Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2018-01-01
Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Descriptive cross-sectional hospital-based study. This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS -Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups.
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2018-01-01
Background: Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. Aims: To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Settings and Designs: Descriptive cross-sectional hospital-based study. Materials and Methods: This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS –Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Conclusion: Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups. PMID:29403169
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Background: Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a “gray zone” of 6.9–20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. Aims: To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. Settings and Designs: The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. Materials and Methods: The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)–Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm2, 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Conclusion: Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma. PMID:28182052
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.
Classification of materials using nuclear magnetic resonance dispersion and/or x-ray absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.
Methods for determining the identity of a substance are provided. A classification parameter set is defined to allow identification of substances that previously could not be identified or to allow identification of substances with a higher degree of confidence. The classification parameter set may include at least one of relative nuclear susceptibility (RNS) or an x-ray linear attenuation coefficient (LAC). RNS represents the density of hydrogen nuclei present in a substance relative to the density of hydrogen nuclei present in water. The extended classification parameter set may include T.sub.1, T.sub.2, and/or T.sub.1.rho. as well as at least one additional classificationmore » parameter comprising one of RNS or LAC. Values obtained for additional classification parameters as well as values obtained for T.sub.1, T.sub.2, and T.sub.1.rho. can be compared to known classification parameter values to determine whether a particular substance is a known material.« less
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
NASA Astrophysics Data System (ADS)
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.
1977-03-01
The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less
Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter
NASA Astrophysics Data System (ADS)
Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.
2018-06-01
We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
Grunewald, J P; Röhl, F W; Kirches, E; Dietzmann, K
1998-02-01
Many studies dealing with extracranial cancer showed a strong correlation of DNA ploidy to a poor clinical outcome, recurrence, or malignancy. In brain tumors, analysis of DNA content did not always provided significant diagnostic information. In this study, DNA density and karyometric parameters of 50 meningiomas (26 Grade I, 10 Grade II, 14 Grade III) were quantitatively evaluated by digital cell image analyses of Feulgen-stained nuclei. In particular, the densitometric parameter SEXT, which describes nuclear DNA content, as well as the morphometric values LENG (a computer-assisted measurement of nuclear circumference), AREA (a computer-assisted measurement of nuclear area), FCON (a parameter that describes nuclear roundness), and CONC (a describing nuclear contour), evaluated with the software IMAGE C, were correlated to World Health Organization (WHO) grading using univariate and multivariate methods. AREA and LENG values showed significant differences between tumors of Grades I and III. FCON values were unable to distinguish WHO Grade III from Grade I/II but were useful in clearly separating Grade II from Grade I tumors. CONC values detected differences between WHO Grades II and I/III tumors but not between the latter. SEXT values clearly distinguished Grade III from Grade I/II tumors. The 1c, 2c, 2.5c, and 5c exceeding rates showed no predictive values. Only the 6c exceeding rate showed a significant difference between Grades I and III. These results outline the characteristic features of the atypical (Grade II) meningiomas, which make them a recognizable tumor entity distinct from benign and anaplastic meningiomas. The combination of DNA densitometric and morphometric findings seems to be a powerful addition to the histopathologic classification of meningiomas, as suggested by the WHO.
Random sampling and validation of covariance matrices of resonance parameters
NASA Astrophysics Data System (ADS)
Plevnik, Lucijan; Zerovnik, Gašper
2017-09-01
Analytically exact methods for random sampling of arbitrary correlated parameters are presented. Emphasis is given on one hand on the possible inconsistencies in the covariance data, concentrating on the positive semi-definiteness and consistent sampling of correlated inherently positive parameters, and on the other hand on optimization of the implementation of the methods itself. The methods have been applied in the program ENDSAM, written in the Fortran language, which from a file from a nuclear data library of a chosen isotope in ENDF-6 format produces an arbitrary number of new files in ENDF-6 format which contain values of random samples of resonance parameters (in accordance with corresponding covariance matrices) in places of original values. The source code for the program ENDSAM is available from the OECD/NEA Data Bank. The program works in the following steps: reads resonance parameters and their covariance data from nuclear data library, checks whether the covariance data is consistent, and produces random samples of resonance parameters. The code has been validated with both realistic and artificial data to show that the produced samples are statistically consistent. Additionally, the code was used to validate covariance data in existing nuclear data libraries. A list of inconsistencies, observed in covariance data of resonance parameters in ENDF-VII.1, JEFF-3.2 and JENDL-4.0 is presented. For now, the work has been limited to resonance parameters, however the methods presented are general and can in principle be extended to sampling and validation of any nuclear data.
NASA Technical Reports Server (NTRS)
Waddington, C. J.
1978-01-01
Evidence is reexamined which has been cited as suggesting serious errors in the use of fragmentation parameters appropriate to an airlike medium deduced from measurements made in nuclear emulsions to evaluate corrections for certain effects in balloon-borne observations of cosmic-ray nuclei. Fragmentation parameters for hydrogenlike interactions are calculated and shown to be in overall good agreement with those obtained previously for air. Experimentally measured fragmentation parameters in emulsion are compared with values computed semiempirically, and reasonable agreement is indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprung, J.L.; Jow, H-N; Rollstin, J.A.
1990-12-01
Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric andmore » biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.« less
An approach to adjustment of relativistic mean field model parameters
NASA Astrophysics Data System (ADS)
Bayram, Tuncay; Akkoyun, Serkan
2017-09-01
The Relativistic Mean Field (RMF) model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN) method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs) of 58Ni and 208Pb have been found in agreement with the literature values.
[What is the prognostic significance of histomorphology in small cell lung carcinoma?].
Facilone, F; Cimmino, A; Assennato, G; Sardelli, P; Colucci, G A; Resta, L
1993-01-01
What is the prognostic significant of the histomorphology in the small cell carcinomas of the lung? After the WHO classification of the lung cancer (1981), several studies criticized the subdivision of the small cell carcinoma in three sub-types (oat-cell, intermediate cell and combined types). The role of histology in the prognostic predition has been devaluated. In order to verify the prognostic value of the morphology of the small cell types of lung cancer, we performed a multivariate analysis in 62 patients. The survival rate was analytically compared with the following parameters: nuclear maximum diameter, nuclear form, nuclear chromatism, chromatine distribution, presence of nucleolus, evidence of cytoplasm. The results showed that none of these parameters are able to express a prognostic value. According to the recent studies, we think that the small cell carcinoma of the lung is a neoplasia with a multiform histologic pattern. Differences observed in clinical management are not correlate with the morphology, but with other biological parameters still unknown.
Pérez Plasencia, D; Flores Corral, T; Urrutia Avisrror, M; Santa Cruz Ruiz, S; Benito González, J; Mateos Pérez, M M; Gómez González, J L
2002-01-01
Computer nuclear morphometry and stereology are attractive methods because its objectivity and cheapness allowing histologic diagnosis when identifying minimal variations respectively the normality and also detect negligible disparities between anormal cells which could escape to the assessment of the pathologist. We present the data gained from several morphogenic and stereologic parameters resulting of measurements of tumoral cells procured from 40 patients with nasopharyngeal carcinomata. Middle values have been: nuclear area 27.70 microns 2; nuclear perimeter 20.80 microns; nuclear factor of form 0.81 microns; nuclear outline index 4.01; nuclear orientation angle 87.29 degrees; nuclear ellipsiticity 704.14; nuclear regularity 61.83; middle lineal length 4.30, middle linear distance 107.94; and nuclear volume 118.80 microns 3. Our series is the largest studied till now of all found in the literature. Comparison our data with those of previous publications.
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
Optimal Cytoplasmic Transport in Viral Infections
D'Orsogna, Maria R.; Chou, Tom
2009-01-01
For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such “optimal” infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance. PMID:20046829
Microscopic study of spin cut-off factors of nuclear level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, M.; Kildir, M.; Behkami, A. N.
Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less
NASA Astrophysics Data System (ADS)
Khalaf, A. M.; Khalifa, M. M.; Solieman, A. H. M.; Comsan, M. N. H.
2018-01-01
Owing to its doubly magic nature having equal numbers of protons and neutrons, the 40Ca nuclear scattering can be successfully described by the optical model that assumes a spherical nuclear potential. Therefore, optical model analysis was employed to calculate the elastic scattering cross section for p +40Ca interaction at energies from 9 to 22 MeV as well as the polarization at energies from 10 to 18.2 MeV. New optical model parameters (OMPs) were proposed based on the best fitting to experimental data. It is found that the best fit OMPs depend on the energy by smooth relationships. The results were compared with other OMPs sets regarding their chi square values (χ2). The obtained OMP's set was used to calculate the volume integral of the potentials and the root mean square (rms) value of nuclear matter radius of 40Ca. In addition, 40Ca bulk nuclear matter properties were discussed utilizing both the obtained rms radius and the Thomas-Fermi rms radius calculated using spherical Hartree-Fock formalism employing Skyrme type nucleon-nucleon force. The nuclear scattering SCAT2000 FORTRAN code was used for the optical model analysis.
NASA Astrophysics Data System (ADS)
Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang
2016-03-01
At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.
Experimental Determination of η/s for Finite Nuclear Matter.
Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S; Pal, Surajit; Dey, Balaram; Bhattacharya, Srijit; De, A; Bhattacharya, Soumik; Bhattacharyya, S; Roy, Pratap; Banerjee, K; Banerjee, S R
2017-05-12
We present, for the first time, simultaneous determination of shear viscosity (η) and entropy density (s) and thus, η/s for equilibrated nuclear systems from A∼30 to A∼208 at different temperatures. At finite temperature, η is estimated by utilizing the γ decay of the isovector giant dipole resonance populated via fusion evaporation reaction, while s is evaluated from the nuclear level density parameter (a) and nuclear temperature (T), determined precisely by the simultaneous measurements of the evaporated neutron energy spectra and the compound nuclear angular momenta. The transport parameter η and the thermodynamic parameter s both increase with temperature, resulting in a mild decrease of η/s with temperature. The extracted η/s is also found to be independent of the neutron-proton asymmetry at a given temperature. Interestingly, the measured η/s values are comparable to that of the high-temperature quark-gluon plasma, pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of many-body quantum systems.
Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions
Khatri, Pallavi; Choudhury, Monisha; Jain, Manjula; Thomas, Shaji
2017-01-01
Context: Thyroid nodules represent a common problem, with an estimated prevalence of 4–7%. Although fine needle aspiration cytology (FNAC) has been accepted as a first line diagnostic test, the rate of false negative reports of malignancy is still high. Nuclear morphometry is the measurement of nuclear parameters by image analysis. Image analysis can merge the advantages of morphologic interpretation with those of quantitative data. Aims: To evaluate the nuclear morphometric parameters in fine needle aspirates of thyroid lesions and to study its role in differentiating benign from malignant thyroid lesions. Material and Methods: The study included 19 benign and 16 malignant thyroid lesions. Image analysis was performed on Giemsa-stained FNAC slides by Nikon NIS-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included nuclear size, shape, texture, and density parameters. Statistical Analysis: Normally distributed continuous variables were compared using the unpaired t-test for two groups and analysis of variance was used for three or more groups. Tukey or Tamhane's T2 multiple comparison test was used to assess the differences between the individual groups. Categorical variables were analyzed using the chi square test. Results and Conclusion: Five out of the six nuclear size parameters as well as all the texture and density parameters studied were significant in distinguishing between benign and malignant thyroid lesions (P < 0.05). Cut-off values were derived to differentiate between benign and malignant cases. PMID:28182069
Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)
NASA Astrophysics Data System (ADS)
Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa
2013-10-01
Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.
Celik, Zeliha Esin; Altinay, Serdar; Kilinc, Fahriye; Arslan, Nur; Yilmaz, Burcu Sanal; Karabagli, Pınar; Ugurluoglu, Ceyhan
2016-11-01
Only a small number of studies on computerized cytomorphometry have been performed for thyroid FNAC. The present study aimed to determine the usefulness of computerized cytomorphometry methods to further classify thyroid lesions as benign or malignant and to compare the practicability and value of using Papanicolaou (Pap) and Giemsa stains in thyroid FNAC by evaluating their association to various cytologic nuclear parameters. Fifty-eight thyroid lesions diagnosed by FNAC and categorized according to the Bethesda system for reporting thyroid cytopathology were evaluated in terms of various cytologic nuclear parameters, including nuclear area (NA), nuclear perimeter (NP), nuclear density (ND), long nuclear diameter (LND), and short nuclear diameter (SND). The Pap- and Giemsa-stained slides were examined separately. In the malignant cases, NA, NP, LND, and SND were higher than in the benign cases for both the Pap and Giemsa stains. NA, NP, LND, and SND were higher in Giemsa than Pap for both the benign and malignant groups. Statistically significant differences were detected between the benign and malignant cases in the AUS category. Computerized cytomorphometry is useful in distinguishing between benign and malignant lesions in thyroid FNAC. The measurement of cytologic nuclear parameters in cases suggestive of AUS may be useful for the probable classification of cases as benign or malignant. Although further studies are needed, in nuclear morphometric assessment of thyroid FNAC, Giemsa staining may be more useful and valuable than the Pap stain because of its association with various cytologic nuclear parameters. Diagn. Cytopathol. 2016;44:902-911. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hypothesis-driven classification of materials using nuclear magnetic resonance relaxometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.
Technologies related to identification of a substance in an optimized manner are provided. A reference group of known materials is identified. Each known material has known values for several classification parameters. The classification parameters comprise at least one of T.sub.1, T.sub.2, T.sub.1.rho., a relative nuclear susceptibility (RNS) of the substance, and an x-ray linear attenuation coefficient (LAC) of the substance. A measurement sequence is optimized based on at least one of a measurement cost of each of the classification parameters and an initial probability of each of the known materials in the reference group.
Cho, Herman
2016-02-28
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.
Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi
2016-04-01
As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.
Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects
NASA Astrophysics Data System (ADS)
Margueron, Jérôme; Hoffmann Casali, Rudiney; Gulminelli, Francesca
2018-02-01
Metamodeling for the nucleonic equation of state (EOS), inspired from a Taylor expansion around the saturation density of symmetric nuclear matter, is proposed and parameterized in terms of the empirical parameters. The present knowledge of nuclear empirical parameters is first reviewed in order to estimate their average values and associated uncertainties, and thus defining the parameter space of the metamodeling. They are divided into isoscalar and isovector types, and ordered according to their power in the density expansion. The goodness of the metamodeling is analyzed against the predictions of the original models. In addition, since no correlation among the empirical parameters is assumed a priori, all arbitrary density dependences can be explored, which might not be accessible in existing functionals. Spurious correlations due to the assumed functional form are also removed. This meta-EOS allows direct relations between the uncertainties on the empirical parameters and the density dependence of the nuclear equation of state and its derivatives, and the mapping between the two can be done with standard Bayesian techniques. A sensitivity analysis shows that the more influential empirical parameters are the isovector parameters Lsym and Ksym, and that laboratory constraints at supersaturation densities are essential to reduce the present uncertainties. The present metamodeling for the EOS for nuclear matter is proposed for further applications in neutron stars and supernova matter.
Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha
2015-12-01
Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
A Method of Trajectory Design for Manned Asteroids Exploration
NASA Astrophysics Data System (ADS)
Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.
2014-11-01
A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.
Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelli, D.; Imme, G.; Catalano, R.
2011-12-13
Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less
NASA Technical Reports Server (NTRS)
Haynes, Davy A.
1991-01-01
The results of an inquiry by the Nuclear Propulsion Mission Analysis, Figures of Merit subpanel are given. The subpanel was tasked to consider the question of what are the appropriate and quantifiable parameters to be used in the definition of an overall figure of merit (FoM) for Mars transportation system (MTS) nuclear thermal rocket engines (NTR). Such a characterization is needed to resolve the NTR engine design trades by a logical and orderly means, and to provide a meaningful method for comparison of the various NTR engine concepts. The subpanel was specifically tasked to identify the quantifiable engine parameters which would be the most significant engine factors affecting an overall FoM for a MTS and was not tasked with determining 'acceptable' or 'recommended' values for the identified parameters. In addition, the subpanel was asked not to define an overall FoM for a MTS. Thus, the selection of a specific approach, applicable weighting factors, to any interrelationships, for establishing an overall numerical FoM were considered beyond the scope of the subpanel inquiry.
Revisiting Grodzins systematics of B(E2) values
Pritychenko, B.; Birch, M.; Singh, B.
2017-04-03
Using Grodzins formalism, we analyze systematics of our latest evaluated B(E2) data for all the even–even nuclei in Z=2–104. The analysis indicates a low predictive power of systematics for a large number of cases, and a strong correlation between B(E2) fit values and nuclear structure effects. These findings provide a strong rationale for introduction of individual or elemental (grouped by Z) fit parameters. The current estimates of quadrupole collectivities for systematics of even–even nuclei yield complementary values for comparison with experimental results and theoretical calculations. Furthermore, the lists of fit parameters and predicted B(E2) values are given and possible implicationsmore » are discussed.« less
Impact of operator on determining functional parameters of nuclear medicine procedures.
Mohammed, A M; Naddaf, S Y; Mahdi, F S; Al-Mutawa, Q I; Al-Dossary, H A; Elgazzar, A H
2006-01-01
The study was designed to assess the significance of the interoperator variability in the estimation of functional parameters for four nuclear medicine procedures. Three nuclear medicine technologists with varying years of experience processed the following randomly selected 20 cases with diverse functions of each study type: renography, renal cortical scans, myocardial perfusion gated single-photon emission computed tomography (MP-GSPECT) and gated blood pool ventriculography (GBPV). The technologists used the same standard processing routines and were blinded to the results of each other. The means of the values and the means of differences calculated case by case were statistically analyzed by one-way ANOVA. The values were further analyzed using Pearson correlation. The range of the mean values and standard deviation of relative renal function obtained by the three technologists were 50.65 +/- 3.9 to 50.92 +/- 4.4% for renography, 51.43 +/- 8.4 to 51.55 +/- 8.8% for renal cortical scans, 57.40 +/- 14.3 to 58.30 +/- 14.9% for left ventricular ejection fraction from MP-GSPECT and 54.80 +/- 12.8 to 55.10 +/- 13.1% for GBPV. The difference was not statistically significant, p > 0.9. The values showed a high correlation of more than 0.95. Calculated case by case, the mean of differences +/- SD was found to range from 0.42 +/- 0.36% in renal cortical scans to 1.35 +/- 0.87% in MP-GSPECT with a maximum difference of 4.00%. The difference was not statistically significant, p > 0.19. The estimated functional parameters were reproducible and operator independent as long as the standard processing instructions were followed. Copyright 2006 S. Karger AG, Basel.
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
NASA Astrophysics Data System (ADS)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.
2017-10-01
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.
COST FUNCTION STUDIES FOR POWER REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heestand, J.; Wos, L.T.
1961-11-01
A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)
A theoretical study of potentially observable chirality-sensitive NMR effects in molecules.
Garbacz, Piotr; Cukras, Janusz; Jaszuński, Michał
2015-09-21
Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.
Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.
NASA Technical Reports Server (NTRS)
Putre, H. A.
1971-01-01
Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.
Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).
Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).
Gajski, Goran; Gerić, Marko; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2018-02-01
The cytokinesis-block micronucleus cytome (CBMN Cyt) assay was used to evaluate the baseline frequency of cytogenetic damage in peripheral blood lymphocytes of the general population (average age, 38.28 ± 12.83 years) in relation to age, sex, body mass index, seasonal variations (season of sampling, period of sampling and different meteorological parameters) and lifestyle factors (smoking habit, alcohol consumption, exposure to medications and diagnostic radiation, physical activity, and family history of cancer). The background frequency of micronuclei (MNi) for the 200 subjects assayed was 5.06 ± 3.11 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 1.21 ± 1.46 and of nuclear buds (NBUDs) 3.48 ± 2.14. The background frequency of apoptosis and necrosis was 1.58 ± 1.50 and 1.39 ± 1.56, respectively, while the mean nuclear division index (NDI) was 1.99 ± 0.14. The cut-off value, which corresponds to the 95th percentile of the distribution of 200 individual values, was 11 MNi, 4 NPBs and 7 NBUDs. The study also confirmed an association of the above mentioned parameters with age, sex and several lifestyle factors. Moreover, significant confounders based on our results are also sampling season, sampling period and different meteorological parameters that were dependent on the CBMN Cyt assay parameters. In line with the above mentioned, several factors should be taken into account when it comes to the monitoring of exposed populations using cytogenetic biomarkers. Moreover, the normal and cut-off values obtained in this study present background data for the general population, and can later serve as baseline values for further biomonitoring studies. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Alan; Chaves, Chris
2015-04-04
The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposuremore » at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.« less
a HARTREE-FOCK Nuclear Mass Table
NASA Astrophysics Data System (ADS)
Goriely, S.; Tondeur, F.; Pearson, J. M.
2001-03-01
We present the first complete nuclear mass table, HFBCS-1, to be based on the Hartree-Fock-BCS method. The force used, MSk7, is a 10-parameter Skyrme force, along with a 4-parameter δ-function pairing force and a 2-parameter phenomenological Wigner term. Our tabulation presents 9200 nuclei, including all those lying between the drip lines over the range Z, N≥8 and Z≤120. The root-mean-square error of our fit to the 1888 nuclei in this range for which measured masses are given in the 1995 Audi-Wapstra compilation is 0.738 MeV. In addition to the calculated masses, we show the calculated neutron- and proton-separation energies, and beta-decay energies. We also give for each nucleus in the table the calculated values for the deformation parameters and deformation energy (with axial and left-right symmetry assumed), and for the charge radius.
NASA Astrophysics Data System (ADS)
Zhang, Nai-Bo; Li, Bao-An; Xu, Jun
2018-06-01
Within the parameter space of the equation of state (EOS) of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, we investigate how the neutron star maximum mass M max > 2.01 ± 0.04 M ⊙, radius 10.62 km < R 1.4 < 12.83 km and tidal deformability Λ1.4 ≤ 800 of canonical neutron stars together constrain the EOS of dense neutron-rich nucleonic matter. While the 3D parameter space of K sym (curvature of nuclear symmetry energy), J sym, and J 0 (skewness of the symmetry energy and EOS of symmetric nuclear matter, respectively) is narrowed down significantly by the observational constraints, more data are needed to pin down the individual values of K sym, J sym, and J 0. The J 0 largely controls the maximum mass of neutron stars. While the EOS with J 0 = 0 is sufficiently stiff to support neutron stars as massive as 2.37 M ⊙, supporting the hypothetical ones as massive as 2.74 M ⊙ (composite mass of GW170817) requires J 0 to be larger than its currently known maximum value of about 400 MeV and beyond the causality limit. The upper limit on the tidal deformability of Λ1.4 = 800 from the recent observation of GW170817 is found to provide upper limits on some EOS parameters consistent with but far less restrictive than the existing constraints of other observables studied.
The Easy Way of Finding Parameters in IBM (EWofFP-IBM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turkan, Nureddin
E2/M1 multipole mixing ratios of even-even nuclei in transitional region can be calculated as soon as B(E2) and B(M1) values by using the PHINT and/or NP-BOS codes. The correct calculations of energies must be obtained to produce such calculations. Also, the correct parameter values are needed to calculate the energies. The logic of the codes is based on the mathematical and physical Statements describing interacting boson model (IBM) which is one of the model of nuclear structure physics. Here, the big problem is to find the best fitted parameters values of the model. So, by using the Easy Way ofmore » Finding Parameters in IBM (EWofFP-IBM), the best parameter values of IBM Hamiltonian for {sup 102-110}Pd and {sup 102-110}Ru isotopes were firstly obtained and then the energies were calculated. At the end, it was seen that the calculated results are in good agreement with the experimental ones. In addition, it was carried out that the presented energy values obtained by using the EWofFP-IBM are dominantly better than the previous theoretical data.« less
Display device for indicating the value of a parameter in a process plant
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Nuclear magnetic resonance of Al-27 in topaz, Al2SiO4/F, OH/2.
NASA Technical Reports Server (NTRS)
Tsang, T.; Ghose, S.
1972-01-01
The Al-27 nuclear quadrupolar coupling constant and asymmetry parameter (eta) in topaz have been determined to be 1.67 (plus or minus 0.03) MHz and 0.38 plus or minus 0.05, respectively. These values and the orientations of the principal axes are consistent with the Fe(3+) paramagnetic resonance data and with the symmetry of the AlO4F2 octahedron.
Hubert: Software for efficient analysis of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2016-10-01
Combination of short data acquisition time and local investigation of a solid state through hyperfine parameters makes nuclear forward scattering (NFS) a unique experimental technique for investigation of fast processes. However, the total number of acquired NFS time spectra may be very high. Therefore an efficient way of the data evaluation is needed. In this paper we report the development of Hubert software package as a response to the rapidly developing field of in-situ NFS experiments. Hubert offers several useful features for data files processing and could significantly shorten the evaluation time by using a simple connection between the neighboring time spectra through their input and output parameter values.
Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics
NASA Astrophysics Data System (ADS)
Rueter, Keiti; Novikov, Ivan
2017-01-01
Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Quantitative morphology in canine cutaneous soft tissue sarcomas.
Simeonov, R; Ananiev, J; Gulubova, M
2015-12-01
Stained cytological specimens from 24 dogs with spontaneous soft tissue sarcomas [fibrosarcoma (n = 8), liposarcoma (n = 8) and haemangiopericytoma (n = 8)], and 24 dogs with reactive connective tissue lesions [granulation tissue (n = 12) and dermal fibrosis (n = 12)] were analysed by computer-assisted nuclear morphometry. The studied morphometric parameters were: mean nuclear area (MNA; µm(2)), mean nuclear perimeter (MNP; µm), mean nuclear diameter (MND mean; µm), minimum nuclear diameter (Dmin; µm) and maximum nuclear diameter (Dmax; µm). The study aimed to evaluate (1) possibility for quantitative differentiation of soft tissue sarcomas from reactive connective tissue lesions and (2) by using cytomorphometry, to differentiate the various histopathological soft tissue sarcomas subtypes in dogs. The mean values of all nuclear cytomorphometric parameters (except for Dmax) were statistically significantly higher in reactive connective tissue processes than in soft tissue sarcomas. At the same time, however, there were no considerable differences among the different sarcoma subtypes. The results demonstrated that the quantitative differentiation of reactive connective tissue processes from soft tissue sarcomas in dogs is possible, but the same was not true for the different canine soft tissue sarcoma subtypes. Further investigations on this topic are necessary for thorough explication of the role of quantitative morphology in the diagnostics of mesenchymal neoplasms and tumour-like fibrous lesions in dogs. © 2014 John Wiley & Sons Ltd.
Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won
2011-08-01
Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.
Updated constraints on the light-neutrino exchange mechanisms of the 0νββ-decay
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor
2015-10-01
The neutrinoless double-beta (0νββ) decay associated with light neutrino exchange mechanisms, which are due to both left-handed V-A and right-handed V+A leptonic and hadronic currents, is discussed by using the recent progress achieved by the GERDA, EXO and KamlandZen experiments. The upper limits for effective neutrino mass mββ and the parameters <λ> and <η> characterizing the right handed current mechanisms are deduced from the data on the 0νββ-decay of 76Ge and 136Xe using nuclear matrix elements calculated within the nuclear shell model and quasiparticle random phase approximation and phase-space factors calculated with exact Dirac wave functions with finite nuclear size and electron screening. The careful analysis of upper constraints on effective lepton number violating parameters assumes a competition of the above mechanisms and arbitrary values of involved CP violating phases.
NASA Astrophysics Data System (ADS)
Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu
2017-08-01
We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.
Mermod, Maxime; Bongiovanni, Massimo; Petrova, Tatiana V; Dubikovskaya, Elena A; Simon, Christian; Tolstonog, Genrich; Monnier, Yan
2016-09-01
The use of lymphatic vessel density as a predictor of occult lymph node metastasis (OLNM) in head and neck squamous cell carcinoma (HNSCC) has never been reported. Staining of the specific lymphatic endothelial cells nuclear marker, PROX1, as an indicator of lymphatic vessel density was determined by counting the number of positive cells in squamous cell carcinomas (SCCs) of the oral cavity and the oropharynx with clinically negative necks. Correlation with histopathological data was established. Peritumoral PROX1 lymphatic nuclear count significantly correlated with the detection of OLNM in multivariate analysis (p < .005). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of this parameter was 60%, 95%, 85%, and 90%, respectively. Peritumoral PROX1 lymphatic nuclear count in primary SCCs of the oral cavity and the oropharynx allows accurate prediction of occult lymph node metastasis. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1407-1415, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dedes, G.; Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Létang, J. M.; Ray, C.; Testa, E.
2014-04-01
Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of 12C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.
Statistical sensitivity analysis of a simple nuclear waste repository model
NASA Astrophysics Data System (ADS)
Ronen, Y.; Lucius, J. L.; Blow, E. M.
1980-06-01
A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.
Study of Quantum Chaos in the Framework of Triaxial Rotator Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurins, J.; Bavrins, K.; Andrejevs, A.
2009-01-28
Dynamical quantum chaos criteria--a perturbed wave function entropy W({psi}{sub i}) and a fragmentation width {kappa}({phi}{sub k}) of basis states were studied in two cases of nuclear rigid triaxial rotator models. The first model is characterized by deformation angle {gamma} only, while the second model depends on both quadrupole deformation parameters ({beta},{gamma}). The degree of chaoticity has been determined in the studies of the dependence of criteria W({psi}{sub i}) and {kappa}({phi}{sub k}) from nuclear spin values up to I{<=}101 for model parameters {gamma} and ({beta},{gamma}) correspondingly. The transition from librational to rotational type energy spectra has been considered for both modelsmore » as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Herman
2016-09-01
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistrymore » program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Jaromy; Sun Zaijing; Wells, Doug
2009-03-10
Photon activation analysis detected elements in two NIST standards that did not have reported concentration values. A method is currently being developed to infer these concentrations by using scaling parameters and the appropriate known quantities within the NIST standard itself. Scaling parameters include: threshold, peak and endpoint energies; photo-nuclear cross sections for specific isotopes; Bremstrahlung spectrum; target thickness; and photon flux. Photo-nuclear cross sections and energies from the unknown elements must also be known. With these quantities, the same integral was performed for both the known and unknown elements resulting in an inference of the concentration of the un-reported elementmore » based on the reported value. Since Rb and Mn were elements that were reported in the standards, and because they had well-identified peaks, they were used as the standards of inference to determine concentrations of the unreported elements of As, I, Nb, Y, and Zr. This method was tested by choosing other known elements within the standards and inferring a value based on the stated procedure. The reported value of Mn in the first NIST standard was 403{+-}15 ppm and the reported value of Ca in the second NIST standard was 87000 ppm (no reported uncertainty). The inferred concentrations were 370{+-}23 ppm and 80200{+-}8700 ppm respectively.« less
Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt
2009-01-01
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
NASA Astrophysics Data System (ADS)
Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah
2016-01-01
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.
Equations of state for real gases on the nuclear scale
NASA Astrophysics Data System (ADS)
Vovchenko, Volodymyr
2017-07-01
The formalism to augment the classical models of the equation of state for real gases with quantum statistical effects is presented. It allows an arbitrary excluded volume procedure to model repulsive interactions, and an arbitrary density-dependent mean field to model attractive interactions. Variations on the excluded volume mechanism include van der Waals (VDW) and Carnahan-Starling models, while the mean fields are based on VDW, Redlich-Kwong-Soave, Peng-Robinson, and Clausius equations of state. The VDW parameters of the nucleon-nucleon interaction are fitted in each model to the properties of the ground state of nuclear matter, and the following range of values is obtained: a =330 -430 MeV fm3 and b =2.5 -4.4 fm3 . In the context of the excluded volume approach, the fits to the nuclear ground state disfavor the values of the effective hard-core radius of a nucleon significantly smaller than 0.5 fm , at least for the nuclear matter region of the phase diagram. Modifications to the standard VDW repulsion and attraction terms allow one to improve significantly the value of the nuclear incompressibility factor K0, bringing it closer to empirical estimates. The generalization to include the baryon-baryon interactions into the hadron resonance gas model is performed. The behavior of the baryon-related lattice QCD observables at zero chemical potential is shown to be strongly correlated to the nuclear matter properties: an improved description of the nuclear incompressibility also yields an improved description of the lattice data at μ =0 .
Equilibrium nuclear ensembles taking into account vaporization of hot nuclei in dense stellar matter
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Mishustin, Igor
2018-02-01
We investigate the high-temperature effect on the nuclear matter that consists of mixture of nucleons and all nuclei in the dense and hot stellar environment. The individual nuclei are described within the compressible-liquid-drop model that is based on Skyrme interactions for bulk energies and that takes into account modifications of the surface and Coulomb energies at finite temperatures and densities. The free-energy density is minimized with respect to the individual equilibrium densities of all heavy nuclei and the nuclear composition. We find that their optimized equilibrium densities become smaller and smaller at high temperatures because of the increase in thermal contributions to bulk free energies and the reduction of surface energies. The neutron-rich nuclei become unstable and disappear one after another at given temperatures. The calculations are performed for two sets of model parameters leading to different values of the slope parameter in the nuclear-symmetry energy. It is found that the larger slope parameter reduces the equilibrium densities and the melting temperatures. We also compare the proposed model with some other approaches and find that the mass fractions of heavy nuclei in the previous calculations that omit vaporization are underestimated at T ≲10 MeV and overestimated at T ≳10 MeV. The further sophistication of calculations of nuclear vaporization and of light clusters would be required to construct the equation of state for explosive astrophysical phenomena.
Development of a Three Dimensional Perfectly Matched Layer for Transient Elasto-Dynamic Analyses
2006-12-01
MacLean [Ref. 47] intro- duced a small tracked vehicle with dual inertial mass shakers mounted on top as a mobile source. It excited Rayleigh waves, but...routine initializes and set default values for; * the aplication parameters * the material data base parameters * the entries to appear on the...Underground seismic array experiments. National In- stitute of Nuclear Physics, 2005. [47] D. J. MacLean. Mobile source development for seismic-sonar based
Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers
Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina
2015-01-01
The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100–200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system. PMID:26675014
Aldemir, Mustafa; Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan
2015-01-01
We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Patients' mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people.
[Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].
Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech
2003-09-01
Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
Nuclear size as estrogen-responsive chromatin quality parameter of mouse spermatozoa.
Cacciola, Giovanna; Chioccarelli, Teresa; Altucci, Lucia; Viggiano, Andrea; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda
2013-11-01
Recently, we have investigated the endocannabinoid involvement in chromatin remodeling events occurring in male spermatids. Indeed, we have demonstrated that genetic inactivation of the cannabinoid receptor type 1 (Cnr1) negatively influences chromatin remodeling mechanisms, by reducing histone displacement and indices of sperm chromatin quality (chromatin condensation and DNA integrity). Conversely, Cnr1 knock-out (Cnr1(-/-)) male mice, treated with estrogens, replaced histones and rescued chromatin condensation as well as DNA integrity. In the present study, by exploiting Cnr1(+/+), Cnr(+/-) and Cnr1(-/-) epididymal sperm samples, we show that histone retention directly correlates with low values of sperm chromatin quality indices determining sperm nuclear size elongation. Moreover, we demonstrate that estrogens, by promoting histone displacement and chromatin condensation rescue, are able to efficiently reduce the greater nuclear length observed in Cnr1(-/-) sperm. As a consequence of our results, we suggest that nucleus length may be used as a morphological parameter useful to screen out spermatozoa with low chromatin quality. Copyright © 2013 Elsevier Inc. All rights reserved.
Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections
NASA Astrophysics Data System (ADS)
Uhlíková, Tereza; Urban, Štěpán
2018-05-01
This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.
A Method of Trajectory Design for Manned Asteroid Explorations1,2
NASA Astrophysics Data System (ADS)
Gan, Qing-Bo; Zhang, Yang; Zhu, Zheng-Fan; Han, Wei-Hua; Dong, Xin
2015-07-01
A trajectory optimization method for the nuclear-electric propulsion manned asteroid explorations is presented. In the case of launching between 2035 and 2065, based on the two-pulse single-cycle Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory is selected by pruning the flight sequences in two feasible regions. Setting the flight strategy of propelling-taxiing-propelling, and taking the minimal fuel consumption as the performance index, the nuclear-electric propulsion flight trajectory is optimized using the hybrid method. Finally, taking the segmentally optimized parameters as the initial values, in accordance with the overall mission constraints, the globally optimized parameters are obtained. And the numerical and diagrammatical results are given at the same time.
Midi-maxi computer interaction in the interpretation of nuclear medicine procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlapper, G.A.
1977-01-01
A study of renal function with an Anger Gamma Camera coupled with a Digital Equipment Corporation Gamma-11 System and an IBM System 370 demonstrates the potential of quantitative determinations of physiological function through the application of midi-maxi computer interaction in the interpretation of nuclear medicine procedures. It is shown that radiotracers can provide an opportunity to assess physiological processes of renal function by noninvasively following the path of a tracer as a function of time. Time-activity relationships obtained over seven anatomically defined regions are related to parameters of a seven compartment model employed to describe the renal clearance process. Themore » values obtained for clinically significant parameters agree with known renal pathophysiology. Differentiation of failure of acute, chronic, and obstructive forms is indicated.« less
Evaluation of the 235 U resonance parameters to fit the standard recommended values
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; ...
2017-09-13
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
Evaluation of the 235 U resonance parameters to fit the standard recommended values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
Evaluation of the 235U resonance parameters to fit the standard recommended values
NASA Astrophysics Data System (ADS)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; Durán, Ignacio; Tassan-Got, Laurent; Danon, Yaron; Jandel, Marian
2017-09-01
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. A resonance re-evaluation of the n + 235U interaction has been performed to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-of-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. This paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.
Rickard, Mandy; Lorenzo, Armando J; Braga, Luis H
2017-03-01
To explore the potential value of an objective assessment, renal parenchyma to hydronephrosis area ratio (PHAR), as an early predictor of surgery. Initial sagittal renal ultrasound (US) images of patients prospectively entered into a prenatal hydronephrosis database from January 2008 to January 2016 with baseline Society for Fetal Urology (SFU) grades III and IV prenatal hydronephrosis, without vesicoureteral reflux, were evaluated using the National Institutes of Health-sponsored image processing software. PHAR, anteroposterior diameter, SFU grade, and urinary tract dilation risk categories were contrasted with nuclear scan data (differential renal function and drainage time [t 1/2 ]) and analyzed for predictive value in determining the decision to proceed with surgery by drawing receiver operating characteristic curves. Out of 196 infants (162 male; 138 left sided hydronephrosis), 58 (30%) underwent surgery to address obstruction. Surgical patients compared with those managed conservatively had longer t 1/2 (60 vs 18 min; P < .01) and lower differential renal function (46 vs 50%; P = .01). Of the initial US parameters, PHAR (area under the curve = 0.816; P < .001) had a better predictive performance than anteroposterior diameter, SFU grade, or urinary tract dilation classification. PHAR values correlated with subsequent parameters obtained on nuclear scan. PHAR is a promising parameter that can be estimated on presentation US to help predict future need for surgery in newborns with high-grade hydronephrosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Sigma meson in vacuum and nuclear matter
NASA Astrophysics Data System (ADS)
Menchaca-Maciel, M. C.; Morones-Ibarra, J. R.
2013-04-01
We have obtained the value of the interaction constant g σππ that adjusts the values obtained in the E791 Collaboration at Fermilab and BES Collaboration at the Beijing Electron Positron Collider experiments. To get this we have used the concept of critical width to make compatible the parameters obtained from the Breit-Wigner formula and those obtained from the density function. Also, the total width and effective mass modification of the sigma meson in nuclear matter has been studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in-medium effect of sigma-omega mixing. We have considered, for completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases with respect to its value in vacuum and that the contribution of the sigma-omega mixing effect on the mass shift is relevant.
The Revised OB-1 Method for Metal-Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Robert Michael; Wright, Richard Q
The OB-1 method for the calculation of the minimum critical mass (mcm) of fissile actinides in metal/water systems was described in a 2008 Nuclear Science and Engineering (NS&E) article. The purpose of the present work is to update and expand the application of this method with current nuclear data, including data uncertainties. The mcm and the hypothetical fissile metal density ({rho}{sub F}) in grams of metal/liter are obtained by a fit to values predicted with transport calculations. The input parameters required are thermal values for fission and absorption cross sections and nubar. A factor of ({radical}{pi})/2 is used to convertmore » to Maxwellian averaged values. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the mcm, either in percent or grams.« less
Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei
NASA Astrophysics Data System (ADS)
Dehghani, V.; Alavi, S. A.; Benam, Kh.
2018-05-01
By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.
Maljovec, D.; Liu, S.; Wang, B.; ...
2015-07-14
Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less
Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Zediak, C.S.; Jester, W.A.
1997-12-01
This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.
Development of Software to Digitize Historic Hardcopy Seismograms from Nuclear Explosions
2010-09-01
portion. As will be discussed below, this complicates the preparation of the image for subsequent digitization because background threshold values are...is the output image and −1 < β ≤ 0 is a user selectable parameter. Global contrast enhancement uses a whitening transform to make a given image
Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects
Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...
2016-11-28
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less
Gajski, Goran; Gerić, Marko; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2013-01-20
In the present study the alkaline comet assay and the cytokinesis-block micronucleus cytome (CBMN Cyt) assay were used to evaluate the baseline frequency of cytogenetic damage in peripheral blood lymphocytes (PBLs) of 50 healthy children from the general population in Croatia (age, 11.62±1.81 years). Mean values of tail length, tail intensity and tail moment, as comet assay parameters, were 12.92±0.10, 0.73±0.06 and 0.08±0.01, respectively. The mean frequency of micronuclei (MN) for all subjects was 2.32±0.28 per 1000 bi-nucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 1.72±0.24 and of nuclear buds (NBUDs) 1.44±0.19. The mean nuclear division index (NDI) was 1.70±0.05. When comet-assay parameters were considered, higher mean values for all three were found for the female population. According to the Mann-Whitney U test applied on the results of the comet assay, the only statistically significant difference between the male and female populations was found for tail length. Similar to the results obtained by the comet assay, girls showed higher mean values of all three measured parameters of the CBMN Cyt assay. This difference was statistically significant for total number of NPBs only. In the case of the NDI, a higher mean value was also obtained in girls, but this difference was not statistically significant. The results obtained present background data that could be considered as normal values for healthy children living in urban areas, and can later on serve as baseline values for further toxicological monitoring. Additionally, the usefulness of both techniques in measuring cytogenetic damage during bio-monitoring of children is confirmed. Copyright © 2012 Elsevier B.V. All rights reserved.
White paper report on using nuclear reactors to search for a value of theta13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K.; Anjos, J.C.; Ayres, D.
2004-02-26
There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the ordermore » of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.« less
Evidence for the multiverse in the standard model and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Lawrence J.; Nomura, Yasunori
2008-08-01
In any theory it is unnatural if the observed values of parameters lie very close to special values that determine the existence of complex structures necessary for observers. A naturalness probability P is introduced to numerically evaluate the degree of unnaturalness. If P is very small in all known theories, corresponding to a high degree of fine-tuning, then there is an observer naturalness problem. In addition to the well-known case of the cosmological constant, we argue that nuclear stability and electroweak symmetry breaking represent significant observer naturalness problems. The naturalness probability associated with nuclear stability depends on the theory ofmore » flavor, but for all known theories is conservatively estimated as P{sub nuc} < or approx. (10{sup -3}-10{sup -2}), and for simple theories of electroweak symmetry breaking P{sub EWSB} < or approx. (10{sup -2}-10{sup -1}). This pattern of unnaturalness in three different arenas, cosmology, nuclear physics, and electroweak symmetry breaking, provides evidence for the multiverse, since each problem may be easily solved by environmental selection. In the nuclear case the problem is largely solved even if the multiverse distribution for the relevant parameters is relatively flat. With somewhat strongly varying distributions, it is possible to understand both the close proximity to neutron stability and the values of m{sub e} and m{sub d}-m{sub u} in terms of the electromagnetic mass difference between the proton and neutron, {delta}{sub EM}{approx_equal}1{+-}0.5 MeV. It is reasonable that multiverse distributions are strong functions of Lagrangian parameters, since they depend not only on the landscape of vacua, but also on the population mechanism, ''integrating out'' other parameters, and on a density of observers factor. In any theory with mass scale M that is the origin of electroweak symmetry breaking, strongly varying multiverse distributions typically lead either to a little hierarchy v/M{approx_equal}(10{sup -2}-10{sup -1}), or to a large hierarchy v<
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
NASA Astrophysics Data System (ADS)
Orlov, Yu. V.; Irgaziev, B. F.; Nabi, Jameel-Un
2017-08-01
A new algorithm for the asymptotic nuclear coefficients calculation, which we call the Δ method, is proved and developed. This method was proposed by Ramírez Suárez and Sparenberg (arXiv:1602.04082.) but no proof was given. We apply it to the bound state situated near the channel threshold when the Sommerfeld parameter is quite large within the experimental energy region. As a result, the value of the conventional effective-range function Kl(k2) is actually defined by the Coulomb term. One of the resulting effects is a wrong description of the energy behavior of the elastic scattering phase shift δl reproduced from the fitted total effective-range function Kl(k2) . This leads to an improper value of the asymptotic normalization coefficient (ANC) value. No such problem arises if we fit only the nuclear term. The difference between the total effective-range function and the Coulomb part at real energies is the same as the nuclear term. Then we can proceed using just this Δ method to calculate the pole position values and the ANC. We apply it to the vertices 4He+12C ↔16O and 3He+4He↔7Be . The calculated ANCs can be used to find the radiative capture reaction cross sections of the transfers to the 16O bound final states as well as to the 7Be.
Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma
Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan
2015-01-01
Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Results Patients’ mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Conclusions Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people. PMID:26855793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhovitski, Efrem Sh.; Chiba, Satoshi; Lee, Jeong-Yeon
2005-05-24
A coupled-channels optical model with a coupling scheme based on nuclear wave functions of the soft-rotator model was applied to analyze experimental nucleon-nucleus interaction data for even-even nuclides with mass number A=24-122. We found that all the available data (total cross sections, angular distributions of elastically and inelastically scattered nucleons, and reaction cross sections) for these nuclides can be described to a good accuracy using an optical potential having smooth dependencies of potential values, radii, and diffuseness on the mass number. The individual properties of the target nuclides are accounted for by individuality of the nuclear Hamiltonian parameters, adjusted tomore » reproduce the low-lying collective level structure, Fermi energies, and deformation parameters.« less
Ganina, K P; Petunin, Iu I; Timoshenko, Ia G
1989-01-01
A method for quantitative analysis of epithelial cell nuclear polymorphism was suggested, viz. identification of general statistical population using Petunin's criterion. This criterion was employed to assess heterogeneity of visible surface of interphase epithelial cell nuclei and to assay nuclear DNA level in fibroadenomatous hyperplasia and cancer of the breast. Heterogeneity index (h), alongside with other parameters, appeared useful for quantitative assessment of the disease: heterogeneity index values ranging 0.1-0.4 point to pronounced heterogeneity of epithelial cell nucleus surface and DNA level, and are suggestive of malignant transformation of tissue, whereas benign proliferation of the epithelium is usually characterized by 0.4 less than h less than or equal to 0.9.
Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Kelly; A. Malkhasyan
2010-09-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
NASA Astrophysics Data System (ADS)
Zasov, A. V.; Cherepashchuk, A. M.
2013-11-01
The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.
Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena
2014-03-01
A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b
Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements
NASA Astrophysics Data System (ADS)
Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao
2015-10-01
Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.
Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data
NASA Astrophysics Data System (ADS)
Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.
2017-10-01
The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.
NASA Astrophysics Data System (ADS)
Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar
2018-03-01
The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.
Neutrino Physics at Kalinin Nuclear Power Plant: 2002 - 2017
NASA Astrophysics Data System (ADS)
Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye; Shirchenko, M.; Shitov, Yu; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.
2017-12-01
The results of the research in the field of neutrino physics obtained at Kalinin nuclear power plant during 15 years are presented. The investigations were performed in two directions. The first one includes GEMMA I and GEMMA II experiments for the search of the neutrino magnetic moment, where the best result in the world on the value of the upper limit of this quantity was obtained. The second direction is tied with the measurements by a solid scintillator detector DANSS designed for remote on-line diagnostics of nuclear reactor parameters and search for short range neutrino oscillations. DANSS is now installed at the Kalinin Nuclear Power Plant under the 4-th unit on a movable platform. Measurements of the antineutrino flux demonstrated that the detector is capable to reflect the reactor thermal power with an accuracy of about 1.5% in one day. Investigations of the neutrino flux and their energy spectrum at different distances allowed to study a large fraction of a sterile neutrino parameter space indicated by recent experiments and perform the reanalysis of the reactor neutrino fluxes. Status of the short range oscillation experiment is presented together with some preliminary results based on about 170 days of active data taking during the first year of operation.
Effect of women’s age on embryo morphology, cleavage rate and competence—A multicenter cohort study
Grøndahl, Marie Louise; Christiansen, Sofie Lindgren; Kesmodel, Ulrik Schiøler; Agerholm, Inge Errebo; Lemmen, Josephine Gabriela; Lundstrøm, Peter; Bogstad, Jeanette; Raaschou-Jensen, Morten; Ladelund, Steen
2017-01-01
This multicenter cohort study on embryo assessment and outcome data from 11,744 IVF/ICSI cycles with 104,830 oocytes and 42,074 embryos, presents the effect of women’s age on oocyte, zygote, embryo morphology and cleavage parameters, as well as cycle outcome measures corrected for confounding factors as center, partner’s age and referral diagnosis. Cycle outcome data confirmed the well-known effect of women’s age. Oocyte nuclear maturation and proportion of 2 pro-nuclear (2PN) zygotes were not affected by age, while a significant increase in 3PN zygotes was observed in both IVF and ICSI (p<0.0001) with increasing age. Maternal age had no effect on cleavage parameters or on the morphology of the embryo day 2 post insemination. Interestingly, initial hCG value after single embryo transfer followed by ongoing pregnancy was increased with age in both IVF (p = 0.007) and ICSI (p = 0.001) cycles. For the first time, we show that a woman’s age does impose a significant footprint on early embryo morphological development (3PN). In addition, the developmentally competent embryos were associated with increased initial hCG values as the age of the women increased. Further studies are needed to elucidate, if this increase in initial hCG value with advancing maternal age is connected to the embryo or the uterus. PMID:28422964
Nuclear YB-1 expression as a negative prognostic marker in nonsmall cell lung cancer.
Gessner, C; Woischwill, C; Schumacher, A; Liebers, U; Kuhn, H; Stiehl, P; Jürchott, K; Royer, H D; Witt, C; Wolff, G
2004-01-01
The human Y-box binding protein, YB-1, is a multifunctional protein that regulates gene expression. Nuclear expression of YB-1 has been associated with chemoresistance and poor prognosis of tumour patients. Representative samples from autopsied material of primary tumours from 77 patients with NSCLC were investigated by immunohistochemistry for subcellular distribution of YB-1 and p53, in order to evaluate the prognostic role of nuclear expression of YB-1. Cytoplasmic YB-1 expression was found in all tumour samples, whereas nuclear expression was only observed in 48%. There was no correlation with histological classification, clinical parameters or tumour size, stage and metastasis status. However, patients with positive nuclear YB-1 expression in tumours showed reduced survival times when compared with patients without nuclear expression. Including information about the histology and mutational status for p53 increased the prognostic value of nuclear YB-1. Patients with nuclear YB-1 expression and p53 mutations had the worst prognosis (median survival 3 months), while best outcome was found in patients with no nuclear YB-1 and wildtype p53 (median survival 15 months). This suggests that the combined analysis of both markers allows a better identification of subgroups with varying prognosis. Nuclear expression of Y-box binding protien seems to be an independent prognostic marker.
Nitrogen-14 NQR Study of Energetic Materials
1982-09-01
field at the nuclear site due to its neighbors. Results analogous to Equation 2.1.4-1 have also been derived and observed for a quadrupolar system...to a function of the type SAf/(A 2 + A2 such as Equation 2.1.1-2. Insufficient data have been taken so far to ascertain tie degree of agreemcnt with...average value, rather than HI, the peak value, is the important parameter and that there is good agreement of the data with the form of Equation 2.1.1-2
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo
Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...
2017-08-26
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
Constraining the surface properties of effective Skyrme interactions
NASA Astrophysics Data System (ADS)
Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.
2016-08-01
Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The latter is of particular interest because it provides asurf as a numerical integral without the need to solve self-consistent equations. Results for semi-infinite nuclear matter obtained with the HF, ETF, and MTF methods will be compared with one another and with asurf, as deduced from ETF calculations of very heavy fictitious nuclei. Results: The surface energy coefficient of 76 parametrizations of the Skyrme EDF have been calculated. Values obtained with the HF, ETF, and MTF methods are not identical, but differ by fairly constant systematic offsets. By contrast, extracting asurf from the binding energy of semi-infinite matter or of very large nuclei within the same method gives the same result within the numerical uncertainties. Conclusions: Despite having some drawbacks compared to the other methods studied here, the MTF approach provides sufficiently precise values for asurf such that it can be used as a very robust constraint on surface properties during a parameter fit at negligible additional cost. While the excitation energy of superdeformed states and the height of fission barriers is obviously strongly correlated to asurf, the presence of shell effects prevents a one-to-one correspondence between them. As in addition the value of asurf providing realistic fission barriers depends on the choices made for corrections for spurious motion, its "best value" (within a given scheme to calculate it) depends on the fit protocol. Through the construction of a series of eight parametrizations SLy5s1-SLy5s8 of the standard Skyrme EDF with systematically varied asurf value, it is shown how to arrive at a fit with realistic deformation properties.
NASA Astrophysics Data System (ADS)
Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel
2017-03-01
The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Test Operations Procedure (TOP) 1-2-612 Nuclear Environment Survivability
2008-10-24
measurements. The area equal to the area of gamma dose sensitive electronics will be mapped using CaF2 (Mn) TLDs . The selection of each STT...October 2008 8 2.3.3 HEMP / SREMP Instrumentation / Dosimetry . Measurement Parameter Preferred Device Measurement Accuracy Current...Calcium Fluoride Manganese CaF2 (Mn) Thermoluminescent Dosimeter ( TLDs ) and Compton diodes, respectively. The measured gamma dose values will be
NASA Astrophysics Data System (ADS)
Asfahani, Jamal
2017-08-01
An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.
Scenario-Based Case Study Analysis of Asteroid Mitigation in the Short Response Time Regime
NASA Astrophysics Data System (ADS)
Seery, B.; Greenaugh, K. C.
2017-12-01
Asteroid impact on Earth is a rare but inevitable occurrence, with potentially cataclysmic consequences. If a pending impact is discovered, mitigation options include civil-defense preparations as well as missions to deflect the asteroid and/or robustly disrupt and disperse it to an extent that only a negligible fraction remains on a threatening path (National Research Council's "Defending the Planet," 2010). If discovered with sufficient warning time, a kinetic impactor can deflect smaller objects, but response delays can rule out the option. If a body is too large to deflect by kinetic impactor, or the time for response is insufficient, deflection or disruption can be achieved with a nuclear device. The use of nuclear ablation is considered within the context of current capabilities, requiring no need for nuclear testing. Existing, well-understood devices are sufficient for the largest known Potentially Hazardous Objects (PHOs). The National Aeronautics and Space Administration/Goddard Space Flight Center and the Department of Energy/National Nuclear Security Administration are collaborating to determine the critical characterization issues that define the boundaries for the asteroid-deflection options. Drawing from such work, we examine the timeline for a deflection mission, and how to provide the best opportunity for an impactor to suffice by minimizing the response time. This integrated problem considers the physical process of the deflection method (impact or ablation), along with the spacecraft, launch capability, risk analysis, and the available intercept flight trajectories. Our joint DOE/NASA team has conducted case study analysis of three distinctly different PHOs, on a hypothetical earth impacting trajectory. The size of the design reference bodies ranges from 100 - 500 meters in diameter, with varying physical parameters such as composition, spin state, and metallicity, to name a few. We assemble the design reference of the small body in question using known values for key parameters and expert elicitation to make educated guesses on the unknown parameters, including an estimate of the overall uncertainties in those values. Our scenario-based systems approach includes 2-D and 3-D physics-based modeling and simulations.
Investigation of epi-thermal shape-parameter needed for precision analysis of activation
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2017-06-01
The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.
Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions
NASA Astrophysics Data System (ADS)
Eccles, Chris; Roy, Sanil; Gray, Thomas H.; Zaccone, Alessio
2017-11-01
Accounting for viscous damping within Fokker-Planck equations led to various improvements in the understanding and analysis of nuclear fission of heavy nuclei. Analytical expressions for the fission time are typically provided by Kramers' theory, which improves on the Bohr-Wheeler estimate by including the time scale related to many-particle dissipative processes along the deformation coordinate. However, Kramers' formula breaks down for sufficiently high excitation energies where Kramers' assumption of a large barrier no longer holds. Focusing on the overdamped regime for energies T >1 MeV, Kramers' theory should be replaced by a new analytical theory derived from the Ornstein-Uhlenbeck first-passage time method that is proposed here. The theory is applied to fission time data from fusion-fission experiments on 16O+208Pb→224Th . The proposed model provides an internally consistent one-parameter fitting of fission data with a constant nuclear friction as the fitting parameter, whereas Kramers' fitting requires a value of friction which falls out of the allowed range. The theory provides also an analytical formula that in future work can be easily implemented in numerical codes such as cascade or joanne4.
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Indicator system for advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Console for a nuclear control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Alarm system for a nuclear control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Method of installing a control room console in a nuclear power plant
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control room complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
NASA Astrophysics Data System (ADS)
Schönert, Stefan; Lasserre, Thierry; Oberauer, Lothar
2003-03-01
In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ν¯e's from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol>~2×10-4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the ν¯e interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal `free of background'.
Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2003-01-01
Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.
Arslan, Muyesser Sayki; Tutal, Esra; Sahin, Mustafa; Karakose, Melia; Ucan, Bekir; Ozturk, Gulfer; Cakal, Erman; Biyikli Gencturk, Zeynep; Ozbek, Mustafa; Delibasi, Tuncay
2017-02-01
Osteoprotegerin has been shown to be increased in cardiovascular disorders and type 2 diabetes mellitus. Prediabetes represents a high risk condition for diabetes and diabetic complications. Therefore, we aimed to find the relationship between prediabetes and osteoprotegerin with nuclear factor-B ligand, carotid intima media thickness, and metabolic markers. A total of 54 participants with prediabetes including impaired fasting glucose (n = 21), impaired glucose tolerance (n = 8), impaired fasting glucose and impaired glucose tolerance (n = 25), and 60 healthy individuals as a control were admitted to the study. Metabolic and anthropometric parameters, insulin resistance variables, osteoprotegerin, and nuclear factor-B ligand markers, carotid intima media thickness were examined at baseline for all participants. To evaluate the effect of therapy we determined the same parameters after the end of the study. Measurements of waist circumference, body mass index, body fat percentage and levels of fasting blood glucose, fasting insulin, homeostatic model assessment of insulin resistance, triglyceride levels and hsCRP and carotid intima media thickness were significantly higher in patients with prediabetes (p < 0.05). We also found higher osteoprotegerin and lower nuclear factor-B ligand levels in patients than in controls however, the value was non-significant (p > 0.05). Patients with prediabetes were under lifestyle interventions with (group 1, n = 33) or without metformin (group 2, n = 21) therapy. Baseline anthropometric and metabolic characteristics were not found statistically different in group 1 and group 2. Mean follow up period of the patients were 7.9 ± 2.2 month (min-max: 6-12 months). After the follow up period we evaluated the same parameters and found significant differences between waist circumference, body mass index, body fat percentage, fasting insulin, homeostatic model assessment of insulin resistance, and osteoprotegerin levels (p < 0.05). However, carotid intima media thickness, and nuclear factor-B ligand levels significantly different only in the group treated with metformin (p < 0.05). We also compared the variables after the treatment period with the control group and found significantly lower levels in terms of fasting insulin, homeostatic model assessment of insulin resistance, waist circumference, body mass index, body fat percentage, carotid intima media thickness, osteoprotegerin, and nuclear factor-B ligand values (p < 0.05). Correlation analysis revealed a negative relationship between nuclear factor-B ligand and body mass index, and body fat percentage in group 1 (p = 0.05, r = -0.646, p = 0.01, r = -0.585). Therapy of prediabetes was associated with a significant decrease in osteoprotegerin and certain metabolic variables together with an increase in nuclear factor-B ligand levels particularly in patients with under metformin therapy.
Percentiles of the null distribution of 2 maximum lod score tests.
Ulgen, Ayse; Yoo, Yun Joo; Gordon, Derek; Finch, Stephen J; Mendell, Nancy R
2004-01-01
We here consider the null distribution of the maximum lod score (LOD-M) obtained upon maximizing over transmission model parameters (penetrance values, dominance, and allele frequency) as well as the recombination fraction. Also considered is the lod score maximized over a fixed choice of genetic model parameters and recombination-fraction values set prior to the analysis (MMLS) as proposed by Hodge et al. The objective is to fit parametric distributions to MMLS and LOD-M. Our results are based on 3,600 simulations of samples of n = 100 nuclear families ascertained for having one affected member and at least one other sibling available for linkage analysis. Each null distribution is approximately a mixture p(2)(0) + (1 - p)(2)(v). The values of MMLS appear to fit the mixture 0.20(2)(0) + 0.80chi(2)(1.6). The mixture distribution 0.13(2)(0) + 0.87chi(2)(2.8). appears to describe the null distribution of LOD-M. From these results we derive a simple method for obtaining critical values of LOD-M and MMLS. Copyright 2004 S. Karger AG, Basel
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
NASA Astrophysics Data System (ADS)
Adam Rebeles, R.; Van den Winkel, P.; Hermanne, A.; Tárkányi, F.
2009-02-01
One of the radioisotopes for which a growing interest exists in nuclear medicine is 64Cu. Its branched decay makes it suitable for both diagnostic and therapeutic purposes. Activation cross sections of the proton induced reaction on enriched 64Ni have been studied using the stacked foil technique up to 24 MeV. The experimental cross sections are compared with values available from literature. Thick target yields, based on the discrete measured values of the cross sections are calculated and allow a better estimation of the optimum production parameters.
Nuclear threats from small states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahan, J.H.
1994-06-13
What are the policy implications regarding proliferation and counter proliferation of nuclear weapons among Third World states. How does deterrence operate outside the parameters of superpower confrontation as defined by the cold war elaborate system of constraints enforced by concepts like mutual assured destruction, and counter-value and counter-force targeting. How can US policymakers devise contingencies for dealing with nuclear threats posed by countries like North Korea, Libya, Iraq, Iran, and Syria. These are some of the unsettling but nevertheless important questions addressed by the author in this monograph. In his analysis, Mr. Jerome Kahan examines the likelihood that one ormore » more of these countries will use nuclear weapons before the year 2000. He also offers a framework that policymakers and planners might use in assessing US interests in preempting the use of nuclear weapons or in retaliating for their use. Ironically, with the end of the cold war, it is imperative that defense strategists, policymakers, and military professionals think about the `unthinkable`. In the interest of fostering debate on this important subject, the Strategic Studies Institute commends this insightful monograph.« less
Atmospheric heating of meteorites: Results from nuclear track studies
NASA Technical Reports Server (NTRS)
Jha, R.
1984-01-01
A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less
NASA Astrophysics Data System (ADS)
Kubicki, Marek; Baranski, Piotr; Odzimek, Anna; Michnowski, Stanislaw; Myslek-Laurikainen, Bogna
2013-04-01
We analyse the atmospheric electricity parameters, measured at Polish geophysical stations in Swider, Poland, and Hornsund, Spitsbergen, in connection with the radioactive incident in Fukushima, Japan, beginning on 11 March 2011, following the 9.0 earthquake and tsunami. We compare our results with the situation during and after the Chernobyl disaster on April 26, 1986, when the radioactive fallout detected at Swider increased in the last week of April 1986, from 4.111 to 238.7 Bq/m2 and up to 967.0 Bq/m2 in the second week of May 1986 - what was more than 235 times greater than the values measured prior to that accident. Besides the electric field especially the electric conductivity is very sensitive to the radioactive contamination of the air. Thus we postulate that these two measurements should be run at geophysical stations over the world and used as a relatively simple and low-cost tool for continuous monitoring of possible hazard caused by nuclear power plant accidents.
NASA Astrophysics Data System (ADS)
Veselkov, Alexei N.; Evstigneev, Maxim P.; Veselkov, Dennis A.; Davies, David B.
2001-08-01
A general nuclear magnetic resonance analysis of a statistical-thermodynamical model of hetero-association of aromatic molecules in solution has been developed to take "edge effects" into consideration, i.e., the dependence of proton chemical shifts on the position of the molecule situated inside or at the edge of the aggregate. This generalized approach is compared with a previously published model, where an average contribution to proton shielding is considered irrespective of the position of the molecule in the stack. Association parameters have been determined from experimental concentration and temperature dependences of 500 MHz proton chemical shifts of the hetero-association of the acridine dye, proflavine, and the phenanthridinium dye, ethidium bromide, in aqueous solution. Differences in the parameters in the range 10%-30% calculated using the basic and generalized approaches have been found to depend substantially on the magnitude of the equilibrium hetero-association constant Khet—the larger the value of Khet, the higher the discrepancy between the two methods.
Vasilescu, Catalin; Giza, Dana Elena; Petrisor, Petre; Dobrescu, Radu; Popescu, Irinel; Herlea, Vlad
2012-01-01
Pancreatic cancer is a highly aggressive cancer with a rising incidence and poor prognosis despite active surgical treatment. Candidates for surgical resection should be carefully selected. In order to avoid unnecessary laparotomy it is useful to identify reliable factors that may predict resectability. Nuclear morphometry and fractal dimension of pancreatic nuclear features could provide important preoperative information in assessing pancreas resectability. Sixty-one patients diagnosed with pancreatic cancer were enrolled in this retrospective study between 2003 and 2005. Patients were divided into two groups: one resectable cancer group and one with non-resectable pancreatic cancer. Morphometric parameters measured were: nuclear area, length of minor axis and length of major axis. Nuclear shape and chromatin distribution of the pancreatic tumor cells were both estimated using fractal dimension. Morphometric measurements have shown significant differences between the nuclear area of the resectable group and the non-resectable group (61.9 ± 19.8µm vs. 42.2 ± 15.6µm). Fractal dimension of the nuclear outlines and chromatin distribution was found to have a higher value in the non-resectable group (p<0.05). Objective measurements should be performed to improve risk assessment and therapeutic decisions in pancreatic cancer. Nuclear morphometry of the pancreatic nuclear features can provide important pre-operative information in resectability assessment. The fractal dimension of the nuclear shape and chromatin distribution may be considered a new promising adjunctive tool for conventional pathological analysis.
Hill, Mary C.; Faunt, Claudia C.; Belcher, Wayne; Sweetkind, Donald; Tiedeman, Claire; Kavetski, Dmitri
2013-01-01
This work demonstrates how available knowledge can be used to build more transparent and refutable computer models of groundwater systems. The Death Valley regional groundwater flow system, which surrounds a proposed site for a high level nuclear waste repository of the United States of America, and the Nevada National Security Site (NNSS), where nuclear weapons were tested, is used to explore model adequacy, identify parameters important to (and informed by) observations, and identify existing old and potential new observations important to predictions. Model development is pursued using a set of fundamental questions addressed with carefully designed metrics. Critical methods include using a hydrogeologic model, managing model nonlinearity by designing models that are robust while maintaining realism, using error-based weighting to combine disparate types of data, and identifying important and unimportant parameters and observations and optimizing parameter values with computationally frugal schemes. The frugal schemes employed in this study require relatively few (10–1000 s), parallelizable model runs. This is beneficial because models able to approximate the complex site geology defensibly tend to have high computational cost. The issue of model defensibility is particularly important given the contentious political issues involved.
Ananjan, Chatterjee; Jyothi, Mahadesh; Laxmidevi, B L; Gopinathan, Pillai Arun; Nazir, Salroo Humaira; Pradeep, L
2018-01-01
Oral squamous cell carcinoma (OSCC) accounts 94% of all malignant lesions in the oral cavity. In the assessment of OSCC, nowadays the WHO grading system has been followed widely but due to its subjectivity, investigators applied the sophisticated technique of computer-assisted image analysis in the grading of carcinoma in larynx, lungs, esophagus, and cervix to make it more objective. Access, analyze, and compare the cellular area (CA); cytoplasmic area (Cyt A); nuclear area (NA); nuclear perimeter (NP); nuclear form factor (NF); and nuclear-cytoplasmic ratio (N/C) of the cells in different grades of OSCC. Fifty OSCC cases were obtained and stained with hematoxylin and eosin which were graded according to the WHO classification. The sections were subjected to morphometric analysis to analyze all the morphometric parameters in different grades of OSCC and subjected to one-way ANOVA statistical analysis. CA and Cyt A decreased from normal mucosa with dedifferentiation of OSCC. The NA and NP increased in carcinoma group when compared to normal mucosa but decreased with dedifferentiation of OSCC (P < 0.05). NF had no significance with normal mucosa and different grades of OSCC (P > 0.05), while N/C ratio increased from normal mucosa through increasing grades of OSCC, reaching the highest value in poorly differentiated squamous cell carcinoma (P < 0.05). Both cellular and nuclear variables provide a more accurate indication of tumor aggressiveness than any single parameter. Morphometric analysis can be a reliable tool to determine objectively the degree of malignancy at the invasive tumor front.
NASA Astrophysics Data System (ADS)
Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi
2018-03-01
The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz
2015-01-01
The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.
206Pb+n resonances for E=600-900 keV: Neutron strength functions
NASA Astrophysics Data System (ADS)
Horen, D. J.; Harvey, J. A.; Hill, N. W.
1981-11-01
Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.
The symmetry energy {\\boldsymbol{\\gamma }} parameter of relativistic mean-field models
NASA Astrophysics Data System (ADS)
Dutra, Mariana; Lourenço, Odilon; Hen, Or; Piasetzky, Eliezer; Menezes, Débora P.
2018-05-01
The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy ({{\\mathscr{S}}}0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L 0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of {R}1.0 and {R}1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤slant {M}{{\\max }}/{M}ȯ ≤slant 2.05 and with the overlap band for the {L}0× {{\\mathscr{S}}}0 region, to present γ in the range of γ =0.25+/- 0.05. This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818
Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S
2013-01-01
Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.
Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.
2012-01-01
Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.
fissioncore: A desktop-computer simulation of a fission-bomb core
NASA Astrophysics Data System (ADS)
Cameron Reed, B.; Rohe, Klaus
2014-10-01
A computer program, fissioncore, has been developed to deterministically simulate the growth of the number of neutrons within an exploding fission-bomb core. The program allows users to explore the dependence of criticality conditions on parameters such as nuclear cross-sections, core radius, number of secondary neutrons liberated per fission, and the distance between nuclei. Simulations clearly illustrate the existence of a critical radius given a particular set of parameter values, as well as how the exponential growth of the neutron population (the condition that characterizes criticality) depends on these parameters. No understanding of neutron diffusion theory is necessary to appreciate the logic of the program or the results. The code is freely available in FORTRAN, C, and Java and is configured so that modifications to accommodate more refined physical conditions are possible.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Scott; Baca, Georgina; O'Connor, Michael
2015-12-31
Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is onmore » the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.« less
NASA Astrophysics Data System (ADS)
Irgaziev, B. F.; Orlov, Yu. V.
2015-02-01
Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in nuclear physics and astrophysics. We derive a new useful relationship between ANCs of the Gamow radial wave function and the renormalized (due to the Coulomb interaction) Coulomb-nuclear partial scattering amplitude. We use an analytical approximation in the form of a series for the nonresonant part of the phase shift which can be analytically continued to the point of an isolated resonance pole in the complex plane of the momentum. Earlier, this method which we call the S -matrix pole method was used by us to find the resonance pole energy. We find the corresponding fitting parameters for the 5He,5Li , and 16O concrete resonance states. Additionally, based on the theory of the effective range, we calculate the parameters of the p3 /2 and p1 /2 resonance states of the nuclei 5He and 5Li and compare them with the results obtained by the S -matrix pole method. ANC values are found which can be used to calculate the reaction rate through the 16O resonances which lie slightly above the threshold for the α 12C channel.
Losa, Gabriele A; Castelli, Christian
2005-11-01
An analytical strategy combining fractal geometry and grey-level co-occurrence matrix (GLCM) statistics was devised to investigate ultrastructural changes in oestrogen-insensitive SK-BR3 human breast cancer cells undergoing apoptosis in vitro. Apoptosis was induced by 1 microM calcimycin (A23187 Ca(2+) ionophore) and assessed by measuring conventional cellular parameters during the culture period. SK-BR3 cells entered the early stage of apoptosis within 24 h of treatment with calcimycin, which induced detectable changes in nuclear components, as documented by increased values of most GLCM parameters and by the general reduction of the fractal dimensions. In these affected cells, morphonuclear traits were accompanied by the reduction of distinct gangliosides and loss of unidentifiable glycolipid molecules at the cell surface. All these changes were shown to be involved in apoptosis before the detection of conventional markers, which were only measurable during the active phases of apoptotic cell death. In overtly apoptotic cells treated with 1 microM calcimycin for 72 h, most nuclear components underwent dramatic ultrastructural changes, including marginalisation and condensation of chromatin, as reflected in a significant reduction of their fractal dimensions. Hence, both fractal and GLCM analyses confirm that the morphological reorganisation of nuclei, attributable to a loss of structural complexity, occurs early in apoptosis.
Bütof, Rebecca; Hofheinz, Frank; Zöphel, Klaus; Stadelmann, Tobias; Schmollack, Julia; Jentsch, Christina; Löck, Steffen; Kotzerke, Jörg; Baumann, Michael; van den Hoff, Jörg
2015-08-01
Despite ongoing efforts to develop new treatment options, the prognosis for patients with inoperable esophageal carcinoma is still poor and the reliability of individual therapy outcome prediction based on clinical parameters is not convincing. The aim of this work was to investigate whether PET can provide independent prognostic information in such a patient group and whether the tumor-to-blood standardized uptake ratio (SUR) can improve the prognostic value of tracer uptake values. (18)F-FDG PET/CT was performed in 130 consecutive patients (mean age ± SD, 63 ± 11 y; 113 men, 17 women) with newly diagnosed esophageal cancer before definitive radiochemotherapy. In the PET images, the metabolically active tumor volume (MTV) of the primary tumor was delineated with an adaptive threshold method. The blood standardized uptake value (SUV) was determined by manually delineating the aorta in the low-dose CT. SUR values were computed as the ratio of tumor SUV and blood SUV. Uptake values were scan-time-corrected to 60 min after injection. Univariate Cox regression and Kaplan-Meier analysis with respect to overall survival (OS), distant metastases-free survival (DM), and locoregional tumor control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. In multivariate Cox regression with respect to OS, including T stage, N stage, and smoking state, MTV- and SUR-based parameters were significant prognostic factors for OS with similar effect size. Multivariate analysis with respect to DM revealed smoking state, MTV, and all SUR-based parameters as significant prognostic factors. The highest hazard ratios (HRs) were found for scan-time-corrected maximum SUR (HR = 3.9) and mean SUR (HR = 4.4). None of the PET parameters was associated with LRC. Univariate Cox regression with respect to LRC revealed a significant effect only for N stage greater than 0 (P = 0.048). PET provides independent prognostic information for OS and DM but not for LRC in patients with locally advanced esophageal carcinoma treated with definitive radiochemotherapy in addition to clinical parameters. Among the investigated uptake-based parameters, only SUR was an independent prognostic factor for OS and DM. These results suggest that the prognostic value of tracer uptake can be improved when characterized by SUR instead of SUV. Further investigations are required to confirm these preliminary results. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Analytical study of nozzle performance for nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1991-01-01
Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, G. Tim; Hartman, Larry; Stagich, Brooke
Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk andmore » vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, T.; Stagich, B.
Operations at the Savannah River Site (SRS) result in releases of relatively small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991, 2008, 2010, and 2016 and are being concurred with or updated in this report. These parameters include localmore » characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.« less
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694
Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.
Hansen, Brian; Vestergaard-Poulsen, Peter
2006-10-01
We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.
Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew
2014-10-08
Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nacapricha, D.; Taylor, C.
Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and poremore » measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.« less
The calculation of neutron capture gamma-ray yields for space shielding applications
NASA Technical Reports Server (NTRS)
Yost, K. J.
1972-01-01
The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.
2007-09-20
phases. The power law parameter values were found to be in close agreement with the constants for nuclear explosions in Nevada and chemical explosions in...caused by the difference of lithostatic pressures between top and bottom of a vertical cylindrical explosive source, typical for borehole chemical ...NORSAR recorded several decoupled chemical explosions in large chambers of underground mines in Sweden (Stevens et al., 2003), however a reference
Ductal carcinoma of breast: nuclear grade as a predictor of S-phase fraction.
Dabbs, D J
1993-06-01
Nuclear grade (NG) and S-phase fraction (SPF) are established independent prognostic variables for ductal breast carcinomas. Nuclear grade can be assigned by a pathologist in a simple fashion during histopathologic evaluation of the tumor, while SPF requires flow cytometric evaluation of tumor samples. This prospective study was undertaken to determine whether elevated SPF could be predicted from NG alone and how NG and SPF correlate with c-erbB-2 expression. Eighty-two breast carcinomas of ductal type were assigned an NG of low (grade 1 or grade 2) or high (grade 3). S-phase fraction was recorded initially from fresh-frozen tissue samples and was designated as either low SPF (below the value designated as the cutoff for elevated SPF) or high SPF (a value at or greater than the cutoff value). On fresh tissue the NG predicted the range of SPF (low or high) in 89% of cases. Four percent of the cases that did not correlate could definitely be attributed to sample error. The remaining 7% that did not correlate could have been due to sample error, specimen quality, or tumor heterogeneity, as demonstrated by reversal of SPF range as performed on paraffin blocks of tumor. Eighty-eight percent of the tumors positive for c-erbB-2 were NG 3 and 12% were NG 2. All c-erbB-2 tumors were aneuploid. This study demonstrates the importance of carefully assigning NGs on tissue and indicates the importance of reviewing flow cytometric data side by side with histopathologic parameters to detect discrepancies between these two modalities. Careful nuclear grading assignment can accurately predict the range of SPF.
NASA Astrophysics Data System (ADS)
Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker
2015-11-01
Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to saturation) far outside the range of results obtained by the rest of the scenarios. This study also addresses potential air trapping by dissolution of part of the initial air content of the bentonite, showing that neglecting gas flow effects and trapping could lead to significant underestimation of the remaining air content and the duration of the initial aerobic phase of the repository.
Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker
2015-11-01
Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to saturation) far outside the range of results obtained by the rest of the scenarios. This study also addresses potential air trapping by dissolution of part of the initial air content of the bentonite, showing that neglecting gas flow effects and trapping could lead to significant underestimation of the remaining air content and the duration of the initial aerobic phase of the repository. Copyright © 2015. Published by Elsevier B.V.
Comparative analysis of dosimetry parameters for nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toohey, R.E.; Stabin, M.G.
For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRPmore » Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.« less
ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)
NASA Astrophysics Data System (ADS)
Spearing, Dane R.
1994-05-01
ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.
Mohammad Al Alfy, Ibrahim
2018-01-01
A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tan, Yanliang; Ishikawa, Tetsuo; Janik, Miroslaw; Tokonami, Shinji; Hosoda, Masahiro; Sorimachi, Atsuyuki; Kearfott, Kimberlee
2015-12-01
The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan resulted in significant releases of fission products. While substantial data exist concerning outdoor air radioactivity following the accident, the resulting indoor radioactivity remains pure speculation without a proper method for estimating the ratio of the indoor to outdoor airborne radioactivity, termed the airborne sheltering factor (ASF). Lacking a meaningful value of the ASF, it is difficult to assess the inhalation doses to residents and evacuees even when outdoor radionuclide concentrations are available. A simple model was developed and the key parameters needed to estimate the ASF were obtained through data fitting of selected indoor and outdoor airborne radioactivity measurement data obtained following the accident at a single location. Using the new model with values of the air exchange rate, interior air volume, and the inner surface area of the dwellings, the ASF can be estimated for a variety of dwelling types. Assessment of the inhalation dose to individuals readily follows from the value of the ASF, the person's indoor occupancy factor, and the measured outdoor radioactivity concentration. Copyright © 2015 Elsevier B.V. All rights reserved.
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-01-01
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-04-07
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation.
NASA Astrophysics Data System (ADS)
de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.
2010-10-01
In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.
Kang, Seong-Kwi; Park, Nam-Yong; Cho, Ho-Sung; Shin, Sung-Shik; Kang, Mun-Il; Kim, Sang-Ki; Hyun, Changbaig; Park, In-Chul; Kim, Jong-Tack; Jeong, Cheol; Park, Sung-Hee; Park, Su-Jin; Jeong, Jae-Ho; Kim, You-Jung; Ochiai, Kenji; Umemura, Takashi; Cho, Kyoung-Oh
2006-03-01
The mitotic index is reported to be correlated with recurrence, mean patient survival, and metastasis of canine hemangiopericytoma (CHP). However, to the authors' knowledge, studies investigating the parameters that can predict recurrence or metastasis of CHP with low mitotic index have not been done. To evaluate growth kinetics of CHP with low mitotic index, a retrospective analysis of the proliferative activity by antiproliferative cell nuclear antigen monoclonal antibody and DNA contents by flow cytometry (FCM) was performed with 21 formalin-fixed and paraffin-embedded CHP samples. Of the 21 tumors evaluated by FCM, 6 (26.6%) were aneuploid tumors, and 15 (71.4%) were diploid tumors. There was significant correlation between the PCNA index and ploidy pattern. The diploid group had 39.1 +/- 9.2 PCNA index, whereas the aneuploid group's proliferative cell nuclear antigen (PCNA) index was 63.1 +/- 8.2. The diploid group had mean mitotic index value of 1.140 +/- 0.855, and the aneuploid group had a mean value of 1.067 +/- 0.767. From these results, the CHP samples with low mitotic index were classified into either the aneuploid group with higher PCNA index or the diploid group with lower PCNA index, suggesting that DNA ploidy and proliferative activity may give an indication about malignancy of CHPs with a low mitotic index.
NASA Technical Reports Server (NTRS)
Bahcall, J. N.; Pinsonneault, M. H.
1992-01-01
We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.
NASA Astrophysics Data System (ADS)
Hunter, Rachel; Ernst, David; Vastola, John; Austin, Noah
In the 1980's and 90's a series of experiments were conducted to search for evidence of neutrino oscillations. Data was collected on five of the six independent fundamental parameters relating to oscillation rates. The data was then used to produce an exclusion region plot for values of the parameters. However, it was discovered that the experiments were not analyzed correctly and there are large gaps between theoretical and experimental data. A fourth type of neutrino could be to blame for these gaps. The goal of this research project is to find evidence for or against a fourth type of neutrino by a reanalysis of the old experiments. This part of the project attempts to reproduce the exclusion region plots for data taken at Rovno Nuclear Power Station in order to validate a model of the original analysis. Thus far the reproduction of their exclusion region is close, but not a complete success. Further work on the coding program will need to be completed in order to proceed with the next step in the reanalysis procedure. National Science Foundation Grant #1263045.
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Determination of parameters of a nuclear reactor through noise measurements
Cohn, C.E.
1975-07-15
A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)
Kinetic Parameter Measurements in the MINERVE Reactor
NASA Astrophysics Data System (ADS)
Perret, Grégory; Geslot, Benoit; Gruel, Adrien; Blaise, Patrick; Di-Salvo, Jacques; De Izarra, Grégoire; Jammes, Christian; Hursin, Mathieu; Pautz, Andréas
2017-01-01
In the framework of an international collaboration, teams of the PSI and CEA research institutes measure the critical decay constant (α0 = β/A), delayed neutron fraction (β) and generation time (A) of the Minerve reactor using the Feynman-α, Power Spectral Density and Rossi-α neutron noise measurement techniques. These measurements contribute to the experimental database of kinetic parameters used to improve nuclear data files and validate modern methods in Monte Carlo codes. Minerve is a zero-power pool reactor composed of a central experimental test lattice surrounded by a large aluminum buffer and four high-enriched driver regions. Measurements are performed in three slightly subcritical configurations (-2 cents to -30 cents) using two high-efficiency 235U fission chambers in the driver regions. Measurement of α0 and β obtained by the two institutes and with the different techniques are consistent for the configurations envisaged. Slight increases of the β values are observed with the subcriticality level. Best estimate values are obtained with the Cross-Power Spectral Density technique at -2 cents, and are worth: β = 716.9±9.0 pcm, α0 = 79.0±0.6 s-1 and A = 90.7±1.4 μs. The kinetic parameters are predicted with MCNP5-v1.6 and TRIPOLI4.9 and the JEFF-3.1/3.1.1 and ENDF/B-VII.1 nuclear data libraries. The predictions for β and α0 overestimate the experimental results by 3-5% and 10-12%, respectively; that for A underestimate the experimental result by 6-7%. The discrepancies are suspected to come from the driven system nature of Minerve and the location of the detectors in the driver regions, which prevent accounting for the full reactor.
Evaluation of RayXpert® for shielding design of medical facilities
NASA Astrophysics Data System (ADS)
Derreumaux, Sylvie; Vecchiola, Sophie; Geoffray, Thomas; Etard, Cécile
2017-09-01
In a context of growing demands for expert evaluation concerning medical, industrial and research facilities, the French Institute for radiation protection and nuclear safety (IRSN) considered necessary to acquire new software for efficient dimensioning calculations. The selected software is RayXpert®. Before using this software in routine, exposure and transmission calculations for some basic configurations were validated. The validation was performed by the calculation of gamma dose constants and tenth value layers (TVL) for usual shielding materials and for radioisotopes most used in therapy (Ir-192, Co-60 and I-131). Calculated values were compared with results obtained using MCNPX as a reference code and with published values. The impact of different calculation parameters, such as the source emission rays considered for calculation and the use of biasing techniques, was evaluated.
VizieR Online Data Catalog: Supernova matter EOS (Buyukcizmeci+, 2014)
NASA Astrophysics Data System (ADS)
Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.
2017-03-01
The Statistical Model for Supernova Matter (SMSM) was developed in Botvina & Mishustin (2004, PhLB, 584, 233 ; 2010, NuPhA, 843, 98) as a direct generalization of the Statistical Multifragmentation Model (SMM; Bondorf et al. 1995, PhR, 257, 133). We treat supernova matter as a mixture of nuclear species, electrons, and photons in statistical equilibrium. The SMSM EOS tables cover the following ranges of control parameters: 1. Temperature: T = 0.2-25 MeV; for 35 T values. 2. Electron fraction Ye: 0.02-0.56; linear mesh of Ye = 0.02, giving 28 Ye values. It is equal to the total proton fraction Xp, due to charge neutrality. 3. Baryon number density fraction {rho}/{rho}0 = (10-8-0.32), giving 31 {rho}/{rho}0 values. (2 data files).
Note: Fast neutron efficiency in CR-39 nuclear track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, S.
2015-03-15
CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.
Fission-powered in-core thermoacoustic sensor
Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; ...
2016-04-07
A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. Furthermore, these signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.
Fission-powered in-core thermoacoustic sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.
2016-04-04
A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.
Distribution of thermal neutrons in a temperature gradient
NASA Astrophysics Data System (ADS)
Molinari, V. G.; Pollachini, L.
A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.
Thermal property of holmium doped lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2018-04-01
The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.
Liese, Jan; Winter, Karsten; Glass, Änne; Bertolini, Julia; Kämmerer, Peer Wolfgang; Frerich, Bernhard; Schiefke, Ingolf; Remmerbach, Torsten W
2017-11-01
Uncertainties in detection of oral epithelial dysplasia (OED) frequently result from sampling error especially in inflammatory oral lesions. Endomicroscopy allows non-invasive, "en face" imaging of upper oral epithelium, but parameters of OED are unknown. Mucosal nuclei were imaged in 34 toluidine blue-stained oral lesions with a commercial endomicroscopy. Histopathological diagnosis showed four biopsies in "dys-/neoplastic," 23 in "inflammatory," and seven in "others" disease groups. Strength of different assessment strategies of nuclear scoring, nuclear count, and automated nuclear analysis were measured by area under ROC curve (AUC) to identify histopathological "dys-/neoplastic" group. Nuclear objects from automated image analysis were visually corrected. Best-performing parameters of nuclear-to-image ratios were the count of large nuclei (AUC=0.986) and 6-nearest neighborhood relation (AUC=0.896), and best parameters of nuclear polymorphism were the count of atypical nuclei (AUC=0.996) and compactness of nuclei (AUC=0.922). Excluding low-grade OED, nuclear scoring and count reached 100% sensitivity and 98% specificity for detection of dys-/neoplastic lesions. In automated analysis, combination of parameters enhanced diagnostic strength. Sensitivity of 100% and specificity of 87% were seen for distances of 6-nearest neighbors and aspect ratios even in uncorrected objects. Correction improved measures of nuclear polymorphism only. The hue of background color was stronger than nuclear density (AUC=0.779 vs 0.687) to detect dys-/neoplastic group indicating that macroscopic aspect is biased. Nuclear-to-image ratios are applicable for automated optical in vivo diagnostics for oral potentially malignant disorders. Nuclear endomicroscopy may promote non-invasive, early detection of dys-/neoplastic lesions by reducing sampling error. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nuclear Physics Around the Unitarity Limit.
König, Sebastian; Grießhammer, Harald W; Hammer, H-W; van Kolck, U
2017-05-19
We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.
Effects of the nucleon radius on neutron stars in a quark mean field model
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Yu; Li, Ang
2018-03-01
We study the effects of free space nucleon radius on nuclear matter and neutron stars within the framework of the quark mean field model. The nucleon radius is treated self-consistently with this model, where quark confinement is adjusted to fit different values of nucleon radius. Corrections due to center-of-mass motion, quark-pion coupling, and one gluon exchange are included to obtain the nucleon mass in vacuum. The meson coupling constants that describe the behavior of the many-body nucleonic system are constructed by reproducing the empirical saturation properties of nuclear matter, including the recent determinations of symmetry energy parameters. Our results show that the nucleon radius in free space has negligible effects on the nuclear matter equation of state and neutron star mass-radius relations, which is different from the conclusion drawn in previous studies. We further explore that the sensitivity of star radius on the nucleon radius found in earlier publications is actually from the symmetry energy and its slope.
High-energy pp and pp-bar forward elastic scattering and total cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, M.M.; Cahn, R.N.
1985-04-01
The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger
2013-07-01
Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment ofmore » nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)« less
47,49Ti NMR: hyperfine interactions in oxides and metals.
Bastow, T J; Gibson, M A; Forwood, C T
1998-10-01
A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.
Neutron Transmission of Single-crystal Sapphire Filters
NASA Astrophysics Data System (ADS)
Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.
2005-05-01
An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.
Precision half-life measurement of 11C: The most precise mirror transition F t value
NASA Astrophysics Data System (ADS)
Valverde, A. A.; Brodeur, M.; Ahn, T.; Allen, J.; Bardayan, D. W.; Becchetti, F. D.; Blankstein, D.; Brown, G.; Burdette, D. P.; Frentz, B.; Gilardy, G.; Hall, M. R.; King, S.; Kolata, J. J.; Long, J.; Macon, K. T.; Nelson, A.; O'Malley, P. D.; Skulski, M.; Strauss, S. Y.; Vande Kolk, B.
2018-03-01
Background: The precise determination of the F t value in T =1 /2 mixed mirror decays is an important avenue for testing the standard model of the electroweak interaction through the determination of Vu d in nuclear β decays. 11C is an interesting case, as its low mass and small QE C value make it particularly sensitive to violations of the conserved vector current hypothesis. The present dominant source of uncertainty in the 11CF t value is the half-life. Purpose: A high-precision measurement of the 11C half-life was performed, and a new world average half-life was calculated. Method: 11C was created by transfer reactions and separated using the TwinSol facility at the Nuclear Science Laboratory at the University of Notre Dame. It was then implanted into a tantalum foil, and β counting was used to determine the half-life. Results: The new half-life, t1 /2=1220.27 (26 ) s, is consistent with the previous values but significantly more precise. A new world average was calculated, t1/2 world=1220.41 (32 ) s, and a new estimate for the Gamow-Teller to Fermi mixing ratio ρ is presented along with standard model correlation parameters. Conclusions: The new 11C world average half-life allows the calculation of a F tmirror value that is now the most precise value for all superallowed mixed mirror transitions. This gives a strong impetus for an experimental determination of ρ , to allow for the determination of Vu d from this decay.
Parameter study of r-process lanthanide production and heating rates in kilonovae
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2015-04-01
Explosive r-process nucleosynthesis in material ejected during compact object mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients are sensitive to the composition of the material after nuclear burning ceases, as the composition determines the local heating rate from nuclear decays and the opacity. The presence of lanthanides in the ejecta can drastically increase the opacity. We use the new general-purpose nuclear reaction network SkyNet to run a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial entropies s, and density decay timescales τ. We find that the ejecta is lanthanide-free for Ye >~ 0 . 22 - 0 . 3 , depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, because single nuclides dominate the heating. With a simple model we estimate the luminosity, time, and effective temperature at the peak of the light curve. Since the opacity is much lower in the lanthanide-free case, we find the luminosity peaks much earlier at ~ 1 day vs. ~ 15 days in the lanthanide-rich cases. Although there is significant variation in the heating rate with Ye, changes in the heating rate do not mitigate the effect of the lanthanides. This research is partially supported by NSF under Award Numbers AST-1333520 and AST-1205732.
Indicator system for a process plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Mulder, J. W.; Offerhaus, G. J.; de Feyter, E. P.; Floyd, J. J.; Kern, S. E.; Vogelstein, B.; Hamilton, S. R.
1992-01-01
The relationship of abnormal nuclear morphology to molecular genetic alterations that are important in colorectal tumorigenesis is unknown. Therefore, Feulgen-stained isolated nuclei from 22 adenomas and 42 carcinomas that had been analyzed for ras gene mutations and allelic deletions on chromosomes 5q, 18q, and 17p were characterized by computerized image analysis. Both nuclear area and the nuclear shape factor representing irregularity correlated with adenoma-carcinoma progression (r = 0.57 and r = 0.52, P < 0.0001), whereas standard nuclear texture, a parameter of chromatin homogeneity, was inversely correlated with progression (r = -0.80, P < 0.0001). The nuclear parameters were strongly interrelated (P < 0.0005). In multivariate analysis, the nuclear parameters were predominantly associated with adenoma-carcinoma progression (P < or = 0.0001) and were not influenced significantly by the individual molecular genetic alterations. Nuclear texture, however, was inversely correlated with fractional allelic loss, a global measure of genetic changes, in carcinomas (r = -0.39, P = 0.011). The findings indicate that nuclear morphology in colorectal neoplasms is strongly related to tumor progression. Nuclear morphology and biologic behavior appear to be influenced by accumulated alterations in cancer-associated genes. Images Figure 1 PMID:1357973
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; ...
2018-02-10
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
The dissolution behavior of borosilicate glasses in far-from equilibrium conditions
NASA Astrophysics Data System (ADS)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; Ryan, Joseph V.; Asmussen, R. Matthew
2018-04-01
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH (22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. The higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
New statistical scission-point model to predict fission fragment observables
NASA Astrophysics Data System (ADS)
Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie
2015-09-01
The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh
2015-01-01
Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors. PMID:25730484
NASA Astrophysics Data System (ADS)
Bíró, Gábor; Barnaföldi, Gergely Gábor; Biró, Tamás Sándor; Shen, Keming
2018-02-01
The latest, high-accuracy identified hadron spectra measurements in highenergy nuclear collisions led us to the investigation of the strongly interacting particles and collective effects in small systems. Since microscopical processes result in a statistical Tsallis - Pareto distribution, the fit parameters q and T are well suited for identifying system size scalings and initial conditions. Moreover, parameter values provide information on the deviation from the extensive, Boltzmann - Gibbs statistics in finite-volumes. We apply here the fit procedure developed in our earlier study for proton-proton collisions [1, 2]. The observed mass and center-of-mass energy trends in the hadron production are compared to RHIC dAu and LHC pPb data in different centrality/multiplicity classes. Here we present new results on mass hierarchy in pp and pA from light to heavy hadrons.
Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S
2013-04-15
Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.
Determination of nuclear quadrupolar parameters using singularities in field-swept NMR patterns.
Ichijo, Naoki; Takeda, Kazuyuki; Yamada, Kazuhiko; Takegoshi, K
2016-10-07
We propose a simple data-analysis scheme to determine the coupling constant and the asymmetry parameter of nuclear quadrupolar interactions in field-swept nuclear magnetic resonance (NMR) for static powder samples. This approach correlates the quadrupolar parameters to the positions of the singularities, which can readily be found out as sharp peaks in the field-swept pattern. Moreover, the parameters can be determined without quantitative acquisition and elaborate calculation of the overall profile of the pattern. Since both experimental and computational efforts are significantly reduced, the approach presented in this work will enhance the power of the field-swept NMR for yet unexplored quadrupolar nuclei. We demonstrate this approach in 33 S in α-S 8 and 35 Cl in chloranil. The accuracy of the obtained quadrupolar parameters is also discussed.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E
2009-11-19
The radioactive fallout from the Chernobyl Nuclear Power Plant (ChNPP) accident consisted of fuel and condensation components. An important radioecological task associated with the late phase of the accident is to evaluate the dynamics of radionuclide mobility in soils. Identification of the variability (or invariability) in the radionuclide transfer parameters makes it possible to (1) accurately predict migration patterns and biological availability of radionuclides and (2) evaluate long-term exposure trends for the population who may reoccupy the remediated abandoned areas. In 1986-1987, a number of experimental plots were established within various tracts of the fallout plume to assist with themore » determination of the long-term dynamics of radionuclide vertical migration in the soils. The transfer parameters for {sup 137}Cs, {sup 90}Sr, and {sup 239,240}Pu in the soil profile, as well as their ecological half-time of the radionuclide residence (T{sub 1/2}{sup ecol}) values in the upper 5-cm thick soil layers of different grasslands were estimated at various times since the accident. Migration characteristics in the grassland soils tend to decrease as follows: {sup 90}Sr > {sup 137}Cs {ge} {sup 239,240}Pu. It was found that the {sup 137}Cs absolute T{sub 1/2}{sup ecol} values are 3-7 times higher than its radioactive decay half-life value. Therefore, changes in the exposure dose resulting from the soil deposited {sup 137}Cs now depend only on its radioactive decay. The {sup 90}Sr T{sub 1/2}{sup ecol} values for the 21st year after the fallout tend to decrease, indicating an intensification of its migration capabilities. This trend appears consistent with a pool of mobile {sup 90}Sr forms that grows over time due to destruction of the fuel particles.« less
Phenotypic Intratumoral Heterogeneity of Endometrial Carcinomas.
Silva, Cátia; Pires-Luís, Ana S; Rocha, Eduardo; Bartosch, Carla; Lopes, José M
2018-03-01
Intratumoral heterogeneity has been shown to play an important role in diagnostic accuracy, development of treatment resistance, and prognosis of cancer patients. Recent studies have proposed quantitative measurement of phenotypic intratumoral heterogeneity, but no study is yet available in endometrial carcinomas. In our study we evaluated the phenotypic intratumoral heterogeneity of a consecutive series of 10 endometrial carcinomas using measures of dispersion and diversity. Morphometric architectural (%tumor cells, %solid tumor, %differentiated tumor, and %lumens) and nuclear [volume-weighted mean nuclear volume ((Equation is included in full-text article.))] parameters, as well as estrogen receptor, progesterone receptor, p53, vimentin, and beta-catenin immunoexpression (H-score) were digitally analyzed in 20 microscopic fields per carcinoma. Quantitative measures of intratumoral heterogeneity included coefficient of variation (CV) and relative quadratic entropy (rQE). In each endometrial carcinoma there was slight variation of architecture from field to field, resulting in globally low levels of heterogeneity measures (mean CV %tumor cells: 0.10, %solid tumor: 0.73, %differentiated tumor: 0.19, %lumens: 0.61 and mean rQE %tumor cells: 18.5, %solid tumor: 20.3, %differentiated tumor: 25.6, %lumens: 21.8). Nuclear intratumoral heterogeneity was also globally low (mean (Equation is included in full-text article.)CV: 0.23 and rQE: 27.3), but significantly higher than the heterogeneity of architectural parameters within most carcinomas. In general, there was low to moderate variability of immunoexpression markers within each carcinoma, but estrogen receptor (mean CV: 0.56 and rQE: 46.2) and progesterone receptor (mean CV: 0.60 and rQE: 39.3) displayed the highest values of heterogeneity measures. Intratumoral heterogeneity of immunoexpression was significantly higher than that observed for morphometric parameters. In conclusion, our study indicates that endometrial carcinomas present a variable but predominantly low degree of phenotypic intratumoral heterogeneity.
Y-12 PLANT NUCLEAR SAFETY HANDBOOK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.
1963-03-27
Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)
NASA Astrophysics Data System (ADS)
Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.
2017-12-01
The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.
Meor Mohd Affandi, M M R; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, A B A
2016-01-01
We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.
Meor Mohd Affandi, MMR; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, ABA
2016-01-01
We examined the solubility of simvastatin in water in 0.01 mol·dm−3, 0.02 mol·dm−3, 0.04 mol·dm−3, 0.09 mol·dm−3, 0.18 mol·dm−3, 0.36 mol·dm−3, and 0.73 mol·dm−3 arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute–solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute–solvent and solute–cosolute interactions. Further, these systems were analyzed using ultraviolet–visible analysis, Fourier-transform infrared spectroscopy, and 13C, 1H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation. PMID:27041998
Variance Reduction Factor of Nuclear Data for Integral Neutronics Parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiba, G., E-mail: go_chiba@eng.hokudai.ac.jp; Tsuji, M.; Narabayashi, T.
We propose a new quantity, a variance reduction factor, to identify nuclear data for which further improvements are required to reduce uncertainties of target integral neutronics parameters. Important energy ranges can be also identified with this variance reduction factor. Variance reduction factors are calculated for several integral neutronics parameters. The usefulness of the variance reduction factors is demonstrated.
Nuclear Physics Around the Unitarity Limit
König, Sebastian; Grießhammer, Harald W.; Hammer, H. -W.; ...
2017-05-15
We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of themore » conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.« less
Nuclear deformation in the laboratory frame
NASA Astrophysics Data System (ADS)
Gilbreth, C. N.; Alhassid, Y.; Bertsch, G. F.
2018-01-01
We develop a formalism for calculating the distribution of the axial quadrupole operator in the laboratory frame within the rotationally invariant framework of the configuration-interaction shell model. The calculation is carried out using a finite-temperature auxiliary-field quantum Monte Carlo method. We apply this formalism to isotope chains of even-mass samarium and neodymium nuclei and show that the quadrupole distribution provides a model-independent signature of nuclear deformation. Two technical advances are described that greatly facilitate the calculations. The first is to exploit the rotational invariance of the underlying Hamiltonian to reduce the statistical fluctuations in the Monte Carlo calculations. The second is to determine quadruple invariants from the distribution of the axial quadrupole operator in the laboratory frame. This allows us to extract effective values of the intrinsic quadrupole shape parameters without invoking an intrinsic frame or a mean-field approximation.
Rajačić, M M; Todorović, D J; Krneta Nikolić, J D; Janković, M M; Djurdjević, V S
2016-09-01
Air sample monitoring in Serbia, Belgrade started in the 1960s, while (7)Be activity in air and total (dry and wet) deposition has been monitored for the last 22 years by the Environment and Radiation Protection Department of the Institute for Nuclear Sciences, Vinca. Using this data collection, the changes of the (7)Be activity in the air and the total (wet and dry) deposition samples, as well as their correlation with meteorological parameters (temperature, pressure, cloudiness, sunshine duration, precipitation and humidity) that affect (7)Be concentration in the atmosphere, were mathematically described using the Fourier analysis. Fourier analysis confirmed the expected; the frequency with the largest intensity in the harmonic spectra of the (7)Be activity corresponds to a period of 1 year, the same as the largest intensity frequency in Fourier series of meteorological parameters. To analyze the quality of the results produced by the Fourier analysis, we compared the measured values of the parameters with the values calculated according to the Fourier series. Absolute deviations between measured and predicted mean monthly values are in range from 0.02 mBq/m(3) to 0.7 mBq/m(3) for (7)Be activity in air, and 0.01 Bq/m(2) and 0.6 Bq/m(2) for (7)Be activity in deposition samples. Relatively good agreement of measured and predicted results offers the possibility of prediction of the (7)Be activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; ...
2015-06-15
In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimummore » gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.« less
Changing nature of Chinese nuclear strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markov, D.R.; Huill, A.W.
Traditionally, analysts have believed that China was only interested in pursuing a minimalist, counter-value nuclear strategy that aimed at achieving strategic deterrence. This paper examines the possibility that Chinese nuclear strategy is changing in several ways: (1) it is moving to embrace a nuclear warfighting approach that encompasses tactical, theater, and strategic nuclear weapons, and (2) it is moving from a counter-value to a counter-force strategic nuclear posture.
Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter
NASA Astrophysics Data System (ADS)
Azizi, K.; Er, N.
2018-02-01
The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.
Shells, orbit bifurcations, and symmetry restorations in Fermi systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.
The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less
Use and Impact of Covariance Data in the Japanese Latest Adjusted Library ADJ2010 Based on JENDL-4.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, K., E-mail: yokoyama.kenji09@jaea.go.jp; Ishikawa, M.
2015-01-15
The current status of covariance applications to fast reactor analysis and design in Japan is summarized. In Japan, the covariance data are mainly used for three purposes: (1) to quantify the uncertainty of nuclear core parameters, (2) to identify important nuclides, reactions and energy ranges which are dominant to the uncertainty of core parameters, and (3) to improve the accuracy of core design values by adopting the integral data such as the critical experiments and the power reactor operation data. For the last purpose, the cross section adjustment based on the Bayesian theorem is used. After the release of JENDL-4.0,more » a development project of the new adjusted group-constant set ADJ2010 was started in 2010 and completed in 2013. In the present paper, the final results of ADJ2010 are briefly summarized. In addition, the adjustment results of ADJ2010 are discussed from the viewpoint of use and impact of nuclear data covariances, focusing on {sup 239}Pu capture cross section alterations. For this purpose three kind of indices, called “degree of mobility,” “adjustment motive force,” and “adjustment potential,” are proposed.« less
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk
2015-12-28
Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less
Scholarship for Nuclear Communications and Methods for Evaluation of Nuclear Project Acceptability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golay, Michael
This project aims to go beyond effective communication in understanding how to design nuclear enterprise projects that will gain stakeholder acceptability. Much of what we are studying is generally applicable to controversial projects, and we expect our results to be of broad value beyond the nuclear arena. Acceptability is more than effective communication; it also requires varying degrees of engagement with a disparate number of stakeholder groups. In the nuclear enterprise, previous attempts have been well designed physically (i.e., technologically sound), but have floundered by being insensitive concerning acceptance. Though effective communication is a necessary, but insufficient, condition for suchmore » success, there is a lack of scholarship regarding how to gain stakeholder acceptance for new controversial projects, including nuclear ones. Our work is building a model for use in assessing the performance of a project in the area of acceptability. In the nuclear-social nexus, gaining acceptance requires a clear understanding of factors regarded as being important by the many stakeholders that are common to new nuclear project (many of whom hold an effective veto power). Projects tend to become socially controversial when public beliefs, expert opinion and decision-maker understanding are misaligned. As such, stakeholder acceptance is hypothesized as both an ongoing process and an initial project design parameter comprised of complex, social, cognitive and technical components. Controversial projects may be defined as aspects of modern technologies that some people question, or are cautious about. They could range from genetic modifications, biological hazards, effects of chemical agents, nuclear radiation or hydraulic fracturing operations. We intend that our work will result in a model likely to be valuable for refining project design and implementation to increase the knowledge needed for successful management of stakeholder relationships.« less
Parameterization of deformed nuclei for Glauber modeling in relativistic heavy ion collisions
Sorensen, P.; Tang, A. H.; Videbaek, F.; ...
2015-08-04
In this study, the density distributions of large nuclei are typically modeled with a Woods–Saxon distribution characterized by a radius R 0 and skin depth a. Deformation parameters β are then introduced to describe non-spherical nuclei using an expansion in spherical harmonics R 0(1+β 2Y 2 0+β 4Y 4 0). But when a nucleus is non-spherical, the R 0 and a inferred from electron scattering experiments that integrate over all nuclear orientations cannot be used directly as the parameters in the Woods–Saxon distribution. In addition, the β 2 values typically derived from the reduced electric quadrupole transition probability B(E2)↑ aremore » not directly related to the β 2 values used in the spherical harmonic expansion. B(E2)↑ is more accurately related to the intrinsic quadrupole moment Q 0 than to β 2. One can however calculate Q 0 for a given β 2 and then derive B(E2)↑ from Q 0. In this paper we calculate and tabulate the R 0, a , and β 2 values that when used in a Woods–Saxon distribution, will give results consistent with electron scattering data. We then present calculations of the second and third harmonic participant eccentricity (ε 2 and ε 3) with the new and old parameters. We demonstrate that ε 3 is particularly sensitive to a and argue that using the incorrect value of a has important implications for the extraction of viscosity to entropy ratio (η/s) from the QGP created in Heavy Ion collisions.« less
Parsimony and goodness-of-fit in multi-dimensional NMR inversion
NASA Astrophysics Data System (ADS)
Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos
2017-01-01
Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.
NASA Astrophysics Data System (ADS)
Ahmadinejad, Neda; Tari, Mostafa Talebi
2017-04-01
A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramspott, L.D.; McArthur, R.D.
1977-02-18
Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less
TrackEtching - A Java based code for etched track profile calculations in SSNTDs
NASA Astrophysics Data System (ADS)
Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.
2017-09-01
A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.
Biggi, Alberto; Bergesio, Fabrizio; Chauvie, Stephane; Bianchi, Andrea; Menga, Massimo; Fallanca, Federico; Hutchings, Martin; Gregianin, Michele; Meignan, Michel; Gallamini, Andrea
2017-07-27
Qualitative assessment using the Deauville five-point scale (DS) is the gold standard for interim and end-of treatment PET interpretation in lymphoma. In the present study we assessed the reliability and the prognostic value of different semi- quantitative (SQ) parameters in comparison with DS for interim PET (iPET) interpretation in Hodgkin lymphoma (HL). A cohort of 82 out of 260 patients with advanced stage HL enrolled in the International Validation Study (IVS), scored as 3 to 5 by the expert panel was included in the present report. Two nuclear medicine physicians blinded to patient history, clinical data and treatment outcome reviewed independently the iPET using the following parameters: DS, SUVMax, SUVPeak of the most active lesion, QMax (ratio of SUVMax of the lesion to liver SUVMax) and QRes (ratio of SUVPeak of the lesion to liver SUVMean). The optimal sensitivity, specificity, positive and negative predictive value to predict treatment outcome was calculated for all the above parameters with the Receiver Operator Characteristics analysis. The prognostic value of all parameters were similar, the best cut-off value being 4 for DS (Area Under the Curve, AUC, 0.81 CI95%: 0.72-0.90), 3.81 for SUVMax (AUC 0.82 CI95%: 0.73-0.91), 3.20 for SUVPeak (AUC 0.86 CI95%: 0.77-0.94), 1.07 for QMax (AUC 0.84 CI95%: 0.75-0.93) and 1.38 for QRes (AUC 0.84 CI95%: 0.75-0.93). The reproducibility of different parameters was similar as the inter-observer variability measured with Cohen's kappa were 0.93 (95% CI 0.84-1.01) for the DS, 0.88 (0.77-0.98) for SUVMax, 0.82 (0.70-0.95) for SUVPeak, 0.85 (0.74-0.97) for QRes and 0.78 (0.65-0.92) for QMax. Due to the high specificity of SUVPeak (0.87) and to the good sensitivity of DS (0.86), upon the use of both parameters the positive predictive value increased from 0.65 of the DS alone to 0.79. When both parameters were positive in iPET, 3-years Failure-Free Survival (FFS) was significantly lower compared to patients whose iPET was interpreted with qualitative parameters only (DS 4 or 5): 21% vs 35%. On the other hand, the FFS of patients with negative results was not significantly different (88% vs 86%). In this study we demonstrated that, combining semi-quantitative parameters with SUVPeak to a pure qualitative interpretation key with DS, it is possible to increase the positive predictive value of iPET and to identify with higher precision the patients subset with a very dismal prognosis. However, these retrospective findings should be confirmed prospectively in a larger patient cohort.
Ho, Jung-Chun; Lee, Chiao-Tzu Patricia; Kao, Shu-Fen; Chen, Ruey-Yu; Ieong, Marco C F; Chang, Hung-Lun; Hsieh, Wan-Hua; Tzeng, Chun-Chiao; Lu, Cheng-Fung; Lin, Suei-Loong; Chang, Peter Wushou
2014-12-01
After the nuclear disaster in Fukushima in Japan in 2011, a nation-wide survey using a standardized self-administered questionnaire was conducted in Taiwan, with a sample size of 2,742 individuals including the residents who live within and beyond 30 km from a nuclear power plant (NPP), to evaluate the participants' perceived nuclear risk in comparison with their perceived risks from selected environmental hazards and human behaviors. The three leading concerns of nuclear energy were "nuclear accidents (82.2%)," "radioactive nuclear waste disposal (76.9%)" and "potential health effects (73.3%)." Respondents (77.6%) perceived a higher relative risk of cancer incidence for those who live within 30 km from an NPP than those who live outside 30 km from an NPP. All the participants had a higher risk perception of death related to "nuclear power operation and nuclear waste" than cigarette smoking, motorcycling, food poisoning, plasticizer poisoning and traveling by air. Moreover, the residents in Gongliao where the planned fourth NPP is located had a significantly higher perceived risk ratio (PRR) of cancer incidence (adjusted odd ratio (aOR)=1.84, p value=0.017) and perceived risk of death (aOR=4.03, p value<0.001) related to nuclear energy. The other factors such as female gender (aOR/p value, 1.25/0.026 and 1.34/0.001 respectively), lower education levels (aOR/p value: 1.31/0.032; 2.03/<0.001) and the participants' concerns about nuclear accidents (aOR/p value: 1.33/0.022; 1.51/<0.001) and potential health effects (aOR/ p value: 2.95/ <0.001; 2.56/<0.001) were found to be commonly associated with the PRRs of "cancer incidence" and "perceived risk of death" related to nuclear energy, respectively. In addition, the respondents' concerns about nuclear waste disposal and possible eco-environmental damage made significant contributions (aOR/ p value: 1.39/ 0.001; 1.40/<0.001) to predict their perceived risk of death related to nuclear power. These factors are considered as important indicators and they can be used for suggesting future policy amendments and public referendum on the decision of the operation of the planned NPP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measurement of interaction between antiprotons
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2015-11-04
In this paper, one of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by themore » STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton–antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton–proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.« less
Parraguez, M; Gajardo, G
2017-01-01
The populations of Artemia (or brine shrimp) from the Americas exhibit a wide variation in the amount of interphase heterochromatin. There is interest in understanding how this variation affects different parameters, from the cellular to the organismal levels. This should help to clarify the ability of this organism to tolerate brine habitats regularly subject to strong abiotic changes. In this study, we assessed the amount of interphase heterochromatin per nucleus based on chromocenter number (N-CHR) and relative area of chromocenter (R-CHR) in two species of Artemia, A. franciscana (Kellog, 1906) (n=9 populations) and A. persimilis (Piccinelli and Prosdocimi, 1968) (n=3 populations), to investigate the effect on nuclear size (S-NUC). The relationship of the R-CHR parameter with the ionic composition (IC) of brine habitats was also analysed. Our results indicate a significant variation in the amount of heterochromatin both within and between species (ANOVA, p<0.001). The heterochromatin varied from 0.81 ± 1.17 to 12.58 ± 3.78 and from 0.19 ± 0.34% to 11.78 ± 3.71% across all populations, for N-CHR and R-CHR parameters, respectively. N-CHR showed less variation than R-CHR (variation index 15.5-fold vs. 62-fold). At least five populations showed a significant association (p<0.05) between R-CHR and S-NUC, either with negative (four populations, r= from -0.643 to -0.443), or positive (one population, r= 0.367) values.Within each species, there were no significant associations between both parameters (p>0.05). The R-CHR and IC parameters were associated significantly for the magnesium ion (r= 0.496, p<0.05) and also for the chloride, sodium and calcium ions (r = from -0.705 to -0.478, p<0.05). At species level, a significant association between both parameters was also found in A. franciscana populations, for the sulphate and calcium ions, in contrast to A. persimilis. These findings suggest that the amount of interphase heterochromatin modifies the nuclear size in Artemia. Our data also indicate that change in the amount of interphase heterochromatin is in line with the ionic composition of brines. This would be a species-specific phenomenon, whose occurrence may be involved in the ability of this organism to survive in these environments.
Cytological Evaluation of Thyroid Lesions by Nuclear Morphology and Nuclear Morphometry.
Yashaswini, R; Suresh, T N; Sagayaraj, A
2017-01-01
Fine needle aspiration (FNA) of the thyroid gland is an effective diagnostic method. The Bethesda system for reporting thyroid cytopathology classifies them into six categories and gives implied risk for malignancy and management protocol in each category. Though the system gives specific criteria, diagnostic dilemma still exists. Using nuclear morphometry, we can quantify the number of parameters, such as those related to nuclear size and shape. The evaluation of nuclear morphometry is not well established in thyroid cytology. To classify thyroid lesions on fine needle aspiration cytology (FNAC) using Bethesda system and to evaluate the significance of nuclear parameters in improving the prediction of thyroid malignancy. In the present study, 120 FNAC cases of thyroid lesions with histological diagnosis were included. Computerized nuclear morphometry was done on 81 cases which had confirmed cytohistological correlation, using Aperio computer software. One hundred nuclei from each case were outlined and eight nuclear parameters were analyzed. In the present study, thyroid lesions were common in female with M: F ratio of 1:5 and most commonly in 40-60 yrs. Under Bethesda system, 73 (60.83%) were category II; 14 (11.6%) were category III, 3 (2.5%) were category IV, 8 (6.6%) were category V, and 22 (18.3%) were category VI, which were malignant on histopathological correlation. Sensitivity, specificity, and diagnostic accuracy of Bethesda reporting system are 62.5, 84.38, and 74.16%, respectively. Minimal nuclear diameter, maximal nuclear diameter, nuclear perimeter, and nuclear area were higher in malignant group compared to nonneoplastic and benign group. The Bethesda system is a useful standardized system of reporting thyroid cytopathology. It gives implied risk of malignancy. Nuclear morphometry by computerized image analysis can be utilized as an additional diagnostic tool.
Power quality considerations for nuclear spectroscopy applications: Grounding
NASA Astrophysics Data System (ADS)
García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.
2013-11-01
Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.
Nuclear-size correction to the Lamb shift of one-electron atoms
NASA Astrophysics Data System (ADS)
Yerokhin, Vladimir A.
2011-01-01
The nuclear-size effect on the one-loop self-energy and vacuum polarization is evaluated for the 1s, 2s, 3s, 2p1/2, and 2p3/2 states of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Zα. Detailed comparison is made with previous all-order calculations and calculations based on the expansion in the parameter Zα. Extrapolation of the all-order numerical results obtained toward Z=1 provides results for the radiative nuclear-size effect on the hydrogen Lamb shift.
Widdifield, Cory M; Perras, Frédéric A; Bryce, David L
2015-04-21
Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also provided for NH4ReO4, NaReO4 and RbReO4. These calculations are able to reproduce many of the experimental trends in rhenium δiso values and EFG tensor magnitudes. Using KReO4 as a prototypical perrhenate-containing system, we establish a correlation between the tetrahedral shear strain parameter (|ψ|) and the nuclear electric quadrupolar coupling constant (CQ), which enables the refinement of the structure of ND4ReO4. Shortcomings in traditional DFT approaches, even when including relativistic effects via the zeroth-order regular approximation (ZORA), for calculating rhenium NMR tensor parameters are identified for Re2(CO)10.
Probing the nuclear symmetry energy at high densities with nuclear reactions
NASA Astrophysics Data System (ADS)
Leifels, Y.
2017-11-01
The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, Vladimir
2016-01-22
The transverse momentum dependence of the yields of particles produced from the clusters of dense cold nuclear matter in nuclei is calculated in the approach based on perturbative QCD calculations of the corresponding quark diagrams near the thresholds. It is shown that the transverse momentum dependence of the pion and proton spectra at different values of the Feynman variable x in the cumulative region, x > 1, can be described by the only parameter - the constituent quark mass, taken to be equal 300 MeV. It is found that the cumulative protons are formed predominantly via a coherent coalescence of threemore » fast cluster quarks, whereas the production of cumulative pions is dominated by one fast cluster quark hadronization. This enabled to explain the experimentally observed more slow increase of the mean transverse momentum of cumulative protons with the increase of the cumulative variable x, compared to pions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bily, T.
Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less
NASA Astrophysics Data System (ADS)
Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk
2017-02-01
Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.
1995-07-01
Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632more » ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.« less
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
NASA Astrophysics Data System (ADS)
Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David
2016-03-01
KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D
Mandelli, D.; Smith, C.; Riley, T.; ...
2016-01-01
The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less
Force field-dependent structural divergence revealed during long time simulations of Calbindin d9k.
Project, Elad; Nachliel, Esther; Gutman, Menachem
2010-07-15
The structural and the dynamic features of the Calbindin (CaB) protein in its holo and apo states are compared using molecular dynamics simulations under nine different force fields (FFs) (G43a1, G53a6, Opls-AA, Amber94, Amber99, Amber99p, AmberGS, AmberGSs, and Amber99sb). The results show that most FFs reproduce reasonably well the majority of the experimentally derived features of the CaB protein. However, in several cases, there are significant differences in secondary structure properties, root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), and S(2) order parameters among the various FFs. What is more, in certain cases, these parameters differed from the experimentally derived values. Some of these deviations became noticeable only after 50 ns. A comparison with experimental data indicates that, for CaB, the Amber94 shows overall best agreement with the measured values, whereas several others seem to deviate from both crystal and nuclear magnetic resonance data. Copyright 2009 Wiley Periodicals, Inc.
Uncertainty-driven nuclear data evaluation including thermal (n,α) applied to 59Ni
NASA Astrophysics Data System (ADS)
Helgesson, P.; Sjöstrand, H.; Rochman, D.
2017-11-01
This paper presents a novel approach to the evaluation of nuclear data (ND), combining experimental data for thermal cross sections with resonance parameters and nuclear reaction modeling. The method involves sampling of various uncertain parameters, in particular uncertain components in experimental setups, and provides extensive covariance information, including consistent cross-channel correlations over the whole energy spectrum. The method is developed for, and applied to, 59Ni, but may be used as a whole, or in part, for other nuclides. 59Ni is particularly interesting since a substantial amount of 59Ni is produced in thermal nuclear reactors by neutron capture in 58Ni and since it has a non-threshold (n,α) cross section. Therefore, 59Ni gives a very important contribution to the helium production in stainless steel in a thermal reactor. However, current evaluated ND libraries contain old information for 59Ni, without any uncertainty information. The work includes a study of thermal cross section experiments and a novel combination of this experimental information, giving the full multivariate distribution of the thermal cross sections. In particular, the thermal (n,α) cross section is found to be 12.7 ± . 7 b. This is consistent with, but yet different from, current established values. Further, the distribution of thermal cross sections is combined with reported resonance parameters, and with TENDL-2015 data, to provide full random ENDF files; all of this is done in a novel way, keeping uncertainties and correlations in mind. The random files are also condensed into one single ENDF file with covariance information, which is now part of a beta version of JEFF 3.3. Finally, the random ENDF files have been processed and used in an MCNP model to study the helium production in stainless steel. The increase in the (n,α) rate due to 59Ni compared to fresh stainless steel is found to be a factor of 5.2 at a certain time in the reactor vessel, with a relative uncertainty due to the 59Ni data of 5.4%.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
radiation. It includes an interactive chart of nuclides and a level plotting tool. XUNDL Experimental Unevaluated Nuclear Data List Experimental nuclear structure and decay data, covering more than 2,500 recent parameters* Retrieved information CSISRS alias EXFOR Nuclear reaction experimental data Experimental nuclear
Effects of must concentration techniques on wine isotopic parameters.
Guyon, Francois; Douet, Christine; Colas, Sebastien; Salagoïty, Marie-Hélène; Medina, Bernard
2006-12-27
Despite the robustness of isotopic methods applied in the field of wine control, isotopic values can be slightly influenced by enological practices. For this reason, must concentration technique effects on wine isotopic parameters were studied. The two studied concentration techniques were reverse osmosis (RO) and high-vacuum evaporation (HVE). Samples (must and extracted water) have been collected in various French vineyards. Musts were microfermented at the laboratory, and isotope parameters were determined on the obtained wine. Deuterium and carbon-13 isotope ratios were studied on distilled ethanol by nuclear magnetic resonance (NMR) and isotope ratio mass spectrometry (IRMS), respectively. The oxygen-18 ratio was determined on extracted and wine water using IRMS apparatus. The study showed that the RO technique has a very low effect on isotopic parameters, indicating that this concentration technique does not create any isotopic fractionation, neither at sugar level nor at water level. The effect is notable for must submitted to HVE concentration: water evaporation leads to a modification of the oxygen-18 ratio of the must and, as a consequence, ethanol deuterium concentration is also modified.
STEWB - Simplified Transient Estimation of the Water Budget
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Simmons, C. S.; Cady, R. E.; Gee, G. W.
2001-12-01
A simplified model describing the transient water budget of a shallow unsaturated soil profile is presented. This model was developed for the U.S. Nuclear Regulatory Commission to provide estimates of the time-varying net infiltration at sites containing residual levels of radioactive materials. Ease of use, computational efficiency, and use of standard parameters and available data were requirements of the model. The model's conceptualization imposes the following simplifications: a uniform soil profile, instantaneous redistribution of infiltrated water, drainage under a unit hydraulic gradient, and no drainage from the soil profile during infiltration. The model's formulation is a revision of that originally presented by Kim et al. [WRR, 32(12):3475-3484, 1996]. Daily meteorological data are required as input. Random durations for precipitation events are generated based on an estimate of the average number of exceedances per year for the specific daily rainfall depth observed. Snow accumulation and melt are described using empirical relationships. During precipitation or snowmelt, runoff is described using an infiltration equation for ponded conditions. When no water is being applied to the profile, evapotranspiration (ET) and drainage occur. The ET rate equals the potential evapotranspiration rate, PET, above a critical value of saturation, SC. Below this critical value, ET = PET*(S/SC)**p, where S is saturation and p is an empirical parameter. Drainage flux from the profile equals the hydraulic conductivity as represented by the Brooks-Corey model. The model has been implemented with an easy-to-use graphical interface and is available at http://nrc-hydro-uncert.pnl.gov/code.htm. Comparison of the model results with lysimeter measurements will be shown, including a 50-year record from the ARS-Coshocton site in Ohio. The interpretation of parameters and the sensitivity of the model to parameter values will be discussed.
In-medium effects via nuclear stopping in asymmetric colliding nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Mandeep
2016-05-06
The nuclear stopping is studied using isospin-dependent quantum molecular dynamics (IQMD) model in asymmetric colliding nuclei by varying mass asymmetry. The calculations have been done at incident energies varying between 50 and 400 MeV/nucleon for different impact parameters. We investigate the relative role of constant scaled and density-dependent scaled cross-sections. Our study reveals that nuclear stopping depends on the mass asymmetry, incident energy and impact parameter, however, it is independent of the way of scaling the cross-section.
Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, Bernard
2012-06-20
Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less
Coulomb wave functions in momentum space
Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...
2015-10-15
We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10 -1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-02-06
We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
A Nuclear Waste Management Cost Model for Policy Analysis
NASA Astrophysics Data System (ADS)
Barron, R. W.; Hill, M. C.
2017-12-01
Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost-benefit analysis produce many scenarios where nuclear energy is economically unattractive.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
Cahill, Lindsay S; Hanna, John V; Wong, Alan; Freitas, Jair C C; Yates, Jonathan R; Harris, Robin K; Smith, Mark E
2009-09-28
Solid-state (25)Mg magic angle spinning nuclear magnetic resonance (MAS NMR) data are reported from a range of organic and inorganic magnesium-oxyanion compounds at natural abundance. To constrain the determination of the NMR interaction parameters (delta(iso), chi(Q), eta(Q)) data have been collected at three external magnetic fields (11.7, 14.1 and 18.8 T). Corresponding NMR parameters have also been calculated by using density functional theory (DFT) methods using the GIPAW approach, with good correlations being established between experimental and calculated values of both chi(Q) and delta(iso). These correlations demonstrate that the (25)Mg NMR parameters are very sensitive to the structure, with small changes in the local Mg(2+) environment and the overall hydration state profoundly affecting the observed spectra. The observations suggest that (25)Mg NMR spectroscopy is a potentially potent probe for addressing some key problems in inorganic materials and of metal centres in biologically relevant molecules.
Tephra Fallout Hazard Assessment for VEI5 Plinian Eruption at Kuju Volcano, Japan, Using TEPHRA2
NASA Astrophysics Data System (ADS)
Tsuji, Tomohiro; Ikeda, Michiharu; Kishimoto, Hiroshi; Fujita, Koji; Nishizaka, Naoki; Onishi, Kozo
2017-06-01
Tephra fallout has a potential impact on engineered structures and systems at nuclear power plants. We provide the first report estimating potential accumulations of tephra fallout as big as VEI5 eruption from Kuju Volcano and calculated hazard curves at the Ikata Power Plant, using the TEPHRA2 computer program. We reconstructed the eruptive parameters of Kj-P1 tephra fallout deposit based on geological survey and literature review. A series of parameter studies were carried out to determine the best values of empirical parameters, such as diffusion coefficient and the fall time threshold. Based on such a reconstruction, we represent probabilistic analyses which assess the variation in meteorological condition, using wind profiles extracted from a 22 year long wind dataset. The obtained hazard curves and probability maps of tephra fallout associated to a Plinian eruption were used to discuss the exceeding probability at the site and the implications of such a severe eruption scenario.
Constraining the symmetry energy with heavy-ion collisions and Bayesian analysis
NASA Astrophysics Data System (ADS)
Tsang, C. Y.; Jhang, G.; Morfouace, P.; Lynch, W. G.; Tsang, M. B.; HiRA Collaboration
2017-09-01
To extract constraints on symmetry energy terms in nuclear Equation of State (EoS), data from heavy ion reactions, are often compared to calculations from transport models. As multiple model input parameters are needed in the transport model, it is necessary to do multi-parameter analysis to understand the relationship especially if strong correlations exist among the parameters. In this talk, I will discuss how four symmetry energy parameters, So, (Symmetry energy) and L (slope) at saturation density as well as the nucleon scaler effective mass (ms*) and the nucleon effective mass splitting, (FI) are obtained by comparing transport mode results with experimental data such as isospin diffusions and n/p spectral ratios using MADAI Bayesian analysis software. Probability of each parameter having a certain value given experimental data can be calculated with Bayes theorem by Markov Chain Monte Carlo integration. Results using single and double ratios of neutron and proton spectra from 124Sn +124Sn, 112Sn +112Sn collisions at 120 MeV/u as well as isospin diffusion from Sn +Sn isotopes, at 50 and 35 MeV/u will be presented. This research is supported by the National Science Foundation under Grant No. PHY-1565546.
Imanaka, Tetsuji; Yamamoto, Masayoshi; Kawai, Kenta; Sakaguchi, Aya; Hoshi, Masaharu; Chaizhunusova, Nailya; Apsalikov, Kazbek
2010-11-01
After the disintegration of the USSR in end of 1991, it became possible for foreign scientists to visit Kazakhstan, in order to investigate the radiological consequences of nuclear explosions that had been conducted at the Semipalatinsk nuclear test site (SNTS). Since the first visit in 1994, our group has been continuing expeditions for soil sampling at various areas around SNTS. The current level of local fallout at SNTS was studied through γ-spectrometry for (137)Cs as well as α-spectrometry for (239,240)Pu. Average values of soil inventory from wide areas around SNTS were 3,500 and 3,700 Bq m(-2) for (137)Cs and (239,240)Pu, respectively, as of January 1, 2000. The average level of (137)Cs is comparable to that in Japan due to global fallout, while the level of (239,240)Pu is several tens of times larger than that in Japan. Areas of strong contamination were found along the trajectories of radioactive fallout, information on which was declassified after the collapse of the USSR. Our recent efforts of soil sampling were concentrated on the area around the Dolon village heavily affected by the radioactive plume from the first USSR atomic bomb test in 1949 and located 110 km east from ground zero of the explosion. Using soil inventory data, retrospective dosimetry was attempted by reconstructing γ-ray exposure from fission product nuclides deposited on the ground. Adopting representative parameters for the initial (137)Cs deposition (13 kBq m(-2)), the refractory/volatile deposition ratio (3.8) and the plume arrival time after explosion (2.5 h), an absorbed dose in air of 600 mGy was obtained for the 1-year cumulative dose in Dolon village, due to the first bomb test in 1949. Considering possible ranges of the parameters, 350 and 910 mGy were estimated for high and low cases of γ-ray dose in air, respectively. It was encouraging that the deduced value was consistent with other estimations using thermal luminescence and archived monitoring data. The present method can be applied to other settlements affected by local fallout from SNTS.
NASA Astrophysics Data System (ADS)
Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.
2018-03-01
This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.
Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature
NASA Astrophysics Data System (ADS)
Shi, K. K.; Xie, H.; Zheng, B.; Fu, X. L.
2018-06-01
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material’s mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.
NASA Astrophysics Data System (ADS)
Belaïd, Sarah; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Laurent, Sophie
2018-04-01
A study of the experimental conditions to synthesize monodisperse iron oxide nanocrystals prepared from the thermal decomposition of iron(III) acetylacetonate was carried out in the presence of surfactants and a reducing agent. The influence of temperature, synthesis time and surfactant amounts on nanoparticle properties is reported. This investigation combines relaxometric characterization and size properties. The relaxometric behavior of the nanomaterials depends on the selected experimental parameters. The synthesis of iron oxide nanoparticles with a high relaxivity and a high saturation magnetization can be obtained with a short reaction time at high temperature. Moreover, the influence of surfactant concentrations determines the optimal value in order to produce iron oxide nanoparticles with a narrow size distribution. The optimized synthesis is rapid, robust and reproductive, and produces nearly monodisperse magnetic nanocrystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net
2016-01-15
The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.
In far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this paper is to study effects of these variables on three model waste glasses (SON68, ISG, AFCI). To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH(RT) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. The results from these tests were then used to parameterize a kinetic rate model based on transition state theory. Both the absolute dissolution rates andmore » the rate model parameters are compared with previous results. Discrepancies in the absolute dissolution rates as compared to those obtained using other test methods are discussed. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies. The results were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), which is capable of providing a robust uncertainty analysis. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, the effect of glass composition on the rate parameter values could possibly be obtained. This would allow for the possibility of predicting the forward dissolution rate of glass based solely on composition« less
Solomentsev, Gleb; Diehl, Carl; Akke, Mikael
2018-03-06
FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on 15 N and 2 H NMR relaxation. Binding of FK506 to FKBP12 results in localized changes in order parameters, notably for the backbone of residues E54 and I56 and the side chains of I56, I90, and I91, all positioned in the binding site. The order parameters increase slightly upon FK506 binding, indicating an unfavorable entropic contribution to binding of TΔ S = -18 ± 2 kJ/mol at 293 K. Molecular dynamics simulations indicate a change in conformational entropy, associated with all dihedral angles, of TΔ S = -26 ± 9 kJ/mol. Both these values are significant compared to the total entropy of binding determined by isothermal titration calorimetry and referenced to a reactant concentration of 1 mM ( TΔ S = -29 ± 1 kJ/mol). Our results reveal subtle differences in the response to ligand binding compared to that of the previously studied rapamycin-FKBP12 complex, despite the high degree of structural homology between the two complexes and their nearly identical ligand-FKBP12 interactions. These results highlight the delicate dependence of protein dynamics on drug interactions, which goes beyond the view provided by static structures, and reinforce the notion that protein conformational entropy can make important contributions to the free energy of ligand binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, Jonathan R. M.; Natarajan, Ramesh
The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...
2014-07-30
Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less
Liu, Ning; Gan, Weidong; Qu, Feng; Wang, Zhen; Zhuang, Wenyuan; Agizamhan, Sezim; Xu, Linfeng; Yin, Juanjuan; Guo, Hongqian; Li, Dongmei
2018-04-01
The Fuhrman and World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading systems are widely used to predict survival for patients with conventional renal cell carcinoma. To determine the validity of nuclear grading systems (both the Fuhrman and the WHO/ISUP) and the individual components of the Fuhrman grading system in predicting the prognosis of Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC), we identified and followed up 47 patients with Xp11.2 tRCC in our center from January 2007 to June 2017. The Fuhrman and WHO/ISUP grading was reassigned by two pathologists. Nuclear size and shape were determined for each case based on the greatest degree of nuclear pleomorphism using image analysis software. Univariate and multivariate analyses were performed to evaluate the capacity of the grading systems and nuclear parameters to predict overall survival and progression-free survival. On univariate Cox regression analysis, the parameters of nuclear size were associated significantly with overall survival and progression-free survival, whereas the grading systems and the parameters of nuclear shape failed to reach a significant correlation. On multivariate analysis, however, none of the parameters was associated independently with survival. Our findings indicate that neither the Fuhrman nor the WHO/ISUP grading system is applicable to Xp11.2 tRCC. The assessment of nuclear size instead may be novel outcome predictors for patients with Xp11.2 tRCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.W.; Layton, J.P.
1976-09-13
The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The NUROC3A systems analysis code was designed to provide the user with performance characteristics of the dual-mode system. Volume 3 describes utilization of the NUROC3A code to produce a detailed parameter study of the system.
Nuclear Engine System Simulation (NESS) version 2.0
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.
Fast rotating neutron stars with realistic nuclear matter equation of state
NASA Astrophysics Data System (ADS)
Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.
2015-07-01
We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.
NASA Astrophysics Data System (ADS)
Sokolova, Inna
2014-05-01
Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters of explosions. MLV, mpv, and energy class K were determined for all underground nuclear explosions conducted at the STS using historical seismograms from Central Asia stations. Dependencies of regional magnitudes on yield were received for air and underground nuclear explosions. Thus, application of historical seismograms at regional distances allows to recover and replenish the seismic catalogues of past nuclear explosions for further use in scientific investigations and monitoring tasks.
Nuclear Data Sheets page at the NNDC
Nuclear Data Sheets Home Index Special Issues Citation Elsevier ENSDF NSR NSDD NNDC Citation Parameters: A few plots that help characterize the Nuclear Data Sheets (NDS) journal are shown in this page number of citations per article during the 1992-2002 period are plotted in the figure below for Nuclear
Gas inflow patterns and nuclear rings in barred galaxies
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhi
2017-06-01
Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.
Hara, Hitoshi; Misawa, Tsuneo; Ishii, Eri; Nakagawa, Miki; Koshiishi, Saki; Amemiya, Kenji; Oyama, Toshio; Tominaga, Kazuya; Cheng, Jun; Tanaka, Akio; Saku, Takashi
2017-05-01
The cytology of oral squamous cell carcinoma (SCC) is challenging because oral SCC cells tend to be well differentiated and lack nuclear atypia, often resulting in a false negative diagnosis. The purpose of this study was to establish practical cytological parameters specific to oral SCCs. We reviewed 123 cases of malignancy and 53 of non-neoplastic lesions of the oral mucosa, which had been diagnosed using both cytology and histopathology specimens. From those, we selected 12 SCC and 4 CIS cases that had initially been categorized as NILM to ASC-H with the Bethesda system, as well as 4 non-neoplastic samples categorized as LSIL or ASC-H as controls, and compared their characteristic findings. After careful examinations, we highlighted five cytological parameters, as described in Results. Those 20 cytology samples were then reevaluated by 4 independent examiners using the Bethesda system as well as the 5 parameters. Five cytological features, (i) concentric arrangement of orangeophilic cells (indicating keratin pearls), (ii) large number of orangeophilic cells, (iii) bizarre-shaped orangeophilic cells without nuclear atypia, (iv) keratoglobules, and (v) uneven filamentous cytoplasm, were found to be significant parameters. All malignant cases contained at least one of those parameters, while none were observed in the four non-neoplastic cases with nuclear atypia. In reevaluations, the Bethesda system did not help the screeners distinguish oral SCCs from non-neoplastic lesions, while use of the five parameters enabled them to make a diagnosis of SCC. Recognition of the present five parameters is useful for oral SCC cytology. Diagn. Cytopathol. 2017;45:406-417. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.
2014-09-01
Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.
Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.
Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi
2005-01-27
Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].
NASA Astrophysics Data System (ADS)
Avedon, Roger Edmond
This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation. The opportunity cost of such events is prohibitively difficult to assess. Instead, recent nonproliferation efforts and long term funding of organizations with nonproliferation objectives suggest a willingness-to-pay to avoid breaches in nuclear security. The cancellation of the Integral Fast Reactor in 1994 is analyzed using the methodology developed in the dissertation.
Use of DandD for dose assessment under NRC`s radiological criteria for license termination rule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, D.P.; Brown, T.J.; Davis, P.A.
The Decontamination and Decommissioning (DandD) software package has been developed by Sandia National Laboratories for the Nuclear Regulatory Commission (NRC) specifically for the purpose of providing a user-friendly analytical tool to address the dose criteria contained in NRC`s Radiological Criteria for License Termination rule (10 CFR Part 20 Subpart E; NRC, 1997). Specifically, DandD embodies the NRC`s screening methodology to allow licensees to convert residual radioactivity contamination levels at their site to annual dose, in a manner consistent with both 10 CFR Part 20 and the corresponding implementation guidance developed by NRC. The screening methodology employs reasonably conservative scenarios, fatemore » and transport models, and default parameter values that have been developed to allow the NRC to quantitatively estimate the risk of releasing a site given only information about the level of contamination. Therefore, a licensee has the option of specifying only the level of contamination and running the code with the default parameter values, or in the case where site specific information is available to alter the appropriate parameter values and then calculate dose. DandD can evaluate dose for fur different scenarios: residential, building occupancy, building renovation, or drinking water. The screening methodology and DandD are part of a larger decision framework that allows and encourages licensees to optimize decisions on choice of alternative actions at their site, including collection of additional data and information. This decision framework is integrated into and documented in NRC`s technical guidance for decommissioning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaret A. Marshall; John D. Bess; Yevgeniy Rozhikhin
In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments[1]. Part of the experimental series was the measurement of the delayed neutron fraction, ßeff, using time correlation measurements and using the central void reactivity measurement. The time correlations measurements were rejected by the experimenter. The measurements using the central void reactivity measurement yielded a ßeff value of 0.00657, which agrees well with the value measured with GODIVA I (0.0066). This measurement is evaluated, found to be acceptable, and discussed in extensive detail in “ORSphere: Physics Measurements for Bare, HEU(93.2) Metal Sphere”[2]. In order to determine the delayed neutron fraction using the central void reactivity delayed neutron parameters must be used. The experimenter utilized the delayed neutron parameters set forth by Keepin, Wimment, and Zeigler[3]. If the derivation of the ßeff is repeated with different delayed neutron parameters from various modern nuclear data sets the resulting values vary greatly from the expected results.« less
10 CFR 52.93 - Exemptions and variances.
Code of Federal Regulations, 2010 CFR
2010-01-01
... referencing a nuclear power reactor manufactured under a manufacturing license issued under subpart F of this... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS..., site parameters, terms and conditions, or approved design of the manufactured reactor. The Commission...
Utilization of barite/cement composites for gamma rays attenuation
NASA Astrophysics Data System (ADS)
Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil
2018-04-01
The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.
Cross-Section Measurements via the Activation Technique at the Cologne Clover Counting Setup
NASA Astrophysics Data System (ADS)
Heim, Felix; Mayer, Jan; Netterdon, Lars; Scholz, Philipp; Zilges, Andreas
The activation technique is a widely used method for the determination of cross-section values for charged-particle induced reactions at astrophysically relevant energies. Since network calculations of nucleosynthesis processes often depend on reaction rates calculated in the scope of the Hauser-Feshbach statistical model, these cross-sections can be used to improve the nuclear-physics input-parameters like optical-model potentials (OMP), γ-ray strength functions, and nuclear level densities. In order to extend the available experimental database, the 108Cd(α, n)111Sn reaction cross section was investigated at ten energies between 10.2 and 13.5 MeV. As this reaction at these energies is almost only sensitive on the α-decay width, the results were compared to statistical model calculations using different models for the α-OMP. The irradiation as well as the consecutive γ-ray counting were performed at the Institute for Nuclear Physics of the University of Cologne using the 10 MV FN-Tandem accelerator and the Cologne Clover Counting Setup. This setup consists of two clover- type high purity germanium (HPGe) detectors in a close face-to-face geometry to cover a solid angle of almost 4π.
Cesium-137 Fallout in Indiana Soil
NASA Astrophysics Data System (ADS)
Whitman, Richard T.
Atomic weapons testing during the Cold War and accidents at nuclear power plants have resulted in the release of radioactive fallout over great distances. Little is known about levels of fallout deposited in Indiana. The reported study sampled soil in all 92 Indiana counties to determine the present level of cesium-137 from the 2 to 12 centimeter depth from previous nuclear tests and other nuclear releases. A total of 67 samples were collected from forested areas and 25 from grasslands, both undisturbed since 1940, along with four controls from crawl spaces. Greater Cs-137 retention occurred in the forested areas at approximately a 2:1 ratio. Other parameters investigated included soil clay content, rate of rainfall, and soil pH. Each variable was examined for possible statistical correlation with Cs-137 retention. Both clay content and combined clay content/rainfall were significantly (p < 0.05) correlated with soil Cs-137 levels. The four controls showed very low values of Cs-137 indicating the movement of sub-micron sized fallout into areas considered safe from fallout. The Cs-137 data from this study will serve as a reliable baseline of Cs-137 levels in the event of a future release of fallout.
Fendler, Wojciech; Borowiec, Maciej; Antosik, Karolina; Szadkowska, Agnieszka; Deja, Grazyna; Jarosz-Chobot, Przemyslawa; Mysliwiec, Malgorzata; Wyka, Krystyna; Pietrzak, Iwona; Skupien, Jan; Malecki, Maciej T; Mlynarski, Wojciech
2011-09-01
Confirmation of monogenic diabetes caused by glucokinase mutations (GCK-MODY) allows pharmacogenetic intervention in the form of insulin discontinuation. This is especially important among paediatric and young adult populations where GCK-MODY is most prevalent. The study evaluated the utility of lipid parameters in screening for patients with GCK-MODY. Eighty-nine children with type 1 diabetes and 68 with GCK-MODY were screened for triglyceride (TG), total and HDL cholesterol levels. Standardization against a control group of 171 healthy children was applied to eliminate the effect of development. Clinical applicability and cut-off value were evaluated in all available patients with GCK-MODY (n = 148), hepatocyte nuclear factor 1-alpha-MODY (HNF1A MODY) (n = 37) or type 1 diabetes (n = 221). Lower lipid parameter values were observed in GCK-MODY than in patients with type 1 diabetes. Standard deviation scores were -0·22 ± 2·24 vs 1·31 ± 2·17 for HDL cholesterol (P < 0·001), -0·16 ± 2·14 vs 0·60 ± 1·77 for total cholesterol (P = 0·03) and -0·57 ± 0·97 vs-0·22 ± 0·97 for TG (P = 0·05). Validation analysis confirmed that HDL cholesterol was the best parameter for GCK-MODY selection [sensitivity 87%, specificity 54%, negative predictive value (NPV) 86%, positive PV 56%]. A threshold HDL concentration of 1·56 mm offered significantly better diagnostic efficiency than total cholesterol (cut-off value 4·51 mm; NPV 80%; PPV 38%; P < 0·001). TG did not offer a meaningful cut-off value. HDL cholesterol levels measured in individuals with likely monogenic diabetes may be useful in screening for GCK-MODY and differentiation from T1DM and HNF1A-MODY, regardless of treatment or metabolic control. © 2011 Blackwell Publishing Ltd.
Ivannikov, A I; Zhumadilov, Zh; Gusev, B I; Miyazawa, Ch; Jiao, L; Skvortsov, V G; Stepanenko, V F; Takada, J; Hoshi, M
2002-08-01
Individual accumulated doses were determined by EPR spectroscopy of tooth enamel for 26 adult persons residing in territories adjacent to the Semipalatinsk Nuclear Test Site (SNTS). The absorbed dose values due to radiation from nuclear tests were obtained after subtracting the contribution of natural background radiation from the total accumulated dose. The determined dose values ranged up to 250 mGy, except for one person from Semipalatinsk city with a measured dose of 2.8 +/- 0.4 Gy. Increased dose values were determined for the individuals whose teeth were formed before 1962, the end of the atmospheric nuclear tests. These values were found to be significantly larger than those obtained for a group of younger residents of heavily exposed territories and the residents of territories not exposed to radioactive fallout. These increased dose values are consistent with those based on officially registered data for the Northeastern part of Kazakstan adjacent to SNTS, which was exposed to high levels of radioactive fallout from nuclear tests in period 1949-1962.
Precipitation process for the removal of technetium values from nuclear waste solutions
Walker, D.D.; Ebra, M.A.
1985-11-21
High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.
Fractal Model of Fission Product Release in Nuclear Fuel
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas
2012-09-01
A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.
NASA Astrophysics Data System (ADS)
Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.
2017-12-01
When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, IV, George Espy; Goda, Joetta Marie; Grove, Travis Justin
This paper examines the comparison of MCNP® code’s capability to calculate kinetics parameters effectively for a thermal system containing highly enriched uranium (HEU). The Rossi-α parameter was chosen for this examination because it is relatively easy to measure as well as easy to calculate using MCNP®’s kopts card. The Rossi-α also incorporates many other parameters of interest in nuclear kinetics most of which are more difficult to precisely measure. The comparison looks at two different nuclear data libraries for comparison to the experimental data. These libraries are ENDF/BVI (.66c) and ENDF/BVII (.80c).
Discriminative detection of deposited radon daughters on CR-39 track detectors using TRIAC II code
NASA Astrophysics Data System (ADS)
Patiris, D. L.; Ioannides, K. G.
2009-07-01
A method for detecting deposited 218Po and 214Po by a spectrometric study of CR-39 solid state nuclear track detectors is described. The method is based on the application of software imposed selection criteria, concerning the geometrical and optical properties of the tracks, which correspond to tracks created by alpha particles of specific energy falling on the detector at given angles of incidence. The selection criteria were based on a preliminary study of tracks' parameters (major and minor axes and mean value of brightness), using the TRIAC II code. Since no linear relation was found between the energy and the geometric characteristics of the tracks (major and minor axes), we resorted to the use of an additional parameter in order to classify the tracks according to the particles' energy. Since the brightness of tracks is associated with the tracks' depth, the mean value of brightness was chosen as the parameter of choice. To reduce the energy of the particles, which are emitted by deposited 218Po and 214Po into a quantifiable range, the detectors were covered with an aluminum absorber material. In this way, the discrimination of radon's daughters was finally accomplished by properly selecting amongst all registered tracks. This method could be applied as a low cost tool for the study of the radon's daughters behavior in air.
Garitte, B.; Shao, H.; Wang, X. R.; ...
2017-01-09
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garitte, B.; Shao, H.; Wang, X. R.
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
Horwitz, E. Philip; Delphin, Walter H.
1979-07-24
A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, J.B.
1997-12-31
Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspirationmore » at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.« less
NASA Astrophysics Data System (ADS)
Gillette, V. H.; Patiño, N. E.; Granada, J. R.; Mayer, R. E.
1989-08-01
Using a synthetic incoherent scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero- and first-order scattering kernels, σ0( E0 → E), σ1( E0 → E), and total cross section σ0( E0). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2O, D 2O, C 6H 6 and (CH 2) n at room temperature. Comparison of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2O with 47 thermal groups at 300 K and performed some benchmark calculations ( 235U, 239Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations.
Uncertainty quantification and propagation in nuclear density functional theory
Schunck, N.; McDonnell, J. D.; Higdon, D.; ...
2015-12-23
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less
n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV
NASA Astrophysics Data System (ADS)
Pigni, Marco T.; Capote, Roberto; Trkov, Andrej; Pronyaev, Vladimir G.
2017-09-01
In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO) pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL) collaborated with the International Atomic Energy Agency (IAEA) to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs) and thermal prompt fission neutron spectra (PFNS). Performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF) measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.
Combinatorial investigation of Fe–B thin-film nanocomposites
Brunken, Hayo; Grochla, Dario; Savan, Alan; Kieschnick, Michael; Meijer, Jan D; Ludwig, Alfred
2011-01-01
Combinatorial magnetron sputter deposition from elemental targets was used to create Fe–B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young's modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films. PMID:27877435
Mixed model approaches for diallel analysis based on a bio-model.
Zhu, J; Weir, B S
1996-12-01
A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.
Nuclear modification factor in an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Mandal, Mahatsab; Bhattacharya, Lusaka; Roy, Pradip
2011-10-01
We calculate the nuclear modification factor (RAA) of light hadrons by taking into account the initial state momentum anisotropy of the quark-gluon plasma (QGP) expected to be formed in relativistic heavy ion collisions. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter. A phenomenological model for the space-time evolution of the anisotropic QGP is used to obtain the time dependence of the anisotropy parameter ξ and the hard momentum scale, phard. The result is then compared with the PHENIX experimental data to constrain the isotropization time scale, τiso for fixed initial conditions (FIC). It is shown that the extracted value of τiso lies in the range 0.5⩽τiso⩽1.5. However, using a fixed final multiplicity (FFM) condition does not lead to any firm conclusion about the extraction of the isotropization time. The present calculation is also extended to contrast with the recent measurement of nuclear modification factor by the ALICE collaboration at s=2.76 TeV. It is argued that in the present approach, the extraction of τiso at this energy is uncertain and, therefore, refinement of the model is necessary. The sensitivity of the results on the initial conditions has been discussed. We also present the nuclear modification factor at Large Hadron Collider (LHC) energies with s=5.5 TeV.
The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China
NASA Astrophysics Data System (ADS)
Weng, Yuqing
Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.
Cunha, Lucas Leite; Ferreira, Rita de Cássia; de Matos, Patricia Sabino; da Assumpção, Ligia Vera Montalli; Ward, Laura Sterian
2014-01-01
A disparity in gender incidence has been reported in both papillary thyroid carcinoma (PTC) and chronic lymphocytic thyroiditis (CLT) diseases frequently associated and whose incidence has been increasing in parallel. We aimed to analyze differences in morphometric variables between male and female PTC patients and their relationship with the presence of concurrent CLT. The nuclear texture features of 100 hematoxylin-eosin stained nuclei from 100 consecutive classic PTC patients enrolled in our service were compared with their clinical and pathological features, including the presence of CLT. All patients were submitted to a standard management protocol and followed-up for 13-248 months (Mo = 117 months). Chromatin in women tended to present a denser and more homogeneous structure, in a less mottled pattern, with higher values of energy (p = 0.008) and diagonal moment (p = 0.032) than men. Concurrent CLT was more prevalent in women (41.42%) than in men (13.33%, p = 0.04) and was associated with higher cluster prominence values (p = 0.027), a parameter that indicates a predominance of high nuclear contrasted heterochromatin. A multivariate logistic regression analysis showed that higher cluster prominence was independently correlated with chromatin in patients who presented CLT but did not demonstrate any association between concurrent CLT and gender. We were unable to demonstrate any association between gender and any characteristic of tumor aggressiveness or patients outcome. Our results suggest that chromatin texture of hematoxylin-eosin stained nuclei in paraffin sections of PTC cells is related to both gender and concurrent CLT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M
This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developedmore » dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.« less
Radon survey and soil gamma doses in primary schools of Batman, Turkey.
Damla, Nevzat; Aldemir, Kamuran
2014-06-01
A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Ivan; Bosbach, Dirk; Aksyutina, Yuliya
A requisite for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the values of the radionuclide (RN) activities and their uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, the details of the irradiation history are often not well known, which complicates the assessment of declared RN inventories. Here, we have compiled a set of burnup calculationsmore » accounting for the operational history of 339 published or anonymized real PWR fuel assemblies (FA). These histories were used as a basis for a 'SRP analysis', to provide information about the range of the values of the associated secondary reactor parameters (SRP's). Hence, we can calculate the realistic variation or spectrum of RN inventories. SCALE 6.1 has been employed for the burn-up calculations. The results have been validated using experimental data from the online database - SFCOMPO-1 and -2. (authors)« less
Asymptotic Normalization Coefficients in a Potential Model Involving Forbidden States
NASA Astrophysics Data System (ADS)
Blokhintsev, L. D.; Savin, D. A.
2018-03-01
It is shown that values obtained for asymptotic normalization coefficients by means of a potential fitted to experimental data on elastic scattering depend substantially on the presence and the number n of possible forbidden states in the fitted potential. The present analysis was performed within exactly solvable potential models for various nuclear systems and various potentials without and with allowance for Coulomb interaction. Various methods for changing the number n that are based on the use of various versions of the change in the parameters of the potential model were studied. A compact analytic expression for the asymptotic normalization coefficients was derived for the case of the Hulthén potential. Specifically, the d + α and α + 12C systems, which are of importance for astrophysics, were examined. It was concluded that an incorrect choice of n could lead to a substantial errors in determining the asymptotic normalization coefficients. From the results of our calculations, it also follows that, for systems with a low binding energy and, as a consequence, with a large value of the Coulomb parameter, the inclusion of the Coulomb interaction may radically change the asymptotic normalization coefficients, increasing them sharply.
Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)
DOE Office of Scientific and Technical Information (OSTI.GOV)
BABA,T.; ISHIGURO,K.; ISHIHARA,Y.
1999-08-30
Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs weremore » defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.« less
Nuclear power propulsion system for spacecraft
NASA Astrophysics Data System (ADS)
Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.
2015-12-01
The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.
Francis Perrin's 1939 Analysis of Uranium Criticality
NASA Astrophysics Data System (ADS)
Reed, Cameron
2012-03-01
In May 1939, French physicist Francis Perrin published the first numerical estimate of the fast-neutron critical mass of a uranium compound. While his estimate of about 40 metric tons (12 tons if tamped) pertained to uranium oxide of natural isotopic composition as opposed to the enriched uranium that would be required for a nuclear weapon, it is interesting to examine Perrin's physics and to explore the subsequent impact of his paper. In this presentation I will discuss Perrin's model, the likely provenance of his parameter values, and how his work compared to the approach taken by Robert Serber in his 1943 Los Alamos Primer.
NASA Astrophysics Data System (ADS)
MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.
2011-04-01
The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.
Fundamental studies in X-ray astrophysics
NASA Technical Reports Server (NTRS)
Lamb, D. Q.; Lightman, A. P.
1982-01-01
An analytical model calculation of the ionization structure of matter accreting onto a degenerate dwarf was carried out. Self-consistent values of the various parameters are used. The possibility of nuclear burning of the accreting matter is included. We find the blackbody radiation emitted from the stellar surface keeps hydrogen and helium ionized out to distances much larger than a typical binary separation. Except for low mass stars or high accretion rates, the assumption of complete ionization of the elements heavier than helium is a good first approximation. For low mass stars or high accretion rates the validity of assuming complete ionization depends sensitivity on the distribution of matter in the binary system.
Recording 2-D Nutation NQR Spectra by Random Sampling Method
Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw
2010-01-01
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121
Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.
Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico
2011-08-30
Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.
Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H
2005-11-30
Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.
The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco
This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water.more » The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.« less
Shock-turbulence interaction in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat
2016-10-01
Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.
Neutron activation analysis of certified samples by the absolute method
NASA Astrophysics Data System (ADS)
Kadem, F.; Belouadah, N.; Idiri, Z.
2015-07-01
The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.
Neutron transport analysis for nuclear reactor design
Vujic, Jasmina L.
1993-01-01
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.
Neutron transport analysis for nuclear reactor design
Vujic, J.L.
1993-11-30
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
Interdependence of different symmetry energy elements
NASA Astrophysics Data System (ADS)
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.
2017-08-01
Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.
Shivakumar, H N; Desai, B G; Pandya, Saumyak; Karki, S S
2007-01-01
Glipizide was complexed with beta-cyclodextrin in an attempt to enhance the drug solubility. The phase solubility diagram was classified as A(L) type, which was characterized by an apparent 1:1 stability constant that had a value of 413.82 M(-1). Fourier transform infrared spectrophotometry, differential scanning calorimetry, powder x-ray diffractometry and proton nuclear magnetic resonance spectral analysis indicated considerable interaction between the drug and beta-cyclodextrin. A 2(3) factorial design was employed to prepare hydroxypropyl methylcellulose (HPMC) matrix tablets containing the drug or its complex. The effect of the total polymer loads (X1), levels of HPMC K100LV (X9), and complexation (X3) on release at first hour (Y1), 24 h (Y2), time taken for 50% release (Y3), and diffusion exponent (Y4) was systematically analyzed using the F test. Mathematical models containing only the significant terms (P < 0.05) were generated for each parameter by multiple linear regression analysis and analysis of variance. Complexation was found to exert a significant effect on Y1, Y2, and Y3, whereas total polymer loads significantly influenced all the responses. The models generated were validated by developing two new formulations with a combination of factors within the experimental domain. The experimental values of the response parameters were in close agreement with the predicted values, thereby proving-the validity of the generated mathematical models.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, M. C.
2014-02-07
There have been many words written about the value and importance of nuclear disarmament. There have been many words written about the value and importance to the U.S. defense posture of nuclear weapons. This thesis will not be about either one of those points of view. The commentary will not purport to tell anyone that there is a need or there is not a need for one nuclear weapon or thousands of nuclear weapons. This study is more about, "well, they are here -- now what?"
Minimal nuclear energy density functional
NASA Astrophysics Data System (ADS)
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas
2018-04-01
We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
Minimal nuclear energy density functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi
Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less
Minimal nuclear energy density functional
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; ...
2018-04-17
Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less
Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U
2014-07-01
This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water uptake pathways and processes such as assimilation and excretion, (ii) the possibility to extrapolate within element groups (a common requirement in many risk assessments when initial model parameters are scarce) and (iii) predictions of radionuclide uptake in the ecosystem after changes in ecosystem structure or environmental conditions. These features are important for the longterm (>1000 year) risk assessments that need to be considered for a deep nuclear waste repository. Copyright © 2013. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Cruz, D. F.; Rochman, D.; Koning, A. J.
2012-07-01
This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {supmore » 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)« less
14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide
NASA Astrophysics Data System (ADS)
Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.
2016-06-01
The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.
Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus.
Moore, J D; Elston, R A; Drum, A S; Wilkinson, M T
1991-09-01
The proliferative disease systemic neoplasia, also termed hemic neoplasia or disseminated sarcoma, was studied in four Puget Sound, Washington populations of the bay mussel (Mytilus sp.). Using flow cytometric measurement of DAPI-stained cells withdrawn from the hemolymph, DNA content frequency histograms were generated for 73 individuals affected by the disease. The cells manifesting systemic neoplasia were found to exist as either of two separate types, characterized by G0G1 phase nuclear DNA contents of either approximately 4.9 x haploid (pentaploid form) or approximately 3.8 x haploid (tetraploid form). The two disease forms were found to coexist in all four mussel populations sampled, with overall relative prevalences of 66% pentaploid form, 29% tetraploid form, and 5% exhibiting both disease forms simultaneously. These findings represent the first unequivocal demonstration of multiple cell types in a bivalve neoplasia. The two forms appear to represent separate pathogenetic processes rather than sequential stages of a single pathogenesis. Two cell cycling parameters associated with proliferative activity were employed to compare the alternate forms: (i) the percentage of cells assigned to the DNA Synthesis (S) phase of the neoplastic cell cycle, and (ii) the proportion of neoplastic cell mitotic figures in hemocytological preparations. Mean values for both parameters were significantly higher for mussels with the tetraploid form of the disease, suggesting a higher rate of proliferation relative to the pentaploid form. Qualitatively, cells of the tetraploid form contained slightly lower nuclear and cytoplasmic volumes compared to those of the pentaploid form. An observed wide variation in neoplastic cell nuclear size within either disease form may reflect the distribution of cells in the G0G1, S, and G2M phases of the cell cycle. Potential etiologic relationships between the two forms are discussed.
NMReDATA, a standard to report the NMR assignment and parameters of organic compounds.
Pupier, Marion; Nuzillard, Jean-Marc; Wist, Julien; Schlörer, Nils E; Kuhn, Stefan; Erdelyi, Mate; Steinbeck, Christoph; Williams, Antony J; Butts, Craig; Claridge, Tim D W; Mikhova, Bozhana; Robien, Wolfgang; Dashti, Hesam; Eghbalnia, Hamid R; Farès, Christophe; Adam, Christian; Kessler, Pavel; Moriaud, Fabrice; Elyashberg, Mikhail; Argyropoulos, Dimitris; Pérez, Manuel; Giraudeau, Patrick; Gil, Roberto R; Trevorrow, Paul; Jeannerat, Damien
2018-04-14
Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates. The file format is an extension of the existing Structure Data Format, which is compatible with the commonly used MOL format. The association of an NMReDATA file with the raw and spectral data from which it originates constitutes an NMR record. This format is easily readable by humans and computers and provides a simple and efficient way for disseminating results of structural chemistry investigations, allowing automatic verification of published results, and for assisting the constitution of highly needed open-source structural databases. Copyright © 2018 John Wiley & Sons, Ltd.
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images
Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.
2014-01-01
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods, which used inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high detection accuracies ( 98 mean F-measure) irrespective of the large variations of filter parameters and noise levels. PMID:25020042
Three-dimensional Monte Carlo calculation of some nuclear parameters
NASA Astrophysics Data System (ADS)
Günay, Mehtap; Şeker, Gökmen
2017-09-01
In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
Double β-decay nuclear matrix elements for the A=48 and A=58 systems
NASA Astrophysics Data System (ADS)
Skouras, L. D.; Vergados, J. D.
1983-11-01
The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.
Design and implementation of a simple nuclear power plant simulator
NASA Astrophysics Data System (ADS)
Miller, William H.
1983-02-01
A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.
Gerber, Iann C; Jolibois, Franck
2015-05-14
Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.
Electronic structures of elements according to ionization energies.
Zadeh, Dariush H
2017-11-28
The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.
NASA Astrophysics Data System (ADS)
Lee, Bum Han; Lee, Sung Keun
2017-10-01
The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.
NASA Astrophysics Data System (ADS)
Peng, L.; Pan, H.; Ma, H.; Zhao, P.; Qin, R.; Deng, C.
2017-12-01
The irreducible water saturation (Swir) is a vital parameter for permeability prediction and original oil and gas estimation. However, the complex pore structure of the rocks makes the parameter difficult to be calculated from both laboratory and conventional well logging methods. In this study, an effective statistical method to predict Swir is derived directly from nuclear magnetic resonance (NMR) data based on fractal theory. The spectrum of transversal relaxation time (T2) is normally considered as an indicator of pore size distribution, and the micro- and meso-pore's fractal dimension in two specific range of T2 spectrum distribution are calculated. Based on the analysis of the fractal characteristics of 22 core samples, which were drilled from four boreholes of tight lithologic oil reservoirs of Ordos Basin in China, the positive correlation between Swir and porosity is derived. Afterwards a predicting model for Swir based on linear regressions of fractal dimensions is proposed. It reveals that the Swir is controlled by the pore size and the roughness of the pore. The reliability of this model is tested and an ideal consistency between predicted results and experimental data is found. This model is a reliable supplementary to predict the irreducible water saturation in the case that T2 cutoff value cannot be accurately determined.
Diagnostic Algorithm to Reflect Regressive Changes of Human Papilloma Virus in Tissue Biopsies
Lhee, Min Jin; Cha, Youn Jin; Bae, Jong Man; Kim, Young Tae
2014-01-01
Purpose Landmark indicators have not yet to be developed to detect the regression of cervical intraepithelial neoplasia (CIN). We propose that quantitative viral load and indicative histological criteria can be used to differentiate between atypical squamous cells of undetermined significance (ASCUS) and a CIN of grade 1. Materials and Methods We collected 115 tissue biopsies from women who tested positive for the human papilloma virus (HPV). Nine morphological parameters including nuclear size, perinuclear halo, hyperchromasia, typical koilocyte (TK), abortive koilocyte (AK), bi-/multi-nucleation, keratohyaline granules, inflammation, and dyskeratosis were examined for each case. Correlation analyses, cumulative logistic regression, and binary logistic regression were used to determine optimal cut-off values of HPV copy numbers. The parameters TK, perinuclear halo, multi-nucleation, and nuclear size were significantly correlated quantitatively to HPV copy number. Results An HPV loading number of 58.9 and AK number of 20 were optimal to discriminate between negative and subtle findings in biopsies. An HPV loading number of 271.49 and AK of 20 were optimal for discriminating between equivocal changes and obvious koilocytosis. Conclusion We propose that a squamous epithelial lesion with AK of >20 and quantitative HPV copy number between 58.9-271.49 represents a new spectrum of subtle pathological findings, characterized by AK in ASCUS. This can be described as a distinct entity and called "regressing koilocytosis". PMID:24532500
Folks, Russell D; Garcia, Ernest V; Taylor, Andrew T
2007-03-01
Quantitative nuclear renography has numerous potential sources of error. We previously reported the initial development of a computer software module for comprehensively addressing the issue of quality control (QC) in the analysis of radionuclide renal images. The objective of this study was to prospectively test the QC software. The QC software works in conjunction with standard quantitative renal image analysis using a renal quantification program. The software saves a text file that summarizes QC findings as possible errors in user-entered values, calculated values that may be unreliable because of the patient's clinical condition, and problems relating to acquisition or processing. To test the QC software, a technologist not involved in software development processed 83 consecutive nontransplant clinical studies. The QC findings of the software were then tabulated. QC events were defined as technical (study descriptors that were out of range or were entered and then changed, unusually sized or positioned regions of interest, or missing frames in the dynamic image set) or clinical (calculated functional values judged to be erroneous or unreliable). Technical QC events were identified in 36 (43%) of 83 studies. Clinical QC events were identified in 37 (45%) of 83 studies. Specific QC events included starting the camera after the bolus had reached the kidney, dose infiltration, oversubtraction of background activity, and missing frames in the dynamic image set. QC software has been developed to automatically verify user input, monitor calculation of renal functional parameters, summarize QC findings, and flag potentially unreliable values for the nuclear medicine physician. Incorporation of automated QC features into commercial or local renal software can reduce errors and improve technologist performance and should improve the efficiency and accuracy of image interpretation.
Walker, Darrel D.; Ebra, Martha A.
1987-01-01
High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.
14C content in vegetation in the vicinities of Brazilian nuclear power reactors.
Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela
2008-07-01
(14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.
Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths
NASA Astrophysics Data System (ADS)
Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.
1982-04-01
Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.
NASA Astrophysics Data System (ADS)
Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.
2018-05-01
The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.
Interviewing a Silent (Radioactive) Witness through Nuclear Forensic Analysis.
Mayer, Klaus; Wallenius, Maria; Varga, Zsolt
2015-12-01
Nuclear forensics is a relatively young discipline in science which aims at providing information on nuclear material of unknown origin. The determination of characteristic parameters through tailored analytical techniques enables establishing linkages to the material's processing history and hence provides hints on its place and date of production and on the intended use.
EMPIRE: A code for nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, A.
The nuclear reaction code EMPIRE is presented as a useful tool for nuclear astrophysics. EMPIRE combines a variety of the reaction models with a comprehensive library of input parameters providing a diversity of options for the user. With exclusion of the directsemidirect capture all reaction mechanisms relevant to the nuclear astrophysics energy range of interest are implemented in the code. Comparison to experimental data show consistent agreement for all relevant channels.
Lee, Hyekyung; Han, Myungein; Yoo, Taejo; Jung, Chanho; Son, Hyun-Jin; Cho, Migyung
2018-05-01
Development of computerized image analysis techniques has opened up the possibility for the quantitative analysis of nuclear chromatin in pathology. We hypothesized that the features extracted from digital images could be used to determine specific cytomorphological findings for nuclear chromatin that may be applicable for establishing a medical diagnosis. Three parameters were evaluated from nuclear chromatin images obtained from the liquid-based cervical cytology samples of patients with biopsy-proven high-grade squamous intraepithelial lesion (HGSIL), and compared between non-neoplastic squamous epithelia and dysplastic epithelia groups: (1) standard deviation (SD) of the grayscale intensity; (2) difference between the maximum and minimum grayscale intensity (M-M); and (3) thresholded area percentage. Each parameter was evaluated at the mean, mean-1SD, and mean-2SD thresholding intensity levels. Between the mean and mean-1SD levels, the thresholded nuclear chromatin pattern was most similar to the chromatin granularity of the unthresholded grayscale images. The SD of the gray intensity and the thresholded area percentage differed significantly between the non-neoplastic squamous epithelia and dysplastic epithelia of HGSIL images at all three thresholding intensity levels (mean, mean-1SD, and mean-2SD). However, the M-M significantly differed between the two sample types for only two of the thresholding intensity levels (mean-1SD and mean-2SD). The digital parameters SD and M-M of the grayscale intensity, along with the thresholded area percentage could be useful in automated cytological evaluations. Further studies are needed to identify more valuable parameters for clinical application. © 2018 Wiley Periodicals, Inc.
Statistical Modeling of Extreme Values and Evidence of Presence of Dragon King (DK) in Solar Wind
NASA Astrophysics Data System (ADS)
Gomes, T.; Ramos, F.; Rempel, E. L.; Silva, S.; C-L Chian, A.
2017-12-01
The solar wind constitutes a nonlinear dynamical system, presenting intermittent turbulence, multifractality and chaotic dynamics. One characteristic shared by many such complex systems is the presence of extreme events, that play an important role in several Geophysical phenomena and their statistical characterization is a problem of great practical relevance. This work investigates the presence of extreme events in time series of the modulus of the interplanetary magnetic field measured by Cluster spacecraft on February 2, 2002. One of the main results is that the solar wind near the Earth's bow shock can be modeled by the Generalized Pareto (GP) and Generalized Extreme Values (GEV) distributions. Both models present a statistically significant positive shape parameter which implyies a heavy tail in the probability distribution functions and an unbounded growth in return values as return periods become too long. There is evidence that current sheets are the main responsible for positive values of the shape parameter. It is also shown that magnetic reconnection at the interface between two interplanetary magnetic flux ropes in the solar wind can be considered as Dragon Kings (DK), a class of extreme events whose formation mechanisms are fundamentally different from others. As long as magnetic reconnection can be classified as a Dragon King, there is the possibility of its identification and even its prediction. Dragon kings had previously been identified in time series of financial crashes, nuclear power generation accidents, stock market and so on. It is believed that they are associated with the occurrence of extreme events in dynamical systems at phase transition, bifurcation, crises or tipping points.
Quartetting in Nuclear Matter and α Particle Condensation in Nuclear Systems
NASA Astrophysics Data System (ADS)
Röpke, G.; Schuck, P.; Horiuchi, H.; Tohsaki, A.; Funaki, Y.; Yamada, T.
2008-02-01
Alternatively to pairing, four-particle correlations may become of importance for the formation of quantum condensates in nuclear matter. With increasing density, four-particle correlations are suppressed because of Pauli blocking. Signatures of α-like clusters are expected to occur in low-density nuclear systems. The famous Hoyle state (0
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration
2017-12-01
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the S U (3 ) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of ≈806 MeV ). Specifically, the S -wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering parameters in the two-nucleon systems that were previously obtained at these quark masses are determined with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons are constrained for the first time. It is found that the values of these parameters are consistent with an approximate S U (6 ) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-Nc limit of QCD. The two distinct S U (6 )-invariant interactions between two baryons are constrained for the first time at this value of the quark masses, and their values indicate an approximate accidental S U (16 ) symmetry. The S U (3 ) irreps containing the N N (1S0), N N (3S1) and 1/√{2 } (Ξ0n +Ξ-p )(3S1) channels unambiguously exhibit a single bound state, while the irrep containing the Σ+p (3S1) channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.
Stephen Jay Gould and the Value of Neutrality of Science During the Cold War.
Sheldon, Myrna
2016-12-01
Stephen Jay Gould was a paleontologist and scientific celebrity at the close of the twentieth century, most famous for his popular writings on evolution and his role in the American creationist controversies of that era. In the early 1980s, Gould was drawn into the "nuclear winter" episode through his friendship with Carl Sagan, an astronomer and popular science celebrity. Sagan helped develop the theory of nuclear winter and subsequently used the theory as evidence to petition the United States government to scale back its nuclear armament. The theory of nuclear winter claimed that even a small nuclear exchange could result in a atmospheric blackening akin to the extinction event of the late Cretaceous. Gould was not a climate scientist but he testified before the U.S. House of Representatives as an expert on historical extinction events. Gould's insistence on the value-neutrality of nuclear winter reveals much about the moral politics of science in late Cold War America. Coming at the heels of leftist scientific activism of the 1980s, the nuclear winter episode demonstrates how value-neutrality emerged the salient feature of scientific involvement in American politics in this period. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tjahaja, Poppy Intan; Sukmabuana, Putu; Siti Salami, Indah Rahmatiah; Muntalif, Barti Setiani
2012-07-01
A laboratory experiment was conducted to investigate the water - fish transfer parameter of radiostrontium that potentially contaminate human body through water - fish - human pathway in the nuclear accident cases. In this experiment, carp fish (Cyprinus carpio), generally produced and consumed by Indonesian people, were cultured in a tank filled with 500 L water contaminated with (85)Sr for two months. The observation of fish growth and radioactivity were conducted every five days by taking up three fish and water samples. The fish were dissected and separated into muscle, bones and internally organ, then destructed using chloric acid. The fish and water samples were then measured using gamma spectrometer with HPGe detector. The transfer parameter of transfer factor (T(f)), uptake rate constant (u), elimination rate constant (k), and the effective half life (T(e)) were analyzed by mathematical equations. The high (85)Sr concentration was observed in the bone by the T(f) value of 67.99 ± 9.68 mL g(-1) wet weight, whereas the concentration in muscle and internal organ were lower with the T(f) of 26.05 ± 4.44 mL g(-1) wet weight and 16.95 ± 2.34 mL g(-1) wet weight, respectively. The values of u obtained from the mathematical calculation were 0.025 day(-1), 0.029 day(-1), and 0.04 day(-1) for bone, muscle, and internal organ, respectively. Those values were higher compared to the k values, i.e. 0.018 day(-1), 0.025 day(-1), and 0.022 day(-1) indicating the accumulation were take place in bone, muscle, and internal organ. The effective half life, which is the sum of physical and biological half life, of (85)Sr in carp was about 30 days. The transfer parameter values determined from this experiment can be used in internal radiation doses assessment through water - fish - human pathways in case of radiostrontium contamination in freshwater environment, so a recommendation can be considered relating to the fish consumption during or after radiostrontium release to the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H
2016-05-01
A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0.77). However, at a decision threshold of 0.9 or higher, representing a clinically relevant predictive value for pathCR at which one may be willing to omit surgery, there was no clear incremental value. Subjective and quantitative assessment of (18)F-FDG PET provides statistical incremental value for predicting pathCR after preoperative chemoradiotherapy in esophageal cancer. However, the discriminatory improvement beyond clinical predictors does not translate into a clinically relevant benefit that could change decision making. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Coulomb excitation with radioactive nuclear beam of 64Cu
NASA Astrophysics Data System (ADS)
Guo, Gang; Xu, Jincheng; Chen, Quan; He, Ming; Qin, Jiuchang; Shen, Dongjun; Wu, Shaoyong; Jiang, Yongliang; Cheng, Yehao
2003-09-01
The radioactive nuclear beam of 64Cu was obtained utilizing a two-stage method at the HI-13 tandem accelerator of China Institute of Atomic Energy. The B(E2) value of the first excitation state of 64Cu has been directly measured for the first time by Coulomb excitation method, using the radioactive nuclear beam of 64Cu. An upper limit of the B(E2;2 1+→1 gs+) value from the first excitation state to the ground state of 64Cu is determined to be 49 W.u., which is significantly smaller than 250±170 W.u., the value adopted by Nuclear Data Sheets. The reliability of the experimental method was verified by simultaneously performing the Coulomb excitation experiment of 181Ta.
Yaacob, Jamilah Syafawati; Taha, Rosna Mat; Khorasani Esmaeili, Arash
2013-01-01
The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09 μm² to 35.66 ± 0.10 μm² and 142.90 ± 0.59 μm² to 165.05 ± 0.58 μm², respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period.
Yaacob, Jamilah Syafawati; Taha, Rosna Mat; Khorasani Esmaeili, Arash
2013-01-01
The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09 μm2 to 35.66 ± 0.10 μm2 and 142.90 ± 0.59 μm2 to 165.05 ± 0.58 μm2, respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period. PMID:23766703
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.
2014 Review on the Extension of the AMedP-8(C) Methodology to New Agents, Materials, and Conditions
2015-08-01
chemical agents, five biological agents, seven radioisotopes , nuclear fallout, or prompt nuclear effects.1 Each year since 2009, OTSG has sponsored IDA...evaluated four agents: anthrax, botulinum toxin, sarin (GB), and distilled mustard (HD), first using the default parameters and methods in HPAC and...the IDA team then made incremental changes to the default casualty parameters and methods to control for all known data and methodological
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.
2007-05-15
Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.
Landau parameters for energy density functionals generated by local finite-range pseudopotentials
NASA Astrophysics Data System (ADS)
Idini, A.; Bennaceur, K.; Dobaczewski, J.
2017-06-01
In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.
Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M
2010-01-01
Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.
Jannink, I; Bennen, J N; Blaauw, J; van Diest, P J; Baak, J P
1995-01-01
This study compares the influence of two different nuclear sampling methods on the prognostic value of assessments of mean and standard deviation of nuclear area (MNA, SDNA) in 191 consecutive invasive breast cancer patients with long term follow up. The first sampling method used was 'at convenience' sampling (ACS); the second, systematic random sampling (SRS). Both sampling methods were tested with a sample size of 50 nuclei (ACS-50 and SRS-50). To determine whether, besides the sampling methods, sample size had impact on prognostic value as well, the SRS method was also tested using a sample size of 100 nuclei (SRS-100). SDNA values were systematically lower for ACS, obviously due to (unconsciously) not including small and large nuclei. Testing prognostic value of a series of cut off points, MNA and SDNA values assessed by the SRS method were prognostically significantly stronger than the values obtained by the ACS method. This was confirmed in Cox regression analysis. For the MNA, the Mantel-Cox p-values from SRS-50 and SRS-100 measurements were not significantly different. However, for the SDNA, SRS-100 yielded significantly lower p-values than SRS-50. In conclusion, compared with the 'at convenience' nuclear sampling method, systematic random sampling of nuclei is not only superior with respect to reproducibility of results, but also provides a better prognostic value in patients with invasive breast cancer.
Acoustic transducer for nuclear reactor monitoring
Ahlgren, Frederic F.; Scott, Paul F.
1977-01-01
A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.
Helgesson, P; Sjöstrand, H
2017-11-01
Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r 1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r 1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r 1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.
NASA Astrophysics Data System (ADS)
Helgesson, P.; Sjöstrand, H.
2017-11-01
Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less
Lin, Yu-Chun; Lin, Gigin; Hong, Ji-Hong; Lin, Yi-Ping; Chen, Fang-Hsin; Ng, Shu-Hang; Wang, Chun-Chieh
2017-08-01
To investigate the biological meaning of apparent diffusion coefficient (ADC) values in tumors following radiotherapy. Five mice bearing TRAMP-C1 tumor were half-irradiated with a dose of 15 Gy. Diffusion-weighted images, using multiple b-values from 0 to 3000 s/mm 2 , were acquired at 7T on day 6. ADC values calculated by a two-point estimate and monoexponential fitting of signal decay were compared between the irradiated and nonirradiated regions of the tumor. Pixelwise ADC maps were correlated with histological metrics including nuclear counts, nuclear sizes, nuclear spaces, cytoplasmic spaces, and extracellular spaces. As compared with the nonirradiated region, the irradiated region exhibited significant increases in ADC, extracellular space, and nuclear size, and a significant decrease in nuclear counts (P < 0.001 for all). Optimal ADC to differentiate the irradiated from nonirradiated regions was achieved at a b-value of 800 s/mm 2 by the two-point method and monoexponential curve fitting. ADC positively correlated with extracellular spaces (r = 0.74) and nuclear sizes (r = 0.72), and negatively correlated with nuclear counts (r = -0.82, P < 0.001 for all). As a radiomic biomarker, ADC maps correlating with histological metrics pixelwise could be a means of evaluating tumor heterogeneity and responses to radiotherapy. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:483-489. © 2017 International Society for Magnetic Resonance in Medicine.
NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A. L.; Morsink, S. M.; Fiege, J. D.
The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determinemore » the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.« less
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2003-01-01
Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.
Calibration facility for environment dosimetry instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin
2013-12-16
In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this rangemore » involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.« less
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2003-01-01
Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-k We nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter's moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98, 0.95, and 0.97, respectively. Performance parameters such as number of thermal units (Ntu), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19, 23 to 39 kW/K, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-counterflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.
Hyperspectral recognition of processing tomato early blight based on GA and SVM
NASA Astrophysics Data System (ADS)
Yin, Xiaojun; Zhao, SiFeng
2013-03-01
Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.
Evaluation of cluster expansions and correlated one-body properties of nuclei
NASA Astrophysics Data System (ADS)
Moustakidis, Ch. C.; Massen, S. E.; Panos, C. P.; Grypeos, M. E.; Antonov, A. N.
2001-07-01
Three different cluster expansions for the evaluation of correlated one-body properties of s-p and s-d shell nuclei are compared. Harmonic oscillator wave functions and Jastrow-type correlations are used, while analytical expressions are obtained for the charge form factor, density distribution, and momentum distribution by truncating the expansions and using a standard Jastrow correlation function f. The harmonic oscillator parameter b and the correlation parameter β have been determined by a least-squares fit to the experimental charge form factors in each case. The information entropy of nuclei in position space (Sr) and momentum space (Sk) according to the three methods are also calculated. It is found that the larger the entropy sum, S=Sr+Sk (the net information content of the system), the smaller the values of χ2. This indicates that maximal S is a criterion of the quality of a given nuclear model, according to the maximum entropy principle. Only two exceptions to this rule, out of many cases examined, were found. Finally an analytic expression for the so-called ``healing'' or ``wound'' integrals is derived with the function f considered, for any state of the relative two-nucleon motion, and their values in certain cases are computed and compared.
Kucha, Christopher T.; Liu, Li; Ngadi, Michael O.
2018-01-01
Fat is one of the most important traits determining the quality of pork. The composition of the fat greatly influences the quality of pork and its processed products, and contribute to defining the overall carcass value. However, establishing an efficient method for assessing fat quality parameters such as fatty acid composition, solid fat content, oxidative stability, iodine value, and fat color, remains a challenge that must be addressed. Conventional methods such as visual inspection, mechanical methods, and chemical methods are used off the production line, which often results in an inaccurate representation of the process because the dynamics are lost due to the time required to perform the analysis. Consequently, rapid, and non-destructive alternative methods are needed. In this paper, the traditional fat quality assessment techniques are discussed with emphasis on spectroscopic techniques as an alternative. Potential spectroscopic techniques include infrared spectroscopy, nuclear magnetic resonance and Raman spectroscopy. Hyperspectral imaging as an emerging advanced spectroscopy-based technology is introduced and discussed for the recent development of assessment for fat quality attributes. All techniques are described in terms of their operating principles and the research advances involving their application for pork fat quality parameters. Future trends for the non-destructive spectroscopic techniques are also discussed. PMID:29382092
The peculiar ring galaxy HRG 54103 revisited
NASA Astrophysics Data System (ADS)
Freitas-Lemes, P.; Krabbe, A. C.; Faúndez-Abans, M.; da Rocha-Poppe, P.; Rodrigues, I.; de Oliveira-Abans, M.; Fernandes-Martin, V. A.
2017-07-01
We present an observational study of the galaxy HRG 54103, a peculiar galaxy with an asymmetric disc ring. The main goal of this work is to study the stellar population and oxygen abundances for the inner bulge region. The kinematics derived from long-slit spectroscopy suggest that the line of nodes of the gaseous component of HRG 54103 is nearly along the galaxy ring minor axis. The gaseous disc seems to be kinematically decoupled relative to the morphology of the stellar ring. A small, but non-negligible, fraction of young stars (5-10 per cent) is estimated to contribute. This object is mainly dominated by old and intermediate stellar populations. The emission-line spectrum shows low-ionization nuclear emission-line region (LINER) type characteristics. We determined oxygen abundances using calibrations between this parameter and the strong emission line ratios known as the indices O3N2 and N2. Our results suggest a relatively homogeneous O/H across the minor axis of the galaxy, with average values of 12 + log(O/H) = 8.4 dex and 12 + log(O/H) = 8.7 dex, using the O3N2 and N2 parameters, respectively. These values are compatible with the few estimations of oxygen abundance for peculiar ring galaxies published in the literature. Implications on the formation history of HRG 54103 were investigated.
Significance of histopathology in pulsed NMR studies on cancer.
Ranade, S S; Bharade, S H; Talwalkar, G V; Sujata, G K; Shrinivasan, V T; Singh, B B
1985-04-01
Characterization of tissue by pulsed nuclear magnetic resonance spectrometry opened a new area of research. The differences in the NMR parameters T1 and T2 of normal and malignant tissues constitute the basis for their distinction by pulsed NMR spectrometry and also by NMR imaging in vivo. The present studies were undertaken to correlate the role of constituent histological elements encountered in various malignancy-associated changes and T1 variations and are based on evaluation of samples taken from surgically resected specimens of carcinoma of the esophagus, comprising the uninvolved portions of the esophagus and the gastric end on gross examination. The uninvolved and involved regions showed low and high T1 values, respectively. High T1 values were also encountered in the zones of samples of uninvolved esophagus which histologically revealed areas with dysplasia. This feature, viz., dysplasia representing malignancy-associated changes, has been found to recur in many samples. Detailed histological studies provided further evidence confirming that areas with dysplasia contribute to an increase in T1 values whereas in zones at the gastric end metaplasia and hyperplasia are more common. The results are of value for demarcation of tumor area by in vivo NMR imaging.
Instant release fraction corrosion studies of commercial UO2 BWR spent nuclear fuel
NASA Astrophysics Data System (ADS)
Martínez-Torrents, Albert; Serrano-Purroy, Daniel; Sureda, Rosa; Casas, Ignasi; de Pablo, Joan
2017-05-01
The instant release fraction of a spent nuclear fuel is a matter of concern in the performance assessment of a deep geological repository since it increases the radiological risk. Corrosion studies of two different spent nuclear fuels were performed using bicarbonate water under oxidizing conditions to study their instant release fraction. From each fuel, cladded segments and powder samples obtained at different radial positions were used. The results were normalised using the specific surface area to permit a comparison between fuels and samples. Different radionuclide dissolution patterns were studied in terms of water contact availability and radial distribution in the spent nuclear fuel. The relationship between the results of this work and morphological parameters like the grain size or irradiation parameters such as the burn-up or the linear power density was studied in order to increase the understanding of the instant release fraction formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, Robert W.; McJeon, Haewon C.
2015-05-01
This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less
Nuclear Mass Predictions within the Skyrme HFB Theory
NASA Astrophysics Data System (ADS)
Samyn, M.; Goriely, S.; Pearson, J. M.
2005-05-01
To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, … We typically use a 10-parameter Skyrme force and a 4-parameter δ-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z ⩾ 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.
Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.
Santabarbara, Stefano; Zucchelli, Giuseppe
2016-04-14
The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).
Advanced Information Systems Design: Technical Basis and Human Factors Review Guidance
2000-03-01
D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter Display Systems," Proceedings of the Human Factors Society 25th...Reactor (PWR) (Source: Reprinted with permission from Woods, D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter...Dials display rpCJni?3 (b) Fluid-Tanks display B (c) Seesaw display I 72 CF \\^- J B ’ V ’II ’ ( d ) Mimic display B E * • \\ ^r 7
Effective-range parameters and vertex constants for Λ-nuclear systems
NASA Astrophysics Data System (ADS)
Rakityansky, S. A.; Gopane, I. M.
For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.
NASA Astrophysics Data System (ADS)
Tel, Eyyup; Sahan, Muhittin; Alkanli, Hasancan; Sahan, Halide; Yigit, Mustafa
2017-09-01
In this study, the (n,α) nuclear reaction cross section was calculated for 41K target nuclei for neutron and proton density parameters using SKa, SKb, SLy5, and SLy6 Skyrme force. Theoretical cross section for the (n,α) nuclear reaction was obtained using a formula constituted by Tel et al. (2008). Results are compared with experimental data from EXFOR. The calculated results from formula was found in a close agreement with experimental data.
Uncertainty quantification for accident management using ACE surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varuttamaseni, A.; Lee, J. C.; Youngblood, R. W.
The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known tomore » be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)« less
THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Bunn; Steve Fetter; John P. Holdren
This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less
Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K
2015-01-01
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227
Precision measurement of neutrino oscillation parameters with KamLAND.
Abe, S; Ebihara, T; Enomoto, S; Furuno, K; Gando, Y; Ichimura, K; Ikeda, H; Inoue, K; Kibe, Y; Kishimoto, Y; Koga, M; Kozlov, A; Minekawa, Y; Mitsui, T; Nakajima, K; Nakajima, K; Nakamura, K; Nakamura, M; Owada, K; Shimizu, I; Shimizu, Y; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Terashima, A; Watanabe, H; Yonezawa, E; Yoshida, S; Busenitz, J; Classen, T; Grant, C; Keefer, G; Leonard, D S; McKee, D; Piepke, A; Decowski, M P; Detwiler, J A; Freedman, S J; Fujikawa, B K; Gray, F; Guardincerri, E; Hsu, L; Kadel, R; Lendvai, C; Luk, K-B; Murayama, H; O'Donnell, T; Steiner, H M; Winslow, L A; Dwyer, D A; Jillings, C; Mauger, C; McKeown, R D; Vogel, P; Zhang, C; Berger, B E; Lane, C E; Maricic, J; Miletic, T; Batygov, M; Learned, J G; Matsuno, S; Pakvasa, S; Foster, J; Horton-Smith, G A; Tang, A; Dazeley, S; Downum, K E; Gratta, G; Tolich, K; Bugg, W; Efremenko, Y; Kamyshkov, Y; Perevozchikov, O; Karwowski, H J; Markoff, D M; Tornow, W; Heeger, K M; Piquemal, F; Ricol, J-S
2008-06-06
The KamLAND experiment has determined a precise value for the neutrino oscillation parameter Deltam21(2) and stringent constraints on theta12. The exposure to nuclear reactor antineutrinos is increased almost fourfold over previous results to 2.44 x 10(32) proton yr due to longer livetime and an enlarged fiducial volume. An undistorted reactor nu[over]e energy spectrum is now rejected at >5sigma. Analysis of the reactor spectrum above the inverse beta decay energy threshold, and including geoneutrinos, gives a best fit at Deltam21(2)=7.58(-0.13)(+0.14)(stat) -0.15+0.15(syst) x 10(-5) eV2 and tan2theta12=0.56(-0.07)+0.10(stat) -0.06+0.10(syst). Local Deltachi2 minima at higher and lower Deltam21(2) are disfavored at >4sigma. Combining with solar neutrino data, we obtain Deltam21(2)=7.59(-0.21)+0.21 x 10(-5) eV2 and tan2theta12=0.47(-0.05)+0.06.
Xia, Junchao; Case, David A.
2012-01-01
We report 100 ns molecular dynamics simulations, at various temperatures, of sucrose in water (with concentrations of sucrose ranging from 0.02 to 4 M), and in a 7:3 water-DMSO mixture. Convergence of the resulting conformational ensembles was checked using adaptive-biased simulations along the glycosidic φ and ψ torsion angles. NMR relaxation parameters, including longitudinal (R1) and transverse (R2) relaxation rates, nuclear Overhauser enhancements (NOE), and generalized order parameter (S2) were computed from the resulting time-correlation functions. The amplitude and time scales of molecular motions change with temperature and concentration in ways that track closely with experimental results, and are consistent with a model in which sucrose conformational fluctuations are limited (with 80–90% of the conformations having φ – ψ values within 20° of an average conformation), but with some important differences in conformation between pure water and DMSO-water mixtures. PMID:22058066
Inverse problems in heterogeneous and fractured media using peridynamics
Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.
2015-12-10
The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less
Review and Application of ASME NOG-1 and ASME NUM-1-2000
NASA Technical Reports Server (NTRS)
Lytle, Bradford P.; Delgado, H. (Technical Monitor)
2002-01-01
The intent of the workshop is to review the application of the ASME Nuclear Crane Standards ASME NOG-1 and ASME NUM-1-2000. The ASME Nuclear Crane standards provide a basis for purchasing overhead handling equipment with enhanced safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities.
The Highest Resolution X-ray View of the Nuclear Region of NGC 4151
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-09-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.
Nuclear quantum fluctuations in ice I(h).
Moreira, Pedro Augusto Franco Pinheiro; de Koning, Maurice
2015-10-14
We discuss the role of nuclear quantum fluctuations in ice Ih, focusing on the hydrogen-bond (HB) structure and the molecular dipole-moment distribution. For this purpose we carry out DFT-based first-principles molecular dynamics and path-integral molecular dynamics simulations at T = 100 K. We analyze the HB structure in terms of a set of parameters previously employed to characterize molecular structures in the liquid phase and compute the molecular dipole moments using the maximally-localized Wannier functions. The results show that the protons experience very large digressions driven by quantum fluctuations, accompanied by major rearrangements in the electronic density. As a result of these protonic quantum fluctuations the molecular dipole-moment distribution is substantially broadened as well as shifted to a larger mean value when compared to the results obtained when such fluctuations are neglected. In terms of dielectric constants, the reconciliation between the greater mean dipole moment and experimental indications that the dielectric constant of H2O ice is lower than that of D2O ice would indicate that the topology of the HB network is sensitive to protonic quantum fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, J. C.; Flambaum, V. V.; Kava, E. M.
2011-10-15
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper, we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark-mass variation, in a number of isotopes ofmore » experimental interest including {sup 201,199}Hg and {sup 87,85}Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.« less
Selection against Heteroplasmy Explains the Evolution of Uniparental Inheritance of Mitochondria
Christie, Joshua R.; Schaerf, Timothy M.; Beekman, Madeleine
2015-01-01
Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance. PMID:25880558
Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur
2017-09-01
The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konzek, G.J.
1983-07-01
Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.
Kwon, M-R; Shin, J H; Hahn, S Y; Oh, Y L; Kwak, J Y; Lee, E; Lim, Y
2018-06-01
To evaluate the diagnostic value of histogram analysis using ultrasound (US) to differentiate between the subtypes of follicular variant of papillary thyroid carcinoma (FVPTC). The present study included 151 patients with surgically confirmed FVPTC diagnosed between January 2014 and May 2016. Their preoperative US features were reviewed retrospectively. Histogram parameters (mean, maximum, minimum, range, root mean square, skewness, kurtosis, energy, entropy, and correlation) were obtained for each nodule. The 152 nodules in 151 patients comprised 48 non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs; 31.6%), 60 invasive encapsulated FVPTCs (EFVPTCs; 39.5%), and 44 infiltrative FVPTCs (28.9%). The US features differed significantly between the subtypes of FVPTC. Discrimination was achieved between NIFTPs and infiltrative FVPTC, and between invasive EFVPTC and infiltrative FVPTC using histogram parameters; however, the parameters were not significantly different between NIFTP and invasive EFVPTC. It is feasible to use greyscale histogram analysis to differentiate between NIFTP and infiltrative FVPTC, but not between NIFTP and invasive EFVPTC. Histograms can be used as a supplementary tool to differentiate the subtypes of FVPTC. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva
2015-01-01
Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282
NASA Astrophysics Data System (ADS)
Yazyev, Oleg V.; Helm, Lothar
2006-08-01
Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.
Estimating Aquifer Properties Using Sinusoidal Pumping Tests
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Haborak, K. G.; Young, M. H.
2001-12-01
We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.
Educational activities with a tandem accelerator
NASA Astrophysics Data System (ADS)
Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.
2018-05-01
Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.
Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model
NASA Astrophysics Data System (ADS)
Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.
2017-12-01
This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.
2015-03-30
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Sepiani, M.
2015-03-01
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
First Nuclear DNA C-values for 18 Eudicot Families
HANSON, LYNDA; BOYD, AMY; JOHNSON, MARGARET A. T.; BENNETT, MICHAEL D.
2005-01-01
• Background and Aims A key target set at the second Plant Genome Size Workshop, held at the Royal Botanic Gardens, Kew in 2003, was to produce first DNA C-value data for an additional 1 % of angiosperm species, and, within this, to achieve 75 % familial coverage overall (up from approx. 50 %) by 2009. The present study targeted eudicot families for which representation in 2003 (42·5 %) was much lower than monocot (72·8 %) and basal angiosperm (69·0 %) families. • Methods Flow cytometry or Feulgen microdensitometry were used to estimate nuclear DNA C-values, and chromosome counts were obtained where possible. • Key Results First nuclear DNA C-values are reported for 20 angiosperm families, including 18 eudicots. This substantially increases familial representation to 55·2 % for angiosperms and 48·5 % for eudicots. • Conclusions The importance of targeting specific plant families to improve familial nuclear DNA C-value representation is reconfirmed. International collaboration will be increasingly essential to locate and obtain material of unsampled plant families, if the target set by the second Plant Genome Size Workshop is to be met. PMID:16239248
The nuclear Thomas-Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, W.D.; Swiatecki, W.J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less
The Nuclear Thomas-Fermi Model
DOE R&D Accomplishments Database
Myers, W. D.; Swiatecki, W. J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
Report on in-situ studies of flash sintering of uranium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, Alicia Marie
Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamosmore » National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO 2. The critical field studies are complete for UO 2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to fabricate nuclear fuel. First, the pure UO 2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.« less
Nuclear Mass Predictions within the Skyrme HFB Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samyn, M.; Goriely, S.; Pearson, J.M.
To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, ... We typically use a 10-parameter Skyrme force and a 4-parameter {delta}-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z {>=} 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wignermore » term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.« less
Finding Top-kappa Unexplained Activities in Video
2012-03-09
parameters that define an UAP instance affect the running time by varying the values of each parameter while keeping the others fixed to a default...value. Runtime of Top-k TUA. Table 1 reports the values we considered for each parameter along with the corresponding default value. Parameter Values...Default value k 1, 2, 5, All All τ 0.4, 0.6, 0.8 0.6 L 160, 200, 240, 280 200 # worlds 7 E+04, 4 E+05, 2 E+07 2 E+07 TABLE 1: Parameter values used in
AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorker, G.E.
1955-07-19
Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, R D; Kelley, K; Dietrich, F S
2006-06-13
We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).
A nuclear data approach for the Hubble constant measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
2015-06-09
An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP) codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.00(770) (km/sec)/Mpc. This recommended value is based on the last 25 years of experimental research and includes contributions from different types of measurements. The present result implies (14.6±1.7) x 10 9 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possiblemore » implications are discussed.« less
Migliaccio, Ilenia; Chaubal, Vaishali; Wu, Meng-Fen; Pace, Margaret C.; Hartmaier, Ryan; Jiang, Shiming; Edwards, Dean P.; Gutiérrez, M. Carolina; Hilsenbeck, Susan G.; Oesterreich, Steffi
2012-01-01
Silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), also known as nuclear corepressor 2 (NCOR2) is a transcriptional corepressor for multiple members of the nuclear receptor superfamily of transcription factors, including estrogen receptor-α (ERα). In the classical model of corepressor action, SMRT binds to antiestrogen-bound ERα at target promoters and represses ERα transcriptional activity and gene expression. Herein SMRT mRNA and protein expression was examined in a panel of 30 breast cancer cell lines. Expression of both parameters was found to vary considerably amongst lines and the correlation between protein and mRNA expression was very poor (R2 = 0.0775). Therefore, SMRT protein levels were examined by immunohistochemical staining of a tissue microarray of 866 patients with stage I–II breast cancer. Nuclear and cytoplasmic SMRT were scored separately according to the Allred score. The majority of tumors (67 %) were negative for cytoplasmic SMRT, which when detected was found at very low levels. In contrast, nuclear SMRT was broadly detected. There was no significant difference in time to recurrence (TTR) according to SMRT expression levels in the ERα-positive tamoxifen-treated patients (P = 0.297) but the difference was significant in the untreated patients (P = 0.01). In multivariate analysis, ERα-positive tamoxifen-untreated patients with high nuclear SMRT expression (SMRT 5-8, i.e., 2nd to 4th quartile) had a shorter TTR (HR = 1.94, 95 % CI, 1.24–3.04; P = 0.004) while there was no association with SMRT expression for ERα-positive tamoxifen-treated patients. There was no association between SMRT expression and overall survival for patients, regardless of whether they received tamoxifen. Thus while SMRT protein expression was not predictive of outcome after antiestrogen therapy, it may have value in predicting tumor recurrence in patients not receiving adjuvant tamoxifen therapy. PMID:23015261
Terry, Alan J; Chaplain, Mark A J
2011-12-07
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Bixler, Nathan E.; Wagner, Kenneth Charles
2014-03-01
A methodology for using the MELCOR code with the Latin Hypercube Sampling method was developed to estimate uncertainty in various predicted quantities such as hydrogen generation or release of fission products under severe accident conditions. In this case, the emphasis was on estimating the range of hydrogen sources in station blackout conditions in the Sequoyah Ice Condenser plant, taking into account uncertainties in the modeled physics known to affect hydrogen generation. The method uses user-specified likelihood distributions for uncertain model parameters, which may include uncertainties of a stochastic nature, to produce a collection of code calculations, or realizations, characterizing themore » range of possible outcomes. Forty MELCOR code realizations of Sequoyah were conducted that included 10 uncertain parameters, producing a range of in-vessel hydrogen quantities. The range of total hydrogen produced was approximately 583kg 131kg. Sensitivity analyses revealed expected trends with respected to the parameters of greatest importance, however, considerable scatter in results when plotted against any of the uncertain parameters was observed, with no parameter manifesting dominant effects on hydrogen generation. It is concluded that, with respect to the physics parameters investigated, in order to further reduce predicted hydrogen uncertainty, it would be necessary to reduce all physics parameter uncertainties similarly, bearing in mind that some parameters are inherently uncertain within a range. It is suspected that some residual uncertainty associated with modeling complex, coupled and synergistic phenomena, is an inherent aspect of complex systems and cannot be reduced to point value estimates. The probabilistic analyses such as the one demonstrated in this work are important to properly characterize response of complex systems such as severe accident progression in nuclear power plants.« less
Quantum chaos in nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu
A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement
NASA Technical Reports Server (NTRS)
Manatt, Stanley L.
1989-01-01
It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
NASA Astrophysics Data System (ADS)
Kim, G.; Che, I. Y.
2017-12-01
We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.
2018-07-01
In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
NASA Astrophysics Data System (ADS)
Simones, M. P.; Reinig, M. L.; Loyalka, S. K.
2014-05-01
Release of fission products from nuclear fuel in accidents is an issue of major concern in nuclear reactor safety, and there is considerable room for development of improved models, supported by experiments, as one needs to understand and elucidate role of various phenomena and parameters. The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program on several irradiated nuclear fuels investigated the release rates of radionuclides and results demonstrated that the release rates of radionuclides from all nuclear fuels tested decreased with increasing external gas pressure surrounding the fuel. Hidaka et al. (2004-2011) accounted for this pressure effect by developing a 2-stage diffusion model describing the transport of radionuclides in porous nuclear fuel. We have extended this 2-stage diffusion model to account for mutual binary gas diffusion in the open pores as well as to introduce the appropriate parameters to cover the slip flow regime (0.01 ⩽ Kn ⩽ 0.1). While we have directed our numerical efforts toward the simulation of the VEGA experiments and assessments of differences from the results of Hidaka et al., the model and the techniques reported here are of larger interest as these would aid in modeling of diffusion in general (e.g. in graphite and other nuclear materials of interest).
Can tonne-scale direct detection experiments discover nuclear dark matter?
NASA Astrophysics Data System (ADS)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.
2017-10-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
Ilas, Germina; Liljenfeldt, Henrik
2017-05-19
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Liljenfeldt, Henrik
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Can tonne-scale direct detection experiments discover nuclear dark matter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less
Effective axial-vector strength and β-decay systematics
NASA Astrophysics Data System (ADS)
Delion, D. S.; Suhonen, J.
2014-09-01
We use the weak axial-vector coupling strength g_{\\text{A}} as a key parameter to reproduce simultaneously the available data for both the Gamow-Teller \\beta^- and \\beta^+/\\text{EC} decay rates in nine triplets of isobars with mass numbers A=70,78,100,104,106,110,116,128,130 . We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with schematic dipole interaction containing particle-particle and particle-hole parts with mass-dependent strengths. Our analysis points to a strongly quenched effective value g_{\\text{A}}\\approx 0.3 , with a relative error of 28%. We then perform a systematic computation of 218 experimentally known \\beta^- and \\beta^+/\\text{EC} decays with quite a remarkable success. The presently extracted value of g_{\\text{A}} should be taken as an effective one, specific for a given nuclear theory framework. Present studies suggest that the effective g_{\\text{A}} is suitable for the description of decay transitions to 1^+ states at moderate excitation, below the Gamow-Teller giant resonance region.
NASA Astrophysics Data System (ADS)
Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo
2017-04-01
Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.
Long-range dynamic polarization potentials for 11Be projectiles on 64Zn
NASA Astrophysics Data System (ADS)
So, W. Y.; Kim, K. S.; Choi, K. S.; Cheoun, Myung-Ki
2015-07-01
We investigate the effects of the long-range dynamic polarization (LRDP) potential, which consists of the Coulomb dipole excitation (CDE) potential and the long-range nuclear (LRN) potential, for the 11Be projectile on 64Zn. To study these effects, we perform a χ2 analysis of an optical model including the LRDP potential as well as a conventional short-range nuclear (SRN) potential. To take these effects into account, we argue that both the CDE and LRN potentials are essential to explaining the experimental values of PE, which is the ratio of the elastic scattering cross section to the Rutherford cross section. The Coulomb and nuclear parts of the LRDP potential are found to contribute to a strong absorption effect. Strong absorption occurs because the real part of the CDE and LRN potentials lowers the barrier, and the imaginary part of the CDE and LRN potentials removes the flux from the elastic channel in the 11Be+64Zn system. Finally, we extract the total reaction cross section σR including the inelastic, breakup, and fusion cross sections. The contribution of the inelastic scattering by the first excited state at ɛx1 st=0.32 MeV (1 /2-) is found to be relatively large and cannot be ignored. In addition, our results are shown to agree quite well with the experimental breakup reaction cross section by using a fairly large radius parameter.
Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy.
An, Shucai; Soe, Kyaw; Akamatsu, Maki; Hishikawa, Yoshitaka; Koji, Takehiko
2012-11-01
Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70% partial hepatectomy (PH) in rats fed with rat chow with 3% carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2'-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0-G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V., E-mail: dobrov@pnpi.spb.ru
2015-05-15
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured.more » The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.« less
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
NASA Astrophysics Data System (ADS)
Turkoglu, Danyal
Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated with the ground-state transitions below the 396-keV level and combining that summation with the contribution to the ground state from the quasi-continuum above 396 keV, determined with Monte Carlo statistical model calculations using the DICEBOX computer code. These values, sigmam and sigma 0, were (0.83 +/- 0.05) b and (1.16 +/- 0.11) b, respectively, and found to be in agreement with literature values. Comparison of the modeled population and experimental depopulation of individual levels confirmed tentative spin assignments and suggested changes where imbalances existed.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
NASA Astrophysics Data System (ADS)
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
Effects of medium on nuclear properties in multifragmentation
NASA Astrophysics Data System (ADS)
De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.
2012-08-01
In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamp, Florian; Department of Radiation Oncology, Technische Universität München, Klinikum Rechts der Isar, München; Physik-Department, Technische Universität München, Garching
2015-11-01
Purpose: The physical and biological differences between heavy ions and photons have not been fully exploited and could improve treatment outcomes. In carbon ion therapy, treatment planning must account for physical properties, such as the absorbed dose and nuclear fragmentation, and for differences in the relative biological effectiveness (RBE) of ions compared with photons. We combined the mechanistic repair-misrepair-fixation (RMF) model with Monte Carlo-generated fragmentation spectra for biological optimization of carbon ion treatment plans. Methods and Materials: Relative changes in double-strand break yields and radiosensitivity parameters with particle type and energy were determined using the independently benchmarked Monte Carlo damagemore » simulation and the RMF model to estimate the RBE values for primary carbon ions and secondary fragments. Depth-dependent energy spectra were generated with the Monte Carlo code FLUKA for clinically relevant initial carbon ion energies. The predicted trends in RBE were compared with the published experimental data. Biological optimization for carbon ions was implemented in a 3-dimensional research treatment planning tool. Results: We compared the RBE and RBE-weighted dose (RWD) distributions of different carbon ion treatment scenarios with and without nuclear fragments. The inclusion of fragments in the simulations led to smaller RBE predictions. A validation of RMF against measured cell survival data reported in published studies showed reasonable agreement. We calculated and optimized the RWD distributions on patient data and compared the RMF predictions with those from other biological models. The RBE values in an astrocytoma tumor ranged from 2.2 to 4.9 (mean 2.8) for a RWD of 3 Gy(RBE) assuming (α/β){sub X} = 2 Gy. Conclusions: These studies provide new information to quantify and assess uncertainties in the clinically relevant RBE values for carbon ion therapy based on biophysical mechanisms. We present results from the first biological optimization of carbon ion radiation therapy beams on patient data using a combined RMF and Monte Carlo damage simulation modeling approach. The presented method is advantageous for fast biological optimization.« less
Kamp, Florian; Cabal, Gonzalo; Mairani, Andrea; Parodi, Katia; Wilkens, Jan J; Carlson, David J
2015-11-01
The physical and biological differences between heavy ions and photons have not been fully exploited and could improve treatment outcomes. In carbon ion therapy, treatment planning must account for physical properties, such as the absorbed dose and nuclear fragmentation, and for differences in the relative biological effectiveness (RBE) of ions compared with photons. We combined the mechanistic repair-misrepair-fixation (RMF) model with Monte Carlo-generated fragmentation spectra for biological optimization of carbon ion treatment plans. Relative changes in double-strand break yields and radiosensitivity parameters with particle type and energy were determined using the independently benchmarked Monte Carlo damage simulation and the RMF model to estimate the RBE values for primary carbon ions and secondary fragments. Depth-dependent energy spectra were generated with the Monte Carlo code FLUKA for clinically relevant initial carbon ion energies. The predicted trends in RBE were compared with the published experimental data. Biological optimization for carbon ions was implemented in a 3-dimensional research treatment planning tool. We compared the RBE and RBE-weighted dose (RWD) distributions of different carbon ion treatment scenarios with and without nuclear fragments. The inclusion of fragments in the simulations led to smaller RBE predictions. A validation of RMF against measured cell survival data reported in published studies showed reasonable agreement. We calculated and optimized the RWD distributions on patient data and compared the RMF predictions with those from other biological models. The RBE values in an astrocytoma tumor ranged from 2.2 to 4.9 (mean 2.8) for a RWD of 3 Gy(RBE) assuming (α/β)X = 2 Gy. These studies provide new information to quantify and assess uncertainties in the clinically relevant RBE values for carbon ion therapy based on biophysical mechanisms. We present results from the first biological optimization of carbon ion radiation therapy beams on patient data using a combined RMF and Monte Carlo damage simulation modeling approach. The presented method is advantageous for fast biological optimization. Copyright © 2015 Elsevier Inc. All rights reserved.
Nuclear Magnetic Resonance Technology for Medical Studies.
ERIC Educational Resources Information Center
Budinger, Thomas F.; Lauterbur, Paul C.
1984-01-01
Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…
Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory
NASA Astrophysics Data System (ADS)
Holt, J. W.; Kaiser, N.; Whitehead, T. R.
2018-05-01
We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.
Constraints on the symmetry energy from neutron star observations
NASA Astrophysics Data System (ADS)
Newton, W. G.; Gearheart, M.; Wen, De-Hua; Li, Bao-An
2013-03-01
The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.
Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form
NASA Astrophysics Data System (ADS)
Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.
2011-12-01
Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density and chemical composition of the matrix of the specimen. Obviously, not all parameters can be characterized when measuring samples of unknown composition or uranium in bulk form. Because of this, and especially for uranium materials, the IAEA developed an ISOCS optimization procedure. The target values for the optimization are Μmatrixfixed, the matrix mass determined by weighing with a known mass container, and Εfixed, the 235U enrichment, determined by MGAU. Target values are fitted by varying the matrix density (ρ), and the concentration of uranium in the matrix of the unknown (w). For each (ρi, wi), an efficiency curve is generated, and the masses of uranium isotopes, Μ235Ui and Μ238Ui, determined using spectral activity data and known specific activities for U. Finally, fitted parameters are obtained for Μmatrixi = Μmatrixfixed ± 1σ, Εi = Εfixed ± 1σ, as well as important parameters (ρi, wi, Μ235Ui, Μ238Ui, ΜUi). We examined multiple forms of uranium (powdered, pressed, and scrap UO2 and U3O8) to test this method for its utility in accurately identifying the mass and enrichment of uranium materials, and will present the results of this research.
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz
2016-10-01
The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-10-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.
WE-AB-BRA-06: 4DCT-Ventilation: A Novel Imaging Modality for Thoracic Surgical Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Jackson, M; Schubert, L
Purpose: The current standard-of-care imaging used to evaluate lung cancer patients for surgical resection is nuclear-medicine ventilation. Surgeons use nuclear-medicine images along with pulmonary function tests (PFT) to calculate percent predicted postoperative (%PPO) PFT values by estimating the amount of functioning lung that would be lost with surgery. 4DCT-ventilation is an emerging imaging modality developed in radiation oncology that uses 4DCT data to calculate lung ventilation maps. We perform the first retrospective study to assess the use of 4DCT-ventilation for pre-operative surgical evaluation. The purpose of this work was to compare %PPO-PFT values calculated with 4DCT-ventilation and nuclear-medicine imaging. Methods:more » 16 lung cancer patients retrospectively reviewed had undergone 4DCTs, nuclear-medicine imaging, and had Forced Expiratory Volume in 1 second (FEV1) acquired as part of a standard PFT. For each patient, 4DCT data sets, spatial registration, and a density-change based model were used to compute 4DCT-ventilation maps. Both 4DCT and nuclear-medicine images were used to calculate %PPO-FEV1 using %PPO-FEV1=pre-operative FEV1*(1-fraction of total ventilation of resected lung). Fraction of ventilation resected was calculated assuming lobectomy and pneumonectomy. The %PPO-FEV1 values were compared between the 4DCT-ventilation-based calculations and the nuclear-medicine-based calculations using correlation coefficients and average differences. Results: The correlation between %PPO-FEV1 values calculated with 4DCT-ventilation and nuclear-medicine were 0.81 (p<0.01) and 0.99 (p<0.01) for pneumonectomy and lobectomy respectively. The average difference between the 4DCT-ventilation based and the nuclear-medicine-based %PPO-FEV1 values were small, 4.1±8.5% and 2.9±3.0% for pneumonectomy and lobectomy respectively. Conclusion: The high correlation results provide a strong rationale for a clinical trial translating 4DCT-ventilation to the surgical domain. Compared to nuclear-medicine, 4DCT-ventilation is cheaper, does not require a radioactive contrast agent, provides a faster imaging procedure, and has improved spatial resolution. 4DCT-ventilation can reduce the cost and imaging time for patients while providing improved spatial accuracy and quantitative results for surgeons. YV discloses grant from State of Colorado.« less
Bayram, Tuncay; Sönmez, Bircan
2012-04-01
In this study, we aimed to make a computer program that calculates approximate radiation dose received by embryo/fetus in nuclear medicine applications. Radiation dose values per MBq-1 received by embryo/fetus in nuclear medicine applications were gathered from literature for various stages of pregnancy. These values were embedded in the computer code, which was written in Fortran 90 program language. The computer program called nmfdose covers almost all radiopharmaceuticals used in nuclear medicine applications. Approximate radiation dose received by embryo/fetus can be calculated easily at a few steps using this computer program. Although there are some constraints on using the program for some special cases, nmfdose is useful and it provides practical solution for calculation of approximate dose to embryo/fetus in nuclear medicine applications. None declared.
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Temperature measuring analysis of the nuclear reactor fuel assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk
2014-08-06
Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less
Inverse gas chromatographic determination of solubility parameters of excipients.
Adamska, Katarzyna; Voelkel, Adam
2005-11-04
The principle aim of this work was an application of inverse gas chromatography (IGC) for the estimation of solubility parameter for pharmaceutical excipients. The retention data of number of test solutes were used to calculate Flory-Huggins interaction parameter (chi1,2infinity) and than solubility parameter (delta2), corrected solubility parameter (deltaT) and its components (deltad, deltap, deltah) by using different procedures. The influence of different values of test solutes solubility parameter (delta1) over calculated values was estimated. The solubility parameter values obtained for all excipients from the slope, from Guillet and co-workers' procedure are higher than that obtained from components according Voelkel and Janas procedure. It was found that solubility parameter's value of the test solutes influences, but not significantly, values of solubility parameter of excipients.
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
Investigation of nuclear stopping observable in heavy ion collisions
NASA Astrophysics Data System (ADS)
Deepshikha; Kumar, Suneel
2018-07-01
Detailed analysis has been made on nuclear stopping using various observable. Transport model, isospin dependent quantum molecular dynamics model (IQMD) has been used to study stopping over the whole mass range at incident energies between 10 MeV/nucleon and 1000 MeV/nucleon. Our study proves that ratio of width of transverse to longitudinal rapidity distribution i.e., < varxz > is the most suitable parameter to study nuclear stopping. Also, it has been observed that light mass fragments (LMF's) emitted from participant region can be used as barometer to study nuclear stopping.
Development of nanosensors in nuclear technology
NASA Astrophysics Data System (ADS)
Hassan, Thamir A. A.
2017-01-01
Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).
Precision Tests of the Electroweak Interaction using Trapped Atoms and Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, Daniel George
The objective of the proposed research is to study fundamental aspects of the electroweak interaction via precision measurements in beta decay to test our current understanding of fundamental particles and forces as contained in the so-called "Standard Model" of particle physics. By comparing elegant experiments to rigorous theoretical predictions, we will either confirm the Standard Model to a higher degree and rule out models which seek to extend it, or find evidence of new physics and help guide theorists in developing the New Standard Model. The use of ion and neutral atom traps at radioactive ion beam facilities has openedmore » up a new vista in precision low-energy nuclear physics experiments. Traps provide an ideal source of decaying atoms: they can be extremely cold (~1 mK); they are compact (~1 mm^3); and perhaps most importantly, the daughter particles escape with negligible distortions to their momenta in a scattering-free, open environment. The project is taking advantage of these technologies and applying them to precision beta-decay studies at radioactive beam facilities. The program consists of two complementary efforts: 1) Ion traps are an extremely versatile tool for purifying, cooling and bunching low-energy beams of short-lived nuclei. A large-bore (210~mm) superconducting 7-Tesla solenoid is at the heart of a Penning trap system for which there is a dedicated beamline at T-REX, the upgraded radioactive beam facility at the Cyclotron Institute, Texas A&M University. In addition to providing a general-purpose decay station, the flagship program for this system is measuring the ft-values and beta-neutrino correlation parameters from isospin T=2 superallowed beta-delayed proton decays, complimenting and expanding the already strong program in fundamental interactions at the Institute. 2) A magneto-optical trap is being used at the TRIUMF Neutral Atom Trap facility to observe the (un)polarized angular distribution parameters of isotopes of potassium. We are able to highly polarize laser-cooled atoms and observe their decay with unprecedented precision. The correlation of the daughter beta particle with the initial nuclear spin as well as other correlations are sensitive to physics beyond the Standard Model. Both of these cutting-edge and exciting research efforts will test our understanding of the fundamental symmetries underlying our current theory of electroweak interactions. Complementary to high-energy collider experiments, these low-energy nuclear physics "table-top" experiments will search for new particles and interactions which are not already described by the Standard Model of particle physics. The value of this research is recognized to be cross-disciplinary, exciting and potentially revolutionary in our understanding of nature's fundamental interactions. Accordingly, it has been endorsed by the recent (2007) Nuclear Science Advisory Committee's Long Range Plan as part of their recommendation for a "New Standard Model Initiative." In addition to the near-term benefits of scholarly publications and visibility through description of this work at international conferences, an important benefit of this research program is the training of new, young and enthusiastic nuclear physicists. Participants in this demanding and rewarding field develop a very strong background in physics with experience in a range of its subfields since we use atomic techniques and apply them to a nuclear physics experiment which in the end tests the theories of high-energy physics.« less
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling
Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...
2014-10-12
The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less
NASA Astrophysics Data System (ADS)
Tupikina, E. Yu.; Denisov, G. S.; Melikova, S. M.; Kucherov, S. Yu.; Tolstoy, P. M.
2018-07-01
In this work correlation dependencies between hydrogen bond energy ΔE for complexes with Fsbnd H⋯F hydrogen bond and their spectroscopic characteristics of the IR and NMR spectra are presented. We considered 26 complexes in a wide hydrogen bond energy range 0.2-47 kcal/mol. For each complex we calculated complexation energy (MP2/6-311++G(d,p)), IR spectroscopic parameters (FH stretching frequency ν, FH stretching frequency in local mode approximation νLM at MP2/6-311++G(d,p) level) and NMR parameters (chemical shift of hydrogen δH and fluorine nuclei δF, Nuclear Independent Chemical Shielding and spin-spin coupling constants 1JFH, 1hJH...F, 2hJFF at B3LYP/pcSseg-2 level). It was shown that changes of parameters upon complexation, i.e. changes of the stretching frequency in local mode approximation ΔνLM, change of the proton chemical shift ΔδH and change of the absolute value of spin-spin coupling constant 1JFH could be used for estimation of corresponding hydrogen bond strength. Furthermore, we build correlation dependencies between abovementioned spectroscopic characteristics and geometric ones, such as the asymmetry of bridging proton position q1 = 0.5·(rFH - rH…F).
NASA Astrophysics Data System (ADS)
Koch, Karl
2002-10-01
The Vogtland region, in the border region of Germany and the Czech Republic, is of special interest for the identification of seismic events on a local and regional scale, since both earthquakes and explosions occur frequently in the same area, and thus are relevant for discrimination research for verification of the Comprehensive Nuclear Test Ban Treaty. Previous research on event discrimination using spectral decay and variance from data recorded by the GERESS array indicated that spectral variance determined for the S phase for the seismic events in the Vogtland region seems to be the most promising parameter for event discrimination, because this parameter provides for almost complete separation of the earthquake and explosion populations. Almost the entire set of Vogtland events used in this research and more than 3000 local events detected in Germany in 1998 and 1999 were analysed to determine spectral slopes and variance for the P- and S-wave windows from stacked spectra of recordings at the GERESS array. The results suggest that small values for the spectral variance are associated not only with earthquakes in the Vogtland region, but also with earthquakes in other parts of Germany and neighbouring countries. While mining blasts show larger spectral variance values, mining-induced events yield a wide range of values, for example, in the Lubin area. A threshold-based identification scheme was applied; almost all events classified as earthquakes are found in seismically active regions. While the earthquakes are uniformly distributed throughout the day, events classified as explosions correlate with normal working hours, which is when blasting is done in Germany. In this study spectral variance provides good event discrimination for events in other parts of Germany, not only for the Vogtland region, showing that this identification parameter may be transported to other geological regions.
Thermodynamics of nuclear track chemical etching
NASA Astrophysics Data System (ADS)
Rana, Mukhtar Ahmed
2018-05-01
This is a brief paper with new and useful scientific information on nuclear track chemical etching. Nuclear track etching is described here by using basic concepts of thermodynamics. Enthalpy, entropy and free energy parameters are considered for the nuclear track etching. The free energy of etching is determined using etching experiments of fission fragment tracks in CR-39. Relationship between the free energy and the etching temperature is explored and is found to be approximately linear. The above relationship is discussed. A simple enthalpy-entropy model of chemical etching is presented. Experimental and computational results presented here are of fundamental interest in nuclear track detection methodology.
Moreira, Luiz Felipe Pompeu Prado; Ferrari, Adriana Cristina; Moraes, Tiago Bueno; Reis, Ricardo Andrade; Colnago, Luiz Alberto; Pereira, Fabíola Manhas Verbi
2016-05-19
Time-domain nuclear magnetic resonance and chemometrics were used to predict color parameters, such as lightness (L*), redness (a*), and yellowness (b*) of beef (Longissimus dorsi muscle) samples. Analyzing the relaxation decays with multivariate models performed with partial least-squares regression, color quality parameters were predicted. The partial least-squares models showed low errors independent of the sample size, indicating the potentiality of the method. Minced procedure and weighing were not necessary to improve the predictive performance of the models. The reduction of transverse relaxation time (T 2 ) measured by Carr-Purcell-Meiboom-Gill pulse sequence in darker beef in comparison with lighter ones can be explained by the lower relaxivity Fe 2+ present in deoxymyoglobin and oxymyoglobin (red beef) to the higher relaxivity of Fe 3+ present in metmyoglobin (brown beef). These results point that time-domain nuclear magnetic resonance spectroscopy can become a useful tool for quality assessment of beef cattle on bulk of the sample and through-packages, because this technique is also widely applied to measure sensorial parameters, such as flavor, juiciness and tenderness, and physicochemical parameters, cooking loss, fat and moisture content, and instrumental tenderness using Warner Bratzler shear force. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R. A.
The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE-STD-3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do notmore » involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.« less
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Precise Penning trap measurements of double β-decay Q-values
NASA Astrophysics Data System (ADS)
Redshaw, M.; Brodeur, M.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Izzo, C.; Lincoln, D. L.; Novario, S. J.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.
2015-10-01
The double β-decay (ββ -decay) Q-value, defined as the mass difference between parent and daughter atoms, is an important parameter for both two-neutrino ββ -decay (2 νββ) and neutrinoless ββ -decay (0 νββ) experiments. The Q-value enters into the calculation of the phase space factors, which relate the measured ββ -decay half-life to the nuclear matrix element and, in the case of 0 νββ , the effective Majorana mass of the neutrino. In addition, the Q-value defines the total kinetic energy of the two electrons emitted in 0 νββ , corresponding to the location of the single peak that is the sought after signature of 0 νββ . Hence, it is essential to have a precise and accurate Q-value determination. Over the last decade, the Penning trap mass spectrometry community has made a significant effort to provide precise ββ -decay Q-value determinations. Here we report on recent measurements with the Low Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory (NSCL) of the 48Ca, 82Se, and 96Zr Q-values. These measurements complete the determination of ββ -decay Q-values for the 11 ``best'' candidates (those with Q >2 MeV). We also report on a measurement of the 78Kr double electron capture (2EC) Q-value and discuss ongoing Penning trap measurements relating to ββ -decay and 2EC. Support from NSF Contract No. PHY-1102511, and DOE Grant No. 03ER-41268.
Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.
Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond
2011-06-01
To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
Correlation between quarter-point angle and nuclear radius
NASA Astrophysics Data System (ADS)
Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan
2017-04-01
The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, Alexander; Vilim, Richard
Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less
Sheep: The First Large Animal Model in Nuclear Transfer Research
Czernik, Marta; Zacchini, Federica; Iuso, Domenico; Scapolo, Pier Augusto
2013-01-01
Abstract The scope of this article is not to provide an exhaustive review of nuclear transfer research, because many authoritative reviews exist on the biological issues related to somatic and embryonic cell nuclear transfer. We shall instead provide an overview on the work done specifically on sheep and the value of this work on the greater nuclear transfer landscape. PMID:24033140
NASA Astrophysics Data System (ADS)
Luis, Josep M.; Martí, Josep; Duran, Miquel; Andrés, JoséL.
1997-04-01
Electronic and nuclear contributions to the static molecular electrical properties, along with the Stark tuning rate ( δνE ) and the infrared cross section changes ( δSE) have been calculated at the SCF level and at different correlated levels of theory, using a TZ2P basis set and finite field techniques. Nuclear contributions to these molecular properties have also been calculated using a recent analytical approach that allow both to check the accuracy of the finite field values, and to evaluate the importance of higher-order derivatives. The HF, CO, H 2O, H 2CO, and CH 4 molecules have been studied and the results compared to experimental date when available. The paper shows that nuclear relaxation and vibrational contributions must be included in order to obtain accurate values of the static electrical properties. Two different, combined approaches are proposed to predict experimental values of the electrical properties to an error smaller than 5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru
Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Felea, D.; Jipa, Al.; Besliu, C.; Stan, E.; Ristea, O.; Ristea, C.; Calin, M.; Esanu, T.; Bordeianu, C.; Tuturas, N.
2014-11-01
In this paper we present a new version of Chaos Many-Body Engine (CMBE) Grossu et al. (2014) [1]. Inspired by the Mean Free Path concept, we implemented a new parameter, namely the ;Mean Free Time;, which is defined as the mean time between one particle's creation and its stimulated decay. This new parameter should be understood as an effect of the nuclear environment and, as opposed to the particle lifetime, it has the advantage of not being affected by the relativistic dilation. In [2] we presented a toy-model for chaos analysis of relativistic nuclear collisions at 4.5 A GeV/c (the SKM 200 collaboration). In this work, we extended our model to 200 A GeV (the maximum BNL energy).
Comments on extracting the resonance strength parameter from yield data
Croft, Stephen; Favalli, Andrea
2015-06-23
The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF 6. At the present time there remains some considerable uncertainty (of the order of ± 20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed. An important thin target cross-section measurement is that of Wrean and Kavanagh who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV withmore » fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF 2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3 ± 0.8) eV based on a determination by Becker et al. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to explain the origin of the reported resonance strength. Fortunately the original notes spanning the period 12 January 1988 to 16 January 1990 were available to consult. Finally, in hindsight there is certainly a case of excessive brevity to rectify. In essence the step requiring explanation is how to compute the resonance strength, ω γ, from the reported thick target resonance yield Y.« less
Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.
2018-01-08
This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.
Raskosha, N G; Shuktova, I I
2015-01-01
The data on the migration capacity in soil and accumulation of 238Pu, 239, 240Pu, 137Cs and 90Sr by plants in the area of a peaceful nuclear explosion located in the taiga zone are presented. The influence of the soil parameters on the distribution and transformation forms of the radionuclides in the podzolic soil profile was studied. The major amounts of man-made radionuclides were found in the matter of the ground lip. The accumulation parameters of pollutants by plants were the highest for the leaves, young branches and conifer of trees.
New evaluated radioxenon decay data and its implications in nuclear explosion monitoring.
Galan, Monica; Kalinowski, Martin; Gheddou, Abdelhakim; Yamba, Kassoum
2018-03-07
This work presents the last updated evaluations of the nuclear and decay data of the four radioxenon isotopes of interest for the Comprehensive Nuclear-Test-Ban Treaty (CTBT): Xe-131 m, Xe-133, Xe-133 m and Xe-135. This includes the most recent measured values on the half-lives, gamma emission probabilities (Pγ) and internal conversion coefficients (ICC). The evaluation procedure has been made within the Decay Data Evaluation Project (DDEP) framework and using the latest available versions of nuclear and atomic data evaluation software tools and compilations. The consistency of the evaluations was confirmed by the very close result between the total available energy calculated with the present evaluated data and the tabulated Q-value. The article also analyzes the implications on the variation of the activity ratio calculations from radioxenon monitoring facilities depending on the nuclear database of reference. Copyright © 2018. Published by Elsevier Ltd.
Nuclear Forensics Applications of Principal Component Analysis on Micro X-ray Fluorescence Images
analysis on quantified micro x-ray fluorescence intensity values. This method is then applied to address goals of nuclear forensics . Thefirst...researchers in the development and validation of nuclear forensics methods. A method for determining material homogeneity is developed and demonstrated
History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director NTPR Radiation Dose Assessment Documents U.S. Atmospheric Nuclear Test History Reports U.S. Underground
The concept of physical surface in nuclear matter
NASA Astrophysics Data System (ADS)
Mazilu, Nicolae; Agop, Maricel
2015-02-01
The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.
Seismic Waveform Analysis of Underground Nuclear Explosions
1979-11-15
parameters to be discussed here are Bouguer gravity (Figure 18), and station elevation (Figure 19). Tn this simple comparison of various geophysical...noted the frequent strong correlation between Bouguer gravity and elevation. Indeed, many of the geophysical parameters discussed above are interrelated
Reduced rank regression via adaptive nuclear norm penalization
Chen, Kun; Dong, Hongbo; Chan, Kung-Sik
2014-01-01
Summary We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally non-convex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed non-convex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. PMID:25045172