions to monitor metabolic response to stress situations and to diagnose inborn errors of metabolism. The second major approach is an entirely different application of NMR techniques and uses 1H, the nucleus most abundant in biological tissues, largely in water and fats, to produce NMR images of any section of the body. By applying non-uniform magnetic fields across a section of the body, hydrogen nuclei in different elemental volumes in the section are tagged with different frequencies and their signals can be processed to give an image of the section. In contrast to computed tomographic scanning, NMR has particularly powerful application in the imaging of soft tissues.

  18. Recent applications of nuclear track emulsion technique

    SciTech Connect

    Zarubin, P. I.

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  19. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  20. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  1. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Subgroup report on hard x-ray microprobes

    SciTech Connect

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-09-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.

  3. Raman Spectrometer with Microprobe Capability.

    DTIC Science & Technology

    1986-01-15

    CLASSIFICATION O UNCLASSIFIEOIUNLIMITED 0 SAME AS RPT. DTIC USERS Unclassified 22# NAME OF RESPONSIBLE oiNDiviDu? 2jkL TELEPHONE (Include Area Cd)2.OFFICE...spectrometer with microprobe capability. The microprobe capability allows Raman measurements to be performed on a localized area with a resolution of 1.0...first our purchase process. The instrument actually purchased is then described. Preliminary Raman spectral data in several of the above areas is

  4. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  5. Microactuator fabricated by powder particle assemblage using microprobe technology

    NASA Astrophysics Data System (ADS)

    Konno, Takeshi; Egashira, Mitsuru; Shinya, Norio

    1997-06-01

    In the previous paper, preliminary research results on powder particle assemblage technique using a microprobe was reported. It was shown that the technique makes it possible to manipulate powder particles one by one, etch microscopically and weld the powder particle into a substrate or other powder particles. In this work, the welding mechanism of this method and metallurgical properties of welded parts were investigated, and micro- actuators were fabricated by means of powder particle assemblage technique using the microprobe. The results indicated the potentiality of this technique for application to assemblage of micro-machine and micro-devices.

  6. Peaceful Nuclear Explosion (PNE) Monitoring Techniques

    DTIC Science & Technology

    1979-06-01

    Section 2 of Part I contains background information concerning the status of the various test ban treaties and a general description of nuclear... generated to a significant extent. The "zero time" signal is of primary importance since it has the highest probability of carrying information about the...NUCLEAR EXPLOSION PROGRAMS 18 2.3.1 General 18 2.3.2 Underground Weapons Tests 18 2.3.3 Weapons Development Programs 20 2.3.4 Weapons Effects Programs 21

  7. Mechanical analysis and fabrication of a penetrating silicon microprobe as an artificial optic nerve visual prosthesis.

    PubMed

    Sui, Xiaohong; Han, Zhaolong; Zhou, Dai; Ren, Qiushi

    2012-01-01

    To investigate the mechanical response of a silicon microprobe while it penetrates the optic nerve. The finite element method was adopted to analyze models of the mechanical aspects of the silicon microprobe, including the effects of dimensions, the buckling load, lateral load, and the interaction between the microprobe and the tissue of the optic nerve. The silicon microprobe was fabricated based on silicon-on-insulator (SOI) wafer by micro-electro-mechanical system (MEMS) processing techniques. The designed microprobe shank was 750 µm long and 110 µm wide with thickness of 15 µm. Lateral barbs were included so as to decrease the stress at stimulating-site regions. The microprobe could withstand a 50 MPa vertical load on the shank tip before buckling, but was more likely to be damaged by a lateral load rather than a vertical one. The silicon microprobe was successfully fabricated by MEMS processing techniques based on a four-inch SOI wafer. Mechanical analysis of the interactions between shank and optic nerve tissue showed that the maximum stress changed during the process of the microprobe insertion. A silicon microprobe was designed as a potential visual prosthesis to be used for optic nerve stimulation. The mechanical issues were analyzed by means of the finite element method, and the implantable microprobe was fabricated based on a silicon-on-insulator wafer to maintain a uniform thickness.

  8. Nuclear and Related Analytical Techniques for Environmental and Life Sciences

    SciTech Connect

    Frontasyeva, Marina

    2010-01-05

    The role of nuclear analytical techniques (NATs) in Environmental and Life Sciences is discussed. Examples of radioanalytical investigations at the IBR-2 pulsed fast reactor in Dubna illustrate the environmental, biomedical, geochemical and industrial applications of instrumental neutron activation analysis.

  9. Three Techniques for Task Analysis: Examples from the Nuclear Utilities.

    ERIC Educational Resources Information Center

    Carlisle, Kenneth E.

    1984-01-01

    Discusses three task analysis techniques utilized at the Palo Verde Nuclear Generating Station to review training programs: analysis of (1) job positions, (2) procedures, and (3) instructional presentations. All of these include task breakdown, relationship determination, and task restructuring. (MBR)

  10. Indirect techniques in nuclear astrophysics: a review.

    PubMed

    Tribble, R E; Bertulani, C A; Cognata, M La; Mukhamedzhanov, A M; Spitaleri, C

    2014-10-01

    In this review, we discuss the present status of three indirect techniques that are used to determine reaction rates for stellar burning processes, asymptotic normalization coefficients, the Trojan Horse method and Coulomb dissociation. A comprehensive review of the theory behind each of these techniques is presented. This is followed by an overview of the experiments that have been carried out using these indirect approaches.

  11. Robust control technique for nuclear power plants

    SciTech Connect

    Murphy, G.V.; Bailey, J.M.

    1989-03-01

    This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.

  12. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  13. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  14. The preparation and use of antibody microprobes.

    PubMed

    Duggan, A W; Hendry, I A; Green, J L; Morton, C R; Hutchison, W D

    1988-04-01

    A new method of detecting release of neuropeptides in the central nervous system is described. Glass micropipettes are treated with gamma-aminopropyltriethoxysilane resulting in a fine outer coating of a siloxane polymer containing free amino groups. Glutaraldehyde is then used to covalently couple protein A which in turn binds antibodies to a particular peptide. Following use in the central nervous system, microprobes are incubated in a radiolabelled form of the peptide being studied and release is detected on autoradiographs as localized zones of inhibition of binding of the labelled peptide. The spatial resolution of the method is at least 100 micron. Necessary tests of the validity of the technique are also described.

  15. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  16. Cancer, conflict, and the development of nuclear transplantation techniques.

    PubMed

    Crowe, Nathan

    2014-01-01

    The technique of nuclear transplantation - popularly known as cloning - has been integrated into several different histories of twentieth century biology. Historians and science scholars have situated nuclear transplantation within narratives of scientific practice, biotechnology, bioethics, biomedicine, and changing views of life. However, nuclear transplantation has never been the focus of analysis. In this article, I examine the development of nuclear transplantation techniques, focusing on the people, motivations, and institutions associated with the first successful nuclear transfer in metazoans in 1952. The conflict between embryologists and geneticists over the mechanisms of differentiation motivated Robert Briggs to pursue nuclear transplantation experiments as a way to resolve the debate. Briggs worked at the Lankenau Hospital Research Institute, a research facility devoted to the study of cancer. The goal of understanding cancer would play a role in the development of the technique, and the story of nuclear transplantation sheds light on the role that biomedical contexts play in biological research in the second half of the twentieth century.

  17. The Application of Nuclear Techniques to Solid State Devices.

    DTIC Science & Technology

    1980-12-15

    35) as the same technique showed. We then applied the method to clarify the atomic transport in bimetal layer silicide reactions. In these experiments...UNCLASSIFIED NL ’ LEVEWL L* . 4’ -.-- C7..:i I) FINAL TECHNICAL REPORT submitted to --- v OFFICE OF NAVAL RESEARCH on THE APPLICATION OF NUCLEAR TECHNIQUES TO...December 15, 1980,. , ...- 1’J I. Introduction The program "The Application of Nuclear Techniques to Solid State Devices" began on 1 January 1975. It was

  18. Application of nuclear microlocalization techniques to biomedical problems

    SciTech Connect

    Kraner, H.W.; Jones, K.W.

    1980-10-01

    Ion beams at the Brookhaven 3.5 MV Research Van de Graaff accelerator have been used for elemental analysis and distribution in biomedical samples. Results from several collaborations are presented. Both collimated and uncollimated charged particle beams are used for elemental analysis by measurement of characteristic x-rays (PIXE). A collimated proton beam, using a pinhole collimator (approx. 20 ..mu..m) has been used as a particle microprobe in the laboratory ambient. Thick, essentially unprepared, samples can be measured with general elemental sensitivities of < 10 ppM. The spatial resolution and elemental sensitivity have proven adequate for many samples of tissue secthons and cell clusters. Specimen damage by charged particle beams is discussed and results of cell irradiations by triton beams are presented. Deuterium localization has been carried out in cell uptake studies using the /sup 2/H(/sup 3/H,n)/sup 4/He reaction initiated by the triton beam at the accelerator. Alpha particles from the reaction register the deuterium distribution in a plastic track detector. This technique suggests that /sup 3/H may be replaced by the stable isotope /sup 2/H in tracer studies. Studies have included the detection of nonexchangeable /sup 2/H in oocytes and the uptake of deuterated thymidine in blood cells.

  19. Ion microprobe, electron microprobe and cathodoluminescence data for Allende inclusions with emphasis on plagioclase chemistry

    NASA Technical Reports Server (NTRS)

    Hutcheon, I. D.; Steele, I. M.; Smith, J. V.; Clayton, R. N.

    1978-01-01

    Three Type B inclusions from the Allende meteorite have been analyzed. A grain-to-grain characterization of mineral chemistry and isotopic content was made possible by the use of a range of techniques, including luminescence and scanning electron microscopy and electron and ion microprobe analysis. Cathodoluminescence was used in fine-grained, optically opaque regions to distinguish between sub-micrometer phases, such as garnet and Si-rich material, subsequently identified by electron probe and scanning electron microscope analyses. Four types of luminescence patterns, due to twinning, primary sector zoning, alteration of boundaries and fractures, and shock effects, were identified in Allende plagioclase. Luminescence color exhibited a strong correlation with Mg content and provided a guide for an electron probe quantitative map of Mg and Na distributions. Ion microprobe studies of individual grains revealed large excesses of Mg-26.

  20. Ion microprobe, electron microprobe and cathodoluminescence data for Allende inclusions with emphasis on plagioclase chemistry

    NASA Technical Reports Server (NTRS)

    Hutcheon, I. D.; Steele, I. M.; Smith, J. V.; Clayton, R. N.

    1978-01-01

    Three Type B inclusions from the Allende meteorite have been analyzed. A grain-to-grain characterization of mineral chemistry and isotopic content was made possible by the use of a range of techniques, including luminescence and scanning electron microscopy and electron and ion microprobe analysis. Cathodoluminescence was used in fine-grained, optically opaque regions to distinguish between sub-micrometer phases, such as garnet and Si-rich material, subsequently identified by electron probe and scanning electron microscope analyses. Four types of luminescence patterns, due to twinning, primary sector zoning, alteration of boundaries and fractures, and shock effects, were identified in Allende plagioclase. Luminescence color exhibited a strong correlation with Mg content and provided a guide for an electron probe quantitative map of Mg and Na distributions. Ion microprobe studies of individual grains revealed large excesses of Mg-26.

  1. IMAP ©©

    Copyright Sandia Corporation and Lawrence Livermore National Laboratories, April 1993.

    : a complete Ion Micro-Analysis Package for the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Bench, G. S.; Morse, D. H.

    1994-03-01

    Microprobe techniques using scanned, focused MeV ions are routinely used in Livermore for materials characterization. Comprehensive data analysis with these techniques is accomplished with the computer software package IMAP, for Ion Micro-Analysis Package. IMAP consists of a set of command language procedures for data processing and quantitative spectral analysis. Deconvolution of the data is achieved by spawning sub-processes within IMAP which execute analysis codes for each specific microprobe technique. IMAP is structured to rapidly analyze individual spectra or multi-dimensional data blocks which classify individual events by the two scanning dimensions, the energy of the detected radiation and, when necessary, one sample rotation dimension. Several examples are presented to demonstrate the utility of the package.

  2. Assessment of Jordanian salt using nuclear techniques

    SciTech Connect

    Al-Saleh, K.A.; Arafah, D.E.; Jabr, I.J.; Saleh, N.S.

    1987-09-01

    Elemental study and concentration determinations have been conducted on Jordanian crude salt using Rutherford Back-Scattering (RBS) and X-ray Fluorescence (SRF) spectrometry techniques. Analysis have also been carried out on different purified salt samples available in the local market. The concentration of some elements, in particular bromide, content and its significance on human health and nutrition is discussed. Results reveal relatively high traces of elemental concentrations in crude salt. For example, bromide concentration ranges from 178 to 384 ppm in comparison to a tolerance limit of 30 ppm set by the Unites States Food and Drug Administration (USDA) and other International Agencies like FAO/WHO. It is suggested that refining crude salt may result in a reduction of bromide concentration and other traces considerably, thus making it feasible for human consumption.

  3. Practical applications of activation analysis and other nuclear techniques

    SciTech Connect

    Lyon, W S

    1982-01-01

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of ..gamma.. rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed.

  4. The electron microprobe as a metallographic tool

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1974-01-01

    The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.

  5. Applications of the potential microprobe to electronic ceramic materials

    SciTech Connect

    Schubert, W.K.

    1988-01-01

    The potential microprobe consists of a fine tipped tungsten needle mounted on a computer controlled, three axis mechanical/piezo positioner. The probe is mounted to the stage of a standard scanning electron microscope, and allows one to make electrical potential measurements on a very fine spatial scale (greater than or equal to 10 nm). The potential microprobe and its operation are discussed. Applications of the technique to polycrystalline silicon, ceramic superconductors, and ZnO varistor materials are presented. 19 refs., 4 figs.

  6. The use of nuclear medicine techniques in the emergency department

    PubMed Central

    McGlone, B; Balan, K

    2001-01-01

    Nuclear medicine techniques have received little attention in the practice of emergency medicine, yet radionuclide imaging can provide valuable and unique information in the management of acutely ill patients. In this review, emphasis is placed on the role of these techniques in patients with bone injuries, non-traumatic bone pain and in those with pleuritic chest pain. New developments such as single photon emission computed tomography (SPECT) in myocardial infarction are outlined and older techniques such as scrotal scintigraphy are reviewed. Radionuclide techniques are discussed in a clinical context and in relation to alternative imaging modalities or strategies that may be available to the emergency medicine physician. Aspects of a 24 hour nuclear medicine service are considered. PMID:11696487

  7. [Nuclear medicine techniques in the diagnosis of orthopaedic diseases].

    PubMed

    Welsch, M; Welsch, F; Grünwald, F

    2006-06-01

    Nuclear medicine techniques show metabolic processes, allowing the diagnoses of many bone and joint disorders. For most orthopaedic indications three-phase bone scintigraphy is used, showing inflammatory bone and joint diseases, traumatic and post-operative disorders as well as necrotic or malignant changes. In addition to bone scintigraphy, there are radiopharmaceuticals to depict inflammatory processes. Finally, positron emission tomography is a modern imaging technique used mainly for tumor diagnostics, but also for detection of inflammation.

  8. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    NASA Astrophysics Data System (ADS)

    Falcón-González, J. M.; Bernal-Alvarado, J.; García-León, M.; García-Tenorio, R.; García, Y. Morilla; Sosa, M.

    2008-08-01

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard was used.

  9. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    SciTech Connect

    Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.; Garcia-Leon, M.; Morilla Garcia, Y.; Garcia-Tenorio, R.

    2008-08-11

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard was used.

  10. Multi-elemental Analysis Of Steel By Combined Nuclear Techniques

    SciTech Connect

    Ene, A.; Popescu, I. V.; Badica, T.

    2007-04-23

    In this work the nuclear techniques PIGE (Particle-Induced Gamma-ray Emission), PIXE (Particle-Induced X-ray Emission) and NAA (Neutron Activation Analysis) used for the multi-elemental analysis of steels have been compared in terms of detection limits, advantages and limitations.

  11. Microstructural characterization of nuclear-waste ceramics

    SciTech Connect

    Ryerson, F.J.; Clarke, D.R.

    1982-09-22

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables.

  12. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants AGENCY: Nuclear... Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power plants...

  13. Development and application of laser microprobe techniques for oxygen isotope analysis of silicates, and, fluid/rock interaction during and after granulite-facies metamorphism, highland southwestern complex, Sri Lanka

    SciTech Connect

    Elsenheimer, D.W.

    1992-01-01

    The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, reveals complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.

  14. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  15. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  16. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  17. Microscale structure fabrication using microprobe

    NASA Astrophysics Data System (ADS)

    Shinya, Norio; Konno, Takeshi; Egashira, Mitsuru

    1996-05-01

    Using a tungsten micro-probe with a tip of 2 micrometers radius, fine metallic powder particles could be manipulated one by one. By applying low voltage (about 10 V) between the probe and a metallic substrate, the powder particle on the substrate was adsorbed to the tip of probe easily, and by cutting off the voltage the powder particle was desorbed from the tip. Therefore it is possible to arrange powder particles as designed by controlling the voltage and movement of the probe. In addition to the powder particle manipulation, powder particles welding was studied. The tungsten micro-probe was contacted with the powder particle on the metallic substrate, and high voltage (about 10 kV) was applied between the probe and the substrate. It was observed that the glow discharge was caused between the powder particle and the substrate. The contacting parts of the powder particle and the substrate were melted and welded each other. By the manipulation and the welding, micro-structures composed of fine powder particles (about 60 micrometers ) were constructed. Powder particle towers and a micro- actuator were fabricated by way of trial. The results demonstrated the potential of the micro- probe assembly for the fabrication of electronic devices, micromachines and intelligent materials.

  18. Applications of nuclear techniques relevant for civil security

    NASA Astrophysics Data System (ADS)

    Valkovi, Vlado

    2006-05-01

    The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources (137Cs and 60Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is ''non-specific'' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are ''blind'' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential urban targets as well as

  19. Applications of nuclear and isotopic techniques in Indonesia

    SciTech Connect

    Hilmy, N.; Hendranto, K.

    1994-12-31

    Applications of Nuclear and Isotopic Techniques have been developed by the National Atomic Energy Agency (BATAN) since early 1970 in Indonesia. The scope of these applications covers various fields such as agriculture, hydrology, sedimentology and industry. Some applications of tracer techniques in industry which have been done such as measurement of homogeneity of mixing process in fertiliser and paper factory, residence time distribution in gold processing plant, mercury inventory in caustic soda plant, enhanced oil recovery in oil production wells, leakage investigation in dust chamber of fertiliser plant and blockage of pipeline, are presented in this paper. In the field of NDT by radiographic technique, BATAN regularly conducts training courses and also issues licences for Level I and II. Some applications of nuclear techniques in agriculture such as mutation breeding, animal production and animal health have shown the potential of radiation in creating variability as a basis for varietal improvements in several food crop species, the potential of using isotopes as tracers in the studies on metabolism, particularly in relation to the efficiency of rumen fermentative digestion and biological evaluation of locally available feedstuffs from agricultural and agro-industrial byproducts. So far, four varieties of nice, two varieties of soybean, and one variety of mungbean have been officially approved for release, and one formulation of feed supplement utilizing locally available agricultural and agro-industrial byproducts has been established and used for cattle and goats. In animal health, a radiovaccine against coccidiosis in poultry has been produced and used routinely.

  20. Single-stage quintuplet for upgrading triplet based lens system: Simulation for Atomki microprobe

    NASA Astrophysics Data System (ADS)

    Ponomarov, Artem; Rajta, Istvan; Nagy, Gyula; Romanenko, Oleksandr V.

    2017-08-01

    Among different configurations of lens systems for nuclear microprobes, the most common one is a triplet of magnetic quadrupole lenses. Nowadays, microanalysis and material modification will undoubtedly benefit from an improvement in spatial resolution. This work presents the results of simulations for improvement of the Oxford Triplet lens system at the Atomki microprobe with consideration of its system parameters and measured beam brightness distribution. For this purpose, an additional single-unit doublet of lenses with two power supplies was introduced. Using earlier developed methods, such a quintuplet system was optimized in order to determine the parameters which provided the highest resolution for different current operational modes with the same microprobe geometry. The tolerances for lens positioning accuracy were also calculated. The obtained quintuplet parameters indicate a resolution improvement for the Atomki microprobe compared to the Oxford Triplet system and these results validate further experimental testing of the proposed quintuplet.

  1. Microprobe analysis of chlorpromazine pigmentation

    SciTech Connect

    Benning, T.L.; McCormack, K.M.; Ingram, P.; Kaplan, D.L.; Shelburne, J.D.

    1988-10-01

    We describe the histochemical, ultrastructural, and microanalytical features of a skin biopsy specimen obtained from a patient with chlorpromazine pigmentation. Golden-brown pigment granules were present in the dermis, predominantly in a perivascular arrangement. The granules stained positively with the Fontana-Masson stain for silver-reducing substances and negatively with Perl's stain for iron. Electron microscopy revealed dense inclusion bodies in dermal histiocytes, pericytes, endothelial cells, and Schwann cells, as well as lying free in the extracellular matrix. These ''chlorpromazine bodies'' were quite dense even in unosmicated, unstained ultrathin sections, indicating that the pigmentation is related, at least in part, to the inclusions. Microprobe analysis of the chlorpromazine bodies revealed a striking peak for sulfur, which strongly suggests the presence of the drug or its metabolite within these inclusions.

  2. Noninvasive optical fiber photoacoustic microprobe

    NASA Astrophysics Data System (ADS)

    Lai, Edward P. C.; Chan, Becky L.; Wylie, Ian W.

    1985-10-01

    A microprobe has been designed for the noninvasive detection of photoacoustic signals. It is made up of a fused silica optical fiber which has a core diameter of 600 μm and is coupled to a piezoelectric ceramic transducer. It can detect the laser-induced photoacoustic waves in a 5×10-5 M aqueous ferroin solution, though its sensitivity is approximately 70 times less than that of a typical photoacoustic cell. The probe makes a good contact with any curved surface, and can be easily moved all over a cell to tap signals at many points. Thus, surface profiling of signal intensities is allowed. Other application advantages and design improvements are also discussed.

  3. Nuclear fuel pellet quality control using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Song, Xiaolong

    Inspection of nuclear fuel pellets is a complex and time-consuming process. At present, quality control in the fuel fabrication field mainly relies on human manual inspection, which is essentially a judgement call. Considering the high quality requirement of fuel pellets in the nuclear industry, pellet inspection systems must have a high accuracy rate in addition to a high inspection speed. Furthermore, any inspection process should have a low rejection rate of good pellets from the manufacturer point of view. It is very difficult to use traditional techniques, such as simple image comparison, to adequately perform the inspection process of the nuclear fuel pellet. Knowledge-based inspection and a defect-recognition algorithm, which maps the human inspection knowledge, is more robust and effective. A novel method is introduced here for pellet image processing. Three artificial intelligence techniques are studied and applied for fuel pellet inspection in this research. They are an artificial neural network, fuzzy logic, and the decision tree method. A dynamic reference model is located on each input fuel pellet image. Then, those pixels that belong to the abnormal defect are enhanced with high speed and high accuracy. Next, the content-based features for the defect are extracted from those abno1mal pixels and used in the inspection algorithm. Finally, an automated inspection prototype system---Visual Inspection Studio---which combines machine vision and these three AI techniques, is developed and tested. The experimental results indicate a very successful system with a high potential for on-line automatic inspection process.

  4. Development of nuclear fuel microsphere handling techniques and equipment

    SciTech Connect

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1980-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed.

  5. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    SciTech Connect

    Persiani, P.J.; Goleb, J.A.; Kroc, T.K.

    1981-11-01

    The purpose of this study is to investigate the applicability of isotope correlation techniques (ICT) to the Light Water Reactor (LWR) and the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles for nuclear material accountancy and safeguards surveillance. The isotopic measurement of the inventory input to the reprocessing phase of the fuel cycle is the primary direct determination that an anomaly may exist in the fuel management of nuclear material. The nuclear materials accountancy gap which exists between the fabrication plant output and the input to the reprocessing plant can be minimized by using ICT at the dissolver stage of the reprocessing plant. The ICT allows a level of verification of the fabricator's fuel content specifications, the irradiation history, the fuel and blanket assemblies management and scheduling within the reactor, and the subsequent spent fuel assembly flows to the reprocessing plant. The investigation indicates that there exist relationships between isotopic concentration which have predictable, functional behavior over a range of burnup. Several cross-correlations serve to establish the initial core assembly-averaged composition. The selection of the more effective functionals will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors on the correlation functions and respective sensitivities to isotopic compositional changes have been examined and found to be consistent with current measurement methods.

  6. Raman microprobe analysis of single ramie fiber during mercerization

    Treesearch

    Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla

    2003-01-01

    The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...

  7. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  8. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  9. The ANSTO high energy heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  10. Nuclear and radiochemical techniques in chemical analysis. Final report

    SciTech Connect

    Finston, H.L.; Williams, E.T.

    1981-06-01

    The areas studied during the period of the contract included determinations of cross sections for nuclear reactions, determination of neutron capture cross sections of radionuclides, application of special activation techniques, and x-ray counting, elucidation of synergic solvent extraction mechanisms and development of new solvent extraction techniques, and the development of a PIXE analytical facility. The thermal neutron capture cross section of /sup 22/Na was determined, and cross sections and energy levels were determined for /sup 20/Ne(n,..cap alpha..)/sup 17/O, /sup 20/Ne(n,P)/sup 20/F, and /sup 40/Ar(n,..cap alpha..)/sup 37/S. Inelastic scattering with 2 to 3 MeV neutrons followed by counting of the metastable states permits analysis of the following elements: In, Sr, Cd, Hg, and Pb. Bromine can be detected in the presence of a 500-fold excess of Na and/or K by thermal neutron activation and x-ray counting, and as little as 0.3 x 10/sup -9/ g of Hg can be detected by this technique. Mediun energy neutrons (10 to 160 MeV) have been used to determine Tl, Pb, and Bi by (n,Xn) and (n,PXn) reactions. The reaction /sup 19/F(P,..cap alpha..)/sup 76/O has been used to determine as little as 50 ..mu..mol of Freon -14. Mechanisms for synergic solvent extractions have been elucidated and a new technique of homogeneous liquid-liquid solvent extraction has been developed in which the neutral complex is rapidly extracted propylene carbonate by raising and lowering the temperature of the system. An external-beam PIXE system has been developed for trace element analyses of a variety of sample types. Various sample preparation techniques have been applied to a diverse range of samples including marine sediment, coral, coal, and blood.

  11. Development of nuclear technique for the detection of landmines

    NASA Astrophysics Data System (ADS)

    Sood, Din D.; Rosengard, Ulf; Trkov, Andrej

    2003-09-01

    The International Atomic Energy Agency has initiated a Coordinated Research Project (CRP) for the development of nuclear techniques for landmine detection. Out of the fourteen institutes participating in the CRP, twelve are working on neutron-based techniques. Small isotope neutron sources and D-T neutron generators have been used by the researchers. The techniques used include neutron scattering by explosives as well as gamma spectroscopy following the interaction of neutrons with explosives. Neutrons are readily thermalized by hydrogen in explosives and backscattered. Cape Town University, South Africa, and Delft University, Netherlands, have developed instruments based on this principle. Both are portable units and laboratory tests prove their capability to detect dummy landmines (100 g explosive simulant) buried 3-6 cm below dry soil. Further improvements are in progress. Another device, PELAN, developed by the Western Kentucky University, U.S. is based on pulsed fast and thermal neutron activation and has reached a fairly advanced stage of development. The equipment was tested with real mines in a test field in Croatia. In this first series of tests, PELAN could detect antitank mines (5.6 kg explosive) buried 7.5 cm below soil, and antipersonnel mines (200 g explosive) buried 5 cm below soil. More field tests and methods for improving performance are being pursued. The research groups are investigating different facets of the problem such as detector development, Monte Carlo calculations, spectrum unfolding, detector shielding and data analysis.

  12. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming

    PubMed Central

    Han, Ji Woong

    2011-01-01

    Abstract Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed. Antioxid. Redox Signal. 15, 1799–1820. PMID:21194386

  13. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Optimum Design of Cantilevered Microprobes for Inspecting Lcd Panels and Measurement of Contacting Forces

    NASA Astrophysics Data System (ADS)

    Kim, Cheol; Kim, Kwang-Joong

    Fine pitch microprobe arrays are microneedle-like probes for inspecting the pixels of LCD panels or IC. They are usually made of multi-layers of metallic, nonmetallic, or combination of the two. The design requirement for a contacting force is less than 2 gf and a deflection should be less than 100 µm. Many microprobe shapes satisfying the design requirements are possible. A cantilever-type microprobe having many needles was chosen and optimized in this study. Several candidate shapes were chosen using topology and shape optimization technique subjected to design requirements. Then, the microprobe arrays were fabricated using the process applied for MEMS fabrication and they were made of BeNi, BeCu, or Si. The contact probing forces and deflections were measured for checking the results from optimum design by newly developed measuring equipment in our laboratory. Numerical and experimental results were compared and both showed a good correlation.

  2. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  3. Detecting Defects in Aircraft Materials by Nuclear Technique (pas)

    NASA Astrophysics Data System (ADS)

    Badawi, Emad. A.

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials aluminum alloys which is the 7075 alloy. It has been shown that positrons can become trapped at imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values after the saturation of defect concentration. The mean lifetime and trapping rates are studied for samples deformed up to 58.3%. The concentration of defect range vary from 1015 to 1018cm-3 at the thickness reduction from 2.3 to 58.3%. The dislocation density varies from 108 to 1011cm/cm3.

  4. Detecting Defects in Aircraft Materials by Nuclear Technique (pas)

    NASA Astrophysics Data System (ADS)

    Badawi, Emad. A.

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials — aluminum alloy — which is a 7075 alloy. It has been shown that positrons can become trapped in imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values after the saturation of defect concentration. The mean lifetime and trapping rates were studied for samples deformed up to 58.3%. The concentration of defect range varies (from 1015 to 1018 cm-3) at the thickness reduction, (from 2.3 to 58.3%). The range of the dislocation density varies (from 108 to 1011 cm/cm3).

  5. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  6. Nuclear medicine techniques in the assessment of alkaptonuria.

    PubMed

    Vinjamuri, Sobhan; Ramesh, Chandakacharla N; Jarvis, Jonathan; Gallagher, Jim A; Ranganath, Lakshminarayana L

    2011-10-01

    Alkaptonuria is a rare autosomal recessive disorder due to a lack of the enzyme homogentisate dioxygenase, leading to ochronosis, a process of accumulation of a melanin-like polymer of homogentisic acid in cartilage and other collagenous structures. Patients develop severe osteoarthropathy that resembles osteoarthritis. Although the diagnosis of alkaptonuria is not particularly challenging in view of the blue-black discolouration of visible connective tissue and the presence of homogentisic acid in urine, the natural history of alkaptonuria remains poorly understood. Patients would benefit immensely from an objective assessment of their disease status and from a clearer understanding of the pathophysiology and associated physical changes. Isotope bone scans, which are commonly used to identify the extent of involvement of bones in cancerous processes, have also been increasingly used for characterizing the extent of arthropathy in conditions such as osteoarthritis and rheumatoid arthritis. Semiquantitative scores based on the extent of involvement of joints have been used to describe the involvement of large joints in the context of symptomatic treatment for osteoarthritis. A similar semiquantitative isotope bone scan score depending on the involvement of the number of large joints in patients with alkaptonuria can be formulated and validated in a suitable cohort of patients. Bone densitometry measurement using dual-energy X-ray absorptiometry scanning is an internationally accepted tool to assess the risk and extent of osteoporosis, and is increasingly used to assess the additional fracture risk in patients with arthropathy. We believe that, currently, nuclear medicine techniques can provide useful information, which can be incorporated into disease severity scores for alkaptonuria. Once the biological basis for alkaptonuria is better understood, it is feasible that nuclear medicine techniques of even greater sensitivity and specificity can be developed, thereby

  7. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  8. Elemental mapping of biological samples using a scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.

    1988-03-01

    Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.

  9. DS-2 Mars Microprobe Battery

    NASA Technical Reports Server (NTRS)

    Frank, H.; Kindler, A.; Deligiannis, F.; Davies, E.; Blankevoort, J.; Ratnakumar, B. V.; Surampudi, S.

    1999-01-01

    In January of 1999 the NM DS-2 Mars microprobe will be launched to impact on Mars in December. The technical objectives of the missions are to demonstrate: key technologies, a passive atmospheric entry, highly integrated microelectronics which can withstand both low temperatures and high decelerations, and the capability to conduct in-situ, surface and subsurface science data acquisition. The scientific objectives are to determine if ice is present below the Martian surface, measure the local atmospheric pressure, characterize the thermal properties of the martian subsurface soil, and to estimate the vertical temperature gradient of the Martian soil. The battery requirements are 2-4 cell batteries, with voltage of 6-14 volts, capacity of 550 mAh at 80C, and 2Ah at 25C, shelf life of 2.5 years, an operating temperature of 60C and below, and the ability to withstand shock impact of 80,000 g's. The technical challenges and the approach is reviewed. The Li-SOCL2 system is reviewed, and graphs showing the current and voltage is displayed, along with the voltage over discharge time. The problems encountered during the testing were: (1) impact sensitivity, (2) cracking of the seals, and (3) delay in voltage. A new design resulted in no problems in the impact testing phase. The corrective actions for the seal problems involved: (1) pre weld fill tube, (2) an improved heat sink during case to cover weld and (3) change the seal dimensions to reduce stress. To correct the voltage delay problem the solutions involved: (1) drying the electrodes to reduce contamination by water, (2) assemblage of the cells within a week of electrode manufacture, (3) ensure electrolyte purity, and (4) provide second depassivation pulse after landing. The conclusions on further testing were that the battery can: (1) withstand anticipated shock of up to 80,000 g, (2) meet the discharge profile post shock at Mars temperatures, (3) meet the required self discharge rate and (4) meet environmental

  10. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  11. Applications of nuclear analytical techniques to environmental studies

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Marques, A. P.; Barros, L. I. C.; Reis, M. A.

    2001-07-01

    A few examples of application of nuclear-analytical techniques to biological monitors—natives and transplants—are given herein. Parmelia sulcata Taylor transplants were set up in a heavily industrialized area of Portugal—the Setúbal peninsula, about 50 km south of Lisbon—where indigenous lichens are rare. The whole area was 10×15 km around an oil-fired power station, and a 2.5×2.5 km grid was used. In north-western Portugal, native thalli of the same epiphytes (Parmelia spp., mostly Parmelia sulcata Taylor) and bark from olive trees (Olea europaea) were sampled across an area of 50×50 km, using a 10×10 km grid. This area is densely populated and features a blend of rural, urban-industrial and coastal environments, together with the country's second-largest metro area (Porto). All biomonitors have been analyzed by INAA and PIXE. Results were put through nonparametric tests and factor analysis for trend significance and emission sources, respectively.

  12. Nuclear microscopy: biomedical applications

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Landsberg, Judith P.

    1993-05-01

    Recent developments in high energy ion beam techniques and technology have enabled the scanning proton microprobe (SPM) to make advances in biomedical research. In particular the combination of proton induced X-ray emission (PIXE) to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry (RBS) to characterise the organic matrix, and scanning transmission ion microscopy (STIM) to provide information on the density and structure of the sample, represents a powerful set of techniques which can be applied simultaneously to the specimen under investigation. This paper reviews briefly the biomedical work using the proton microprobe that has been carried out since the 2nd Int. Conf. on Nuclear Microprobe Technology and Applications held in Melbourne, 1990. Three recent and diverse examples of medical research are also presented from work carried out using the Oxford SPM. The first is a preliminary experiment carried out using human hair as a monitor for potential toxicity, using PIXE elemental mapping across the hair cross section to differentiate between elements contained within the hair and contamination from external sources. The second example is in the use of STIM to map individual cells in freeze-dried tissue, showing the possibility of the in situ microanalysis of cells and their extracellular environment. The third is the use of PIXE, RBS and STIM to identify and analyse the elemental constituents of neuritic plaque cores in untreated freeze-dried Alzheimer's tissue. This work resolves a current controversy by revealing an absence of aluminium levels in plaque cores at the 15 ppm level.

  13. The Responsibility of Adult Educators in the Nuclear Age. TECHNIQUES.

    ERIC Educational Resources Information Center

    Rosenblum, Sandra; Goldberg, Joan Carol

    1984-01-01

    The task of adult educators is to provide students with information as well as opportunities to explore alternatives to the arms race. As a starting point to raising nuclear issues in the classroom and incorporating them into the curriculum, the adult educator can administer a survey or questionnaire to students about nuclear weapons and the…

  14. Preparation of ultra small samples for optical and microprobe analysis

    NASA Technical Reports Server (NTRS)

    Inman, C. S.

    1973-01-01

    This paper describes a simple but satisfactory new method for the preparation of tiny, varied and specialized specimens for electron or ion-microprobe analysis developed over the past five years. Microtektites, individual chondrules, single grains, blebs from lunar samples and meteoritic minerals have been prepared by this technique. A description of the preparation of these usually difficult samples from the initial mounting through the various polishing steps to their final polish is presented in detail. The procedures used to prevent any contamination of these specimens by the polishing agents and to prevent cross contamination to the other samples used for geochronology studies are presented.

  15. Preparation of ultra small samples for optical and microprobe analysis

    NASA Technical Reports Server (NTRS)

    Inman, C. S.

    1973-01-01

    This paper describes a simple but satisfactory new method for the preparation of tiny, varied and specialized specimens for electron or ion-microprobe analysis developed over the past five years. Microtektites, individual chondrules, single grains, blebs from lunar samples and meteoritic minerals have been prepared by this technique. A description of the preparation of these usually difficult samples from the initial mounting through the various polishing steps to their final polish is presented in detail. The procedures used to prevent any contamination of these specimens by the polishing agents and to prevent cross contamination to the other samples used for geochronology studies are presented.

  16. Rapid correction of electron microprobe data for multicomponent metallic systems

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Sivakumar, R.

    1973-01-01

    This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.

  17. An X-ray microprobe facility using synchrotron radiation.

    PubMed

    Gordon, B M; Jones, K W; Hanson, A L; Pounds, J G; Rivers, M L; Spanne, P; Sutton, S R

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, "white light" is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 microns2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included.

  18. An x-ray microprobe facility using synchrotron radiation

    SciTech Connect

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Spanne, P.; Sutton, S.R.

    1989-01-01

    A x-ray microprobe for trace elemental analysis at micrometer spatial resolutions using synchrotron radiation (SR) is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present ''white light''' is used for excitation of the characteristic x-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 ..mu..m/sup 2/ areas in 5 min irradiation times. Scanning techniques as well as microtomography and chemical speciation are discussed. Application to a specific biomedical study is included. 13 refs., 2 figs.

  19. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    SciTech Connect

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine.

  20. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    SciTech Connect

    Brown, Forrest B.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  1. Developing the nuclear idea: concept, technique, and process.

    PubMed

    Billow, Richard M

    2013-10-01

    I introduce an approach to group that has remained undeveloped in the literature, but represents an essence of relationally oriented group psychotherapy. Evolving from the verbalizations and enactments through which the group symbolizes and becomes known-a nuclear idea takes shape. It emerges from the nucleus of the group process: co-created from intersubjective forces and locations that cannot be fully specified, yet may be possible to observe, name, and utilize clinically. Groups organize themselves by developing nuclear ideas, with the therapist's active participation. They are vehicles through which a group comes to think about its thinking: not only what it thinks, but also how it thinks, or chooses not to think, and when and why. Developing the nuclear idea provides a framework for how the therapist-and the group itself-goes about the task of containing. With its emphasis on meaning and the development of meaning as transformational, the concept of the nuclear idea supplements the whole group, interpersonal, and intrapsychic lenses through which the therapist comes to understand group experience and base interventions. Clinical vignettes illustrate how the therapist may develop nuclear ideas thematically, conceptualize further, and negotiate meaning with the co-participation of other group members.

  2. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  3. Microprobe study of the surface of a zeolite-containing zirconium-silicate catalyst

    SciTech Connect

    Mel'nikov, V.B.; Chukin, G.D.; Nefedov, B.K.

    1987-02-01

    X-ray microprobe techniques have been used to study the chemical and phase compositions of a zeolite-containing zirconium-silicate catalyst synthesized by introducing crystallites of the zeolite into the hydrosol and hydrogel of the zirconium silicate. It is shown that dispersion of the zeolite crystallites occurs in this process.

  4. Strain in UHMWPE for orthopaedic use studied by Raman microprobe spectroscopy.

    PubMed

    Kyomoto, Masayuki; Miwa, Yasutake; Pezzotti, Giuseppe

    2007-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) has been the most popular bearing material against both metal and ceramic counter-faces in total hip and knee joint replacements. Therefore, it is desirable to clarify the complex phenomena occurring both in vivo and in vitro, using highly sensitive analytical techniques. However, conventional analytical techniques used so far suffer from destructive measurements, lack of precision and/or intricate techniques. In the present study, the physical and chemical properties of both conventional UHMWPE (PE) and highly cross-linked UHMWPE (CLPE) were investigated by Raman microprobe spectroscopy, which combines the advantages of high precision and non-destructive measurements. It was found that the strain of UHMWPE can be evaluated by a change in the full width at half maximum (FWHM) of a selected Raman band (located at around 1127 cm(-1)), and that these spectroscopic strain coefficients were (0.42 +/- 0.01) x 10(-2) cm(-1)/% elongation and (0.48 +/- 0.01) x 10(-2) cm(-1)/% elongation for PE and CLPE (100 kGy), respectively. The difference in the crystalline nature between PE and CLPE was also confirmed by Raman microprobe spectroscopy. In addition, the Raman microprobe spectroscopy technique enabled us to obtain hyperspectral images of strain and crystallinity on a microscopic scale. Thus, Raman microprobe spectroscopy is a very effective method for analyzing UHMWPE for orthopaedic use.

  5. Investigation of Periodic Nuclear Decay Data with Spectral Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Javorsek, D.; Sturrock, P.; Buncher, J.; Fischbach, E.; Gruenwald, T.; Hoft, A.; Horan, T.; Jenkins, J.; Kerford, J.; Lee, R.; Mattes, J.; Morris, D.; Mudry, R.; Newport, J.; Petrelli, M.; Silver, M.; Stewart, C.; Terry, B.; Willenberg, H.

    2009-12-01

    We provide the results from a spectral analysis of nuclear decay experiments displaying unexplained periodic fluctuations. The analyzed data was from 56Mn decay reported by the Children's Nutrition Research Center in Houston, 32Si decay reported by an experiment performed at the Brookhaven National Laboratory, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische-Bundesanstalt in Germany. All three data sets possess the same primary frequency mode consisting of an annual period. Additionally a spectral comparison of the local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and the plasma speed and latitude of the heliospheric current sheet (HCS) was performed. Following analysis of these six possible causal factors, their reciprocals, and their linear combinations, a possible link between nuclear decay rate fluctuations and the linear combination of the HCS latitude and 1/R motivates searching for a possible mechanism with such properties.

  6. Detection of special nuclear materials with the associate particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-04-01

    In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  7. New frontiers in science and technology: nuclear techniques in nutrition123

    PubMed Central

    Davidsson, Lena; Tanumihardjo, Sherry

    2011-01-01

    The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797

  8. Knowledge elicitation techniques and application to nuclear plant maintenance

    NASA Astrophysics Data System (ADS)

    Doyle, E. Kevin

    The new millennium has brought with it the opportunity of global trade which in turn requires the utmost in efficiency from each individual industry. This includes the nuclear power industry, a point which was emphasized when the electrical generation industry began to be de regulated across North America the late 1990s and re-emphasized when the northeast power grid of North America collapsed in the summer of 2003. This dissertation deals with reducing the cost of the maintenance function of Candu nuclear power plants and initiating a strong link between universities and the Canadian nuclear industry. Various forms of RCM (reliability-centred maintenance) have been the tools of choice in industry for improving the maintenance function during the last 20 years. In this project, pilot studies, conducted at Bruce Power between 1999 and 2005, and reported on in this dissertation, lay out a path to implement statistical improvements as the next step after RCM in reducing the cost of the maintenance. Elicitation protocols, designed for the age group being elicited, address the much-documented issue of a lack of data. Clear, graphical, inferential statistical interfaces are accentuated and developed to aid in building the teams required to implement the various methodologies and to help in achieving funding targets. Graphical analysis and Crow/AMSAA (army materials systems analysis activity) plots are developed and demonstrated from the point of view of justifying the expenditures of cost reduction efforts. This dissertation ultimately speaks to the great opportunity being presented by this approach at this time: of capturing the baby-boom generation's huge pool of knowledge before those people retire. It is expected that the protocols and procedures referenced here will have applicability across the many disciplines where collecting expert information from a similar age group is required.

  9. Determination of hyperfine fields orientation in nuclear probe techniques

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Olszewski, W.; Satuła, D.; Gawryluk, D. J.; Krzton-Maziopa, A.; Kalska-Szostko, B.

    2017-02-01

    One of the most popular nuclear probes, 57Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  10. A double nuclear transfer technique for cloning pigs.

    PubMed

    Polejaeva, Irina A; Walker, Shawn; Campbell, Keith

    2006-01-01

    The first round of double nuclear transfer (NT) procedure includes the following steps: transfer of somatic cell nuclei into enucleated recipient oocytes, fusion, activation, and culture of reconstructed oocytes. The next day, a second round of NT is performed by removing karyoplasts from 1-d-old NT embryos and transferring them into in vivo-derived zygotes from which the two pronuclei have been removed. Couplets are then fused using an electrical pulse and transferred into synchronized recipient gilts. This system, which uses fertilized oocytes as cytoplast recipients, bypasses the inefficiencies of artificial activation procedures, and may promote more successful development.

  11. Determination of hyperfine fields orientation in nuclear probe techniques.

    PubMed

    Szymański, K; Olszewski, W; Satuła, D; Gawryluk, D J; Krzton-Maziopa, A; Kalska-Szostko, B

    2017-02-15

    One of the most popular nuclear probes, (57)Fe is used for the investigation of orientations of hyperfine fields and also for the determination of other important properties. In particular, the orientation of iron magnetic moments can be unambiguously determined, including its signs. Experiments with polarized radiation are presented with regard to selected systems. Orientation of electric field gradient is used for acquiring information about the shape of the texture-free spectra. Applications on the analysis of iron-based superconductors are presented.

  12. Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime

    SciTech Connect

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

    2012-08-01

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

  13. Trojan Horse technique to measure nuclear astrophysics rearrangement reactions

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2013-03-01

    The knowledge of nucleosynthesis and of energy production in stars requires an increasingly precise measurement of nuclear fusion reactions at the Gamow energy. Because of the Coulomb barrier reaction cross sections in astrophysics cannot be accessed directly at ultra -low energies, unless very favorable conditions are met. Moreover, the energies characterizing nuclear processes in several astrophysical contexts are so low that the presence of atomic electrons must be taken into account. Theoretical extrapolations of available data are then needed to derive astrophysical S(E)-factors. To overcome these experimental difficulties the Trojan Horse Method (THM) has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available. While the theory has been discussed in detail in some theoretical works, present in the scientific literature, also in relation to different types of excitation functions (e.g. non-resonant and resonant), work on detailed methodology used to extract the events to be considered for the bare nucleus cross section measurements is still on going. In this work we will present some critical points in the application of THM that deserve to be discussed in more detail.

  14. The Bioscience Nuclear Microscopy Program at LLNL

    SciTech Connect

    Bench, G.; Freeman, S.; Roberts, M.; Sideras-Haddad, E.

    1996-12-31

    Since initiation in mid 1994, a bioscience nuclear microscopy program at Livermore has enabled collaboration with bio-scientists on a variety of projects requiring quantitative elemental microanalysis. For microprobe analysis a combination of PIXE and STIM are typically used; respectively generating element distribution maps with micron scale spatial resolution, and projected densities and histological information with sub-micron spatial resolution. Current studies demonstrate the applicability of nuclear microscopy (particularly when combined with other analysis techniques) in environmental tracing, toxicology, carcinogenesis, and structural biology. The program currently uses {approximately}10 percent of the available time on a 10 MV tandem accelerator that is also applied to a variety of Accelerator Mass Spectrometry and other microprobe programs. The completion of a dedicated nuclear microprobe system, using a 5 SDH NEC 1.7 MV tandem accelerator and employing several energy dispersive x-ray detectors to improve x-ray counting rates, promises increased accelerator access, greater sample throughput and continued expansion of the program.

  15. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  16. CAMECA IMS 1300-HR3: The New Generation Ion Microprobe

    NASA Astrophysics Data System (ADS)

    Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.

    2016-12-01

    The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.

  17. Nuclear physics experiments with in-beam fast-timing and plunger techniques

    NASA Astrophysics Data System (ADS)

    Sotty, C.

    2017-06-01

    Nuclear lifetime and g factor are crucial observables in nuclear physics, as they give access to the excited states nuclear wave functions using the well-known electromagnetic transition operators. Thus, they are benchmarks to validate or discard nuclear structure theories. During the last decades, the evolution of the nuclear instruments and methods gave birth to several techniques used to measure lifetimes and moments. Among them, the in-beam Fast Electronic Scintillation Timing (FEST) technique is used to measure lifetimes of nuclear states in the picosecond to nanosecond range. Plunger devices originally developed to perform lifetime measurements of excited states in the picosecond range using the Recoil Distance Doppler Shift (RDDS) are now also employed to measure g factor using the new Time-Differential Recoil-In-Vacuum (TDRIV) technique. Recently commissioned, the ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) is dedicated to perform γ-ray spectroscopy, specially suited for lifetime measurements using the RDDS and in-beam fast-timing techniques at the 9 MV Bucharest-Tandem accelerator facility of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). An introduction of above-mentioned techniques is provided and selected results are illustrating them with physics cases. The in-beam fast-timing and RDDS techniques are described using lifetime measurements respectively in 67Cu and 120Te measured at the 9 MV Bucharest-Tandem accelerator. Finally, the precise g factor measurement of the first-excited state in 24Mg using by the new TDRIV technique at the ALTO-Tandem Orsay facility is presented.

  18. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  19. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-2, Leak Tests.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This second in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the predominantly used leak test methods in nuclear power plants. More specifically, the module describes these test methods, the testing techniques, and the associated quality assurance requirements. The module follows a typical…

  20. ;Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe

    NASA Astrophysics Data System (ADS)

    Brachet, Jean-Christophe; Hamon, Didier; Le Saux, Matthieu; Vandenberghe, Valérie; Toffolon-Masclet, Caroline; Rouesne, Elodie; Urvoy, Stéphane; Béchade, Jean-Luc; Raepsaet, Caroline; Lacour, Jean-Luc; Bayon, Guy; Ott, Frédéric

    2017-05-01

    This paper gives an overview of a multi-scale experimental study of the secondary hydriding phenomena that can occur in nuclear fuel cladding materials exposed to steam at high temperature (HT) after having burst (loss-of-coolant accident conditions). By coupling information from several facilities, including neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and micro laser induced breakdown spectroscopy, it was possible to map quantitatively, at different scales, the distribution of oxygen and hydrogen within M5™ clad segments having experienced ballooning and burst at HT followed by steam oxidation at 1100 and 1200 °C and final direct water quenching down to room temperature. The results were very reproducible and it was confirmed that internal oxidation and secondary hydriding at HT of a cladding after burst can lead to strong axial and azimuthal gradients of hydrogen and oxygen concentrations, reaching 3000-4000 wt ppm and 1.0-1.2 wt% respectively within the β phase layer for the investigated conditions. Consistent with thermodynamic and kinetics considerations, oxygen diffusion into the prior-β layer was enhanced in the regions highly enriched in hydrogen, where the α(O) phase layer is thinner and the prior-β layer thicker. Finally the induced post-quenching hardening of the prior-β layer was mainly related to the local oxygen enrichment. Hardening directly induced by hydrogen was much less significant.

  1. Nuclear analytical techniques with neutron beams at the Univ. of Texas at Austin

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1996-12-31

    Neutron beams produced by nuclear research reactors can be used for analytical chemical analysis by measuring nuclear radiation produced by neutron capture. Prompt gamma activation analysis (PGAA) and neutron depth profiling (NDP) are two such analytical techniques. For the last three decades, these techniques have been applied at a number of research reactors around the world. Within the last 4 yr, we have developed NDP and PGAA facilities at The University of Texas at Austin research reactor, a 1-MW TRIGA Mark II reactor. Brief descriptions of the facilities and summaries of activities for these analytical techniques at the University of Texas at Austin are provided in this paper.

  2. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  3. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  4. Implementation of ionoluminescence in the AGLAE scanning external microprobe

    NASA Astrophysics Data System (ADS)

    Pichon, L.; Calligaro, T.; Gonzalez, V.; Lemasson, Q.; Moignard, B.; Pacheco, C.

    2015-04-01

    The scope of this work is to present the implementation of an IBIL imaging system in the scanning external microprobe of the AGLAE facility so as to correlate luminescence and composition maps provided by PIXE, RBS and PIGE. The challenging integration of the optical spectrometer, due to incompatibility of acquisition timings and data formats with the other IBA channels has motivated the development of a specific acquisition system. This article details the IBIL setup and explains the technical solutions retained for the coupling of IBIL with IBA techniques in order to produce fast and large IBIL-IBA maps. The IBIL maps stored in the same format as the PIXE, RBS and PIGE ones can be visualised and compared using the dedicated AGLAEmap program or the PyMCA processing package. An example of such a coupled mapping on Mesoamerican jade is presented to emphasise the interest of performing simultaneously IBA and IBIL large mappings.

  5. Application of Nuclear Well Logging Techniques to Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Albats, P.; Groves, J.; Schweitzer, J.; Tombrello, T.

    1992-01-01

    The use of neutron and gamma ray measurements for the analysis of material composition has become well established in the last 40 years. Schlumberger has pioneered the use of this technology for logging wells drilled to produce oil and gas, and for this purpose has developed neutron generators that allow measurements to be made in deep (5000 m) boreholes under adverse conditions. We also make ruggedized neutron and gamma ray detector packages that can be used to make reliable measurements on the drill collar of a rotating drill string while the well is being drilled, where the conditions are severe. Modern nuclear methods used in logging measure rock formation parameters like bulk density and porosity, fluid composition, and element abundances by weight including hydrogen concentration. The measurements are made with high precision and accuracy. These devices (well logging sondes) share many of the design criteria required for remote sensing in space; they must be small, light, rugged, and able to perform reliably under adverse conditions. We see a role for the adaptation of this technology to lunar or planetary resource assessment missions.

  6. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  7. Life-assessment technique for nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Hnát, V.; Plaček, V.

    1998-06-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account.

  8. Nondestructive characterization of prepreg ageing using nuclear magnetic resonance techniques

    SciTech Connect

    Koeller, E.; Dobmann, G.; Kuhn, W. )

    1990-01-01

    Initial results are presented on the application of NMR techniques to prepregs in order to characterize the crosslink state under exposure to room and elevated (50 C) temperature. The experiments were conducted with a MSL-400 Bruker NMR spectrometer and microimaging system which works at 400 MHz. Aside from the sensitive measurement of the cross-link density there is also the potential to separate the influence of moisture content as a further parameter contributing to the aging process. It is shown that these experimental results correlate with results of destructive tests and document the potential of NMR as a NDT tool. An NMR-image of the moisture distribution in a glassfiber reinforced expoxy resin sample is shown. 17 refs.

  9. Nuclear techniques for the inspection of blast furnaces

    NASA Astrophysics Data System (ADS)

    Schweitzer, J. S.; Lanza, R. C.

    1999-06-01

    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section.

  10. First direct-write lithography results on the Guelph high resolution proton microprobe

    NASA Astrophysics Data System (ADS)

    Wang, L. P.; de Kerckhove, D.

    2011-10-01

    The recently completed high-resolution proton microprobe at the University of Guelph is Canada's first one-micron nuclear microprobe, which represents the country's state-of-the-art technology for various nuclear microprobe applications, e.g. direct-write microlithography. Its probe-forming system is comprised of a triplet Oxford Micro beams magnetic quadrupole lenses, along with high-precision objective slits. High energy protons coming off a 3 MV particle accelerator can achieve a nominal resolution of one micro and a beam current of several hundred of picoamperes when arriving at the target. This proton probe is ideal for the use of direct-write lithography with the incorporation of a magnetic scanning system and motorized sample stage. Preliminary lithography results have been obtained using spin-coated PMMA photoresist as specimen. The beam spot size, beam range and straggling inside the substrate and the exposure conditions are investigated by using scanning electron microscopy. This facility is the first in Canada to perform focused direct-write ion beam lithography, which is ideal for modification and machining of polymer and semiconductor materials for biological, microfluidic and ultimate lab-on-chip applications.

  11. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  12. High-speed microprobe for roughness measurements in high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas

    2017-03-01

    Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s‑1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s‑1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.

  13. Basalt nuclear-waste repository remote sensing using electromagnetic techniques

    SciTech Connect

    Daily, W.D.; Buettner, H.M.

    1984-01-01

    The electromagnetic permittivity and attenuation rate of basalt, from the Near Surface Test Facility of the Basalt Waste Isolation Project at Hanford, Washington, have been measured in the laboratory as a function of water content at frequencies from 25 MHz to 1000 MHz. Both the permittivity and the attenuation rate are strongly related to water content of basalt in this frequency range. Completely dehydrated, the rock has a frequency-independent relative permittivity of about 8 and attenuation rates (inverse skin depths) of 0.04 m/sup -1/ and 3.2 m/sup -1/ at 25 MHz and 1000 MHz, respectively. When completely saturated by tap water to 6% by volume, the relative permittivity ranges from 16.5 to 10.0 and the attenuation ranges from 0.3 m/sup -1/ to 5.5 m/sup -1/ between 25 MHz and 1000 MHz. The data indicate that high-frequency electromagnetic remote sensing techniques, such as those used in radar, cross-borehole tomography, and borehole logging, may be useful in characterizing proposed basalt repositories and monitoring established waste repositories. Electromagnetic methods are particularly suited to delineating water content of the rock and, when completely saturated, crack and pore porosity of the rock mass within a repository. 7 references, 3 figures.

  14. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  15. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Nelson, S.; Paul, A. C.; Poole, B.; Sanders, D.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.; Carazo, V.; Guse, S.; Pearson, D.; Schmidt, R.

    2009-12-02

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve approx10 MV/m gradients for 10 s of nanoseconds pulses and approx100 MV/m gradients for approx1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  16. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  17. Macro elemental analysis of food samples by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.

    2017-06-01

    Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.

  18. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    SciTech Connect

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)

  19. A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.

    PubMed

    Kumar, Neeraj; Verma, Ruchika; Sharma, Sanuj; Bhargava, Surabhi; Vahadane, Abhishek; Sethi, Amit

    2017-03-06

    Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques such as Otsu thresholding and watershed segmentation do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances. However, training machine learning algorithms require datasets of images in which a vast number of nuclei have been annotated. Publicly accessible and annotated datasets, along with widely agreed upon metrics to compare techniques, have catalyzed tremendous innovation and progress on other image classification problems, particularly in object recognition. Inspired by their success, we introduce a large publicly accessible dataset of H&E stained tissue images with more than 21,000 painstakingly annotated nuclear boundaries, whose quality was validated by a medical doctor. Because our dataset is taken from multiple hospitals and includes a diversity of nuclear appearances from several patients, disease states, and organs, techniques trained on it are likely to generalize well and work right out-of-the-box on other H&E stained images. We also propose a new metric to evaluate nuclear segmentation results that penalizes object- and pixel-level errors in a unified manner, unlike previous metrics that penalize only one type of error. We also propose a segmentation technique based on deep learning that lays special emphasis on identifying the nuclear boundaries, including those between the touching or overlapping nuclei, and works well on a diverse set of test images.

  20. Ion and laser microprobes applied to the measurement of corrosion-produced hydrogen on a microscopic scale

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1971-01-01

    An ion microprobe and a laser microprobe were used to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below the fracture surfaces of hot-salt stress-corroded titanium alloy specimens. This segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot-salt stress-corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress-corrosion and hydrogen embrittlement research, quality control, and field inspection applications.

  1. Aerodynamics of the Mars Microprobe Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Moss, J. N.; Cheatwood, F. M.; Greene, F. A.; Braun, R. D.

    1997-01-01

    The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic and transonic flow regimes is then presented. This description is based on Direct Simulation Monte Carlo analyses in the rarefied-flow regime, thermochemical nonequilibrium Computational Fluid Dynamics in the hypersonic regime, existing wind tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and finally, ballistic range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric-interface into the desired surface-impact orientation and velocity.

  2. Microprobe and oxygen fugacity study of armalcolite

    NASA Technical Reports Server (NTRS)

    Friel, J. J.

    1976-01-01

    The stability of synthetic armalcolite was determined as a function of oxygen fugacity with particular regard to the oxidation state of iron and titanium. The equilibrium pseudobrookite (armalcolite) composition was measured at 1200 C under various conditions of oxidation typical of the lunar environment. These data, when compared with published descriptions of mare basalts, provide information about the conditions of crystallization of armalcolite-bearing lunar rocks. Some information about the crystal chemistry of armalcolite was obtained from X-ray diffraction and electron microprobe analyses of synthetic armalcolite and Zr-armalcolite. Further data were gathered from a comparison of the Mossbauer spectra of a phase pure stoichiometric armalcolite and one containing appreciable amounts of trivalent titanium.

  3. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    SciTech Connect

    Not Available

    1980-04-01

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

  4. Reliable Wireless Data Acquisition and Control Techniques within Nuclear Hot Cell Facilities

    SciTech Connect

    Kurtz, J.L.; Tulenko, J.

    2000-09-20

    On this NEER project the University of Florida has investigated and applied advanced communications techniques to address data acquisition and control problems within the Fuel Conditioning Facility (FCF) of Argonne National Laboratory-West (ANL-W) in Idaho Falls. The goals of this project have been to investigate and apply wireless communications techniques to solve the problem of communicating with and controlling equipment and systems within a nuclear hot cell facility with its attendant high radiation levels. Different wireless techniques, including radio frequency, infrared and power line communications were reviewed. For each technique, the challenges of radiation-hardened implementation were addressed. In addition, it has been a project goal to achieve the highest level of system reliability to ensure safe nuclear operations. Achievement of these goals would allow the eventual elimination of through-the-wall, hardwired cabling that is currently employed in the hot cell, along wit h all of the attendant problems that limit measurement mobility and flexibility.

  5. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Červená, J.; Peřina, V.; Mach, R.; Peka, I.

    1998-04-01

    Accelerator driven transmutation technology (ADTT) is a promissing way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a subcritical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600°C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration.

  6. Retroactive Generation of Covariance Matrix of Nuclear Model Parameters Using Marginalization Techniques

    SciTech Connect

    Habert, B; De Saint Jean, C; Leal, Luiz C; Rugama, Yolanda

    2010-01-01

    An uncertainty propagation methodology relying on marginalization techniques was recently developed to produce covariance matrices between existing model parameters involved in describing neutron-induced reactions. This work has been implemented in the nuclear data assimilation tool CONRAD. The performance of the code was demonstrated through simplified test cases based on a Reich-Moore description of the {sup 155}Gd(n,{gamma}) reaction. Results are compared with those produced via Monte Carlo techniques.

  7. Laser Microprobe (U-Th)/He Thermochronology of Detrital Minerals

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.; van Soest, M. C.

    2007-12-01

    A persistent concern in detrital mineral geochronology is the need to obtain a representative sampling of crystallization or cooling ages in the source region. Methods with high throughput --- e.g., laser microprobe 40Ar/39Ar thermochronology of muscovite and U-Pb thermochronology of zircon --- have a distinct advantage in this regard. Both techniques have advanced to the point that the dozens of analyses necessary to obtain a representative sampling can be done quickly and with sufficiently precision for high-quality research. Datasets obtained using methods that are far more labor intensive --- e.g., single-grain (U-Th)/He and fission track dating of minerals such as zircon --- typically include many fewer analyses. Consequently, we have less confidence that the cooling age distribution in the dataset represents the cooling age distribution in the source region. Of greater concern are analytical protocols that increase the probability of non-representative sampling. One example is the practice of picking zircon grains that are inclusion-free and euhedral (or nearly so) for conventional (U-Th)/He dating. While this practice is essential for successful conventional (U-Th)/He dating, it unavoidably leads to the systematic exclusion of grains that actually may represent significant portions of the source terrain. We describe a new approach to detrital mineral (U-Th)/He thermochronology that, in principle, provides a higher- fidelity record of the source region cooling history than the conventional technique. It involves the use of an excimer laser microprobe to ablate portions of the grain interiors from detrital zircons in a polished grain mount. (Prior to analyses, the grains can be mapped using backscattered electron and cathodoluminesence imagery.) The amounts of evolved 4He are typically so small that they are best measured using a magnetic-sector mass spectrometer rather than a quadrupole mass spectrometer of the type typically used for conventional (U- Th

  8. Quantum-well-laser mirror degradation investigated by microprobe optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Corvasce, C.; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugara, M.; Adduci, F.; Ferrara, Michele; Sibilano, Michele; Pellegrino, Sergio; del Giudice, Massimo; Re, M. G.

    1995-11-01

    A study of facet degradation of InGaAs quantum well lasers is reported. We tune up a Raman and photoluminescence micro-probe technique for determining the crystal structure and the temperature profile of the cladding layer, in steps of approximately 1 micrometer, with a temperature resolution better than 1 degree Kelvin. The cladding layer composition and cross- section temperature profile have been monitored during operation. A clear correlation between the facet degradation and the type of protective coating is found.

  9. Application of the Karlsruhe proton microprobe to medical samples

    NASA Astrophysics Data System (ADS)

    Heck, D.; Rokita, E.

    1984-04-01

    The Karlsruhe nuclear microprobe was used in the investigation of healthy and malign tissue of animals and men. Target preparation tests showed that cryofixation of the tissue before cutting with a microtome and succeeding lyophilization of the slices gave reliable results. The slices were mounted on backing foils of Formvar the thickness of which varied between 30 and 50 {μg}/{cm 2}. For irradiation we tested various patterns generated by the 3 MeV proton beam by sweeping in one or two dimensions. Most of the data were collected in line-scan mode, where 256 equidistant irradiation dots of 3 × 10 μm 2 formed a line of 750 μm length at beam currents of 250 pA. The target thickness was determined simultaneously by proton elastic scattering in all cases. Radial concentration profiles of degenerated human arteries (atherosclerosis) showed a remarkable increase of Ca, partly correlated with local maxima of the Zn content, when compared with non-degenerated capillaries. Microtome cuts across a Morris Hepatoma 7777 cancer grown in a rat leg were investigated to correlate the concentration shifts of some trace elements in malign tissue with single cells.

  10. Electron microprobe analysis of trace elements in minerals at 10 PPM concentrations

    NASA Technical Reports Server (NTRS)

    Mckay, G. A.; Seymour, R. S.

    1982-01-01

    An improved technique is developed for measuring backgrounds during trace element analysis of crystals and glass using electron microprobes. This technique overcomes major difficulties encountered with conventional techniques, such as the problem of obtaining the net X-ray intensity of the characteristic emission line of interest with sufficient precision and accuracy, as well as the error due to the inability to directly measure the intensity at the wavelength of the characteristic line on the sample being analyzed. It is shown that this technique can yield reproducible results to within 4 ppm in olivine, and has a minimum uncertainty and detection limit of 10 ppm Nd in olivine.

  11. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques.

    PubMed

    Atale, N; Gupta, S; Yadav, U C S; Rani, V

    2014-07-01

    Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst-33342, 4', 6-diamidino-2-phenylindole (DAPI), Acridine orange-Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin-V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.

  12. High temperature antigen retrieval and loss of nuclear morphology: a comparison of microwave and autoclave techniques.

    PubMed Central

    Hunt, N C; Attanoos, R; Jasani, B

    1996-01-01

    The use of high temperature antigen retrieval methods has been of major importance in increasing the diagnostic utility of immunocytochemistry. However, these techniques are not without their problems and in this report attention is drawn to a loss of nuclear morphological detail, including mitotic figures, following microwave antigen retrieval. This was not seen with an equivalent autoclave technique. This phenomenon was quantified using image analysis in a group of B cell lymphomas stained with the antibody L26. Loss of nuclear morphological detail may lead to difficulty in identifying cells accurately, which is important in the diagnostic setting-for example, when trying to distinguish a malignant lymphoid infiltrate within a mixed cell population. In such cases it would clearly be wise to consider the use of alternative high temperature retrieval methods and accept their slightly lower staining enhancement capability compared with the microwave technique. Images PMID:9038766

  13. Measurements of nuclear-level lifetimes by the Doppler techniques with large multidetector arrays

    SciTech Connect

    Pasternak, A. A.

    2008-07-15

    This is a brief review of the investigations carried out by scientists from the Ioffe Physical-Technical Institute (St. Petersburg) within the framework of international projects for the study of the structure of high-spin nuclear states using heavy-ion beams and arrays of tens and hundreds of detectors for recording gamma rays and charged particles. The development and results of measurements of nuclear-level lifetime by Doppler techniques in the range 10{sup -14}-10{sup -9} s are discussed.

  14. The new confocal heavy ion microprobe beamline at ANSTO: The first microprobe resolution tests and applications for elemental imaging and analysis

    NASA Astrophysics Data System (ADS)

    Pastuovic, Z.; Siegele, R.; Cohen, D. D.; Mann, M.; Ionescu, M.; Button, D.; Long, S.

    2017-08-01

    The Centre for Accelerator Science facility at ANSTO has been expanded with the new NEC 6 MV ;SIRIUS; accelerator system in 2015. In this paper we present a detailed description of the new nuclear microprobe-Confocal Heavy Ion Micro-Probe (CHIMP) together with results of the microprobe resolution testing and the elemental analysis performed on typical samples of mineral ore deposits and hyper-accumulating plants regularly measured at ANSTO. The CHIMP focusing and scanning systems are based on the OM-150 Oxford quadrupole triplet and the OM-26 separated scan-coil doublet configurations. A maximum ion rigidity of 38.9 amu-MeV was determined for the following nuclear microprobe configuration: the distance from object aperture to collimating slits of 5890 mm, the working distance of 165 mm and the lens bore diameter of 11 mm. The overall distance from the object to the image plane is 7138 mm. The CHIMP beamline has been tested with the 3 MeV H+ and 6 MeV He2+ ion beams. The settings of the object and collimating apertures have been optimized using the WinTRAX simulation code for calculation of the optimum acceptance settings in order to obtain the highest possible ion current for beam spot sizes of 1 μm and 5 μm. For optimized aperture settings of the CHIMP the beam brightness was measured to be ∼0.9 pA μm-2 mrad-2 for 3 MeV H+ ions, while the brightness of ∼0.4 pA μm-2 mrad-2 was measured for 6 MeV He2+ ions. The smallest beam sizes were achieved using a microbeam with reduced particle rate of 1000 Hz passing through the object slit apertures several micrometers wide. Under these conditions a spatial resolution of ∼0.6 μm × 1.5 μm for 3 MeV H+ and ∼1.8 μm × 1.8 μm for 6 MeV He2+ microbeams in horizontal (and vertical) dimension has been achieved. The beam sizes were verified using STIM imaging on 2000 and 1000 mesh Cu electron microscope grids.

  15. Deep Space 2: The Mars Microprobe Mission

    NASA Astrophysics Data System (ADS)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  16. Stand-alone microprobe at Livermore

    SciTech Connect

    Antolak, A J; Bench, G S; Brown, T A; Frantz, B R; Grant, P G; Morse, D H; Roberts, M L

    1998-10-02

    Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories/California have jointly constructed a new stand-alone microprobe facility. Although the facility was built to develop a method to rapidly locate and determine elemental concentrations of micron scale particulates on various media using PIXE, the facility has found numerous applications in biology and materials science. The facility is located at LLNL and uses a General Ionex Corporation Model 358 duoplasmatron negative ion source, a National Electrostatics Corporation 5SDH-2 tandem accelerator, and an Oxford triplet lens. Features of the system include complete computer control of the beam transport using LabVIEWTM for Macintosh, computer controlled beam collimating and divergence limiting slits, automated sample positioning to micron resolution, and video optics for beam positioning and sample observation. Data collection is accomplished with the simultaneous use of as many as four EG&G Ortec IGLET-XTM X-Ray detectors, digital amplifiers made by X-Ray Instruments and Associates (XIA), and LabVIEWTM for Macintosh acquisition software.

  17. Aerothermal Heating Predictions for Mars Microprobe

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; DiFulvio, M.; Horvath, T. J.; Braun, R. D.

    1998-01-01

    A combination of computational predictions and experimental measurements of the aerothermal heating expected on the two Mars Microprobes during their entry to Mars are presented. The maximum, non-ablating, heating rate at the vehicle's stagnation point (at alpha = 0 degrees) is predicted for an undershoot trajectory to be 194 Watts per square centimeters with associated stagnation point pressure of 0.064 atm. Maximum stagnation point pressure occurs later during the undershoot trajectory and is 0.094 atm. From computations at seven overshoot-trajectory points, the maximum heat load expected at the stagnation point is near 8800 Joules per square centimeter. Heat rates and heat loads on the vehicle's afterbody are much lower than the forebody. At zero degree angle-of-attack, heating over much of the hemi-spherical afterbody is predicted to be less than 2 percent of the stagnation point value. Good qualitative agreement is demonstrated for forebody and afterbody heating between CFD calculations at Mars entry conditions and experimental thermographic phosphor measurements from the Langley 20-Inch Mach 6 Air Tunnel. A novel approach which incorporates six degree-of-freedom trajectory simulations to perform a statistical estimate of the effect of angle-of-attack, and other off-nominal conditions, on heating is included.

  18. Friction microprobe studies of composite surfaces

    SciTech Connect

    Blau, P.J.

    1990-01-01

    A newly-constructed friction microprobe has been used to study the variations in friction force associated with unlubricated sliding of small 1.0 mm diameter. 440C stainless steel spheres over the surfaces of alumina, silicon nitride, silicon carbide, and silicon carbide whisker-reinforced composites with matrices of alumina and silicon nitride. The purpose of the work was to attempt to detect frictional transients associated with the sliding interaction of individual asperities and to relate these transients to the microstructures of the ceramics and their composites. Friction data could be obtained without detectable wear of either the spheres or the flat specimens. The presence of whiskers increased in the friction of alumina by about 28% and decreased the friction of silicon nitride by about 15%. Less than a 1% instantaneous variation in friction coefficient could be directly ascribed to contacts with whiskers. Future studies are planned to investigate whisker orientation effects on the variation of the sliding friction of composites. 11 refs., 8 figs., 3 tabs.

  19. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.

    PubMed

    Chen, Chunying; Li, Yu-Feng; Qu, Ying; Chai, Zhifang; Zhao, Yuliang

    2013-11-07

    Manufactured nanomaterials with novel physicochemical properties are an important basis for nanosciences and related technologies. Nanotoxicology, aiming to understand the principles of interactions at the nano-bio interface and the relationship between the physicochemical properties of nanomaterials and their toxicological profiles, has become a new frontier in nanoscience. Nearly one decade of nanotoxicology research has shown that the interactions between nanomaterials and proteins, cells, animals, humans and the environment as well as the underlying mechanisms of toxicity for nanomaterials are remarkably complicated, requiring dedicated analytical methodology and tools. Because of their advantages of absolute quantification, high sensitivity, excellent accuracy and precision, low matrix effects and non-destructiveness, nuclear analytical techniques have been playing important roles in the study of nanotoxicology. A systematic summary and comprehensive review of the advanced nuclear analytical and related techniques in nanotoxicology is greatly needed. In this review article, we present a comprehensive overview of nuclear analytical techniques applied to the physicochemical characterization of nanomaterials, structural analysis of bio-nano interactions, visualization of nanomaterials in vitro, quantification of bio-distribution, bio-accumulation, and transformation of nanomaterials in vivo. As important complementary tools, optical imaging technologies are also highlighted. Future directions regarding advanced nuclear analytical approaches for nanotoxicology are also discussed. The rapid development of advanced light source-based techniques will enable new high-throughput screening techniques and provide high sensitivity with low detection limits, which are required for the distribution, imaging, and structural analysis of nanomaterials, and the molecular information of biomarkers for all aspects of nanotoxicology.

  20. X-ray tomography as a complementary technique to nuclear microscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Pinheiro, Teresa; Odenbach, Stefan; Alcala, Maria Dolores Ynsa

    2009-06-01

    X-ray micro-computed tomography is an excellent tool to examine the morphology of a sample in a non-destructive way, making its inner structure visible. Nuclear microscopy provides quantitative information about the elemental distribution and concentration. Both can be used as complementary techniques in order to get more information about the samples. Osteoporosis is a disease that deteriorates the bone due to, among other things, a failure in the normal hormonal function. In this project, bones from rats under osteoporosis treatments based on hormonal supplementation, as well as healthy bones and osteoporotic ones without treatment, have been analyzed by both nuclear microscopy and X-ray micro-tomography. Following the results achieved by nuclear microscopy, quantitative concentration and distribution of elements such as Ca and P suggested a change in bone density. In order to image this change of density, the same samples have been analyzed by micro-tomography.

  1. Use of a beta microprobe system to measure arterial input function in PET via an arteriovenous shunt in rats

    PubMed Central

    2011-01-01

    Background Kinetic modeling of physiological function using imaging techniques requires the accurate measurement of the time-activity curve of the tracer in plasma, known as the arterial input function (IF). The measurement of IF can be achieved through manual blood sampling, the use of small counting systems such as beta microprobes, or by derivation from PET images. Previous studies using beta microprobe systems to continuously measure IF have suffered from high background counts. Methods In the present study, a light-insensitive beta microprobe with a temporal resolution of up to 1 s was used in combination with a pump-driven femoral arteriovenous shunt to measure IF in rats. The shunt apparatus was designed such that the placement of the beta microprobe was highly reproducible. The probe-derived IF was compared to that obtained from manual sampling at 5-s intervals and IF derived from a left ventricle VOI in a dynamic PET image of the heart. Results Probe-derived IFs were very well matched to that obtained by "gold standard" manual blood sampling, but with an increased temporal resolution of up to 1 s. The area under the curve (AUC) ratio between probe- and manually derived IFs was 1.07 ± 0.05 with a coefficient of variation of 0.04. However, image-derived IFs were significantly underestimated compared to the manually sampled IFs, with an AUC ratio of 0.76 ± 0.24 with a coefficient of variation of 0.32. Conclusions IF derived from the beta microprobe accurately represented the IF as measured by blood sampling, was reproducible, and was more accurate than an image-derived technique. The use of the shunt removed problems of tissue-background activity, and the use of a light-tight probe with minimal gamma sensitivity refined the system. The probe/shunt apparatus can be used in both microprobe and PET studies. PMID:22214227

  2. Electron microprobe analysis of zinc incorporation into rumen protozoa

    SciTech Connect

    Bonhomme, A.; Quintana, C.; Durand, M.

    1980-11-01

    With the aid of electron microprobe analysis on ciliate spreads, we detected zinc in ciliates and its accumulation in the endoplasm. A correlation was found between the amount of zinc accumulation and its concentration in the medium. By the same microprobe analysis of of ultrathin sections, we determined semiquantitatively the zinc accumulation in the intracytoplasmic granules and its presence in macronuclei and in intra- and extracellular bacteria.

  3. Microprobe analyses of rare-earth-element fractionation in meteoritic minerals

    SciTech Connect

    Benjamin, T.M.; Duffy, C.J.; Rogers, P.S.Z.; Maggiore, C.J.; Woolum, D.S.; Burnett, D.S.; Murrell, M.T.

    1983-01-01

    Two meteorites were analyzed by PIXE with the Los Alamos Nuclear Microprobe. The enstatite achondrite Pena Blanca Spring and the ordinary chondrite St. Severin were chosen as likely candidates for use in /sup 244/Pu (t/sub 1/2/ = 82 my) cosmochronology and geochronology. These applications require the meteoritic minerals to have unfractionated actinides and lanthanides relative to cosmic elemental abundance ratios. The PIXE analyses produced evidence of actinide-lanthanide fractionation in Pena Blanca Spring oldhamite (CaS) whereas the St Severin phosphates, whitlockite and chlorapatite, do not exhibit this fractionation.

  4. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-08-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  5. Application of nuclear analytical techniques to biological and environmental research in the Czech Republic

    SciTech Connect

    Kucera, J.

    1996-12-31

    There is a long tradition in radiochemistry in the present Czech Republic that dates from 1856. However, the modern history of nuclear analytical techniques (NAT) development started after installation of the first experimental nuclear reactor and Van de Graaff accelerator in the mid-sixties at Rez. Since then, the NAT, such as neutron activation analysis (NAA) both instrumental (INAA) and radiochemical (RNAA), gamma activation analysis, particle-induced X-ray and gamma-ray emission (PIXE and PIGE, respectively), Rutherford backscattering, and neutron depth profiling have been continuously developed and applied in various scientific and technological fields. The radiochemical approach has always had a strong position in these investigations and resulted in the discovery of the substoichiometry separation principle in NAA and isotope dilution techniques and extensive utilization of RNAA. The use of INAA and RNAA in the evaluation of biological and environmental materials as well as plants is described.

  6. Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyan, V. I.; Borisyuk, P. V.; Khalitov, R. R.; Krasavin, A. V.; Lebedinskii, Yu Yu; Palchikov, V. G.; Poteshin, S. S.; Sysoev, A. A.; Yakovlev, V. P.

    2013-10-01

    Single- and double-charged 232Th and 229Th ions were produced by laser ablation of solid-state thorium compounds and by inductively coupled plasma techniques with mass-spectrometry analysis from liquid solutions of thorium. The latter method was found to be more applicable for producing ions of radioactive 229Th for laser experiments when searching for the energy value of the isomeric nuclear transition.

  7. Handbook of software quality assurance techniques applicable to the nuclear industry

    SciTech Connect

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic.

  8. Use of DWPF redox measurement technique on glasses from West Valley Nuclear Fuel Services Demonstration Project

    SciTech Connect

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). A similar vitrification facility exists at the West Valley Nuclear Fuel Services. In both of these facilities, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Redox can be determined by measuring the ratio of ferrous to ferric ions in the glass melt. A colorimetric procedure has been developed for the DWPF which has been shown to give rapid and reliable analytical results. This colorimetric technique has been shown to measure the Fe{sup 2+} component of glasses more accurately than other existing redox measurement methods. The DWPF redox technique was applied to a series of six glasses taken from the West Valley melter during a transient melter excursion. This excursion caused the glasses to become progressively more reducing with time. Application of the DWPF redox technique to these glasses correctly indicated the redox trends with a higher precision and with more accuracy than the West Valley wet chemical method and/or Alfred University's Mossbauer method. 1 fig., 18 refs.

  9. Current status and prospects of nuclear physics research based on tracking techniques

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Alexandrov, A. B.; Bagulya, A. V.; Chernyavskiy, M. M.; Goncharova, L. A.; Gorbunov, S. A.; Kalinina, G. V.; Konovalova, N. S.; Okatyeva, N. M.; Pavlova, T. A.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymirov, M. S.; Volkov, A. E.

    2017-01-01

    Results of nuclear physics research made using track detectors are briefly reviewed. Advantages and prospects of the track detection technique in particle physics, neutrino physics, astrophysics and other fields are discussed on the example of the results of the search for direct origination of tau neutrino in a muon neutrino beam within the framework of the international experiment OPERA (Oscillation Project with Emulsion-tRacking Apparatus) and works on search for superheavy nuclei in nature on base of their tracks in meteoritic olivine crystals. The spectra of superheavy elements in galactic cosmic rays are presented. Prospects of using the track detection technique in fundamental and applied research are reported.

  10. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    SciTech Connect

    Yang, Haori

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  11. Biological Effects in Coral Biomineralization: The Ion-Microprobe Revolution

    NASA Astrophysics Data System (ADS)

    Meibom, A.

    2004-12-01

    Scleractinian corals are among the most prolific biomineralizing organisms on Earth and massive, reef-building corals are used extensively as proxies for past variations in the global climate. It is therefore of wide interest to understand the degree to which biological versus inorganic processes control the chemistry of the coral skeleton. Early workers considered aragonitic coral skeleton formation to be a purely physiochemical process. More recent studies have increasingly emphasized the role of a skeletal organic matrix, or intercalated organic macro-molecules that control the macroscopic shape and size of the growing crystals. It is now well established that organic compounds play a key role in controlling the morphology of crystals in a wide variety of calcium carbonate biomineralization processes by binding to specific sites, thereby causing direction-specific binding energies on the crystal surfaces. Macro-molecules, such as aspartic acid-rich or glutamic proteins and sulfated polysaccharides, are known to be embedded within the aragonitic skeletal components of coral. In addition, endosymbiotic algae and the layer of cells adjacent to the mineralizing surface, the calicoblastic ectoderm, are believed to play important roles in driving and controlling hermatypic coral skeletogenesis. However, until recently, further progress has been somewhat limited because it was not possible to obtain chemical analyses of the coral skeleton with sufficiently high spatial resolution and sensitivity to correlate chemical variations with the micrometer scale organization of its different structural components. The recent emergence of new ion microprobe technology is changing this situation radically. Conventional ion microprobe and laser ablation techniques have already contributed substantially to our knowledge about the micro-distribution of key trace elements such as B, Mg, Sr, Ba and U. However, with the development of the NanoSIMS, a newly designed ion microprobe

  12. The Perils of Electron Microprobe Analysis of Apatite

    NASA Astrophysics Data System (ADS)

    Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.

    2010-12-01

    . Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.

  13. Identification of cosmogenic argon components in Allende by laser microprobe

    NASA Technical Reports Server (NTRS)

    Kirschbaum, C.

    1986-01-01

    New techniques are presented for using a laser microprobe to determine the spallation argon systematics of calcium-aluminum inclusions. The Ar-38(s) amounts determined for melilite and anorthite in a coarse-grained inclusion from Allende are 2.9 x 10 to the -8th and 1.3 x 10 to the -8th cc/g, respectively. The ratio of the amounts is consistent with the calcium contents of these two minerals. The Ar-38(s) amount determined for a fine-grained inclusion from Allende is 1.1 x 10 to the -8th cc/g. Calcium and potassium amounts were determined from irradiated samples of the same inclusions so that production of Ar-38 from calcium during the cosmic ray exposure of Allende could be determined for these samples. The production observed was 12.4 + or - 2.1 x 10 to the -8th cc STP Ar-38/g Ca for the coarse-grained inclusion and 9.9 + or - 2.4 cc STP Ar-38/g Ca for the fine-grained inclusion. No evidence of unusual exposure was observed in the two inclusions studied.

  14. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  15. Identification of cosmogenic argon components in Allende by laser microprobe

    NASA Technical Reports Server (NTRS)

    Kirschbaum, C.

    1986-01-01

    New techniques are presented for using a laser microprobe to determine the spallation argon systematics of calcium-aluminum inclusions. The Ar-38(s) amounts determined for melilite and anorthite in a coarse-grained inclusion from Allende are 2.9 x 10 to the -8th and 1.3 x 10 to the -8th cc/g, respectively. The ratio of the amounts is consistent with the calcium contents of these two minerals. The Ar-38(s) amount determined for a fine-grained inclusion from Allende is 1.1 x 10 to the -8th cc/g. Calcium and potassium amounts were determined from irradiated samples of the same inclusions so that production of Ar-38 from calcium during the cosmic ray exposure of Allende could be determined for these samples. The production observed was 12.4 + or - 2.1 x 10 to the -8th cc STP Ar-38/g Ca for the coarse-grained inclusion and 9.9 + or - 2.4 cc STP Ar-38/g Ca for the fine-grained inclusion. No evidence of unusual exposure was observed in the two inclusions studied.

  16. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles.

  17. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  18. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Caffo, Brian; Frey, Eric C.

    2016-04-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  19. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    PubMed Central

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  20. Integrated Laser Microprobe (U-Th)/He and U/Pb Dating of Titanite and Zircon

    NASA Astrophysics Data System (ADS)

    Horne, A.; Van Soest, M. C.; Hodges, K. V.; Tripathy-Lang, A.

    2014-12-01

    The application of laser technologies for high spatial resolution dating has proven to be an important advancement in (U-Th)/He thermochronology. Excimer laser microprobes have been used to successfully date high U+Th minerals and are an especially promising way to determine the distribution of (U-Th)/He zircon ages in detrital sedimentary samples. We have also found that another detrital mineral, titanite, may be amenable to this method as well. While titanite contains lower concentrations of parent isotopes than zircon, and consequently less radiogenic 4He, its typically larger grain size allows for these characteristics to be mitigated by the use of larger laser beam diameters during the ablation process. With the integrated use of ICPMS, an established method for U/Pb geochronology, this phase of the laser microprobe (U-Th)/He technique can be modified slightly to enable (U-Th)/He and U/Pb 'double' dating of detrital samples. Here we present a proof of concept study demonstrating the viability of integrated laser microprobe (U-Th)/He and U/Pb through dating Oligocene Fish Canyon tuff titanite and zircon from Colorado. Our use of a well characterized sample with established (U-Th)/He and U/Pb dates allows us to fully evaluate the utility of this technique. By selecting medium- to fine-grained crystals we are able to simulate a realistic, uni-modal detrital sample. Using our modified laser microprobe approach, we are able to reproduce the expected age modes with an analytical imprecision roughly twice that of more established methods, a difference that has little practical effect on geologic interpretations. Additionally, we believe that the technique could prove a viable method for double dating detrital rutile and apatite, so long as characteristically lower U+Th concentrations in these minerals are balanced by appropriately scaled ablation pits in an aliquot unbiased by the need for larger detrital grains. Ultimately, integrated laser microprobe U/Pb and (U

  1. Application of a PIXE Scanning Ion Microprobe to Meteoritic Samples

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Meehan, B. T.; Correll, F. D.; Moore, D. M.

    1995-09-01

    A scanning ion microprobe has been developed and utilized to study elemental concentration correlations on surfaces. Proton beams produced by the Naval Academy's 1.7 MV tandem electrostatic accelerator are focussed onto the sample with a beam spot diameter of ~30 micrometers. The sample is mounted on a 5-axis computer-controlled goniometer which moves the sample around in the beam. Elemental concentrations are determined with the Proton-Induced X-Ray technique (PIXE). Scans have been made on a variety of inclusions in the Allende meteorite in situ. Scans typically cover 20 x 20 grids with a stepsize of 25-100 micrometers. These scans require approximately 5 hours of beamtime. Concentrations of elements were extracted from the X- Ray spectra with the automated fitting routine GUPIX [1]. There is a great deal of information buried in these 2-dimensional scans. We have employed two methods to visualize and quantify the concentration information. One method is to generate an "X-ray" image of the scan region for individual elementals. Another technique is to examine the correlation between any two elements by plotting the concentrations against each other on a graph. The distribution of points readily indicates whether the two chosen elements are directly, inversely, or randomly correlated. Numerical techniques may be applied to these correlation plots to quantify the variation in concentration as a function of position in the sample. This information is perhaps most useful near chondrule boundaries where these concentration maps may reveal the extent of elemental transport and mixing. References: [1] Maxwell J.A. (1993) Code GUPIX93, University of Guelph, Ontario.

  2. Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration.

    PubMed

    Tomaszewski, Marek; Olchowik, Grazyna; Tomaszewska, Monika; Burdan, Franciszek

    2012-10-08

    Caffeine is a methylxanthine which permeates the placenta. In studies on animals, it has been shown to produce teratogenic and embryotoxic effects in large doses. The objective of this study was to assess the influence of caffeine on the development of bone tissue, with particular reference to elemental bone composition using an X-ray microprobe. The research was conducted on rats. The fertilized females were randomly divided into an experimental and a control group. The experimental group was given caffeine orally in 30 mg/day doses from the 8th to the 21st day of pregnancy, while the control group was given water. The fetuses were used to assess the growth and mineralization of the skeleton. On the basis of double dyeing, a qualitative analysis of the bone morphology and mineralization was conducted. For calcium and potassium analysis, an X-ray microprobe was used. In 67 fetuses from the experimental group, changes in skeleton staining with the alcian-alizarin method were noticed. The frequency of the development of variants in the experimental group was statistically higher. In the experimental group,a significant decrease in the calcium level, as well as an increase in the potassium level, was observed. The X-ray microprobe's undoubted advantage is that is offers a quick qualitative and quantitative analysis of the elemental composition of the examined samples. Employing this new technique may furnish us with new capabilities when investigating the essence of the pathology process.

  3. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1 3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  4. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  5. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    SciTech Connect

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey

  6. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria.

    PubMed

    Asfahani, Jamal

    2011-03-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Quantifying lithium in the solid electrolyte interphase layer and beyond using Lithium- Nuclear Reaction Analysis technique

    NASA Astrophysics Data System (ADS)

    Schulz, Adam; Bakhru, Hassaram; DeRosa, Don; Higashiya, Seiichiro; Rane-Fondacaro, Manisha; Haldar, Pradeep

    2017-08-01

    Accurate knowledge of lithium content within the solid electrolyte interphase (SEI) layer and anode would significantly enhance the current understanding of the lithium ion battery (LIB) degradation mechanisms, enabling knowledge-based improvements in the technology. For the first time, we have demonstrated the capabilities of highly selective Lithium Nuclear Reaction Analysis (Li-NRA) as a non-destructive depth profiling technique for quantifying Li within the SEI and anode without accurate knowledge of the composition, which is unavailable with other depth profiling techniques. The Li-NRA technique detects the gamma radiation resulting from a nuclear reaction at characteristic resonance energy between an incident high-energy proton and Li. The intensity of γ-ray is directly proportional to the Li content, and the energy of the incident proton is increased stepwise to depth profile the sample. We performed Li-NRA on the carbonaceous negative electrodes of commercial LIB coin cells at varying states of charge (SOC) and states of health (SOH) conditions. We used three simple models for the composition of SEI and anode material to show concurrence between theoretical and experimental value for Li content at varying SOC conditions, estimated the average SEI layer thickness, and correlated the residual Li content within the SOH samples with electrochemical data.

  8. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer

    SciTech Connect

    Kishigami, Satoshi . E-mail: kishigami@cdb.riken.jp; Mizutani, Eiji; Ohta, Hiroshi; Hikichi, Takafusa; Thuan, Nguyen Van; Wakayama, Sayaka; Bui, Hong-Thuy; Wakayama, Teruhiko

    2006-02-03

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently, we elucidated by using round spermatids that, after nuclear transfer, treatment of zygotes with trichostatin A (TSA), an inhibitor of histone deacetylase, can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami, N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama. E. Mizutani, T. Wakayama, Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids, Dev. Biol. (2005) in press]. Here, we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells, spleen cells, neural stem cells, and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further, we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus, our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.

  9. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-05-01

    Flooding stress restricts soybean growth, it results in decrease the production. In this report, to understand how nuclear proteins in soybean affected by flooding, abundance changes of those proteins was analyzed. Nuclear proteins were extracted from the root tips of soybean treated with or without flooding stress. The extracted proteins were analyzed using a label-free quantitative proteomic technique. Of a total of 94 nuclear proteins that were found to be responsive to flooding, the 19 and 75 proteins were increased and decreased, respectively. The identified flooding-responsive proteins were functionally classified, revealing that 8 increased proteins changed in protein synthesis, posttranslational modification, and protein degradation, while 34 decreased proteins were involved in transcription, RNA processing, DNA synthesis, and chromatin structure maintenance. Among these proteins, those whose levels changed more than 10 fold included two poly ADP-ribose polymerases and a novel G-domain-containing protein that might be involved in RNA binding. The mRNA expression levels of these three proteins indicated a similar tendency to their protein abundance changes. These results suggest that acceleration of protein poly-ADP-ribosylation and suppression of RNA metabolism may be involved in root tip of soybean under flooding stress.

  10. Focusing optics for a synchrotron x radiation microprobe

    SciTech Connect

    Ice, G.E.; Sparks, C.J. Jr.

    1983-01-01

    We propose two constant deviation and energy-tunable fluorescent microprobe optical designs which efficiently use x rays available from ending magnets and insertion devices of synchrotron radiation sources. The simpler system consists of a cylindrically bent multilayer to focus the vertical opening angle by in-plane scattering, a fixed radius cylindrically curved multilayer which sagittally focuses the horizontal divergence, and a pinhole to further reduce the beam to microprobe dimensions. A more versatile system has a pair of flat nondispersively arranged diffracting optics followed by crossed elliptical mirrors. These nondispersive combinations can produce a fixed-exit beam. We compare the relative intensity with other optical systems.

  11. Measurement techniques in dry-powdered processing of spent nuclear fuels.

    SciTech Connect

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-07-21

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, {alpha}-spectrometry ({alpha}-S), and {gamma}-spectrometry ({gamma}-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on {sup 148}Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel.

  12. The use of surface analytical techniques to measure the loadings of uranium and plutonium sorbed simultaneously from solution onto rocks

    SciTech Connect

    Berry, J.A.; Bishop, H.E.; Cowper, M.M.; Fozard, P.R.; McMillan, J.W.

    1995-12-31

    Small polished blocks of granite, diorite and dolerite were immersed in solutions containing uranium and plutonium at equal initial concentration.The samples were analyzed by the advanced surface analytical techniques of secondary ion mass spectrometry (SIMS) and nuclear microprobe analysis. The results show that both actinides sorb onto the same minerals in the three rocks. However, SIMS data show that significantly more uranium was sorbed than plutonium.

  13. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  14. Integration of ab-initio nuclear calculation with derivative free optimization technique

    SciTech Connect

    Sharda, Anurag

    2008-01-01

    Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. Manual calculation defies the scope of such complex calculation and are prone to error at the same time. This body of work attempts to formulate a design and implement it which would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code. VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free optimization algorithm DIRECT. Proposed design is implemented for a serial and parallel version of the optimization technique. Experiment with the initial implementation of the design showing good matches for several single-nucleus cases are conducted. Determination and assignment of appropriate number of processors for parallel integration code is implemented to increase the efficiency and resource utilization in the case of multiple nuclei parameter search.

  15. Study of the contaminant transport into granite microfractures using nuclear ion beam techniques.

    PubMed

    Alonso, Ursula; Missana, Tiziana; Patelli, Alessandro; Rigato, Valentino; Rivas, Pedro

    2003-03-01

    Hydrated bentonite is a very plastic material and it is expected to enter in the rock microfractures at the granite/bentonite boundary of a deep geological high-level waste repository. This process is enhanced by the high swelling pressure of the clay. Since bentonite has a very good sorption capability for many radionuclides, the displacement of the clay might lead to a "clay-mediated" contaminant transport into the rock. The aim of this work is to study the contaminant transport into granite microfractures using nuclear ion beam techniques, and to determine to what extent the clay can favour it. To do so, bentonite previously doped with uranium, cesium and europium was put in contact with the surface of granite sheets. Granite sheets contacted with non-doped bentonite and with radionuclide solutions were also prepared as references. This allowed analysing the differences in the diffusion behaviour of the three systems: clay, radionuclides and clay plus radionuclides. A combination of Rutherford backscattering spectrometry (RBS) and other nuclear ion-beam techniques such as particle-induced X-ray emission (PIXE) and microPIXE was used to study the depth and lateral distribution of clay and contaminants inside granite. It was also tried to evaluate not only the diffusion depth and diffusion coefficients but also the different areas of the granite where the diffusants have a preferential access.

  16. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  17. A Coordinated Research Project on the Implementation of Nuclear Techniques to Improve Food Traceability

    NASA Astrophysics Data System (ADS)

    Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman

    2013-04-01

    Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and

  18. Quantitative simultaneous multi-element microprobe analysis using combined wavelength and energy dispersive systems

    NASA Technical Reports Server (NTRS)

    Walter, L. S.; Doan, A. S., Jr.; Wood, F. M., Jr.; Bredekamp, J. H.

    1972-01-01

    A combined WDS-EDS system obviates the severe X-ray peak overlap problems encountered with Na, Mg, Al and Si common to pure EDS systems. By application of easily measured empirical correction factors for pulse pile-up and peak overlaps which are normally observed in the analysis of silicate minerals, the accuracy of analysis is comparable with that expected for WDS electron microprobe analyses. The continuum backgrounds are subtracted for the spectra by a spline fitting technique based on integrated intensities between the peaks. The preprocessed data are then reduced to chemical analyses by existing data reduction programs.

  19. 230Th-U dating of surficial deposits using the ion microprobe (SHRIMP-RG): A microstratigraphic perspective

    USGS Publications Warehouse

    Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.

    2007-01-01

    We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for

  20. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    DOE PAGES

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...

    2014-11-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less

  1. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques.

    PubMed

    Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H

    2014-01-01

    Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  2. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    SciTech Connect

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; Clayton, Dwight A

    2014-11-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermal energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  3. Damage, crack growth and fracture characteristics of nuclear grade graphite using the Double Torsion technique

    NASA Astrophysics Data System (ADS)

    Becker, T. H.; Marrow, T. J.; Tait, R. B.

    2011-07-01

    The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.

  4. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  5. Advances and Challenges in Laser Microprobe (U-Th)/He Chronometry

    NASA Astrophysics Data System (ADS)

    Boyce, J. W.; Hodges, K. V.

    2006-05-01

    large non-systematic deviations in individual and mean apparent ages. The principle difference between the very successful application of (U-Th)/He to monazite and the less successful application to zircon is the method used to measure the parent elements (U, Th and Sm). The higher concentrations of these elements in monazite makes accurate and precise measurements possible via electron microprobe. In the case of zircon, however, the concentrations we observe are up to three orders of magnitude lower than in monazite, requiring a technique with greater abundance sensitivity. Several attempts to use laser ablation inductively coupled mass spectrometry (LA-ICPMS) were made on four zircon suites, none of which were entirely successful. These difficulties will be discussed in the context of advancing and improving the application of the laser microprobe (U-Th)/He chronometer to zircon and other minerals.

  6. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.

  7. Bivalve fouling of nuclear power plant service-water systems. Volume 2. Current status of biofouling surveillance and control techniques

    SciTech Connect

    Daling, P.M.; Johnson, K.I.

    1985-03-01

    This report describes the current status of techniques for detection and control of cooling-water system fouling by bivalve mollusks at nuclear power plants. The effectiveness of these techniques is evaluated on the basis of information gathered from a literature review and in interviews with nuclear power plant personnel. Biofouling detection techniques examined in this report include regular maintenance, in-service inspection, and testing. Generally, these methods have been inadequate for detecting biofouling. Recommendations for improving biofouling detection capabilities are presented. Biofouling prevention (or control) methods that are examined in this report include intake screen systems, thermal treatment, preventive maintenance, chemical treatment alternatives, and antifoulant coatings. Recommendations for improving biofouling control methods at operating nuclear power plants are presented. Additional techniques that could be implemented at future power plants or that require further research are also described.

  8. Results of a nuclear power plant Application of a new technique for human error analysis (ATHEANA)

    SciTech Connect

    Forester, J.A.; Whitehead, D.W.; Kolaczkowski, A.M.; Thompson, C.M.

    1997-10-01

    A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the {open_quotes}success{close_quotes} of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator {open_quotes}on shift{close_quotes} until a few months before the demonstration. The demonstration was conducted over a 5 month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.

  9. Results of a nuclear power plant application of A New Technique for Human Error Analysis (ATHEANA)

    SciTech Connect

    Whitehead, D.W.; Forester, J.A.; Bley, D.C.

    1998-03-01

    A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the success of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator on shift until a few months before the demonstration. The demonstration was conducted over a 5-month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.

  10. Development of temper-bead technique applied to dissimilar welded joints of nuclear pressure vessels

    SciTech Connect

    Higuchi, Makoto; Umemoto, Tadahiro; Matsusita, Akitake; Shiraiwa, Takanori

    1996-06-01

    When nuclear pressure vessels made of low-alloy steel (P-3 Group 3) need repair or modification, technical standards for welding of electrical structures should be applied, and then postweld heat treatment (PWHT) should be done. However, cases in which PWHT is impractical are theoretically possible due to a variety of restrictions. To deal with such a problem, there is a regulation for repair weld technique, without PWHT, in accordance with ASME B and PV Code. This method is called temper-bead technique, which gives the weldments sufficient toughness by tempering the hardened zone of the heat-affected zone on the first layer of the base metal using the heat of the following weld beads. Because there is no regulation in Japan covering this method, a procedure is required to perform it under a special license, after a verification test has been passed. An attempt has been made to develop a method, on the supposition that the temper-bead technique is adopted for replacement of what is called dissimilar welded joints, so that a nickel base alloy is buildup welded at the tip of the nozzle of the low-alloy steel pressure vessel, and a stainless steel pipe is butt welded.

  11. NATALIE: a 32 detector integrated acquisition system to characterize laser produced energetic particles with nuclear techniques.

    PubMed

    Tarisien, M; Plaisir, C; Gobet, F; Hannachi, F; Aléonard, M M; Rebii, A

    2011-02-01

    We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the β(+) activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision on the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.

  12. NATALIE: A 32 detector integrated acquisition system to characterize laser produced energetic particles with nuclear techniques

    SciTech Connect

    Tarisien, M.; Plaisir, C.; Gobet, F.; Hannachi, F.; Aleonard, M. M.; Rebii, A.

    2011-02-15

    We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the {beta}{sup +} activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision on the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.

  13. Improved cost-benefit techniques in the US Nuclear Regulatory Commission

    SciTech Connect

    Cronin, F.J.; Nesse, R.J.; Vaeth, M.; Wusterbarth, A.R.; Currie, J.W.

    1983-06-01

    The major objective of this report is to help the US Nuclear Regulatory Commission (NRC) in its regulatory mission, particularly with respect to improving the use of cost-benefit analysis and the economic evaluation of resources within the NRC. The objectives of this effort are: (1) to identify current and future NRC requirements (e.g., licensing) for valuing nonmarket goods; (2) to identify, highlight, and present the relevant efforts of selected federal agencies, some with over two decades of experience in valuing nonmarket goods, in this area; and (3) to review methods for valuing nonmarket impacts and to provide estimats of their magnitudes. Recently proposed legislation may result in a requirement for not only more sophisticated valuation analyses, but more extensive applications of these techniques to issues of concern to the NRC. This paper is intended to provide the NRC with information to more efficiently meet such requirements.

  14. Transient charge technique investigation of HgI/sub 2/ and CdSe nuclear detectors

    SciTech Connect

    Roth, M.; Burger, A.; Nissenbaum, J.; Schieber, M.

    1987-02-01

    The use of the Transient Charge Technique (TCT) for the evaluation of high resistivity Mercuric Iodide and Cadmium Selenide nuclear radiation detectors is suggested. It has been shown that the real values of mobilities and trapping times of electrons and holes in HgI/sub 2/ can be easily obtained from the analysis of the voltage transient response to drift of charge carriers created by alpha particles. This allows one to evaluate the bulk transport properties of the material and, additionally, to estimate accurately the surface recombination velocity of the carriers. Preliminary results on the shape of voltage transients in CdSe are also reported, and the limitations of the use of the TCT for characterization of both materials are discussed.

  15. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  16. Determination of origin and intended use of plutonium metal using nuclear forensic techniques.

    PubMed

    Rim, Jung H; Kuhn, Kevin J; Tandon, Lav; Xu, Ning; Porterfield, Donivan R; Worley, Christopher G; Thomas, Mariam R; Spencer, Khalil J; Stanley, Floyd E; Lujan, Elmer J; Garduno, Katherine; Trellue, Holly R

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% (240)Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was (239)Pu fission foil targets for physics experiments, such as cross-section measurements, etc.

  17. Role of nuclear analytical probe techniques in biological trace element research

    SciTech Connect

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab.

  18. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  19. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  20. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    SciTech Connect

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; Zhang, Fuxiang; Severin, Daniel; Bender, Markus; Trautmann, Christina; Park, Changyong; Prakapenka, Vitali B.; Skuratov, Vladimir A.; Ewing, Rodney C.

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

  1. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    PubMed

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials.

  2. Utilization of Nuclear Power for Moon Missions: Nuclear Based Power and Propulsion Techniques for Spacecraft and Nuclear Power Generation Methods for Moon Habitats

    NASA Astrophysics Data System (ADS)

    Guven, U. G.

    2016-11-01

    With a nuclear reactor, all of the power requirements in a Moon-based station with reduced gravity conditions can be met for several years without any difficulty. Nuclear reactor can be useful for Moon-bound spacecraft for the Moon and habitats.

  3. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  4. Systematic and Statistical Errors Associated with Nuclear Decay Constant Measurements Using the Counting Technique

    NASA Astrophysics Data System (ADS)

    Koltick, David; Wang, Haoyu; Liu, Shih-Chieh; Heim, Jordan; Nistor, Jonathan

    2016-03-01

    Typical nuclear decay constants are measured at the accuracy level of 10-2. There are numerous reasons: tests of unconventional theories, dating of materials, and long term inventory evolution which require decay constants accuracy at a level of 10-4 to 10-5. The statistical and systematic errors associated with precision measurements of decays using the counting technique are presented. Precision requires high count rates, which introduces time dependent dead time and pile-up corrections. An approach to overcome these issues is presented by continuous recording of the detector current. Other systematic corrections include, the time dependent dead time due to background radiation, control of target motion and radiation flight path variation due to environmental conditions, and the time dependent effects caused by scattered events are presented. The incorporation of blind experimental techniques can help make measurement independent of past results. A spectrometer design and data analysis is reviewed that can accomplish these goals. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  5. Sedimentary rock porosity studied by electromagnetic techniques: nuclear magnetic resonance and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Ramia, M. E.; Martín, C. A.

    2015-02-01

    The present work involves a comprehensive experimental study of porosity and pore size distribution of sedimentary rocks, from oil fields formations, by means of two electromagnetic techniques, namely proton (1H) nuclear magnetic resonance (NMR) and dielectric complex constant (DCC) as function of the frequency, both providing complementary results. The NMR yields an accurate determination of the relative pore size distribution and both movable and irreducible fluids. The DCC measurement provides the direct current electrical resistivity of the samples with different degrees of hydration. Thus, combining the results of both techniques allows the determination of the tortuosity index, by means of Archie's relation, and from it the average pore channel length. These measurements are performed on fully hydrated (saturated), centrifuged, dried, and cleaned rocks and also on samples with the irreducible fluids. Finally, the results are complemented with capillary pressure measurements to obtain the total volume associated with the pore channels related to the rock permeability. Additionally, the work presents a particular method to use a network analyzer to measure the DCC.

  6. Approximate calculational techniques for radiation protection applications (collection of papers presented at the November 1985 American Nuclear Society meeting)

    SciTech Connect

    Rice, A.F.; Roussin, R.W.

    1986-09-01

    Although radiation protection principles are, on the whole, well understood and a whole series of computer codes exist for their solution, it is felt that there is a need for practical, approximate techniques to be used by the practicing nuclear engineer for a variety of applications. Within the context of approximate techniques, the papers presented cover a broad overview of specific problems, for example, skyshine and penetration analysis, with applications extending from general nuclear reactor design to spent fuel storage and fusion. Separate abstracts have been prepared for individual papers.

  7. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  8. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  9. Microprobe analyses of glasses and minerals from Luna-16 soil

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Harmon, R. S.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Warner, J. L.

    1971-01-01

    Electron microprobe analyses are presented for nine elements in 250 glasses and 434 pyroxenes, eight elements in 113 olivines, and six elements in 354 feldspars, 35 spinels, and 159 ilmenites. All grains are from the 125-425 micron fraction of horizon A and horizon D soil from the Luna 16 sample. A norm is presented for each glass analysis and the structural formula is calculated for each mineral analysis.

  10. Ion microprobe mass analysis of lunar samples. Lunar sample program

    NASA Technical Reports Server (NTRS)

    Anderson, C. A.; Hinthorne, J. R.

    1971-01-01

    Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.

  11. Laser-excited fluorescence of rare earth elements in fluorite: Initial observations with a laser Raman microprobe

    USGS Publications Warehouse

    Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.

    1992-01-01

    Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.

  12. Partitioning of Zr and Nb between coexisting opaque phases in lunar rocks _ Determined by quantitative proton microprobe analysis

    NASA Astrophysics Data System (ADS)

    Blank, H.; El Goresy, A.; Janicke, J.; Nobiling, R.; Traxel, K.

    1984-04-01

    The chemical partitioning among coexisting opaque phases of various assemblages in different lunar rocks from several landing sites is studied using electron microprobe techniques for major and minor elements and proton microprobe analyses for trace elements. In Apollo 17 rocks, the partitioning of Zr between armalcolite and ilmenite is determined in rocks showing different crystallization sequences. In olivine porphyritic basalts, Zr partitions in favor of armalcolite, probably due to equilibration between armalcolite and ilmenite achieved by the reactions involving armalcolite. Apollo 15 basalts contain ulvoespinel/ilmenite-bearing assemblages of entirely different origins: (1) subsolidus reactions leading to 'exosolution' of ilmenite from ulvoespinel and (2) isobarically invariant reaction leading to formation of ilmenite + fayalite as a result of the reaction between ulvoespinel + silica.

  13. Hyperspectral mapping-combining cathodoluminescence and X-ray collection in an electron microprobe.

    PubMed

    Macrae, Colin M; Wilson, Nicholas C; Johnson, Sally A; Phillips, Peter L; Otsuki, Masayuki

    2005-08-01

    An optical spectrometer has been integrated into a JEOL 8900R electron microprobe, which allows simultaneous collection of light, X-ray, and electron signals. The cathodoluminescence signal is collected from a monocular eyepiece, which is integrated into the electron optics of the electron microprobe. The optical acquisition is synchronized with the stage motion. X-ray lines of major elements are collected using an energy dispersive spectrometer, X-ray lines of minor elements are collected using wavelength dispersive spectrometers, and the secondary and backscattered electron signals are collected using standard detectors. In mapping mode of operation the different signals are collected at each pixel with map sizes typically ranging from 1 million to 10 million pixels. This represents a significant amount of data from which the major correlations and associations in the map can be determined. Summing over a small number of channels and examining only a subset of the complete wavelength range are the strategies that have been developed to reduce the size of the data handled. The application of this mapping technique is demonstrated with two examples, zircons and refractory bricks. Zircons with various degrees of metamictization have been characterized, and inclusions differentiated using a combination of cathodoluminescence and X-ray maps. Examination of refractory bricks reveals subtle chemical changes in the spinel grains. (c) 2005 Wiley-Liss, Inc.

  14. Characterisation of a ΔE E particle telescope using the ANSTO heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Reinhard, Mark; Prokopovich, Dale; Ionescu, Mihail; Cohen, David D.; Rosenfeld, Anatoly B.; Cornelius, Iwan M.; Wroe, Andrew; Lerch, Michael L. F.; Fazzi, A.; Pola, A.; Agosteo, S.

    2007-07-01

    Semiconductor planar processing technology has spurned the development of novel radiation detectors with applications in space, high energy physics, medical diagnostics, radiation protection and cancer therapy. The ANSTO heavy ion microprobe, which allows a wide range of ions to be focused into spot sizes of a few micrometers in diameter, has proven to be an essential tool for characterising these detectors using the Ion Beam Induced Charge (IBIC) imaging technique. The use of different ions and the wide range of available energies on the heavy ion microprobe, allows the testing of these devices with ionising particles associated with different values of linear energy transfer (LET). Quadruple coincidence measurements have been used to map the charge collection characteristics of a monolithic ΔE E telescope. This was done through simultaneous measurement of the spatial coordinates of the microbeam relative to the sample and the response of both detector elements. The resulting charge collection maps were used to better understand the functionality of the device as well as to ascertain ways in which future device designs could be modified to improve performance.

  15. Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines

    NASA Technical Reports Server (NTRS)

    Conrad, G. H.; Hlava, P. F.; Green, J. A.; Moore, R. B.; Moreland, G.; Dowty, E.; Prinz, M.; Keil, K.; Nehru, C. E.; Bunch, T. E.

    1973-01-01

    The bulk analyses (determined with the broad beam electron microprobe technique) of lithic fragments are given in weight percentages and are arranged according to the rock classification. Within each rock group the analyses are arranged in order of increasing FeO content. Thin section and lithic fragment numbers are given at the top of each column of analysis and correspond to the numbers recorded on photo mosaics on file in the Institute of Meteoritics. CIPW molecular norms are given for each analysis. Electron microprobe mineral analyses (given in oxide weight percentages), structural formulae and molecular end member values are presented for plagioclase, olivine, pyroxene and K-feldspar. The minerals are selected mostly from lithic fragments that were also analyzed for bulk composition. Within each mineral group the analyses are presented according to the section number and lithic fragment number. Within each lithic fragment the mineral analyses are arranged as follows: Plagioclase in order of increasing CaO; olivine and pyroexene in order of increasing FeO; and K-feldspar in order of increasing K2O. The mineral grains are identified at the top of each column of analysis by grain number and lithic fragment number.

  16. Correlated petrographic, electron microprobe, and ion microprobe studies of selected primitive and processed phase assemblages in meteorites

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1993-01-01

    During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.

  17. Analysis of rare earth elements in silicates by ion microprobe using doubly-charged ions

    SciTech Connect

    Riciputi, L.R.; Christie, W.H.; Cole, D.R.; Rosseel, T.M. )

    1993-05-01

    A technique for measurement of rare earth element (REE) concentrations in silicates using a Camecaims-4f ion microprobe and doubly-charged, odd-mass isotopes has been developed. The secondary ion spectra of the doubly-charged odd-mass REE are virtually free of interferences, allowing measurements to be carried out at low energies and without the need for spectral stripping. Calibration lines have been established for La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb using a suite of clinopyroxene standards. This technique offers a relatively fast, simple approach for the in-situ analysis of REE on spots of <20 [mu]m and detection limits of <15 ppb for most elements. 17 refs., 2 figs., 5 tabs.

  18. [Elementary investigation on the application of laser Raman microprobe in petroleum exploration].

    PubMed

    He, Mou-chun; Lü, Xin-biao; Liu, Yan-rong

    2004-11-01

    Laser Raman Microprobe (LRM) is a micro-analytical technique for determining molecular components. Based on the summarization of the applications of LRM in petroleum exploration, the authors analyzed fluid inclusions (FI) and organic matters, and found that this technique could not only research qualitatively different phase components of single fluid inclusions and the types of organic substances, but also determine quantitatively each phase component of single fluid inclusions and the indexes of maturation of vitrinite. It is concluded that it is feasible to calculate the salinity of single FI by to sigmaB % NaCl = 61.183S - 22.173 and the reflectance (R0) of vitrinite by R0 (%) = 0.69 ln(82.12 D - 16,054.49) - 4.88.

  19. Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.

    SciTech Connect

    Darby, John L.

    2011-05-01

    As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

  20. Nuclear forensics techniques for attributing material used in a radiological dispersal device event

    SciTech Connect

    Knepper, P. L.; Eberhardt, Ariane Sibylle,; Leibrecht, E. A.; Ross, J. L.; Scott, M. R.; Epresi, K.; Giannangeli, D.; Charlton, W. S.

    2004-01-01

    If a radiological dispersal device (RDD) is detonated in the U.S. or near U.S. interests overseas, it will be crucial that the actors involved in the event can be identified quickly. Law enforcement officials will need information concerning the material used in the device, specifically what type of material it was and from where it originated. This information will then be used to help identify the specific individuals who manufactured the device and perpetrated the event. Texas A&M University and Los Alamos National Laboratory are collaborating on the development of a technique for identifying the material used in a radiological dispersal device. This methodology is currently focused on radiological dispersal devices that make use of spent nuclear fuel as the source material. The methodology developed makes use of both a forward model and an inverse model to identify specific spent fuel characteristics using isotopic composition of RDD debris. The forward model is based on sophisticated reactor physics calculations for the prediction of spent fuel isotopic compositions as a function of fuel type (e.g., PWR, BWR, CANDU, RBMK, etc.), fuel burnup (in MWd/MTHM), fuel age (in years since permanent discharge from the reactor), and operating characteristics (e.g., operating power level, time at power, etc.). These reactor physics calculations are benchmarked to measured data to establish their accuracy in predicting isotopic compositions. The inverse model makes use of a Bayesian inverse method to identify the specific spent fuel assembly (or assemblies) used based on measurements of actinide and fission product isotopic ratios in the RDD debris. A description of both the forward and inverse models, accuracies of the technique, and the results to date are given.

  1. Acquisition Of Organ Slice Images In Nuclear Medicine By The Multiple-Incidence Technique

    NASA Astrophysics Data System (ADS)

    Danet, B.; Hatzigiannaki, A.; Percheron, M.; Morucci, J. P.; Guiraud, R.

    1983-08-01

    In the development of devices to represent the three-dimensional structure of radio-activated organs, Nuclear Medicine has been following the progress in Radiology. That parallelism could be observed with all principles used to get three-dimensional data : - analogical systems working by simultaneous displacement of the detector and the object, - coded-aperture imaging devices which consist of special collimators designed to obtain a dependance between the object-to-code distance and the detector response, - multiple-incidence techniques, the 3D reconstruction being extracted from the whole set of projections of the object at different orientations. That last principle was chosen in the studies that we are working on now. It is close to the principle used in Radio-Tomo-densitometry : a detector gets a set of projections as it turns around the object. From these projections, the classical reconstruction algorithms can be used : ART, SIRT, Convolution algorithms... But we have to take into account here some more specific properties : the statistic noise, the self attenuation of the radiation, the distance-dependant resolution. In this paper some correction process will be considered which can be more or less easily implemented depending of the algorithm used. Different compromises can be proposed : they depend strongly not only of the algorithm and the data-processing but also of the detector performances. In this field, this method will greatly take profit of the powerful calculators designed for the Radiographic tomodensitometry.

  2. Borehole techniques identifying subsurface chimney heights in loose ground-some experiences above underground nuclear explosions

    USGS Publications Warehouse

    Carroll, R.D.; Lacomb, J.W.

    1993-01-01

    The location of the subsurface top of the chimney formed by the collapse of the cavity resulting from an underground nuclear explosion is examined at five sites at the Nevada Test Site. The chimneys were investigated by drilling, coring, geophysical logging (density, gamma-ray, caliper), and seismic velocity surveys. The identification of the top of the chimney can be complicated by chimney termination in friable volcanic rock of relatively high porosity. The presence of an apical void in three of the five cases is confirmed as the chimney horizon by coincidence with anomalies observed in coring, caliper and gamma-ray logging (two cases), seismic velocity, and drilling. In the two cases where an apical void is not present, several of these techniques yield anomalies at identical horizons, however, the exact depth of chimney penetration is subject to some degree of uncertainty. This is due chiefly to the extent to which core recovery and seismic velocity may be affected by perturbations in the tuff above the chimney due to the explosion and collapse. The data suggest, however, that the depth uncertainty may be only of the order of 10 m if several indicators are available. Of all indicators, core recovery and seismic velocity indicate anomalous horizons in every case. Because radiation products associated with the explosion are contained within the immediate vicinity of the cavity, gamma-ray logs are generally not diagnostic of chimney penetration. In no case is the denisty log indicative of the presence of the chimney. ?? 1993.

  3. Determination of origin and intended use of plutonium metal using nuclear forensic techniques

    DOE PAGES

    Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav; ...

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less

  4. Los Alamos activities on HE detection using nuclear resonance absorption technique

    SciTech Connect

    Kwan, T. J. T.

    2004-01-01

    The feasibility of detecting high explosives through the nitrogen nuclear resonance absorption of the 9.17-MeV gammas produced by carbon-13 nuclei via radiative capture of 1.75-MeV protons was demonstrated almost ten years ago at Los Alamos National Laboratory. The practical application of this technique requires advances in several enabling technologies. The most important issue is the generation of a high quality proton beam with appreciable current (>10 mA) to produce the minimum number of resonance gammas to achieve the required throughput in baggage/cargo interrogation. We have performed a parameter study of the use of a compact cyclotron as an injector to a proton storage ring with energy recovery and electron cooling capability to maximize the intensity of the proton beam. We have also started our computational effort in applying MCNPX in our newly developed radiographic chain model to model the radiographic imaging process. Details of our studies will be presented.

  5. Chemical and Isotopic Analysis of Trace Organic Matter on Meteorites and Interstellar Dust Using a Laser Microprobe Instrument

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.; Boyce, Joseph M. (Technical Monitor)

    2001-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are of considerable interest today because they are ubiquitous on Earth and in the interstellar medium (ISM). In fact, about 20% of cosmic carbon in the galaxy is estimated to be in the form of PAHs. Investigation of these species has obvious uses for determining the cosmochemistry of the solar system. Work in this laboratory has focused on four main areas: 1) Mapping the spatial distribution of PAHs in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. 2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe Laser Desorption Ionization Mass Spectroscopy and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. 3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. 4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames. All areas involve elucidation of the solar system formation and chemistry using microprobe Laser Desorption Laser Ionization Mass Spectrometry. A brief description of microprobe Laser Desorption Ionization Mass Spectroscopy, which allows selective investigation of subattomole levels of organic species on the surface of a sample at 10-40 micrometer spatial resolution, is given.

  6. A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    SciTech Connect

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-11-02

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 {micro}m (v) x 0.6 {micro}m (h), and a photon flux of 4 x 10{sup 9} photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 {micro}m in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L{sub a} line) of 80 attograms/{micro}m{sup 2} for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique.

  7. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  8. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  9. Nuclear microscopy of biological specimens

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.; Brook, A. J.; Gadd, G. M.; Perry, C. C.; Pearce, R. B.; Turnau, K.; Watkinson, S. C.

    1991-03-01

    Recent developments in technology have enabled the scanning proton microprobe to scan at submicron spatial resolution on a routine basis. The use of the powerful combination of techniques PIXE (proton induced X-ray emission), nuclear (or Rutherford) backscattering (RBS), and secondary electron detection operating at this resolution will open up new areas in many scientific disciplines. This paper describes some of the work carried out in the biological sciences over the last year, using the Oxford SPM facility. Collaborations with biological scientists have drawn attention to the wealth of information that can be derived when these techniques are applied to micro-organisms, cells and plant tissue. Briefly described here are investigations into the uptake of heavy metals by the alga Pandorina morum, the structure of the diatom Stephanopyxis turris, the presence of various types of crystal structures within the cells of Spirogyra, the heavy metal uptake of a mycorrhizal fungus present in the bracken ( Pteridium aquilinum) root, the role of sphagnum moss in the absorption of inorganic elements, the measurement of heavy metals in environmentally-adapted cells of the yeast Saccharomyces cerevisiae, and the elemental distribution in the growing tip of a spore from the plant Equisetum arvense, with special emphasis placed on the visual interpretation of the elemental and secondary-electron maps provided by the nuclear microscopical techniques.

  10. Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy.

    PubMed Central

    Joseleau, J P; Ruel, K

    1997-01-01

    Noninvasive techniques were used for the study in situ of lignification in the maturing cell walls of the maize (Zea mays L.) stem. Within the longitudinal axis of a developing internode all of the stages of lignification can be found. The synthesis of the three types of lignins, p-hydroxyphenylpropane (H), guaiacyl (G), and syringyl (S), was investigated in situ by cross-polarization-magic angle spinning 13C-solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and immunocytochemical electron microscopy. The first lignin appearing in the parenchyma is of the G-type preceeding the incorporation of S nuclei in the later stages. However, in vascular bundles, typical absorption bands of S nuclei are visible in the Fourier transform infrared spectra at the earliest stage of lignification. Immunocytochemical determination of the three types of lignin in transmission electron microscopy was possible thanks to the use of antisera prepared against synthetic H, G, and the mixed GS dehydrogenative polymers (K. Ruel, O. Faix, J.P. Joseleau [1994] J Trace Microprobe Tech 12: 247-265). The specificity of the immunological probes demonstrated that there are differences in the relative temporal synthesis of the H, G, and GS lignins in the different tissues undergoing lignification. Considering the intermonomeric linkages predominating in the antigens used for the preparation of the immunological probes, the relative intensities of the labeling obtained provided, for the first time to our knowledge, information about the macromolecular nature of lignins (condensed versus noncondensed) in relation to their ultrastructural localization and development stage. PMID:9232887

  11. Isotopomer measurement techniques in metabolic flux analysis I: nuclear magnetic resonance.

    PubMed

    Truong, Quyen X; Yoon, Jong Moon; Shanks, Jacqueline V

    2014-01-01

    Two-dimensional [(1)H, (13)C] heteronuclear single quantum correlation (HSQC) spectroscopy nuclear magnetic resonance (NMR) is a comprehensive tool in metabolic flux analysis using (13)C-labeling experiments. NMR is particularly relevant when extensive isotopomer measurements are required, such as for plant cells and tissues, which contain multiple cellular compartments. Several isotope isomers (isotopomers) can be detected and their distribution extracted quantitatively from a single 2-D HSQC NMR spectrum. For example, 2-D HSQC detects the labeling patterns of adjacent carbon atoms and provides the enrichment of individual carbon atoms of the amino acids and glucosyl and mannosyl units present in hydrolysates of glycosylated protein. The HSQC analysis can quantitatively distinguish differences between the glucosyl units in the starch hydrolysate and a protein hydrolysate of plant biomass: this specifies crucial information about compartmentalization in the plant system. The peak structures obtained from the HSQC experiment show multiplet patterns that are directly related to the isotopomer abundances. These abundances have a nonlinear relationship to the fluxes via isotopomer balancing. Fluxes are obtained from the numerical solution of these balances and a stoichiometric model that includes biomass composition data as well as consumption rates of carbohydrate and nitrogen sources. Herein, we describe the methods for the experimental measurements for flux analysis, i.e., determination of the biomass composition (lipid, protein, soluble sugar, and starch) as well as detailed procedures of acid hydrolysis of protein and starch samples and NMR sample preparation, using soybean embryo culture as the model plant system. Techniques to obtain the relative intensity of 16 amino acids and glucosyl units for protein hydrolysate and the glucosyl units of starch hydrolysate of soybean embryos in 2-D HSQC NMR spectra also are provided.

  12. A tunable X-ray microprobe using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Thompson, A. C.; Underwood, J. H.; Giauque, R. D.; Chapman, K.; Rivers, M. L.; Jones, K. W.

    1990-05-01

    We describe an X-ray microprobe using multilayer mirrors. Previously, we have demonstrated a Kirkpatrick-Baez type focusing system working at both 8 and 10 keV and successfully applied it to a variety of applications, including the determination of elemental contents in fluid inclusions. In this paper, we show that the usable excitation energy for this microprobe is not restricted to between 8 and 10 keV, and furthermore that it can be simply tuned in operation. A 10 keV X-ray fluorescence microprobe can be used to measure the concentration of the elements from K ( Z = 19) to Zn ( Z = 30) using K X-ray lines, and from Cd ( Z = 48) to Er ( Z = 68) using L X-ray lines. There are a number of geologically important elements in the gap between Ga ( Z = 31) and Ag ( Z = 47) and with Z > 68. In order to cover this range, a higher excitation energy is required. On the other hand, for samples that contain major elements with absorption edges lower than the excitation energy, it would be hard to detect other minor elements because of the strong signal from the major elements and the background they produce. In this case, a tunable X-ray source can be used to avoid the excitation of the major elements. We demonstrate that, with the existing setup, it is possible to tune the excitation energy from 6 to 14 keV. In this range, the intensity does not decrease by more than one order of magnitude. As an illustrative example, a geological sample was examined using two different excitation energies to show the advantage of a tunable source. Finally, we discuss the possibility of further extension of the excitation energy range as well as the possibility of improving the intensity.

  13. A tunable x ray microprobe using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Thompson, A. C.; Underwood, J. H.; Giauque, R. D.; Chapman, K.; Rivers, M. L.; Jones, K. W.

    1989-08-01

    We describe an x ray microprobe using multilayer mirrors. Previously, we had demonstrated a Kirkpatrick-Baez type focusing system working at both 8 and 10 keV and successfully applied it to a variety of applications, including the determination of elemental contents in fluid inclusions. In this paper, we show that the usable excitation energy for this microprobe is not restricted to between 8 and 10 keV, and furthermore, it can be simply tuned in operation. A 10-keV x ray fluorescence microprobe can be used to measure the concentration of the elements from potassium (Z = 19) to zinc (Z = 30) using K x ray lines, and from cadmium (Z = 48) to erbium (Z = 68) using L x-ray lines. There are a number of geologically important elements in the gap between gallium (Z = 31) and silver (Z = 47) and also with Z greater than 68. In order to cover this range, a higher excitation energy is required. On the other hand, for samples that contain major elements with absorption edges lower than the excitation energy, it would be hard to detect other mirror elements because of the strong signal from the major elements and the background they produce. In this case, a tunable x ray source can be used to avoid the excitation of the major elements. We demonstrate that, with the existing setup, it is possible to tune the excitation energy from 6 keV to 14 keV, in this range, the intensity does not decrease by more than one order of magnitude. As an illustration, a geological sample was examined by using two different excitation energies to show the advantage of a tunable source. Finally, we discuss the possibility of further extension of the excitation energy range as well as the possibility of improving the intensity.

  14. Electrostatic microprobe for determining charge domains on surfaces.

    PubMed

    Fletcher, Robert A

    2015-11-01

    An electrostatic microprobe was developed to measure charge on wipes and various test surfaces. The device is constructed on an optical microscope platform utilizing a computer controlled XY stage. Test surfaces can be optically imaged to identify microscopic features that can be correlated to the measured charge domain maps. The ultimate goal is to quantify charge on wipe cloths to determine the influence of electrostatic forces on wipe sampling efficiency. We found that certain wipe materials do not extensively charge while others accumulate charge by making contact with other surfaces (through the triboelectric effect). Charge domains are found to be nonuniform.

  15. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  16. Design considerations for an x-ray microprobe

    SciTech Connect

    Howells, M.R.; Hastings, J.B.

    1982-01-01

    The optical design of a fluorescent microprobe covering the x-ray region from 2 to 16 keV is considered for the NSLS x-ray ring. The limit on detectability is from total flux (photons/..mu..m/sup 2/) and several design choices are considered to match the optical system to the storage ring to maximize throughput. The tradeoffs in image quality and energy resolution of these designs have been considered and within these constraints two firm proposals are presented.

  17. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  18. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  20. LASER MICROPROBE **4**0Ar/**3**9Ar DATING OF MINERAL GRAINS IN SITU.

    USGS Publications Warehouse

    Sutter, J.F.; Hartung, J.B.

    1984-01-01

    A laser-microprobe attached to a mass spectrometer for **4**0Ar/**3**9Ar age determination of single mineral grains in geological materials has been made operational at the US Geological Survey, Reston, VA. This microanalytical technique involves focusing a pulsed laser beam onto a sample contained in an ultra-high vacuum chamber attached to a rare-gas mass spectrometer. Argon in the neutron-irradiated sample is released by heating with the laser pulse and its isotopic composition is measured to yield an **4**0Ar/**3**9Ar age. Laser probe **4**0Ar/**3**9Ar ages of single mineral grains measured in situ can aid greatly in understanding the chronology of many geological situations where datable minerals are present but are not physically separable in quantities needed for conventional age dating.

  1. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  2. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  3. Fabrication of an 8:1 ellipsoidal mirror for a synchrotron x-ray microprobe

    SciTech Connect

    Jones, K.W.; Takacs, P.Z.; Hastings, J.B.; Casstevens, J.M.; Pionke, C.D.

    1987-01-11

    The fabrication of an 8:1 demagnifying ellipsoidal mirror to be used for an x-ray microprobe at the National Synchrotron Light Source X-26 beam port is described. The design aim was to produce a mirror that could be used over the photon energy range from about 3 to 17 keV. The 300-mm long mirror was required to operate at a grazing angle of 5 mr. The semimajor axis was 4500 mm and the semiminor axis 14.142 mm. Surface roughness of 1 nm or less and slope errors of 1 arc second parallel to the long axis and 200 arc seconds parallel to the short direction were specified. Production of the first electroless nickel-coated aluminum mirror using a diamond-turning technique has been completed. The mirror meets the 1 arc sec surface figure specification except for areas near the ends of the mirror. The reasons for these deviations arise from subtle details of the diamond-turning process which have not been fully incorporated in to the computer program that controls the diamond-turning machines. Further work in computer correction of repeatable errors of the diamond-turning machine can eliminate the waviness at the ends of the mirror. The diamond-turned mirror surface was not fully polished under this effort and therefore does not meet the roughness specification; however, surface smoothness of a fully polished cylindrical mirror manufactured using the same techniques does not meet the specification. It can be concluded that it is now technically feasible to meet the required specifications for the mirror and that the x-ray microprobe based on its use can be achieved.

  4. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    SciTech Connect

    Maljovec, Dan; Wang, Bei; Pascucci, Valerio; Bremer, Peer-Timo; Mandelli, Diego; Pernice, Michael; Nourgaliev, Robert

    2013-10-01

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis

  5. Friction microprobe investigation of particle layer effects on sliding friction

    SciTech Connect

    Blau, P.J.

    1993-01-01

    Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine- scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional, pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.

  6. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer.

    PubMed

    Park, Min Jee; Lee, Seung Eun; Kim, Eun Young; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2015-06-01

    Bovine somatic cell nuclear transfer (SCNT) using vitrified-thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (p<0.05). Spindle assessment via the Oosight Microscopy Imaging System and microtubule staining revealed that vitrified metaphase II oocytes (VT group) were not suitable for SCNT. However, enucleating and/or activating oocytes prior to freezing enhanced their developmental potential and suitability for SCNT. The cloning efficiency of the enucleated-activated-vitrified-thawed (EAVT) group (21.6%) was better than that of the other vitrification groups [enucleated-vitrified-thawed (EVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential-related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen-thawed oocytes can be successfully achieved using optimized vitrification and co-culture techniques.

  7. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer

    PubMed Central

    Park, Min Jee; Lee, Seung Eun; Lee, Jun Beom; Jeong, Chang Jin

    2015-01-01

    Abstract Bovine somatic cell nuclear transfer (SCNT) using vitrified–thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (p<0.05). Spindle assessment via the Oosight Microscopy Imaging System and microtubule staining revealed that vitrified metaphase II oocytes (VT group) were not suitable for SCNT. However, enucleating and/or activating oocytes prior to freezing enhanced their developmental potential and suitability for SCNT. The cloning efficiency of the enucleated–activated–vitrified–thawed (EAVT) group (21.6%) was better than that of the other vitrification groups [enucleated–vitrified–thawed (EVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential–related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen–thawed oocytes can be successfully achieved using optimized vitrification and co

  8. Recent advances in nuclear and atomic spectrometric techniques for trace element analysis. A new look at the position of PIXE

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy

    1990-04-01

    The principles, instrumentation and methodological aspects of several nuclear and atomic spectrometric techniques for trace element analysis are briefly described. These techniques are nuclear activation analysis, mainly neutron activation analysis (NAA), X-ray fluorescence (XRF), including total reflection XRF (TXRF) and synchrotron radiation XRF (SR-XRF), atomic emission, atomic absorption and atomic fluorescence spectrometry (AES, AAS and AFS), and atomic mass spectrometry, in particular inductively coupled plasma mass spectrometry (ICP-MS). Recent advances and new trends in each technique are indicated. The various techniques are intercompared with each other and with particle-induced X-ray emission analysis (PIXE), and this is done from a number of viewpoints, including cost of the instrument and/or price per sample analyzed, speed of analysis, sample type and sample mass required for analysis, capability for multielement determinations, accuracy and detection limits. Particular emphasis is placed on assessing the present position of PIXE, and it is indicated for what sample types and/or analytical problems PIXE offers significant advantages over the other techniques.

  9. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    SciTech Connect

    Perret, G.; Jordan, K. A.

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  10. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream.

    PubMed

    Chrit, L; Bastien, P; Sockalingum, G D; Batisse, D; Leroy, F; Manfait, M; Hadjur, C

    2006-01-01

    In a recent study, we demonstrated the ability of the new confocal Raman microprobe to investigate molecular and structural human skin composition under in vivo conditions. Experiments were performed at different anatomical sites, different layers, and with intervolunteer comparison. We also carried out feasibility tests using this probe to determine depth profiles of water content within the skin. In the present investigation we employed this confocal Raman optical microprobe to rigorously objectify the resulting hydration capacities after application of a moisturizing enhancer. The in vivo experiments were performed on 26 healthy volunteers and measurements were undertaken on six areas of the volar forearm after a randomized application of hydrating agents. Responses were evaluated by calculating the water/protein band ratio, which determines the water content in the skin. Data collected with the Raman microprobe showed significant changes between baseline values of control and treated skins. Statistical analysis performed on these data revealed an increase in skin moisture after application of a glycerol-based cream, which is the most widely used hydrating agent. Our results demonstrate clearly the potentials of this confocal Raman microprobe in the screening of hydrating agents or molecules under in vivo conditions. In the cosmetics field, this promising and suitable technique will undoubtedly offer new opportunities of hydration skin test evaluation. Copyright (c) 2006 S. Karger AG, Basel.

  11. Application of Ion Exchange Technique to Decontamination of Polluted Water Generated by Fukushima Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Takeshita, Kenji; Ogata, Takeshi

    By the Fukushima nuclear disaster, large amounts of water and sea water polluted mainly with radioactive Cs were generated and the environment around the nuclear site was contaminated by the fallout from the nuclear site. The coagulation settling process using ferric ferrocyanide and an inorganic coagulant and the adsorption process using ferric ferrocyanide granulated by silica binder were applied to the treatment of polluted water. In the coagulation settling process, Cs was removed completely from polluted water and sea water (DF∼104). In the adsorption process, the recovery of trace Cs (10 ppb) in sea water, which was not suitable for the use of zeolite, was attained successfully. Finally, the recovery of Cs from sewage sludge was tested by a combined process with the hydrothermal process using subcritical water and the coagulation settling process using ferric ferrocyanide. 96% of radioactive Cs was recovered successfully from sewage sludge with the radioactivity of 10,000 Bq/kg.

  12. Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe.

    PubMed

    Abraham, J L; Etz, E S

    1979-11-09

    A laser-Raman microprobe has been used to identify microscopic inclusions of silicone polymer in standard paraffin sections of lymph node. This example of organic chemical microanalysis in situ in pathological tissue represents an extension of microanalytical capabilities from elemental analysis, performed with electron and ion microprobes, to compound-specific molecular microanalysis.

  13. RABBIT: an electron microprobe data-reduction program using empirical corrections

    USGS Publications Warehouse

    Goff, Fraser E.

    1977-01-01

    RABBIT is a FORTRAN IV computer Program that uses Bence-Albee empirical corrections for the reduction of electron microprobe data of silicates, oxides, sulphates, carbonates, and phosphates. RABBIT efficiently reduces large volumes of data collected on 3-11 channel microprobes.

  14. User-designed software system for electron microprobes - basic premises and the control program

    SciTech Connect

    Chambers, W.F.; Doyle, J.H.

    1983-01-01

    A systems approach to the automation of electron microprobes is presented. The use of generalized data collection and analysis routines has been encouraged by integrating their calls as system commands. The software has been designed around the most fully automated Cameca and JEOL microprobes now available and includes full spectrometer, stage, and beam control.

  15. Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA.

    PubMed

    Xie, Yuzhe; Fu, Shizhe; Wu, Jie; Lei, Jianping; Ju, Huangxian

    2017-01-15

    A motor-based microprobe is proposed using a tubular microengine powered by bio-assembled enzyme as catalyst and exploited for washing-free detection of DNA through motion readout. The microprobe is fabricated by assembling a catalase layer on the inner surface of poly(3,4-ethylenedioxythiophene)/Au (PEDOT/Au) microtube through DNA conjugate, which is responsible for the biocatalytic bubble propulsion. The sensing concept of the microprobe relies on the target-induced release of catalase through the DNA strand-replacement hybridization, which decreases the amount of enzyme assembled on microtube to slow down the movement of the microprobe. Therefore, the motion speed is negatively correlated with the target concentration. At the optimal conditions, the microprobe can conveniently distinguish the concentration of specific DNA in a range of 0.5-10µM without any washing and separation step. This microprobe can be prepared in batch with good reproducibility and stability, and its motion speed can be conveniently visualized by optical microscope. The proposed motor-based microprobe and its dynamic sensing method provide a novel platform for the development of intelligent microprobe and clinical diagnostic strategy.

  16. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe.

    PubMed

    Vajkoczy, P; Roth, H; Horn, P; Lucke, T; Thomé, C; Hubner, U; Martin, G T; Zappletal, C; Klar, E; Schilling, L; Schmiedek, P

    2000-08-01

    Current clinical neuromonitoring techniques lack adequate surveillance of cerebral perfusion. In this article, a novel thermal diffusion (TD) microprobe is evaluated for the continuous and quantitative assessment of intraparenchymal regional cerebral blood flow (rCBF). To characterize the temporal resolution of this new technique, rCBF measured using the TD microprobe (TD-rCBF) was compared with rCBF levels measured by laser Doppler (LD) flowmetry during standardized variations of CBF in a sheep model. For validation of absolute values, the microprobe was implanted subcortically (20 mm below the level of dura) into 16 brain-injured patients, and TD-rCBF was compared with simultaneous rCBF measurements obtained using stable xenon-enhanced computerized tomography scanning (sXe-rCBF). The two techniques were compared using linear regression analysis as well as the Bland and Altman method. Stable TD-rCBF measurements could be obtained throughout all 3- to 5-hour sheep experiments. During hypercapnia, TD-rCBF increased from 49.3+/-15.8 ml/100 g/min (mean +/- standard deviation) to 119.6+/-47.3 ml/100 g/ min, whereas hypocapnia produced a decline in TD-rCBF from 51.2+/-12.8 ml/100 g/min to 39.3+/-5.6 m/100 g/min. Variations in mean arterial blood pressure revealed an intact autoregulation with pressure limits of approximately 65 mm Hg and approximately 170 mm Hg. After cardiac arrest TD-rCBF declined rapidly to 0 ml/100 g/min. The dynamics of changes in TD-rCBF corresponded well to the dynamics of the LD readings. A comparison of TD-rCBF and sXe-rCBF revealed a good correlation (r = 0.89; p < 0.0001) and a mean difference of 1.1+/-5.2 ml/100 g/min between the two techniques. The novel TD microprobe provides a sensitive, continuous, and real-time assessment of intraparenchymal rCBF in absolute flow values that are in good agreement with sXe-rCBF measurements. This study provides the basis for the integration of TD-rCBF into multimodal monitoring of patients who are at

  17. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  18. The design of the 300 MeV proton microprobe system in Harbin

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Lv, Kun; Li, Liyi

    2017-08-01

    In Harbin, a 300 MeV proton microprobe system is under development for many applications in space science studies including upset studies in microelectronic devices, radiation hardness of materials for satellites and radiation effects in human tissues. The microprobe system, as a component of Space Environment Simulation Research Infrastructure (SESRI), will employ a purpose-built synchrotron to provide the proton beam. Our design goal for the 300 MeV proton microprobe is for energy spread 0.1%, emittance 10π mm mrad, intensity 109 per pulse and a probe size of 10 μm. A magnetic quadrupole lens system will be used to focus the microprobe with a demagnification of 50. This paper presents a systematic investigation of the ion beam optics to optimize the design. The feasibility of the design for the Harbin system is evaluated by comparison with existing microprobe systems designed for high energy ions.

  19. Implementation of IAEA /1/INT/054 Project in Nuclear Analytical Techniques Group of Argentina: Current State

    SciTech Connect

    Sara, Resnizky; Rita, Pla; Alba, Zaretzky

    2008-08-14

    This paper presents the implementation of the training received through the IAEA Project 'Preparation of Reference Materials and Organization of Proficiency Tests Rounds' in the Nuclear Analytical (NAT) Group of CNEA. Special emphasis is done on those activities related to the first Proficiency Test being carried out by the NAT Group.

  20. Implementation of IAEA /1/INT/054 Project in Nuclear Analytical Techniques Group of Argentina: Current State

    NASA Astrophysics Data System (ADS)

    Sara, Resnizky; Rita, Plá; Alba, Zaretzky

    2008-08-01

    This paper presents the implementation of the training received through the IAEA Project "Preparation of Reference Materials and Organization of Proficiency Tests Rounds" in the Nuclear Analytical (NAT) Group of CNEA. Special emphasis is done on those activities related to the first Proficiency Test being carried out by the NAT Group.

  1. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    NASA Astrophysics Data System (ADS)

    Shen, C. J.; Ramkumar, A.; Lal, A.; Gilmour, R. F., Jr.

    2011-05-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval.

  2. The Oxford scanning proton microprobe: A medical diagnostic application

    NASA Astrophysics Data System (ADS)

    Watt, F.; Grime, G. W.; Takacs, J.; Vaux, D. J. T.

    1984-04-01

    Primary biliary cirrhosis (PBC) is a disease characterised by progressive destruction of small intrahepatic bile ducts, cholestasis, and high levels of copper within the liver. The Oxford 1 μm scanning proton microprobe (SPM) has been used to construct elemental maps of a 7 μm section of diseased liver at several different magnifications. The results of these investigations have shown that the copper is distributed in small deposits ( < 5 μm) at specific locations in the liver. Further there appears to be a 1:1 atomic correlation between copper and sulphur, indicating the presence of an inorganic salt or a protein with approximately equal numbers of copper and sulphur atoms.

  3. Development of an x-ray microprobe using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Albert C.; Chapman, Karen L.; Underwood, James H.

    1993-01-01

    An X-ray microprobe is being built that will use a bending magnet port on the new Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory. A pair of elliptical multi-layer mirrors will be used to focus and monochromatize the white radiation beam from the synchrotron. A beam spot size of 1 micrometers X 1 micrometers will be produced with a bandwidth of 1 keV at 10 keV. The energy of the beam will be variable from 3 keV to 12 keV. With a counting time of 30 sec it should be possible to simultaneously measure femtogram amounts of elements from potassium to zinc.

  4. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  5. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  6. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria).

    PubMed

    Asfahani, Jamal

    2014-02-01

    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted. © 2013 Elsevier Ltd. All rights reserved.

  7. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria).

    PubMed

    Asfahani, J; Abdul Ghani, B; Ahmad, Z

    2015-11-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of analytical techniques for ultra trace amounts of nuclear materials in environmental samples using ICP-MS for safeguards

    PubMed

    Magara; Hanzawa; Esaka; Miyamoto; Yasuda; Watanabe; Usuda; Nishimura; Adachi

    2000-07-01

    The authors have begun to develop analytical techniques for ultra trace amounts of nuclear materials and to prepare a clean chemistry laboratory for environmental sample analyses. The analytical techniques include bulk and particle analyses. For the bulk analysis, concentrations and isotopic ratios of U and/or Pu are determined by inductively-coupled plasma mass spectrometry (ICP-MS) and thermal ionization mass spectrometry (TIMS). In the particle analysis, isotopic ratios of U and/or Pu in each particle will be measured by secondary ion mass spectrometry (SIMS). This paper reports on the outline for the development of analytical techniques and the current situation of the development of the bulk analysis using ICP-MS is described.

  9. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  10. [Nuclear techniques in nutrition: assessment of body fat and intake of human milk in breast-fed infants].

    PubMed

    Pallaro, Anabel; Tarducci, Gabriel

    2014-12-01

    The application of nuclear techniques in the area of nutrition is safe because they use stable isotopes. The deuterium dilution method is used in body composition and human milk intake analysis. It is a reference method for body fat and validates inexpensive tools because of its accuracy, simplicity of application in individuals and population and the background of its usefulness in adults and children as an evaluation tool in clinical and health programs. It is a non-invasive technique as it uses saliva, which facilitates the assessment in pediatric populations. Changes in body fat are associated with non-communicable diseases; moreover, normal weight individuals with high fat deposition were reported. Furthermore, this technique is the only accurate way to determine whether infants are exclusively breast-fed and validate conventional methods based on surveys to mothers.

  11. Deep Space 2: The Mars Microprobe Project and Beyond

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Gavit, S. A.

    1998-01-01

    The Mars Microprobe Project, or Deep Space 2 (DS2), is the second of the New Millennium Program planetary missions and is designed to enable future space science network missions through flight validation of new technologies. A secondary goal is the collection of meaningful science data. Two micropenetrators will be deployed to carry out surface and subsurface science. The penetrators are being carried as a piggyback payload on the Mars Polar Lander cruise ring and will be launched in January 1999. The microprobe has no active control, attitude determination, or propulsive systems. It is a single stage from separation until landing and will passively orient itself due to its aerodynamic design. The aeroshell will be made of a nonerosive heat shield material, Silicon impregnated Reusable Ceramic Ablator(SIRCA), developed at Ames Research Center. The aeroshell shatters on impact, at which time the probe separates into an aftbody that remains at the surface and a forebody that penetrates into the subsurface. Each probe has a total mass of up to 3 kg, including the aeroshell. The impact velocity will be about 180 meters per second. The forebody will experience up to 30,000 g's and penetrate between 0.3 and 2 meters, depending on the ice content of the soil. The aftbody deceleration will be up to 80,000 g. The penetrators arrive in December 1999. The landing ellipse latitude range is 73 deg-77 deg S. The longitude will be selected by the Mars Surveyor Project to place the lander on the polar layered deposits in the range of 180 deg -230 deg W. The two micropenetrators are likely to land within 100 km of the Mars Surveyor Lander, on the polar deposits. The likely arrival date is L(sub s) = 256, late southern spring. The nominal mission lasts 2 days. A science team was selected in April 1998.

  12. Deep Space 2: The Mars Microprobe Project and Beyond

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Gavit, S. A.

    1998-01-01

    The Mars Microprobe Project, or Deep Space 2 (DS2), is the second of the New Millennium Program planetary missions and is designed to enable future space science network missions through flight validation of new technologies. A secondary goal is the collection of meaningful science data. Two micropenetrators will be deployed to carry out surface and subsurface science. The penetrators are being carried as a piggyback payload on the Mars Polar Lander cruise ring and will be launched in January 1999. The microprobe has no active control, attitude determination, or propulsive systems. It is a single stage from separation until landing and will passively orient itself due to its aerodynamic design. The aeroshell will be made of a nonerosive heat shield material, Silicon impregnated Reusable Ceramic Ablator(SIRCA), developed at Ames Research Center. The aeroshell shatters on impact, at which time the probe separates into an aftbody that remains at the surface and a forebody that penetrates into the subsurface. Each probe has a total mass of up to 3 kg, including the aeroshell. The impact velocity will be about 180 meters per second. The forebody will experience up to 30,000 g's and penetrate between 0.3 and 2 meters, depending on the ice content of the soil. The aftbody deceleration will be up to 80,000 g. The penetrators arrive in December 1999. The landing ellipse latitude range is 73 deg-77 deg S. The longitude will be selected by the Mars Surveyor Project to place the lander on the polar layered deposits in the range of 180 deg -230 deg W. The two micropenetrators are likely to land within 100 km of the Mars Surveyor Lander, on the polar deposits. The likely arrival date is Ls = 256, late southern spring. The nominal mission lasts 2 days. A science team was selected in April 1998.

  13. Tactile 3D microprobe system with exchangeable styli

    NASA Astrophysics Data System (ADS)

    Balzer, Felix G.; Hausotte, Tino; Dorozhovets, Nataliya; Manske, Eberhard; Jäger, Gerd

    2011-09-01

    Over the past decade a trend of component miniaturization can be observed both in industry and in the laboratory, which involves an increasing demand for nanopositioning and nanomeasuring machines as well as for miniature tactile probes for measuring complex three-dimensional objects. The challenge is that these components—for example, diesel injectors, microgears and small optics—feature dimensions in the micrometre range with associated dimensional tolerances below 100 nm. For this reason, a significant number of research projects have dealt with microprobes for performing the dimensional measurements of microstructures with the goal of achieving measurement uncertainties in the nanometre range. This paper introduces an updated version of a 3D microprobe with an optical detection system developed at the Institute of Process Measurement and Sensor Technology. It consists of a measuring head and a separate probe system. The mechanical design of the probe system has been completely overhauled to enable the exchange of the stylus separately from the flexure elements. This is very important for the determination of the probing sphere's roundness deviations. The silicon membranes used in the first system design are therefore replaced by metal membranes. A new design of these membranes, optimized for isotropic probing forces and locking parasitic movements, is presented. Regarding the measuring head, the optical design has been redesigned to eliminate disruptive interference on the quadrant photodiode used for deflection measurement and to improve adjustment. Its dimensioning is discussed, especially the influence of the laser beam diameter on the interference contrast due to the parallel misalignment of the collimated laser beam. Initial measurement results are presented to prove functionality.

  14. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    SciTech Connect

    Knauss, K.G.; Steinborn, T.L.

    1980-05-22

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed.

  15. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    SciTech Connect

    Nelson, T.A.

    1982-02-24

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants.

  16. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  17. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. Comparison of Structural Optimization Techniques for a Nuclear Electric Space Vehicle

    NASA Technical Reports Server (NTRS)

    Benford, Andrew

    2003-01-01

    The purpose of this paper is to utilize the optimization method of genetic algorithms (GA) for truss design on a nuclear propulsion vehicle. Genetic Algorithms are a guided, random search that mirrors Darwin s theory of natural selection and survival of the fittest. To verify the GA s capabilities, other traditional optimization methods were used to compare the results obtained by the GA's, first on simple 2-D structures, and eventually on full-scale 3-D truss designs.

  20. Nuclear power plant status diagnostics using simulated condensation: An auto-adaptive computer learning technique

    SciTech Connect

    Bartlett, E.B.

    1990-01-01

    The application of artificial neural network concepts to engineering analysis involves training networks, and therefore computers, to perform pattern classification or function mapping tasks. This training process requires the near optimization of network inter-neural connections. A new method for the stochastic optimization of these interconnections is presented in this dissertation. The new approach, called simulated condensation, is applied to networks of generalized, fully interconnected, continuous preceptrons. Simulated condensation optimizes the nodal bias, gain, and output activation constants as well as the usual interconnection weights. In this work, the simulated condensation network paradigm is applied to nuclear power plant operating status recognition. A set of standard problems such as the exclusive-or problem and others are also analyzed as benchmarks for the new methodology. The objective of the nuclear power plant accidient condition diagnosis effort is to train a network to identify both safe and potentially unsafe power plant conditions based on real time plant data. The data is obtained from computer generated accident scenarios. A simulated condensation network is trained to recognize seven nuclear power plant accident conditions as well as the normal full power operating condition. These accidents include, hot and cold leg loss of coolant, control rod ejection and steam generator tube leak accidents. Twenty-seven plant process variables are used as input to the neural network. Results show the feasibility of using simulated condensation as a method for diagnosing nuclear power plant conditions. The method is general and can easily be applied to other types of plants and plant processes.

  1. Aerodynamic Accounting Technique for Determining Effects of Nuclear Damage to Aircraft. Volume 1, Empirical Methods

    DTIC Science & Technology

    1978-02-28

    March 1977-30 January 1978 CONTRACT No. DNA 001-77-C-0075 ,APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. , THIS WORK SPONSORED BY THE DEFENSE...20305 79 Oi II Il Ii Destroy this report when it is no longer needed. Do not return to sender. PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: TISI...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK General Dynamics Crporation AREA & WORK UNIT NUMBERS Fort Worth Division

  2. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  3. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    NASA Astrophysics Data System (ADS)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  4. Development of a bio-PIXE setup at the Debrecen scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Uzonyi, I.; Simon, A.; Kiss, Á. Z.

    2005-04-01

    On the growing need of an accurate, quantitative method for the analysis of thin biological tissues down to the cell level, a measurement setup and data evaluating system has been developed at the Debrecen scanning proton microprobe facility, using its unique capability of the PIXE-PIXE technique. Quantitative elemental concentrations and true elemental maps from C to U can be produced in the case of thin (10-50 μm), inhomogeneous samples of organic matrix with a 2 μm lateral resolution. The method is based on the combined application of on-axis STIM and PIXE-PIXE ion beam analytical techniques. STIM spectra and maps are used to determine the morphology and the area density of the samples. PIXE spectra and maps of an ultra thin windowed and a conventional Be-windowed Si(Li) X-ray detectors are used to quantify concentrations and distributions of elements in the C to Fe (light and medium) and S to U (medium and heavy) atomic number regions, separately. For cross-checking the validation of the obtained data in a few cases RBS technique was used simultaneously. The application of the new bio-PIXE method is shown through an example, the study of the penetration and clearance of ultra-fine particles containing heavy metals (TiO2) of physical bodycare cosmetics in different layers of skin within the frame of the NANODERM EU5 project.

  5. Nuclear and non-nuclear techniques for area-wide assessment of water use efficiency and ecohydrology outcomes among mixed land uses

    NASA Astrophysics Data System (ADS)

    Burgess, S. S. O.; Nguyen, M. L.

    2009-04-01

    Managing water use efficiency and ecohydrology is important for providing food, water and essential ecosystem services. Many agricultural, ecological, atmospheric and hydrological processes cannot be meaningfully managed without an area-wide or catchment-level perspective. However a vast number of factors, including mixed land uses are incorporated at such scales. There is a need for integrative, mobile and adaptable techniques to make water related measurements over large areas and mixed land uses. Nuclear techniques and analogous non-nuclear techniques may be deployed in a number of spheres within the soil-plant-atmosphere continuum (e.g. rhizosphere and above-canopy microclimate) with nuclear techniques having a distinct contribution owing to their unique ability to trace biogeochemical processes including the movement and transformation of water, nutrients and agrochemicals. 1) Soils. Isotopes can be used to trace water sources to understand groundwater dependence, rooting depth, etc. but not at all sites: early success in central USA studies has not always been repeatable in climates which produce more uniform isotopic signatures in various water sources. Soil water resources available to crops can also be studied using neutron moisture meters, but training, transport and safety issues argue for stringent management and inclusion of electrical capacitance probes for routine or automated applications. Results from capacitance probes can benefit from benchmarking against neutron probe measurements, which remain more powerful for sampling larger volumes in cases of heterogenous soils or where salinity levels are problematic. Because interpretation of soil water content in terms of plant available water also requires knowledge of soil organic matter characteristics, 13C and compound specific stable isotopes can help to identify changes in soil organic matter composition and hence water and plant nutrient availability. 2) Plants. Analysis of carbon isotope

  6. 15 years in promoting the use of isotopic and nuclear technique for combating land degradation and soil erosion: the contribution of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Toloza, Arsenio; Heng, Lee

    2017-04-01

    Techniques in Food and Agriculture has developed research and development activities and capacity building to combat soil degradation (especially soil erosion) and to foster climate smart agriculture. More than 70 FAO/IAEA Member States have benefitted from the technical support and guidance in using fallout radionuclides (FRNs) and Compound-Specific Stable Isotope (CSSI) techniques to trace soil movement and assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management. This contribution summarizes the historical background and the latest innovative activities conducted by the Joint FAO/IAEA Division, as well as the main advantages and complementarity of stable and radioisotopic tracers to conventional techniques when investigating land degradation. As examples of the significant role played by the Joint FAO/IAEA Division, two major outcomes achieved in Africa (i.e. Madagascar and Morocco) through the use of isotopic and nuclear techniques will be elaborated. The authors will also report on a new 5-year Co-ordinated Research Project (CRP) funded by the IAEA on "Nuclear Techniques for a Better Understanding of the Impact of Climate Change on Soil Erosion in Upland Agro-ecosystems" which involves key research institutions from 12 participating countries.

  7. An impact source localization technique for a nuclear power plant by using sensors of different types.

    PubMed

    Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik

    2011-01-01

    In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All

  8. Use of nuclear techniques to determine the fill of found unexploded ordnance.

    PubMed

    Steward, Scott; Forsht, Denice

    2005-01-01

    The PELAN is a man-portable device that uses pulsed neutrons to interrogate objects in order to determine their filler. The neutrons initiate several types of nuclear reactions within the object under scrutiny, which result in the formation of gamma rays. The energy of the resulting gamma rays provides information about the elements (carbon, hydrogen, oxygen, nitrogen) contained within the object; in addition the number of gamma rays detected provides information about how much of each element is present. An analysis of the elements present and their ratios to one another allows for identification of the filler material.

  9. Detection of thoracic infections by nuclear medicine techniques in the acquired immunodeficiency syndrome

    SciTech Connect

    Kramer, E.L.; Sanger, J.J. )

    1989-11-01

    The challenge of the acquired immunodeficiency syndrome (AIDS) for nuclear medicine has been the early detection of related intrathoracic opportunistic infections, inflammatory conditions, and neoplasms. Gallium-67 citrate scanning has proved a sensitive test not only for Pneumocystis carinii pneumonia but for many of the other opportunistic infections and malignancies, including mycobacterial infections and lymphoma. Patterns and intensity of gallium uptake may suggest more specific diagnoses. Indium-111-labeled white blood cells may also be a valuable diagnostic tool in the AIDS patient.41 references.

  10. Evaluation of Non-Nuclear Techniques for Well Logging: Final Report

    SciTech Connect

    Bond, Leonard J.; Griffin, Jeffrey W.; Harris, R. V.; Denslow, Kayte M.; Moran, Traci L.

    2011-08-01

    The focus of this study is the understanding of the technical obstacles that hinder the replacement of and the disadvantages from the loss of extensive interpretation experience based on data accumulated with AmBe. Enhanced acoustic and electromagnetic sensing methods in combination with non-isotope-based well logging techniques have the potential to complement and/or replace existing isotope-based techniques, providing the opportunity to reduce oil industry dependence on isotopic sources such as AmBe.

  11. MMCT-mediated chromosome engineering technique applicable to functional analysis of lncRNA and nuclear dynamics.

    PubMed

    Meguro-Horike, Makiko; Horike, Shin-Ichi

    2015-01-01

    Recent evidence implicated several long noncoding RNA (lncRNA) in gene expression in cis or trans through regulating the local chromosomal architecture. However, the mechanisms underlying the lncRNA mediated silencing of multiple genes remain unknown. We believe that Microcell Mediated Chromosome Transfer (MMCT) is a suitable approach for functional analysis of lncRNAs and nuclear dynamics. MMCT is a unique research technique that can be generally used to transfer a single chromosome from one mammalian cell to another. Transferred chromosomes can be stably maintained as functioning in the recipient cells. Since there is no size limit to introducing genomic locus, an approach using the chromosome transfer technique is suitable for functional analysis of a large chromosomal domain. Here we describe a general strategy of MMCT, applications of which have potential to be an alternative tool of existing gene delivery system.

  12. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-10-13

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  13. Use of Advanced Tsunami Hazard Assessment Techniques and Tsunami Source Characterizations in U.S. and International Nuclear Regulatory Activities

    NASA Astrophysics Data System (ADS)

    Kammerer, A. M.; Godoy, A. R.

    2009-12-01

    In response to the 2004 Indian Ocean Tsunami, as well as the anticipation of the submission of license applications for new nuclear facilities, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear power plants and other coastal facilities in the United States. To undertake this effort, the US NRC organized a collaborative research program jointly undertaken with researchers at the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. This study identified and modeled both seismic and landslide tsunamigenic sources in the near- and far-field. The results from this work are now being used directly as the basis for the review of tsunami hazard at potential nuclear plant sites. This application once again shows the importance that the earth sciences can play in addressing issues of importance to society. Because the Indian Ocean Tsunami was a global event, a number of cooperative international activities have also been initiated within the nuclear community. The results of US efforts are being incorporated into updated regulatory guidance for both the U.S. Nuclear Regulatory Commission and the United Nation’s International Atomic Energy Agency (IAEA). Coordinated efforts are underway to integrate state-of-the art tsunami warning tools developed by NOAA into NRC and IAEA activities. The goal of the warning systems project is to develop automated protocols that allow scientists at these agencies to have up-to-the minute user-specific information in hand shortly after a potential tsunami has been identified by the US Tsunami Warning System. Lastly, USGS and NOAA scientists are assisting the NRC and IAEA in a special Extra-Budgetary Program (IAEA EBP) on tsunami being coordinated by the IAEA’s International Seismic Safety

  14. Monitoring Physio-chemical parameters and components through Spectroscopic technique in treatment of Nuclear Material

    NASA Astrophysics Data System (ADS)

    Muzaffery, Omed Shah

    Handling of material in nuclear fuel cycle treatments requires special facilities and considerations. One of the problems is the need for remote monitoring and control of the constituents during selected treatment process, e.g. solvent extraction. The Plutonium-Uranium Extraction (PUREX) Process has been used extensively for extraction of uranium and plutonium from used nuclear fuel and is based on tributyl phosphate dissolved in an aliphatic solvent, kerosene or similar. Commercial reprocessing plants in a number of countries, e.g. France, England and Japan, have successfully used PUREX for several decades. However, some problems requiring careful control still exist. For example, it has been shown that this system will extract large amounts of nitric acid, which can lead to formation of aggregates in the organic phase and eventual appearance of a third phase. This study is focused on the possibility of using Near-IR measurements to detect and quantify nitric acid dissolved in organic phase during a process, i.e. on-line measurements, and the possibility to predict and avoid third phase formation. Spectra for the organic phase were collected and shifts observed in the spectra can be related to nitric acid and water uptake.

  15. On-site inspection: A brief overview and bibliography of techniques pertinent to assessing suspected nuclear test sites

    SciTech Connect

    Carrigan, C.R.

    1993-03-01

    The purpose of this report is to provide a brief overview and bibliography of those techniques that may have application for the evaluation of a site to determine if a high energy release event is nuclear in nature. This effort is motivated by recognition of the changing world political climate and the perception that low yield and non-proliferation issues will grow in importance as countries become increasingly involved as signators to treaties that are intended to limit the development and testing of nuclear weapons. Along with an increasing interest in such issues is the awareness of the need to implement improved capabilities for treaty monitoring programs that must deal with assessing suspicious occurrences of high energy release events. In preparing this report, it is recognized that monitoring can take two main forms. The first involves the resolution of unidentified events detected by seismic and satellite National Technical Means. Events of an indeterminate nature could occur world-wide and could induce tension in neighboring countries. If an on-site measurement capability were available, a monitoring team could be sent to the suspected site of an event to take measurements that could confirm or disprove the occurrence of a clandestine nuclear test. The second monitoring form is the confirmation that a clandestine event is not masked by a declared event. For example, a large mining explosion could mask a decoupled nuclear explosion. On-site measurements before and during the test could confirm that a clandestine event did not occur and could provide assurance that the party carrying out the explosion is not taking advantage of clandestine testing opportunities. 48 refs.

  16. Evaluation of Mechanical Properties of Nuclear Materials Using Non-Destructive Ball Indentation Technique

    SciTech Connect

    Mathew, M.D.; Linga Murty, K.

    2002-07-01

    Integrity of structural components depends on the deformation and fracture behavior of materials. For evaluating the material condition in-service, it is generally not feasible or practical or advisable to cut samples from operating structures. Non-destructive testing (NDT) techniques are required to evaluate the mechanical properties. Although several NDT techniques such as ultrasound, magnetic strength, Barkhausen noise, microhardness etc., are employed for estimating the mechanical property degradation, these methodologies are generally empirical and indirect. Automated Ball Indentation (ABI) is a non-destructive testing technique for direct measurement of mechanical and fracture properties of metallic engineering materials. Because of the small area over which the test is carried out, it is possible to determine point to point variations in the mechanical and fracture properties, such as those that exist in weldments. Although ABI technique is non-intrusive, it is a state-of-the-art mechanical test that measures directly the current/local deformation behavior of the material. In this paper, we present results from studies on the application of ABI technique to determine tensile and fracture properties of ferritic steels, an austenitic stainless steel, a nickel base superalloy and Zircaloy in different thermo-mechanical conditions. The effects of aging and cold work on these properties were determined from the ABI tests. Gradients in mechanical properties of ferritic steel welds, particularly in the narrow heat-affected zone, were clearly established. ABI technique was found to be useful in determining the anisotropy in the tensile properties of Zircaloy cladding tubes. The technique has potential as a non-destructive method for assessing structural integrity of aged components. (authors)

  17. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    SciTech Connect

    Punshon, T.; Guerinot, M; Lanzirotti, A

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  18. Potential use of the undersampling technique in the acquisition of nuclear magnetic resonance signals.

    PubMed

    Pérez, P; Santos, A; Vaquero, J J

    2001-10-01

    This communication reviews the use of undersampling techniques to acquire NMR signals. Undersampling transforms bandpass free induction decay (FID) signals, centered at high frequencies, into lowpass signals or bandpass signals centered at much lower frequencies. Consequently, the analog electronic stages that perform the demodulation can be eliminated, gaining in stability and reducing the phase distortion while maintaining an equivalent or better signal to noise ratio when an adequate sampling rate is chosen. The technique has been tested on a BRUKER BIOSPEC BMT 47/40, and the results show that undersampling could be used to process NMR and MRI signals, extending the range of applications of the 'digital radio' techniques to NMR and MRI apparatus.

  19. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed Central

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-01-01

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  20. Multi-technique characterization of a nuclear bomb particle from the Palomares accident.

    PubMed

    Pöllänen, R; Ketterer, M E; Lehto, S; Hokkanen, M; Ikäheimonen, T K; Siiskonen, T; Moring, M; Rubio Montero, M P; Martín Sánchez, A

    2006-01-01

    A January 1966 accident dispersed Pu and other nuclear bomb materials in the vicinity of Palomares, a village in southeastern Spain. Radioactive particles were identified in a soil sample collected in 1998 and analytical results obtained from one of the isolated particles are presented here. Isolation of the particle was performed using gamma-ray spectrometry and imaging plates. Scanning electron microscopy with X-ray microanalysis revealed the presence of U and Pu as well as Pb and Fe in the particle of approximately 10microm diameter. Radioisotopes of U, Pu, and Am were quantified using radiometric methods, inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. The elevated (235)U/(238)U atom ratio indicates enriched U, and the Pu atom ratios are consistent with weapons-grade material. This work demonstrates that the analysis of individual particles provides information not available through bulk sample analysis.

  1. A study on pseudo interface wave technique for CRDM weld defects in nuclear power plants

    SciTech Connect

    Lee, Jaesun E-mail: jpp@pusan.ac.kr; Park, Junpil E-mail: jpp@pusan.ac.kr; Cho, Younho; Huh, Hyung E-mail: dokim@kaeri.re.kr; Park, Keun-Bae E-mail: dokim@kaeri.re.kr; Kim, Dong-Ok E-mail: dokim@kaeri.re.kr

    2015-03-31

    The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundary conditions and the experimental result shows a possibility of the defect detection on J-groove weld.

  2. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  3. A new correction scheme and standards for the analysis of oxygen isotopes in garnet by ion microprobe (Invited)

    NASA Astrophysics Data System (ADS)

    Page, F.; Kita, N.; Valley, J. W.

    2009-12-01

    Improvements in technique and instrumentation for analysis of oxygen isotopes by ion microprobe have dramatically increased analytical precision, creating the capability and need for better standardization. Accurate ion microprobe analysis of oxygen isotope ratios is possible only if appropriate standards are employed to correct for instrumental bias. In minerals with solid solutions, a component of the bias depends on the cation chemistry of the analyzed mineral; because garnets have a wide variety of solid solutions, a broad range of standards is required. Although the first δ18O(Gt) analyses by ion microprobe were made in Ca-rich garnets with variable Fe3+/Al ratios, at present the majority of published garnet standards are Ca-poor, and current Ca-rich standards yield conflicting results. Here we examine 13 existing garnet standards that span the compositional range of pyrope, almandine, grossular and spessartine, and introduce 14 new standards with variable Ca content including 6 standards along the grossular-andradite join. Bias due to cation composition in garnet is found to correlate with grossular content in pyralspite garnets and with andradite in ugrandite garnets. Instrumental bias is correlated with molar volume in garnets of all compositions in this study, however, there is substantial scatter about this linear relationship, particularly among grossular-rich standards. Although this correlation can be used as a correction scheme for bias, a more accurate method based on a 2nd-order polynomial relationship between X(grossular) in pyralspite or X(andradite) in ugrandite and bias is proposed. This correction reproduces instrumental bias in all but one of the 27 standards to within ±0.4‰. Thus accuracy approaches the spot-to-spot reproducibility of analyses (±0.3‰, 2 S.D.) of the homogeneous master garnet standard UWG-2. The new correction scheme successfully reproduces laser fluorination analyses along a traverse of a polymetamorphic, zoned skarn

  4. New techniques to apply an optical fiber image guide to harsh radiation environments in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Takada, Eiji; Hosono, Yoneichi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Hayami, Hiroyuki

    1999-01-01

    To apply optical fiber image guide (IG) to harsh radiation environments, we have developed two new techniques. One technique is a visible type IG with a color correcting system and the other technique is an IR type IG. We irradiated the IGs utilizing a 60Co gamma source. Measured Images with the visible type IG became dark and yellowish because of radiation induced loss. By using a color correction system, the original color of the images can be obtained. In the case of IR type IG, because of low radiation induced loss in the IR region, the degree of darkening was less than half of that for the visible type of IG. For a fixed irradiated length of 2.5m, the dose limit for using IG was estimated to be 4.6 X 108 with the visible type IG and 1.2 X 109 with the IR type IG. These radiation resistivities were more than 103 times of that for usual CCD cameras. With these techniques, IG can be applied to harsh radiation environment.

  5. Nuclear Technology. Course 26: Metrology. Module 27-7, Statistical Techniques in Metrology.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This seventh in a series of eight modules for a course titled Metrology focuses on descriptive and inferential statistical techniques in metrology. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6) materials…

  6. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  7. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  8. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  9. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-5, Fundamentals of Radiography.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This fifth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains the radiographic process, from radiation source selection to equipment and specimen selection and arrangement, and film processing. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  10. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  11. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-4, Liquid Penetrant Tests.

    ERIC Educational Resources Information Center

    Espy, John

    This fourth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes liquid penetrant examination which provides an effective method of detecting undesired, invisible surface discontinuities. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  12. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-1, Visual Tests.

    ERIC Educational Resources Information Center

    Wasil, Ed

    This first in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes visual examination as an independent inspection activity. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5)…

  13. Nuclear Technology. Course 26: Metrology. Module 27-7, Statistical Techniques in Metrology.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This seventh in a series of eight modules for a course titled Metrology focuses on descriptive and inferential statistical techniques in metrology. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6) materials…

  14. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S. A.; Experimental Facilities Division; Stony Brook Univ.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10{sup -16} mol {mu}m{sup -2} for Si and between 5.0 x 10{sup -20} and 3.9 x 10{sup -19} mol {mu}m{sup -2} for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  15. NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis

    NASA Astrophysics Data System (ADS)

    Layne, G. D.; Shimizu, N.

    2002-12-01

    The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings

  16. Controlled, all-position, butterbead-temperbead welding technique for nuclear repairs

    SciTech Connect

    Clark, J.N.; Lambert, J.A.

    1986-02-01

    Sections III and XI of the ASME boiler and pressure vessel code describe a half-bead temper repair welding technique specifically designed for in-service BWR and PWR repair applications without postweld heat treatment. The method relies on deposition of two layers of weld beads. Prior to deposition of the second layer, half the first layer is ground away. As a result, the first layer HAZ is tempered or retransformed by the second layer heat input. It is on the basis of this tempering that a concession is granted to omit postweld heat treatment. The grinding stage is difficult to control, time consuming, and can involve long exposure of personnel to a radioactive environment. Consequently, there has been pressure to find a viable alternative to the half-bead technique. Much interest has been shown in the butterbead-temperbead technique, which is essentially the CEGB two-layer HAZ refinement technique. This does not require grinding of the first layer and achieves HAZ retransformation by increasing the heat input of the second layer. The elimination of the grinding stage considerably reduces repair time and, consequently, radiation exposure. The method has now been included as an acceptable alternative to the half-bead technique in section XI of the ASME code. The CEGB method has been used successfully in the U.K. power industry, mainly for prevention of stress relief cracking, but also to improve HAZ toughness for low temperature service. Two-layer HAZ refinement is achieved by retransformation of the first layer HAZ by the thermal field of the second layer.

  17. Dating Archean zircon by ion microprobe: New light on an old problem

    NASA Technical Reports Server (NTRS)

    Williams, I. S.; Kinny, P. D.; Black, L. P.; Compston, W.; Froude, D. O.; Ireland, T. R.

    1985-01-01

    Ion microprobe analysis of zircons from three sites (Watersmeet Dome in northern Michigan, Mount Sones in eastern Antarctica, and Mount Narryer in western Australia) is discussed. Implications of the results to Archean geochronology and early Earth crust composition are addressed.

  18. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    SciTech Connect

    Fahmy M. Haggag

    1999-10-29

    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  19. Reconstructing lead isotope exposure histories preserved in the growth layers of walrus teeth using the SHRIMP II ion microprobe

    SciTech Connect

    Stern, R.A.; Outridge, P.M.; Davis, W.J.; Stewart, R.E.A.

    1999-05-15

    Development of a microprobe technique to determine Pb isotope ratios within the growth layers of mammal teeth could have widespread applications in Pb toxicology, Pb pollution tracing, and human and animal ecology. Here, the SHRIMP II ion microprobe is shown to possess sufficient sensitivity, accuracy, and precision to satisfactorily determine Pb isotope ratios in the canine tooth cementum of a walrus (Odobenus rosmarus rosmarus), with a sampling resolution of 130 {micro}m. The tooth layers were estimated to contain only 1--3 {micro}g/gf Pb. By combining multiple replicates within each annual layer, the {+-}1 SE uncertainty was typically {+-}1% for {sup 206}Pb/{sup 207}Pb and {+-}0.5% for {sup 208}Pb/{sup 207}Pb. Significant isotopic differences were found between layers deposited at age 10 and ages 2, 27, and 30. This result, together with corroborative data on excised cementum fragments analyzed by thermal ionization mass spectrometry, indicates that the animal migrated into different geological terrains several times during its life. There was no evidence of exchange between the Pb deposited in early growth layers and more recent ambient Pb.

  20. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  1. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W

    2010-01-01

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. In this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.

  2. Microprobe PIXE analysis of aluminium in the brains of patients with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Kakimi, S.; Fujii, K.

    1996-04-01

    To investigate the cause of Alzheimer's disease (senile dementia), we examined aluminium (Al) in the rat liver, and in the brains (hippocampus) of Alzheimer's disease patients using heavy ion (5 MeV Si 3+) microprobe and proton (2 MeV) microprobe PIXE analysis. Heavy ion microprobes (3 MeV Si 2+) have several time's higher sensitivity for Al detection than 2 MeV proton microprobes. (1) In the rat liver, Al was detected in the cell nuclei, where phosphorus (P) was most densely distributed. (2) We also demonstrated Al in the cell nuclei isolated from Alzheimer's disease brains using heavy ion (5 MeV Si 3+) microprobes. Al spectra were detected using 2 MeV proton microprobes in the isolated brain cell nuclei. Al could not be observed in areas where P was present in relatively small amounts, or was absent. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of Al in the nuclei of brain cells.

  3. Molecular identification of foreign inclusions in inflammatory tissue surrounding metal implants by Fourier transform laser microprobe mass spectrometry.

    PubMed

    De Nollin, S; Poels, K; Van Vaeck, L; De Clerck, N; Bakker, A; Duwel, V; Vandevelde, D; Van Marck, E

    1997-01-01

    Fourier transform laser microprobe mass spectrometry (FT LMMS) is a novel technique for micro-analysis of solids with a lateral resolution in the 5 microns range. One of the major advantages of the technique is the capability to perform characterisation of the molecular composition of both organic and inorganic compounds. The information is directly deduced from the signals without the aid of reference spectra. FT LMMS was applied to the characterisation of black tissue fragments in a biopsy from a patient, in which a constrained condylar nodular knee system was implanted ten years ago. The tissue contained numerous foreign giant cells with a black non-birefringent pigment in their cytoplasm. FT LMMS analysis allowed us to detect directly by means of molecular signals, that the debris consisted primarily of titanium oxide and not metallic titanium, while the implant itself only contained titanium.

  4. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE PAGES

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    2016-09-16

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  5. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    SciTech Connect

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    2016-09-16

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques were applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.

  6. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    SciTech Connect

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    2016-09-16

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques were applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.

  7. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  8. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    NASA Astrophysics Data System (ADS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  9. Neutron flux characterization of californium-252 Neutron Research Facility at the University of Texas - Pan American by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad

    2014-03-01

    In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.

  10. Gaining Precision and Accuracy on Microprobe Trace Element Analysis with the Multipoint Background Method

    NASA Astrophysics Data System (ADS)

    Allaz, J. M.; Williams, M. L.; Jercinovic, M. J.; Donovan, J. J.

    2014-12-01

    Electron microprobe trace element analysis is a significant challenge, but can provide critical data when high spatial resolution is required. Due to the low peak intensity, the accuracy and precision of such analyses relies critically on background measurements, and on the accuracy of any pertinent peak interference corrections. A linear regression between two points selected at appropriate off-peak positions is a classical approach for background characterization in microprobe analysis. However, this approach disallows an accurate assessment of background curvature (usually exponential). Moreover, if present, background interferences can dramatically affect the results if underestimated or ignored. The acquisition of a quantitative WDS scan over the spectral region of interest is still a valuable option to determine the background intensity and curvature from a fitted regression of background portions of the scan, but this technique retains an element of subjectivity as the analyst has to select areas in the scan, which appear to represent background. We present here a new method, "Multi-Point Background" (MPB), that allows acquiring up to 24 off-peak background measurements from wavelength positions around the peaks. This method aims to improve the accuracy, precision, and objectivity of trace element analysis. The overall efficiency is amended because no systematic WDS scan needs to be acquired in order to check for the presence of possible background interferences. Moreover, the method is less subjective because "true" backgrounds are selected by the statistical exclusion of erroneous background measurements, reducing the need for analyst intervention. This idea originated from efforts to refine EPMA monazite U-Th-Pb dating, where it was recognised that background errors (peak interference or background curvature) could result in errors of several tens of million years on the calculated age. Results obtained on a CAMECA SX-100 "UltraChron" using monazite

  11. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant.

    PubMed

    Chen, Chuqun; Shi, Ping; Mao, Qingwen

    2003-08-01

    This article introduces a practical method to investigate thermal pollution in coastal water from satellite data. The intensity and distribution areas of thermal pollution by the heated effluent discharge from the nuclear power plant on Daya Bay, southern China were investigated by using Landsat-5 Thematic Mapper (TM) thermal band data from 1994 to 2001. A local algorithm was developed, based on sea-truth data of water surface temperature measured when the satellite passed over the study area. The local algorithm was then applied to estimate water temperature from TM data. It shows that the remote sensing technique provides an effective means to quantitatively monitor the intensity of thermal pollution and to retrieve a very detailed distribution pattern of thermal pollution in coastal waters. The remotely-sensed results of the thermal pollution can be used for environmental management of coastal waters.

  12. High flux of relativistic electrons produced in femtosecond laser-thin foil target interactions: characterization with nuclear techniques.

    PubMed

    Gerbaux, M; Gobet, F; Aléonard, M M; Hannachi, F; Malka, G; Scheurer, J N; Tarisien, M; Claverie, G; Méot, V; Morel, P; Faure, J; Glinec, Y; Guemnie-Tafo, A; Malka, V; Manclossi, M; Santos, J J

    2008-02-01

    We present a protocol to characterize the high energy electron beam emitted in the interaction of an ultraintense laser with matter at intensities higher than 10(19) W cm(-2). The electron energies and angular distributions are determined as well as the total number of electrons produced above a 10 MeV threshold. This protocol is based on measurements with an electron spectrometer and nuclear activation techniques, combined with Monte Carlo simulations based on the GEANT3 code. The method is detailed and exemplified with data obtained with polypropylene and copper thin solid targets at a laser intensity of 2x10(19) W cm(-2). Special care is taken of the different sources of uncertainties. In particular, the reproducibility of the laser shots is considered.

  13. High flux of relativistic electrons produced in femtosecond laser-thin foil target interactions: Characterization with nuclear techniques

    SciTech Connect

    Gerbaux, M.; Gobet, F.; Aleonard, M. M.; Hannachi, F.; Malka, G.; Scheurer, J. N.; Tarisien, M.; Claverie, G.; Meot, V.; Morel, P.

    2008-02-15

    We present a protocol to characterize the high energy electron beam emitted in the interaction of an ultraintense laser with matter at intensities higher than 10{sup 19} W cm{sup -2}. The electron energies and angular distributions are determined as well as the total number of electrons produced above a 10 MeV threshold. This protocol is based on measurements with an electron spectrometer and nuclear activation techniques, combined with Monte Carlo simulations based on the GEANT3 code. The method is detailed and exemplified with data obtained with polypropylene and copper thin solid targets at a laser intensity of 2x10{sup 19} W cm{sup -2}. Special care is taken of the different sources of uncertainties. In particular, the reproducibility of the laser shots is considered.

  14. Electron microprobe observations of PB diffusion in metamorphosed detrital monazites

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Adachi, M.; Kajizuka, I.

    1994-12-01

    Electron microprobe analyses have been made on monazite grains from paragneiss samples in the andalusite-sillimanite transition (620 +/- 15 C) and sillimanite-orthoclase (680 +/- 15 C) zones of the Cretaceous Ryoke metamorphic belt, southwest Japan. Monazites from pelitic gneisses are of metamorphic origin, euhedral to subhedral and chronologically homogeneous, giving chemical Th-U-total Pb isochron (CHIME) ages of 98.8 +/- 3.3 - 98.0 +/- 3.2 Ma. Two psammitic gneisses of individual metamorphic grade contain both metamorphic monazite grains and detrital ones as old as ca. 1700 Ma. Most detrital monazite grains are heterogeneous in the ThO2 and UO2 concentrations and have multiple or single rims as young as ca. 100 Ma. Several detrital monazite grains are well rounded in form, exhibit homogeneous Th and U distributions and show a Pb diffusion profile in the margin. The width of the diffusion zones is approximately constant throughout grains from each psammitic gneiss: 18-22 micrometers for 620 C and 48-58 micrometers for 680 C. Assuming the isothermal diffusion of Pb from homogeneous monazite spheres during a 5 Ma duration of peak metamorphism, we obtain diffusion coefficients of 1.9 (+/- 0.3) x 10-21 and 1.5 (+/- 0.3) x 10-20 sq cm/s at 620 C and 680 C, respectively. These data derive an activation energy of 2.44 (+2.85/-1.26) x 105 J/mol and a frequency factor of 3.4 x 10-7 (8.5 x 10-12 - 2.2 x 107 sq cm/s, taking account of uncertainties of +/- 15 C in the temperatures and of +/- 20% in the diffusion coefficients. The diffusion parameters obtained from natural samples in this study provide a reliable insight into the closure temperature for Pb in monazite that has been poorly understood so far.

  15. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  16. Laser microprobe study of cosmic dust (IDPs) and potential source materials

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Sommer, M. S., II

    1986-01-01

    The study of cosmic dust or interplanetary dust particles (IDP) can provide vital information about primitive materials derived primarily from comets and asteroids along with a small unknown fraction from the nearby interstellar medium. The study of these particles can enhance our understanding of comets along with the decoding of the history of the early solar system. In addition the study of the cosmic dust for IDP particles can assist in the elucidation of the cosmic history of the organogenic elements which are vital to life processes. Studies to date on these particles have shown that they are complex, heterogeneous assemblages of both amorphous and crystalline components. In order to understand the nature of these particles, any analytical measurements must be able to distinguish between the possible sources of these particles. A study was undertaken using a laser microprobe interfaced to a quadrupole mass spectrometer for the analysis of the volatile components present in cosmic dust particles, terrestrial contaminants present in the upper atmosphere, and primitive carbonaceous chondrites. From the study of the volatiles released from the carbonaceous materials it is hoped that one could distinguish between components and sources in the IDP particles analyzed. The technique is briefly described and results for the CI, CM, and CV chondrites and cosmic dust particle W7027B8 are presented.

  17. Errors in the determination of the limits of detection using JEOL's electron microprobe interface.

    NASA Astrophysics Data System (ADS)

    Tonkacheev, Dmitry

    2017-04-01

    The first commercially available electron microprobe was made in the middle of XIX century. At the moment, this technique of determination of chemical composition of matter has a lot of applications in Geoscience, even in trace element analysis. During our work in the field of spectroscopy of minerals, it was necessary to determine the EPMA limits of detection for trace elements in sulphides. We measured several samples of synthetic sulfides (sphalerite, covellite) with the concentration of gold in the range from 15 to 5000 ppm using JEOL-JXA8200 in IGEM RAS and JEOL-JXA8230 in MSU equipped with energy-dispersive and 5 wavelength spectrometers, employing different crystals (PETH or LIFH), modes (integral or differential), acceleration voltage, counting time, and the beam size. We calculated the real limit of detection, using the equation from the EPMA JXA-8200 Manual and [Reed, 2000]. Our data did not correspond with the values appears on the screen after the analysis. The difference in estimation of the limits of detection between our and computer's data varies from 8 up to 13 times. We suggested that observed dissimilarity of the typed and the real values may be related to desire JEOL Ltd to promote devices for better selling. We are firmly recommend checking this values while performing the trace element analysis. References JEOL JXA8200 Manual Reed S.J.B. (2000) Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochim. Acta 132 145-151.

  18. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  19. Investigation of elemental distribution in human femoral head by PIXE and SRXRF microprobe

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Wang, Y. S.; Zhang, Y. P.; Zhang, G. L.; Huang, Y. Y.; He, W.

    2007-07-01

    In order to study the distribution and possible degenerative processes inducing the loss of inorganic substances in bone and to provide a scientific basis for the prevention and therapy of osteoporosis, proton induced X-ray emission (PIXE) method is used for the determination of elemental concentrations in femoral heads from five autopsies and seven patients with femoral neck fractures. Synchrotron radiation X-ray fluorescence (SRXRF) microprobe analysis technique is used to scan a slice of the femoral head from its periphery to its center, via cartilage, compact and spongy zones. The specimen preparation and experiment procedure are described in detail. The results show that the concentrations of P, Ca, Fe, Cu, Sr in the control group are higher than those in the patient group, but the concentrations of S, K, Zn, Mn are not significantly different. The quantitative results of elemental distribution, such as Ca, P, K, Fe, Zn, Sr and Pb in bone slice tissue including cartilage, substantial compact and substantial spongy, are investigated. The data obtained show that the concentrations of Ca, P, K, (the major elements of bone composition), are obviously low in both spongy and cartilage zones in the patient group, but there are no remarkable differences in the compact zone. Combined with the correlations between P, K, Zn, Sr and Ca, the loss mechanism of minerals and the physiological functions of some metal elements in bone are also discussed.

  20. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  1. Improving the quantification at high spatial resolution using a field emission electron microprobe

    NASA Astrophysics Data System (ADS)

    Pinard, P. T.; Richter, S.

    2014-03-01

    The capabilities of field emitter electron microprobes to perform quantitative measurements at high spatial resolution are discussed. Using Fe-Cr-C particles in a bearing steel (SAE 52100) as example, a generic procedure was established to find the optimal analytical conditions (beam energy, beam current and acquisition time). The influence of these parameters on the accuracy, precision and spatial resolution was evaluated using experimental measurements and Monte Carlo simulations. A quantification procedure was developed for soft X-ray lines, taking into account the overlap of high order X-ray lines and background anomalies. The accuracy of Ka- and La-lines was verified using reference materials. A relationship between experimental and simulated X-ray intensities was determined to evaluate the measurement precision. The spatial resolution of each X-ray line was calculated from the simulated lateral and depth X-ray intensity distribution using simulations integrating experimentally measured beam diameters. The optimal analytical conditions for the studied sample were found to be 5 keV, 10 nA and 10 s acquisition time. Further specialized techniques to improve the spatial resolution are presented: focused ion beam preparation of thin lamella and wedge, and Monte Carlo based reconstruction. The feasibility of the latter to quantify features smaller than the X-ray emission volume was demonstrated.

  2. X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process

    NASA Astrophysics Data System (ADS)

    Bernardis, Sarah; Fakra, Sirine C.; Dal Martello, Elena; Larsen, Rune B.; Newman, Bonna K.; Fenning, David P.; Di Sabatino, Marisa; Buonassisi, Tonio

    2016-12-01

    Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 °C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 °C), iron diffuses towards liquid-solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 °C) and the iron migrates towards the interfaces between gas phases and the silicate liquid.

  3. Development of a High Resolution-High Sensitivity Ion Microprobe Facility for Cosmochemical Applications

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    1998-01-01

    NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.

  4. Rehabilitation of soils and surface after a nuclear accident: Some techniques tried in the Chernobyl zone

    SciTech Connect

    Jouve, A.; Maubert, H.; Kutlakhamedov, Y.

    1993-12-31

    Six years after the Chernobyl accident, the major part of deposited radio nuclides remains in the 3 or 4 cm of the topsoil of abandoned fields in the chernobyl zone. The Decontaminating Vegetal Network allows a layer of few centimeters of the top soil to be removed with a turf harvester. The efficiency observed at Chernobyl was 97% for cesium-137 and strontium-90. After scraping the soil with the turf harvester, the bare soil must be covered and re-grown in order to prevent wind erosion of the sandy soil. A trial spraying of polyacrylamide on the soil was carried out. This technique seems promising. Trials of bio-decontamination of the removed turf using anaerobic degradation were also carried out. This experiment provided an opportunity to measure in real conditions the transfer of radionuclides in the Chernobyl zone.

  5. Metal intoxication in humans assessed by atomic and nuclear physics techniques

    NASA Astrophysics Data System (ADS)

    Chettle, David R.

    1995-08-01

    Toxic trace elements such as lead (Pb) and Cadmium (Cd) can be measured non-invasively in humans by radiation physics techniques, particularly x-ray fluorescence and neutron activation. An analysis is usually made of the content of a particular organ, representing the principal storage site of the element in question. For example, Pb is measured in bone, whereas Cd is measured in liver and kidney. Measuring stored quantities of these elements has contributed to assessment of health effects of chronic occupational and environmental exposure. In addition knowledge of the elemental metabolism has been significantly extended. Results of in vivo studies have also contributed to assessment and regulation of workplace exposure. Analogous methods are in use or under development for in vivo assay of mercury, aluminum, gold, platinum, and manganese. The principles of these measurements will be outlined and illustrative applications for Pb and Cd will be discussed.

  6. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of (89)Sr, (90)Y, (125)I and (131)I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.

    PubMed

    Nagato, Edward G; Lankadurai, Brian P; Soong, Ronald; Simpson, André J; Simpson, Myrna J

    2015-09-01

    Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies.

  8. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.

    PubMed

    Praveen, K; Rajiniganth, M P; Arun, A D; Sahoo, P; Murty, S A V Satya

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ∼4 s, respectively.

  9. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities.

    PubMed

    Newton, G J; Hoover, M D; Barr, E B; Wong, B A; Ritter, P D

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates.

  10. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  11. Application of the MOLE in post-nuclear accident characterization

    SciTech Connect

    Johnson, S.J.; Alvarez, J.L.

    1981-01-01

    Following a nuclear accident there is a need to determine the chemical composition of materials in liquid, solid and gaseous form, the crystalline structure of solids, the size and chemical composition of particles, and the chemical characterization of contaminants on surfaces. This analytical information is required to reconstruct the accident scenario, to select decontamination methods, and to determine future safety requirements. The MOLE (Molecular Optical Laser Examiner) is a Raman microprobe system which has proven to be a valuable analytical tool in providing this type of chemical information. It can determine the chemical species of polyatomic molecules and ions having characteristic Raman spectra. As little as 1 picogram of a component or a 1 ..mu..m particle can be analyzed. The imaging system can also provide mapping of selected components on a surface. A system description, sample handling techniques, and applications are presented. Specific applications to the Three Mile Island-Unit 2 accident are also addressed.

  12. Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan.

    PubMed

    Niu, Kiyoshi

    2008-01-01

    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Psi, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN.

  13. Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    PubMed Central

    NIU, Kiyoshi

    2008-01-01

    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN. PMID:18941283

  14. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise

    SciTech Connect

    Sapega, A.A.; Sokolow, D.P.; Graham, T.J.; Chance, B.

    1987-08-01

    Phosphorus nuclear magnetic resonance (/sup 31/P NMR) spectroscopy is a non-destructive analytical laboratory technique that, due to recent technical advances, has become applicable to the study of high-energy phosphate metabolism in both animal and human extremity muscles (in vivo). /sup 31/P NMR can assay cellular phosphocreatine, ATP, inorganic phosphate, the phosphorylated glycolytic intermediates, and intra-cellular pH in either resting or exercising muscle, in a non-invasive manner. NMR uses non-perturbing levels of radio-frequency energy as its biophysical probe and can therefore safely study intact muscle in a repeated fashion while exerting no artifactual influence on ongoing metabolic processes. Compared with standard tissue biopsy and biochemical assay techniques, NMR possesses the advantages of being non-invasive, allowing serial in situ studies of the same tissue sample, and providing measurements of only active (unbound) metabolites. NMR studies of exercising muscle have yielded information regarding fatigue mechanisms at the cellular level and are helping resolve long-standing questions regarding the metabolic control of glycolysis, oxidative phosphorylation, and post-exercise phosphocreatine re-synthesis. NMR is also being utilized to measure enzymatic reaction rates in vivo. In the near future, other forms of NMR spectroscopy may also permit the non-invasive measurement of tissue glycogen and lactate content. 75 references.

  15. Sequencing of Plant Wall Heteroxylans Using Enzymic, Chemical (Methylation) and Physical (Mass Spectrometry, Nuclear Magnetic Resonance) Techniques.

    PubMed

    Ratnayake, Sunil; Ford, Kristina; Bacic, Antony

    2016-03-24

    This protocol describes the specific techniques used for the characterization of reducing end (RE) and internal region glycosyl sequence(s) of heteroxylans. De-starched wheat endosperm cell walls were isolated as an alcohol-insoluble residue (AIR)(1) and sequentially extracted with water (W-sol Fr) and 1 M KOH containing 1% NaBH4 (KOH-sol Fr) as described by Ratnayake et al. (2014)(2). Two different approaches (see summary in Figure 1) are adopted. In the first, intact W-sol AXs are treated with 2AB to tag the original RE backbone chain sugar residue and then treated with an endoxylanase to generate a mixture of 2AB-labelled RE and internal region reducing oligosaccharides, respectively. In a second approach, the KOH-sol Fr is hydrolyzed with endoxylanase to first generate a mixture of oligosaccharides which are subsequently labelled with 2AB. The enzymically released ((un)tagged) oligosaccharides from both W- and KOH-sol Frs are then methylated and the detailed structural analysis of both the native and methylated oligosaccharides is performed using a combination of MALDI-TOF-MS, RP-HPLC-ESI-QTOF-MS and ESI-MS(n). Endoxylanase digested KOH-sol AXs are also characterized by nuclear magnetic resonance (NMR) that also provides information on the anomeric configuration. These techniques can be applied to other classes of polysaccharides using the appropriate endo-hydrolases.

  16. Joint application of AI techniques, PRA and disturbance analysis methodology to problems in the maintenance and design of nuclear power plants

    SciTech Connect

    Okrent, D.

    1989-03-01

    This final report summarizes the accomplishments of a two year research project entitled Joint Application of Artificial Intelligence Techniques, Probabilistic Risk Analysis, and Disturbance Analysis Methodology to Problems in the Maintenance and Design of Nuclear Power Plants. The objective of this project is to develop and apply appropriate combinations of techniques from artificial intelligence, (AI), reliability and risk analysis and disturbance analysis to well-defined programmatic problems of nuclear power plants. Reactor operations issues were added to those of design and maintenance as the project progressed.

  17. Joint application of AI techniques, PRA and disturbance analysis methodology to problems in the maintenance and design of nuclear power plants. Final report

    SciTech Connect

    Okrent, D.

    1989-03-01

    This final report summarizes the accomplishments of a two year research project entitled ``Joint Application of Artificial Intelligence Techniques, Probabilistic Risk Analysis, and Disturbance Analysis Methodology to Problems in the Maintenance and Design of Nuclear Power Plants. The objective of this project is to develop and apply appropriate combinations of techniques from artificial intelligence, (AI), reliability and risk analysis and disturbance analysis to well-defined programmatic problems of nuclear power plants. Reactor operations issues were added to those of design and maintenance as the project progressed.

  18. The NeuroMedicator—a micropump integrated with silicon microprobes for drug delivery in neural research

    NASA Astrophysics Data System (ADS)

    Spieth, S.; Schumacher, A.; Kallenbach, C.; Messner, S.; Zengerle, R.

    2012-06-01

    The NeuroMedicator is a micropump integrated with application-specific silicon microprobes aimed for drug delivery in neural research with small animals. The micropump has outer dimensions of 11 × 15 × 3 mm3 and contains 16 reservoirs each having a capacity of 0.25 µL. Thereby, the reservoirs are interconnected in a pearl-chain-like manner and are connected to two 8 mm long silicon microprobes. Each microprobe has a cross-sectional area of 250 × 250 µm2 and features an integrated drug delivery channel of 50 × 50 µm2 with an outlet of 25 µm in diameter. The drug is loaded to the micropump prior to implantation. After implantation, individual 0.25 µL portions of drug can be sequentially released by short heating pulses applied to a polydimethylsiloxane (PDMS) layer containing Expancel® microspheres. Due to local, irreversible thermal expansion of the elastic composite material, the drug is displaced from the reservoirs and released through the microprobe outlet directly to the neural tissue. While implanted, leakage of drug by diffusion occurs due to the open microprobe outlets. The maximum leakage within the first three days after implantation is calculated to be equivalent to 0.06 µL of drug solution.

  19. CALCMIN - an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Brandelik, Andreas

    2009-07-01

    CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.

  20. Improved calibration procedures and new standards for U - Pb and Th - Pb dating of Phanerozoic xenotime by ion microprobe

    USGS Publications Warehouse

    Fletcher, I.R.; McNaughton, N.J.; Aleinikoff, J.A.; Rasmussen, B.; Kamo, S.L.

    2004-01-01

    Xenotime is a widely occurring mineral that is amenable to U-Pb and Th-Pb dating but often is found as micrometre-sized crystals that can only be dated by in situ microanalytical techniques. Determining accurate ages for Phanerozoic samples, and assessing concordance in older samples, requires accurate determination of Pb/U and Pb/Th; however, ion microprobe data for these ratios are affected by the highly variable trace element composition of xenotime. We have identified calibration procedures, including matrix corrections for the effects of the dominant trace elements U, Th and REE, that provide an accuracy of ???1% for Pb/U and <2% for Pb/Th. Several new standard samples are available that cover a range of compositions, permitting better matching of samples with standards as well as giving control of the matrix effects. However, no chemically homogeneous samples have been identified. ?? 2004 Elsevier B.V. All rights reserved.

  1. Composition and chemical microprobe dating of U-Th-bearing minerals. Part I. Monazites from the Urals and Siberia

    NASA Astrophysics Data System (ADS)

    Votyakov, S. L.; Khiller, V. V.; Shchapova, Yu. V.

    2012-12-01

    To develop chemical microprobe timing of U-Th-bearing minerals, monazite grains from several localities in the Ural and Siberia have been dated using upgraded measurement techniques and age calculation based on original software. The samples were taken from pegmatites of the Ilmeny Mountains and the Ilmeny-Vishnevy Mountains Complex in the South Urals; pegmatites from the Adui granitic pluton and its framework in the Central Urals; gneisses and granulites of the Taratash Complex in the South Urals; and felsic gneisses from the Transangara region of the Yenisei Ridge. Scrutiny of the composition, heterogeneity, and chemical substitution of U and Th ions is a necessary stage of chemical dating aimed at estimating the degree of closeness of the U-Th-Pb system and unbiased screening of analytical data. The results obtained have been compared with the known isotopic ages of the studied minerals; the compared data are satisfactorily consistent.

  2. Investigation of the uptake of drugs, carcinogens and mutagens by individual mammalian cells using a scanning proton microprobe

    NASA Astrophysics Data System (ADS)

    Cholewa, M.; Turnbull, I. F.; Legge, G. J. F.; Weigold, H.; Marcuccio, S. M.; Holan, G.; Tomlinson, E.; Wright, P. J.; Dillon, C. T.; Lay, P. A.; Bonin, A. M.

    1995-09-01

    The use of micro-PIXE [1] in measuring the quantitative uptake of drugs containing metal atoms by individual Vero cells (African green monkey kidney cell line) and V79 Chinese hamster lung cells is demonstrated. One class of drugs, heteropolytungstates, which are being assessed for activity against the HIV virus, were studied using Vero cells. The cellular uptake of a series of chromium compounds, including carcinogens and mutagens, in which the metal oxidation state was either (III), (V) or (VI), was measured using V79 cells. It was found that, unlike any other techniques, scanning proton microprobe (SPM) offers both the sensitivity and spatial resolution to carry out unicellular analysis. The use of cultured cell lines in these analyses was shown to have distinct advantages over cells such as peripheral blood lymphocytes (PBLs).

  3. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Trahan, Alexis Chanel

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (alpha, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (alpha,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (alpha,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were

  4. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    SciTech Connect

    Trahan, Alexis Chanel

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  5. Boron analysis by electron microprobe using MoB4C layered synthetic crystals

    USGS Publications Warehouse

    McGee, J.J.; Slack, J.F.; Herrington, C.R.

    1991-01-01

    Preliminary electron microprobe studies of B distribution in minerals have been carried out using MoB4C-layered synthetic crystals to improve analytical sensitivity for B. Any microprobe measurements of the B contents of minerals using this crystal must include analyses for Cl to assess and correct for the interference of Cl X-rays on the BK?? peak. Microprobe analyses for B can be made routinely in tourmaline and other B-rich minerals, and minor B contents also can be determined in common rock-forming minerals. Incorporation of unusually high B contents in minerals other than borosilicates has been discovered in prograde and retrograde minerals in tourmalinites from the Broken Hill district, Australia, and may reflect high B activities produced during the metamorphism of tourmaline-rich rocks. -from Authors

  6. A novel approach to the examination of soil evidence: mineral identification using infrared microprobe analysis.

    PubMed

    Weinger, Brooke A; Reffner, John A; De Forest, Peter R

    2009-07-01

    Identification of minerals using the infrared microprobe with a diamond internal reflection objective is a rapid and reliable method for forensic soil examinations. Ninety-six mineral varieties were analyzed, and 77 were differentiated by their attenuated total reflection (ATR) spectra. Mineral grains may be mounted in oil for conventional polarized light microscope characterization and their ATR spectrum obtained with little or no interference by the liquid. This infrared microprobe method can be used to identify silicates, phosphates, nitrates, carbonates, and other covalent minerals; however, ionic minerals, metal oxide and sulfide minerals, and minerals with refractive indexes greater than diamond do not produce identifiable spectra, but the lack of a spectrum or one with high absorbance values does provide useful information. This research demonstrates the overall utility that infrared microprobe analysis brings mineral identification in soil evidence.

  7. Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique

    SciTech Connect

    Menlove, Howard O; Tobin, Stephen J; Menlove, S H

    2008-01-01

    This paper presents a new technique for the measurement of fissile and fertile nuclear materials in spent fuel and plutonium laden materials such as mixed oxide (MOX) fuel. The technique, called differential die-away self-interrogation, is similar to traditional differential die-away analysis, but it does not require a pulsed neutron generator or pulsed beam accelerator, and it can measure the fertile mass in addition to the fissile mass. The new method uses the spontaneous fission neutrons from {sup 244}Cm in spent fuel and {sup 240}Pu effective neutrons in MOX as the 'pulsed' neutron source with an average of {approx} 2.7 neutrons per pulse. The time correlated neutrons from the spontaneous fission and the subsequent induced fissions are analyzed as a function of time to determine the spontaneous fission rate, the induced fast-neutron fissions, and the induced thermal-neutron fissions. The fissile mass is determined from the induced thermal-neutron fissions that are produced by reflected thermal neutrons that originated from the spontaneous fission reaction. The sensitivity of the fissile mass measurement is enhanced by the use of two measurements, with and without a cadmium liner between the sample and the hydrogenous moderator. The fertile mass is determined from the multiplicity analysis of the neutrons detected soon after the initial triggering neutron is detected. The method obtains good sensitivity by the optimal design of two different neutron die-away regions: a short die-away for the neutron detector region and a longer die-away for the sample interrogation region.

  8. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-11-10

    ABSTRACT Several tanks at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the AOR resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III SSTs. The modeling techniques, methodology and evaluation criteria developed for

  9. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    SciTech Connect

    BRUNETT,BRUCE A.; DOYLE,BARNEY L.; JAMES,RALPH B.; VIZKELETHY,GYORGY; WALSH,DAVID S.

    1999-10-18

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated.

  10. Design and construction of an electrostatic quadrupole doublet lens for nuclear microprobe application

    NASA Astrophysics Data System (ADS)

    Manuel, Jack E.; Szilasi, Szabolcs Z.; Phillips, Dustin; Dymnikov, Alexander D.; Reinert, Tilo; Rout, Bibhudutta; Glass, Gary A.

    2017-08-01

    An electrostatic quadrupole doublet lens system has been designed and constructed to provide strong, mass-independent focusing of 1-3 MeV ions to a 1 μm2 spot size. The electrostatic doublet consists of four sets of gold electrodes deposited on quartz rods that are positioned in a precision machined rigid frame. The 38 mm electrodes are fixed in a quadrupole doublet arrangement having a bore diameter of 6.35 mm. The coating process allows uniform, 360° coverage with minimal edge defects. Determined via optical interferometry, typical surface roughness is 6 nm peak to valley. Radial and coaxial alignment of the electrodes within the frame is accomplished by using a combination of rigid and adjustable mechanical supports. Axial alignment along the ion beam is accomplished via external manipulators. COMSOL Multiphysics® v5.2 and Propagate Rays and Aberrations by Matrices (PRAM) were used to simulate ion trajectories through the system.

  11. Study of Italian Renaissance sculptures using an external beam nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J. R.

    2000-03-01

    The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented.

  12. Nuclear microprobe analysis of solar proton implantation profiles in lunar rock surfaces

    NASA Technical Reports Server (NTRS)

    Stauber, M. C.; Padawer, G. M.; D'Agostino, M. D.; Kamykowski, E.; Brandt, W.; Young, D. A.

    1973-01-01

    Discussion of the results of hydrogen (proton) depth profile concentration analyses conducted on selected Apollo 16 rocks. A modeling of solar particle implantation profiles in lunar rocks is shown to trace the evolvement of these profiles under the combined influence of diffusion of atomic particles implanted in the rock, and rock surface erosion. It is also demonstrated that such diffusion may have a significant effect on the shape of the implantation profiles in certain rock materials.

  13. State of the Art Assessment of NDE Techniques for Aging Cable Management in Nuclear Power Plants FY2015

    SciTech Connect

    Glass, Samuel W.; Fifield, Leonard S.; Dib, Gerges; Tedeschi, Jonathan R.; Jones, Anthony M.; Hartman, Trenton S.

    2015-09-08

    This milestone report presents an update on the state-of-the-art review and research being conducted to identify key indicators of in-containment cable aging at nuclear power plants (NPPs), and devise in-situ measurement techniques that are sensitive to these key indicators. The motivation for this study stems from the need to address open questions related to nondestructive evaluation (NDE) of aging cables for degradation detection and estimation of condition-based remaining service life. These questions arise within the context of a second round of license extension for NPPs that would extend the operating license to 60 and 80 years. Within the introduction, a review of recently published U.S. and international research and guidance for cable aging management programs including NDE technologies is provided. As with any “state-of-the-art” report, the observations are deemed accurate as of the publication date but cannot anticipate evolution of the technology. Moreover, readers are advised that research and development of cable NDE technology is an ongoing issue of global concern.

  14. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes

    NASA Astrophysics Data System (ADS)

    Wilson, Adam A.; Borca-Tasciuc, Theodorian

    2017-07-01

    Simplified heat-transfer models are widely employed by heated probe scanning thermal microscopy techniques for determining thermal conductivity of test samples. These parameters have generally been assumed to be independent of sample properties; however, there has been little investigation of this assumption in non-contact mode, and the impact calibration procedures have on sample thermal conductivity results has not been explored. However, there has been little investigation of the commonly used assumption that thermal exchange parameters are sample independent in non-contact mode, or of the impact calibration procedures have on sample thermal conductivity results. This article establishes conditions under which quantitative, localized, non-contact measurements using scanning thermal microscopy with heated microprobes may be most accurately performed. The work employs a three-dimensional finite element (3DFE) model validated using experimental results and no fitting parameters, to determine the dependence of a heated microprobe thermal resistance as a function of sample thermal conductivity at several values of probe-to-sample clearance. The two unknown thermal exchange parameters were determined by fitting the 3DFE simulated probe thermal resistance with the predictions of a simplified probe heat transfer model, for two samples with different thermal conductivities. This calibration procedure known in experiments as the intersection method was simulated for sample thermal conductivities in the range of 0.1-50 W m-1 K-1 and clearance values in the 260-1010 nm range. For a typical Wollaston wire microprobe geometry as simulated here, both the thermal exchange radius and thermal contact resistance were found to increase with the sample thermal conductivity in the low thermal conductivity range while they remained approximately constant for thermal conductivities >1 W m-1 K-1, with similar trends reported for all clearance values investigated. It is shown that

  15. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    SciTech Connect

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  16. Core Community Specifications for Electron Microprobe Operating Systems: Software, Quality Control, and Data Management Issues

    NASA Technical Reports Server (NTRS)

    Fournelle, John; Carpenter, Paul

    2006-01-01

    Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.

  17. Recent advances in laser microprobe mass analysis (LAMMA) of inner ear tissue

    SciTech Connect

    Meyer zum Gottesberge-Orsulakova, A.; Kaufmann, R.

    1985-01-01

    Maintenance of ionic gradients within the various fluids compartments of the inner ear requires transport active cellular systems at different locations. LAMMA analysis is ideally suited for detection of ions in microquantity on cellular levels overcoming many technical difficulties. The present paper summarizes the results of microprobe analysis obtained with laser induced mass spectrometry (LAMMA) supplemented by X-ray microprobe analysis of epithelial cell layers adjacent to the endolymphatic space in the cochlear duct, in the vestibular organ and in the endolymphatic sac. The possible role of inner ear as well as ocular melanin in the mechanisms of active ion transport is discussed.

  18. Polymer SU-8 Based Microprobes for Neural Recording and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Altuna, Ane; Fernandez, Luis; Berganzo, Javier

    2015-06-01

    This manuscript makes a reflection about SU-8 based microprobes for neural activity recording and drug delivery. By taking advantage of improvements in microfabrication technologies and using polymer SU-8 as the only structural material, we developed several microprobe prototypes aimed to: a) minimize injury in neural tissue, b) obtain high-quality electrical signals and c) deliver drugs at a micrometer precision scale. Dedicated packaging tools have been developed in parallel to fulfill requirements concerning electric and fluidic connections, size and handling. After these advances have been experimentally proven in brain using in vivo preparation, the technological concepts developed during consecutive prototypes are discussed in depth now.

  19. Optimal Parameters of High Energy Ion Microprobe Systems Comprised of Lafayette Lenses

    NASA Astrophysics Data System (ADS)

    Dymnikov, Alexander D.; Glass, Gary A.; Rout, Bibhudutta; Dias, Johnny F.

    2009-03-01

    High energy optimal ion microprobes comprised of new compact magnetic quadrupole lenses (Lafayette Quadrupole Lens) are numerically investigated. The smallest beam spot size and appropriate radii of object and divergence slits are presented for different emittances and compared with the corresponding parameters of the Oxford triplet for the same total length. The parameters of the calculated microprobes include demagnification, the magnetic field in the lenses and the coefficients of spherical and chromatic aberrations for several quadrupole system configurations including the doublet, the Lafayette symmetric triplet, the Russian magnetic quadruplets and sextuplets.

  20. An x-ray microprobe using focussing optics with a synchrotron radiation source

    SciTech Connect

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 /mu/m /times/ 10 /mu/m to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs.

  1. Element analysis in femur of diabetic osteoporosis model by SRXRF microprobe.

    PubMed

    Fei, Yurong; Zhang, Min; Li, Ming; Huang, Yuying; He, Wei; Ding, Wenjun; Yang, Jianhong

    2007-01-01

    Diabetes mellitus affects bone metabolism and leads to osteopenia and osteoporosis, but its pathogenic mechanism remains unknown. To address this problem, mineral element of bone was analyzed in experimental diabetic osteoporosis model. Male Wistar rats were randomly divided into streptozotocin (STZ)-induced diabetic group (n=5) and control group (n=5). The experiment lasted 68 days and at the end of the experiment, femoral bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry and element content in femur of animals was determined by synchrotron radiation X-ray fluorescence (SRXRF) microprobe analysis technique. Results showed that femoral BMD in diabetic group was significantly lower than that in control (P<0.01). Relative mineral content of calcium (Ca), phosphorus (P) and zinc (Zn) in diabetic femurs decreased significantly compared to controls. And strontium (Sr) in diabetics reduced 11% (P=0.09). Relative content of sulfur (S) in average was statistically higher (P<0.01) in diabetics than that in controls. But no obvious difference was observed in relative content of chromium (Cr), iron (Fe), copper (Cu), and lead (Pb) between the two groups. Statistical analysis revealed that Ca correlated positively with P (R=0.85 and P<0.001), with Sr (R=0.38 and P<0.05) and with Zn (R=0.37 and P<0.05). Whereas, Zn correlated negatively with S (R=-0.40 and P<0.05). Our results reveal that loss of minerals accounts for the BMD reduction in diabetics.

  2. Ion microprobe studies of trace elements in Apollo 14 volcanic glass beads - Comparisons to Apollo 14 mare basalts and petrogenesis of picritic magmas

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Papike, J. J.; Simon, S. B.; Shimizu, N.; Yurimoto, H.

    1990-01-01

    Results are presented from trace element analysis, by ion microprobe techniques, of individual glass beads representing seven compositionally distinct types of picritic glass beads from the Apollo 14 landing site. The picritic glass beads at the A-14 exhibited a wide range of primary magma compositions and a lack of petrogenetic linkage (via crystal fractionation) to crystalline basalts. The wide range of major and trace element characteristics of the picritic glass beads is consistent with derivation from mineralogically distinct sources which consist of varying proportions of olivine + orthopyroxene +/- clonopyroxene +/- ilmenite +/- plagioclase +/- KREEP component.

  3. Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables

    SciTech Connect

    Diaz-Torres, Alexis

    2010-11-15

    The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulas of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the {sup 16}O projectile on the {sup 154}Sm target.

  4. Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons

    SciTech Connect

    Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

    2010-03-16

    both systematic and statistical uncertainties, including correlations, are critical to the assessment of both the experimental measurements (due to variations between experimental techniques, irradiation conditions, calibration procedures, etc.), and the evaluation of those experiments to extract fundamental nuclear data. A clear example of the importance of uncertainty analysis is in the justification for energy-dependent {sup 147}Nd fission product yield, where the magnitude of the effect is comparable to the uncertainties of the individual fission product yield measurements. Both LANL and LLNL are committed to the inclusion of full uncertainty analysis in their evaluations. (6) The Panel reviewed in detail two methods for determining/evaluating fission product yields from which fission assessments can be made: the K factor method and high-resolution gamma spectroscopy (both described more fully in Sections 3 and 4). The panel concluded that fission product yields, and thus fission assessments, derived using either approach are equally valid, provided that the data were obtained from well understood, direct fission measurements and that the key underlying calibrations and/or data are valid for each technique. (7) The Panel found the process of peer review of the two complementary but independent methods to be an extremely useful exercise. Although work is still ongoing and the numbers presented to the Panel may change slightly, both groups are now in much better agreement on not just one, but four key fission product yields. The groups also have a better appreciation of the strengths and weaknesses of each other's methods.

  5. Application of Synchrotron Microprobe Methods to Solid-Phase Speciation of Metals and Metalloids in House Dust

    SciTech Connect

    S Walker; H Jamieson; P Rasmussen

    2011-12-31

    Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 {micro}m spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and As in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.

  6. Application of synchrotron microprobe methods to solid-phase speciation of metals and metalloids in house dust.

    PubMed

    Walker, S R; Jamieson, H E; Rasmussen, P E

    2011-10-01

    Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 μm spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and As in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.

  7. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  8. Improved sampling and analytical techniques for characterization of very-low-level radwaste materials from commercial nuclear power stations

    SciTech Connect

    Robertson, D.E.; Robinson, P.J.

    1989-11-01

    This paper summarizes the unique sampling methods that were utilized in a recently completed project sponsored by the Electric Power Research Institute (EPRI) to perform accurate and precise radiological characterizations of several very-low-level radwaste materials from commercial nuclear power stations. The waste types characterized during this project included dry active waste (DAW), oil, secondary-side ion exchange resin, and soil. Special precautions were taken to insure representative sampling of the DAW. This involved the initial direct, quantitative gamma spectrometric analyses of bulk quantities (208-liter drums) of DAW utilizing a specially constructed barrel scanner employing a collimated intrinsic germanium detector assembly. Subsamples of the DAW for destructive radiochemical analyses of the difficult-to-measure 10CF61 radionuclides were then selected which had the same isotopic composition (to within {+-}25%) as that measured for the entire drum of DAW. The techniques for accomplishing this sampling are described. Oil samples were collected from the top, middle and bottom sections of 208-liter drums for radiochemical analyses. These samples were composited to represent the entire drum of oil. The accuracy of this type of sampling was evaluated by comparisons with direct, quantitative assays of a number of the drums using the barrel scanning gamma-ray spectrometer. The accuracy of sampling drums of spent secondary-side ion exchange resin was evaluated by comparing the radionuclide contents of grab samples taken from the tops of the drums with direct assays performed with the barrel scanner. The results of these sampling evaluations indicated that the sampling methods used were generally adequate for providing a reasonably representative subsample from bulk quantities of DAW, oil, and resin. The study also identified a number of potential pitfalls, in sampling of these materials.

  9. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    NASA Technical Reports Server (NTRS)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  10. Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe

    NASA Technical Reports Server (NTRS)

    Chodos, A. A.; Devaney, J. R.; Evens, K. C.

    1972-01-01

    Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.

  11. On the analysis of neonatal hamster tooth germs with the photon microprobe at Daresbury, UK

    NASA Astrophysics Data System (ADS)

    Tros, G. H. J.; Van Langevelde, F.; Vis, R. D.

    1990-04-01

    Complementary to the micro-PIXE experiments performed on hamster tooth germs to elucidate the role of fluoride during the growth, the photon microprobe at Daresbury was used to obtain information on the distribution of Zn. The germs of fluoride-administered hamsters, together with a control group, were analyzed with the micro-synchrotron radiation fluorescence method (micro-SXRF).

  12. Determination of Planetary Basalt Parentage: A Simple Technique Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.

    2003-01-01

    Previous studies have demonstrated the usefulness of major and minor elements in silicate phases to understand differences among basaltic systems and the influence of different planetary environments on basalt chemistry (e.g., Papike [1]). Intriguing data displays presented by Papike [1] include a plot of Mn vs. Fe (atoms per formula unit, afu) for pyroxene and olivine and a plot showing the anorthite content of plagioclase from different planetary basalts. Here we combine portions of these plots (Fig. 4) and provide all new data for olivine and plagioclase.

  13. Rare gases in lunar samples: study of distribution and variafions by a microprobe technique.

    PubMed

    Kirsten, T; Steinbrunn, F; Zähringer, J

    1970-01-30

    The rare gas distribution in lunar soil, breccias, and rocks was studied with a micro-helium-probe. Gases are concentrated in grain surfaces and originate from solar wind. Helium-4 concentrations of different mineral components vary by more than a factor of 10 apart from individual fluctuations for each type. Also grains with no detectable helium-4 exist. Titanium-rich components have the highest, calcium-rich minerals the lowest concentrations. The solar wind was redistributed by diffusion. Mean gas layer thicknesses are 10, 6, and 5 microm for helium, neon, and argon respectively. Lithic fragments in breccias contain no solar gases. Glass pitted surfaces of crystalline rocks contain about 10(-2) cubic centimeter of helium-4 per square centimeter. Etched dust grains clearly show spallogenic and radiogenic components. The apparent mean exposure age of dust is approximately 500 x 10(6) years, its potassium-argon age is approximately 3.5 x 10(9) yerars. Cavities of crystalline rocks contain helium-4, radiogenic argon, H(2), and N(2).

  14. Determination of Planetary Basalt Parentage: A Simple Technique Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.

    2003-01-01

    Previous studies have demonstrated the usefulness of major and minor elements in silicate phases to understand differences among basaltic systems and the influence of different planetary environments on basalt chemistry (e.g., Papike [1]). Intriguing data displays presented by Papike [1] include a plot of Mn vs. Fe (atoms per formula unit, afu) for pyroxene and olivine and a plot showing the anorthite content of plagioclase from different planetary basalts. Here we combine portions of these plots (Fig. 4) and provide all new data for olivine and plagioclase.

  15. Major and Trace Element Concentrations in Garnet Performed by Electron Microprobe and MicroPIXE

    NASA Astrophysics Data System (ADS)

    Borghi, A.; Cossio, R.; Mazzoli, C.; Olmi, F.; Vaggelli, G.

    2003-12-01

    The chemical composition of rock-forming minerals reflects their crystallisation history and provides information on the temperature and pressure conditions during their formation. Among metamorphic minerals, garnet is one of the most commonly studied in metamorphic petrology because a chemical zoning is often observed in porphyroblasts that potentially records the changes in the reaction history of the rock. In the past, only major element composition could be determined by non-destructive analytical procedure. However, at high temperature major element growth zoning may be significantly modified by intra-crystalline diffusion. Consequently, the study of trace elements distribution, which may be less susceptible to diffusional modification, becomes of fundamental importance. In this regard, an inverse correlation between yttrium concentration in garnet and metamorphic grade has been recently proposed for pelitic rocks (Pyle & Spear, 2000). This coupling is of great advantage as it may be used to calibrate new geothermometers based on exchange equilibria involving trace elements in garnet In the present paper, a micro-beam Proton Induced X-Ray Emission (micro-PIXE) analytical technique and a WDS electron microprobe (EPMA), were been applied to a specific geological problem particularly affected by the limitations of other techniques. The collected samples come from meta-pelitic samples belonging to the tectonic unit of Monte Rosa Nappe (Western Alps). Selected garnet crystals were analysed for major (Si, Al, Mg, Ca, Mn, Fe) and trace elements. The former were analysed by EPMA and the latter by micro-PIXE. The considered garnet crystals show well-defined compositional zoning, characterised by a smooth and concentric variation of the selected elements from core to rim. As regards the trace elements distribution, the two-dimensional X-ray maps display a strong Y enrichment in the core, followed by a flat pattern at the inner and outer rim. Y concentration spreads over

  16. Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis.

    PubMed

    Cappa, Jennifer J; Yetter, Crystal; Fakra, Sirine; Cappa, Patrick J; DeTar, Rachael; Landes, Corbett; Pilon-Smits, Elizabeth A H; Simmons, Mark P

    2015-01-01

    Past studies have identified herbivory as a likely selection pressure for the evolution of hyperaccumulation, but few have tested the origin(s) of hyperaccumulation in a phylogenetic context. We focused on the evolutionary history of selenium (Se) hyperaccumulation in Stanleya (Brassicaceae). Multiple accessions were collected for all Stanleya taxa and two outgroup species. We sequenced four nuclear gene regions and performed a phylogenetic analysis. Ancestral reconstruction was used to predict the states for Se-related traits in a parsimony framework. Furthermore, we tested the taxa for Se localization and speciation using X-ray microprobe analyses. True hyperaccumulation was found in three taxa within the S. pinnata/bipinnata clade. Tolerance to hyperaccumulator Se concentrations was found in several taxa across the phylogeny, including the hyperaccumulators. X-ray analysis revealed two distinct patterns of leaf Se localization across the genus: marginal and vascular. All taxa accumulated predominantly (65-96%) organic Se with the C-Se-C configuration. These results give insight into the evolution of Se hyperaccumulation in Stanleya and suggest that Se tolerance and the capacity to produce organic Se are likely prerequisites for Se hyperaccumulation in Stanleya. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Combination of magnetic and electric quadrupole lenses as zoom Sextuplet ion microprobe focusing system with minimum spherical aberration

    NASA Astrophysics Data System (ADS)

    Dymnikov, Alexander D.; Rout, Bibhudutta; Glass, Gary A.

    2007-08-01

    The new generation nuclear microprobe system at the Louisiana Accelerator Center in the University of Louisiana at Lafayette consists of a 6.25 m beam line that employs the magnetic quadrupole Sextuplet lens system. This Sextuplet is a zoom system having the same demagnifications, the same focal lengths and the same positions of the focal points in (xoz) and (yoz) planes as in the case for the Russian quadruplet. It also can have the same spherical aberrations in both planes. The parameters which allow obtaining the lowest coefficients of spherical aberration are found for different geometrical configurations of electric and magnetic quadrupole lenses. Specifically, the configuration of a combined Sextuplet consisting of two magnetic and four electrostatic lenses or consisting of two electrostatic and four magnetic lenses is studied and compared with magnetic and electrostatic Sextuplets. The values of the chromatic and spherical aberrations for these combined systems are compared and the minimum spot radius and the half-widths of the corresponding slits for some optimal magnetic and electrostatic Sextuplets are given.

  18. Hyphenation of gas chromatography to microcoil 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Grynbaum, Marc David; Kreidler, Diana; Rehbein, Jens; Purea, Armin; Schuler, Paul; Schaal, Walter; Czesla, Harri; Webb, Andrew; Schurig, Volker; Albert, Klaus

    2007-04-01

    Whereas the hyphenation of gas chromatography (GC) with mass spectrometry is of great importance, little is known about the coupling to nuclear magnetic resonance spectroscopy (NMR). The investigation of this technique is an attractive proposition because of the valuable information given by NMR on molecular structure. The experiments shown here are to our knowledge the first hyphenating capillary GC to microcoil NMR. In contrast to liquids, gases have rarely been investigated by NMR, mainly due to the experimental difficulties in handling gases and the low signal-to-noise-ratio (SNR) of the NMR signal obtained at atmospheric pressure. With advances in NMR sensitivity (higher magnetic fields and solenoidal microprobes), this limitation can be largely overcome. In this paper, we describe the use of a custom-built solenoidal NMR microprobe with an active volume of 2 microL for the NMR detection of several compounds at 400 MHz, first in a mixture, and then with full coupling to capillary GC to identify them separately. The injected amounts of each analyte in the hyphenated experiments are in the range of 15-50 micromol, resulting in reasonable SNR for sample masses of 1-2 microg.

  19. Complementary microanalysis of Zn, Mn and Fe in the chelicera of spiders and scorpions using scanning MeV-ion and electron microprobes

    NASA Astrophysics Data System (ADS)

    Schofield, Robert; Lefevre, Harlan; Shaffer, Michael

    1989-04-01

    Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.

  20. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-03-01

    Abstract: A total of 149 tanks out of 177 at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. All the SSTs had been removed from active service by November 1980 and have been later interim stabilized by removing the pumpable liquids. The remaining waste in the tanks is in the form of salt cake and sludge awaiting r permanent disposal.. The evaluation of the structural integrity of these tanks is of utmost importance not only for the continued safe storage of the waste until waste retrieval and closure, but also to assure safe retrieval and closure operations. This article discusses the structural analysis approach, modeling challenges and issues encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. Several studies were conducted to refine the models in order to minimize modeling artifacts introduced by soil arching, boundary effects, concrete cracking, and concrete-soil interface behavior. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads imposed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed

  1. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  2. Medipix2 based CdTe microprobe for dental imaging

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Fauler, A.; Fiederle, M.; Jakubek, J.; Svestkova, M.; Zwerger, A.

    2011-12-01

    Medical imaging devices and techniques are demanded to provide high resolution and low dose images of samples or patients. Hybrid semiconductor single photon counting devices together with suitable sensor materials and advanced techniques of image reconstruction fulfil these requirements. In particular cases such as the direct observation of dental implants also the size of the imaging device itself plays a critical role. This work presents the comparison of 2D radiographs of tooth provided by a standard commercial dental imaging system (Gendex 765DC X-ray tube with VisualiX scintillation detector) and two Medipix2 USB Lite detectors one equipped with a Si sensor (300 μm thick) and one with a CdTe sensor (1 mm thick). Single photon counting capability of the Medipix2 device allows virtually unlimited dynamic range of the images and thus increases the contrast significantly. The dimensions of the whole USB Lite device are only 15 mm × 60 mm of which 25% consists of the sensitive area. Detector of this compact size can be used directly inside the patients' mouth.

  3. Using x-ray microprobes for environmental research.

    SciTech Connect

    Cai, Z.; Jastrow, J.; Kemner, K. M.; Lai, B.; Lee, H.-R.; Legnini, D. G.; Miller, R. M.; Pratt, S. T.; Rodrigues, W.; Yun, W.

    1998-07-30

    Understanding the fate of environmental contaminants is of fundamental importance in the development and evaluation of effective remediation strategies. Among the factors influencing the transport of these contaminants are the chemical speciation of the sample and the chemical and physical attributes of the surrounding medium. Characterization of the spatial distribution and chemical speciation at micron and submicron resolution is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. Hard X-ray spectroscopy and imaging are powerful techniques for the element-specific investigation of complex environmental samples at the needed micron and submicron resolution. An important advantage of these techniques results from the large penetration depth of hard X-rays in water. This minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper discusses some current problems in environmental science that can be addressed by using synchrotron-based X-ray imaging and spectroscopy. These concepts are illustrated by the results of recent X-ray microscopy studies at the Advanced Photon Source.

  4. Scanning Hall micro-probe measurements of YBa[sub 2]Cu[sub 3]O[sub 7-y

    SciTech Connect

    Brawner, D.A.

    1992-01-01

    A new scanning Hall micro-probe technique was developed to measure the magnetic field around superconductors. This was used to make precision measurements of the [open quote]critical state[close quote] profiles in single crystals of YBa[sub 2]Cu[sub 3]O[sub 7[minus]y]. This technique showed an unexpected [open quote]field induced rotation[close quote] of the magnetization profile in single crystal YBa[sub 2]Cu[sub 3]O[sub 7[minus]y]. The remanent state was studied. For crystals with a rectangular aspect ratio, the remanent ridge was rotated. This rotation takes on an opposite sense when the field is reversed, leading to a field induced asymmetry. This unexpected phenomemon disappears above 25 K, and coincides with a collapse of the remanent peak in an applied field. For zero field cooled samples, there are positions on the superconductor where the measured fields actually oppose the applied fields. The time dependent behavior of these magnetic fields was also studied. Precision measurements of the relaxation of the remanent magnetic fields in single-crystal YBa[sub 2]Cu[sub 3]O[sub 7[minus]y] have been made and compared with more conventional magnetometer measurements. For all temperatures from 4.2 to 85 K, the relaxation follows a power law decay B(t) [approximately] (1+t/[tau])[sup [minus]1/[sigma

  5. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster.

    PubMed

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-10-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.

  6. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster

    PubMed Central

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-01-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040

  7. Ion microscope and ion microprobe analysis under oxygen, cesium and gallium bombardment

    NASA Astrophysics Data System (ADS)

    Migeon, H.-N.; Saldi, F.; Gao, Y.; Schuhmacher, M.

    1995-05-01

    This article concentrates on dynamic SIMS analysis using a magnetic sector instrument at micron and sub-micron resolutions with the ion microscope and ion microprobe modes. The advantages and drawbacks of both alternatives for recording measurements in laterally heterogeneous specimens are highlighted expecially concerning transmission and acquisition times. The ionization efficiencies and matrix effects under oxygen, cesium and gallium bombardment are compared. The ion microscope is shown to provide fast acquisition times owing to the parallel detection of the entire analyzed area and the most adequate mode for lateral resolutions above 1 [mu]m, whereas the ion microprobe provides better sensitivity and is best suited for high resolution. Combining cesium and oxygen ion sources provides, in most cases, a better ionization efficiency than the gallium beam but all three sources induce matrix effects which are shown to be much less critical using cationized species.

  8. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  9. Automatic system for single ion/single cell irradiation based on Cracow microprobe

    NASA Astrophysics Data System (ADS)

    Veselov, O.; Polak, W.; Lekki, J.; Stachura, Z.; Lebed, K.; Styczeń, J.; Ugenskiene, R.

    2006-05-01

    Recently, the Cracow ion microprobe has found its new application as a single ion hit facility (SIHF), allowing precise irradiations of living cells by a controlled number of ions. The instrument enables a broad field of research, such as survival studies, adaptive response investigations, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. This work presents principles of construction and operation of the SIHF based on the Cracow microprobe. We discuss some crucial features of optical, positioning, and blanking systems, including self-developed software responsible for semiautomatic cell recognition, for precise positioning of cells, and for controlling the irradiation process. We also show some tests carried out to determine the efficiency of the whole system and of its segments. In addition, we present results of the first irradiation measurements performed with living cells.

  10. Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Cornelius, Iwan; Siegele, Rainer; Rosenfeld, Anatoly B.; Cohen, David D.

    2002-05-01

    An ion beam induced charge (IBIC) facility has been added to the existing capabilities of the ANSTO heavy ion microprobe and the results of the first measurements are presented. Silicon on insulator (SOI) diode arrays with microscopic junction sizes have recently been proposed as microdosimeters for hadron therapy. A 20 MeV carbon beam was used to perform IBIC imaging of a 10 μm thick SOI device.

  11. DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.

    1997-01-01

    The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.

  12. A High-Speed Detector System for X-ray Fluorescence Microprobes.

    SciTech Connect

    Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J.; O

    2006-10-29

    We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.

  13. Stress measurements in silicon substrates with TiSi2 patterns using Raman microprobe

    NASA Astrophysics Data System (ADS)

    Ito, Tadashi; Azuma, Hirozumi; Noda, Shoji

    1994-01-01

    The horizontal and depth distributions of the stress induced in silicon substrates with titanium silicide TiSi2 patterns were evaluated using the Raman microprobe. Tensile stress is generated besides the TiSi2 pattern. The tensile stres s reaches a maximum value of 150-350 MPa at the distance of approximately = 0.5 micron from the edge of the TiSi2 pattern.

  14. Comparison of two approaches to nuclear transfer in the bovine: hand-made cloning with modifications and the conventional nuclear transfer technique.

    PubMed

    Tecirlioglu, R Tayfur; Cooney, Melissa A; Lewis, Ian M; Korfiatis, Natasha A; Hodgson, Renee; Ruddock, Nancy T; Vajta, Gábor; Downie, Shara; Trounson, Alan O; Holland, Michael K; French, Andrew J

    2005-01-01

    The aim of the present study was to compare the in vitro and in vivo developmental competence of hand-made cloning (HMC) embryos with the conventional nuclear transfer (NT) method using five somatic cell lines and in vitro-fertilised (IVF; control) embryos. Modifications to the HMC procedure included fusion efficiency optimisation, effect of cytoplasmic volume and cloned embryo aggregation. The developmental competence of blastocysts from each of the treatment groups and cell lines used was assessed following transfer to 345 recipients. Vitrification was also used to enable management of recipient resources and to assess the susceptibility of membranes to cryopreservation following zona removal. Increasing cytoplasmic volume to 150% or aggregating two embryos improved the blastocyst development rate and increased the total cell number. Although HMC embryo transfers established a significantly higher pregnancy rate on Day 30 than fresh IVF or NT embryo transfers, the overall outcome in terms of cloned live births derived from either fresh or vitrified/thawed HMC or NT embryo transfers across the five cell lines did not differ. The birth and continued survival of clones produced with HMC technology with equivalent efficiency to NT shows that it can be used as an alternative method for the generation of cloned offspring in the bovine.

  15. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  16. Development of an external beam PIXE microprobe at the University of Guelph

    NASA Astrophysics Data System (ADS)

    Gamble, Maren C.

    This work describes the new in-air proton microprobe at the University of Guelph. External microprobes have been successfully implemented by several groups worldwide (for example, [1-3]), but the Guelph external beamline is the only one currently operational in Canada. The in-air proton microprobe, typically operating at 2.5 MeV uses a Dyer Systems QL-100 quadrupole doublet focussing system. The beam optics parameters have been assessed using ion optics simulations as well as grid shadow patterns. Design elements and characteristics of the probe-forming system will be discussed and preliminary results obtained in vacuum and within a small air-filled chamber will be presented. The air-filled chamber allows necessary detectors to be calibrated and tested in both air and helium environments. The designs for the exit nozzle, the chamber, and the safety system, will also be discussed. Initial PIXE spectra obtained using the OM-DAQ software package are presented here.

  17. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  18. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    SciTech Connect

    Vazehrad, S.; Diószegi, A.

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  19. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE PAGES

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  20. Applying ontology techniques to develop a medication history search and alert system in department of nuclear medicine.

    PubMed

    Chen, Jui-Jen; Wang, Pei-Wen; Huang, Yung-Cheng; Yen, Hung-Chi

    2012-04-01

    Nowadays, patients usually take more than three drugs for diseases such as hypertension, diabetes, and dyslipidemia. Hence, nuclear medicine physicians should be very careful about the medication history of each patient and ensure that their medication will not cause false positive or false negative imaging results, because either condition will interfere with adequate treatment of the patient and result in a wrong diagnosis. The aim of the present paper is to develop an ontology-based medication search and alert system for scintiphotography of Chang Gung Memorial hospital at Kaohsiung. Composed of four sub-systems, including Medication History Collect Agent (MHCA), Medication History Search System (MHSS), Patient Medication Consultation System (PMCS), and Patient Medication Alert System (PMAS), this medication search and alert system for scintiphotography is expected to support decision making of nuclear medicine examination, improve accuracy of image reading, and offer detailed data for further research. The ultimate goal of this system is to ensure patient safety.