Nuclear Parton Distribution Functions
Schienbein, I.; Yu, J.-Y.; Keppel, Cynthia; Morfin, Jorge; Olness, F.; Owens, J.F.
2009-01-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a chi^2 analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x_Bj-dependent and Q^2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x_Bj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
Nuclear Parton Distribution Functions
I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens
2009-06-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
Nuclear modifications of Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Adeluyi, Adeola Adeleke
This dissertation addresses a central question of modern nuclear physics: how does the behavior of fundamental degrees of freedom (quarks and gluons) change in the nuclear environment? This is an important aspect of experimental studies at current facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Laboratory (JLAB). It is also highly relevant to planned experimental efforts at the Large Hadron Collider (LHC) and the future Electron Ion Collider (EIC). All these facilities probe matter via collisions involving nuclei; thus complications arise due to the presence of the attendant nuclear medium. Theoretical efforts to understand and interpret experimental results from such collisions are therefore largely dependent on the resolution of this question. The development of nuclear physics demonstrates that theoretical description is most efficient in terms of the effective degrees of freedom relevant to the scale (energy) being probed. Thus at low energies, nuclei are described as bound states of protons and neutrons (nucleons). At higher energies, the nucleons are no longer elementary, but are revealed to possess an underlying substructure: they are made up of quarks and gluons, collectively termed partons. The mometum distributions of these partons in the nucleon are referred to as Parton Distribution Functions (PDFs). Parton distributions can be determined from experimental measurements of structure functions. The ratio of nuclear structure functions to nucleon structure functions (generically referred to as nuclear ratio) is a measure of the nuclear modifications of the free nucleon PDFs. Thus a study of the nuclear ratio suffices to gain an understanding of nuclear modifications. In this dissertation we aim to describe theoretically nuclear modifications in a restricted region where the nuclear ratio is less than unity, the so
Nuclear parton distributions and the Drell-Yan process
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Petti, R.
2014-10-01
We study the nuclear parton distribution functions on the basis of our recently developed semimicroscopic model, which takes into account a number of nuclear effects including nuclear shadowing, Fermi motion and nuclear binding, nuclear meson-exchange currents, and off-shell corrections to bound nucleon distributions. We discuss in detail the dependencies of nuclear effects on the type of parton distribution (nuclear sea vs valence), as well as on the parton flavor (isospin). We apply the resulting nuclear parton distributions to calculate ratios of cross sections for proton-induced Drell-Yan production off different nuclear targets. We obtain a good agreement on the magnitude, target and projectile x, and the dimuon mass dependence of proton-nucleus Drell-Yan process data from the E772 and E866 experiments at Fermilab. We also provide nuclear corrections for the Drell-Yan data from the E605 experiment.
Nuclear Parton Distributions with the LHeC
NASA Astrophysics Data System (ADS)
Klein, Max
2016-03-01
Nuclear parton distributions are far from being known today because of an infant experimental base. Based on design studies of the LHeC and using new simulations, of the inclusive neutral and charged current cross section measurements and of the strange, charm and beauty densities in nuclei, it is demonstrated how that energy frontier electron-ion collider would unfold the complete set of nuclear PDFs in a hugely extended kinematic range of deep inelastic scattering, extending in Bjorken x down to values near to 10-6 in the perturbative domain. Together with a very precise and complete set of proton PDFs, the LHeC nPDFs will thoroughly change the theoretical understanding of parton dynamics and structure inside hadrons.
Guzey, Vadim; Goeke, Klaus; Siddikov, Marat
2009-01-01
We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact parameter dependent nuclear parton distributions (PDFs). Nuclear shadowing induces non-trivial correlations between the impact parameter $b$ and the light-cone fraction $x$. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on $^{208}$Pb at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the $e A \\to e \\gamma A$ cross section. We find that the $e A \\to e \\gamma A$ differential cross section is dominated by DVCS at the momentum transfer $t$ near the minima of the nuclear form factor. We also find that nuclear shadowing leads
Global NLO Analysis of Nuclear Parton Distribution Functions
Hirai, M.; Kumano, S.; Nagai, T.-H.
2008-02-21
Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A{sup '}} and Drell-Yan cross section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A{sup '}}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of {alpha}{sub s}. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.
nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties
Kusina, A.; Jezo, T.; Clark, D. B.; Keppel, Cynthia; Lyonnet, F.; Morfin, Jorge; Olness, F. I.; Owens, Jeff; Schienbein, I.
2015-09-01
We present the first official release of the nCTEQ nuclear parton distribution functions with errors. The main addition to the previous nCTEQ PDFs is the introduction of PDF uncertainties based on the Hessian method. Another important addition is the inclusion of pion production data from RHIC that give us a handle on constraining the gluon PDF. This contribution summarizes our results from arXiv:1509.00792 and concentrates on the comparison with other groups providing nuclear parton distributions.
Generalized parton distributions in nuclei
Vadim Guzey
2009-12-01
Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.
Hadron production in deuteron-gold collisions and nuclear parton distributions
Adeluyi, Adeola; Fai, George
2007-11-15
We calculate nuclear modification factors R{sub dAu}, central-to-peripheral ratios, R{sub CP}, and pseudorapidity asymmetries Y{sub Asym} in deuteron-gold collisions at {radical}(s)=200 GeV in the framework of leading-order (LO) perturbative quantum chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS), and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.
Hadron production in deuteron-gold collisions and nuclear parton distributions
NASA Astrophysics Data System (ADS)
Adeluyi, Adeola; Fai, George
2007-11-01
We calculate nuclear modification factors RdAu, central-to-peripheral ratios, RCP, and pseudorapidity asymmetries YAsym in deuteron-gold collisions at s=200 GeV in the framework of leading-order (LO) perturbative quantum chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS), and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.
nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework
Kovarik, K.; Kusina, A.; Clark, D. B.; Keppel, C.; Lyonnet, F.; Morfin, J. G.; Olness, F. I.; Owens, J. F.; Schienbein, I.
2016-04-28
We present the new nCTEQ15 set of nuclear parton distribution functions with uncertainties. This fit extends the CTEQ proton PDFs to include the nuclear dependence using data on nuclei all the way up to ^{208}Pb. The uncertainties are determined using the Hessian method with an optimal rescaling of the eigenvectors to accurately represent the uncertainties for the chosen tolerance criteria. In addition to the Deep Inelastic Scattering (DIS) and Drell-Yan (DY) processes, we also include inclusive pion production data from RHIC to help constrain the nuclear gluon PDF. Here, we investigate the correlation of the data sets with specific nPDF flavor components, and asses the impact of individual experiments. We also provide comparisons of the nCTEQ15 set with recent fits from other groups.
nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework
Kovarik, K.; Kusina, A.; Jezo, T.; ...
2016-04-28
We present the new nCTEQ15 set of nuclear parton distribution functions with uncertainties. This fit extends the CTEQ proton PDFs to include the nuclear dependence using data on nuclei all the way up to 208Pb. The uncertainties are determined using the Hessian method with an optimal rescaling of the eigenvectors to accurately represent the uncertainties for the chosen tolerance criteria. In addition to the Deep Inelastic Scattering (DIS) and Drell-Yan (DY) processes, we also include inclusive pion production data from RHIC to help constrain the nuclear gluon PDF. Here, we investigate the correlation of the data sets with specific nPDFmore » flavor components, and asses the impact of individual experiments. We also provide comparisons of the nCTEQ15 set with recent fits from other groups.« less
Medium Effects in Parton Distributions
William Detmold, Huey-Wen Lin
2011-12-01
A defining experiment of high-energy physics in the 1980s was that of the EMC collaboration where it was first observed that parton distributions in nuclei are non-trivially related to those in the proton. This result implies that the presence of the nuclear medium plays an important role and an understanding of this from QCD has been an important goal ever since Here we investigate analogous, but technically simpler, effects in QCD and examine how the lowest moment of the pion parton distribution is modified by the presence of a Bose-condensed gas of pions or kaons.
Accardi, Alberto; Owens, Jeff F.
2013-07-01
Three new sets of next-to-leading order parton distribution functions (PDFs) are presented, determined by global fits to a wide variety of data for hard scattering processes. The analysis includes target mass and higher twist corrections needed for the description of deep-inelastic scattering data at large x and low Q^2, and nuclear corrections for deuterium targets. The PDF sets correspond to three different models for the nuclear effects, and provide a more realistic uncertainty range for the d quark PDF compared with previous fits. Applications to weak boson production at colliders are also discussed.
Unintegrated double parton distributions - A summary
NASA Astrophysics Data System (ADS)
Golec-Biernat, Krzysztof; Staśto, Anna
2017-03-01
We present main elements of the construction of unintegrated double parton distribution functions which depend on transverse momenta of partons. We follow the method proposed by Kimber, Martin and Ryskin for a construction of unintegrated single parton distributions from the standard parton distribution functions.
Extractions of polarized and unpolarized parton distribution functions
Jimenez-Delgado, Pedro
2014-01-01
An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.
Structure functions and parton distributions
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-07-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.
Jet correlations from unintegrated parton distributions
Hautmann, F.; Jung, H.
2008-10-13
Transverse-momentum dependent parton distributions can be introduced gauge-invariantly in QCD from high-energy factorization. We discuss Monte Carlo applications of these distributions to parton showers and jet physics, with a view to the implications for the Monte Carlo description of complex hadronic final states with multiple hard scales at the LHC.
Parton distributions with LHC data
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration
2013-02-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.
Unraveling hadron structure with generalized parton distributions
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Generalized Valon Model for Double Parton Distributions
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Ruiz Arriola, Enrique; Golec-Biernat, Krzysztof
2016-06-01
We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.
Transverse-momentum-dependent parton distributions (TMDs)
Bacchetta, Alessandro
2011-10-24
Transverse-momentum-dependent parton distributions (TMDs) provide three-dimensional images of the partonic structure of the nucleon in momentum space. We made impressive progress in understanding TMDs, both from the theoretical and experimental point of view. This brief overview on TMDs is divided in two parts: in the first, an essential list of achievements is presented. In the second, a selection of open questions is discussed.
Constraints on parton distribution from CDF
Bodek, A.; CDF Collaboration
1995-10-01
The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement with the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.
The parton distribution function library
Plothow-Besch, H.
1995-07-01
This article describes an integrated package of Parton Density Functions called PDFLIB which has been added to the CERN Program Library Pool W999 and is labelled as W5051. In this package all the different sets of parton density functions of the Nucleon, Pion and the Photon which are available today have been put together. All these sets have been combined in a consistent way such that they all have similar calling sequences and no external data files have to be read in anymore. A default set has been prepared, although those preferring their own set or wanting to test a new one may do so within the package. The package also offers a program to calculate the strong coupling constant {alpha}, to first or second order. The correct {Lambda}{sub QCD} associated to the selected set of structure functions and the number of allowed flavours with respect to the given Q{sup 2} is automatically used in the calculation. The selection of sets, the program parameters as well as the possibilities to modify the defaults and to control errors occurred during execution are described.
Progress in the dynamical parton distributions
Jimenez-Delgado, Pedro
2012-06-01
The present status of the (JR) dynamical parton distribution functions is reported. Different theoretical improvements, including the determination of the strange sea input distribution, the treatment of correlated errors and the inclusion of alternative data sets, are discussed. Highlights in the ongoing developments as well as (very) preliminary results in the determination of the strong coupling constant are presented.
Generalized Parton Distributions: Visions, Basics, and Realities
NASA Astrophysics Data System (ADS)
Müller, D.
2014-06-01
An introductory to generalized parton distributions (GDPs) is given which emphasizes their spectral property and its uses as well as the equivalence of various GDP representations. Furthermore, the status of the theory and phenomenology of hard exclusive processes is shortly reviewed.
Nonperturbative evolution of parton quasi-distributions
NASA Astrophysics Data System (ADS)
Radyushkin, A. V.
2017-04-01
Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F (x , k⊥2) and quasi-distributions (PQDs) Q (y ,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f (x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice in the domain of strong nonperturbative effects opens a new perspective for investigation of the 3-dimensional hadron structure.
Momentum transfer dependence of generalized parton distributions
NASA Astrophysics Data System (ADS)
Sharma, Neetika
2016-11-01
We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution.
Generalized parton distributions and exclusive processes
Guzey, Vadim
2013-10-01
In last fifteen years, GPDs have emerged as a powerful tool to reveal such aspects of the QCD structure of the nucleon as: - 3D parton correlations and distributions; - spin content of the nucleon. Further advances in the field of GPDs and hard exclusive processes rely on: - developments in theory and new methods in phenomenology such as new flexible parameterizations, neural networks, global QCD fits - new high-precision data covering unexplored kinematics: JLab at 6 and 12 GeV, Hermes with recoil detector, Compass, EIC. This slide-show presents: Nucleon structure in QCD, particularly hard processes, factorization and parton distributions; and a brief overview of GPD phenomenology, including basic properties of GPDs, GPDs and QCD structure of the nucleon, and constraining GPDs from experiments.
Parton distribution benchmarking with LHC data
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Carrazza, Stefano; Del Debbio, Luigi; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C.-P.
2013-04-01
We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+ α s uncertainty in the gluon fusion Higgs production cross section.
Access to generalized parton distributions at COMPASS
Nowak, Wolf-Dieter
2015-04-10
A brief experimentalist's introduction to Generalized Parton Distributions (GPDs) is given. Recent COMPASS results are shown on transverse target-spin asymmetries in hard exclusive ρ{sup 0} production and their interpretation in terms of a phenomenological model as indication for chiral-odd, transverse GPDs is discussed. For deeply virtual Compton scattering, it is briefly outlined how to access GPDs and projections are shown for future COMPASS measurements.
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
Dynamics of hot and dense nuclear and partonic matter
Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.
2012-06-15
The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.
Parton distributions in nuclei: Quagma or quagmire
Close, F.E.
1988-01-01
The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.
New model for nucleon generalized parton distributions
Radyushkin, Anatoly V.
2014-01-01
We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.
First JAM results on the determination of polarized parton distributions
Jimenez-Delgado, Pedro
2013-04-01
The Jefferson Lab Angular Momentum (JAM) collaboration is a new initiative aimed to the study of the angular-momentum-dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering will be presented and compared with previous determinations from other groups. Different aspects of global QCD analysis will be discussed, including effects due to nuclear structure, higher twist, and target-mass corrections, as well as the impact of different data selections.
First JAM results on the determination of polarized parton distributions
Accardi, Alberto; Jimenez-Delgado, Pedro; Melnitchouk, Wally
2014-01-01
The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.
Deeply exclusive processes and generalized parton distributions
Marc Vanderhaegen
2005-02-01
We discuss how generalized parton distributions (GPDs) enter into hard exclusive processes, and focuses on the links between GPDs and elastic nucleon form factors. These links, in the form of sum rules, represent powerful constraints on parameterizations of GPDs. A Regge parameterization for the GPDs at small momentum transfer -t is extended to the large-t region and it is found to catch the basic features of proton and neutron electromagnetic form factor data. This parameterization allows to estimate the quark contribution to the nucleon spin. It is furthermore discussed how these GPDs at large-t enter into two-photon exchange processes and resolve the discrepancy between Rosenbluth and polarization experiments of elastic electron nucleon scattering.
Quasi parton distributions and the gradient flow
Monahan, Christopher; Orginos, Kostas
2017-03-22
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernelmore » that relates the smeared quasi PDF and the light-front PDF.« less
Nucleon Generalized Parton Distributions from Full Lattice QCD
Robert Edwards; Philipp Haegler; David Richards; John Negele; Konstantinos Orginos; Wolfram Schroers; Jonathan Bratt; Andrew Pochinsky; Michael Engelhardt; George Fleming; Bernhard Musch; Dru Renner
2007-07-03
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3.
Improved quasi parton distribution through Wilson line renormalization
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
2017-02-01
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a "mass" counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Nucleon parton distributions in a light-front quark model
NASA Astrophysics Data System (ADS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-02-01
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ ˜ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δ q_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN).
Investigation of Nuclear Partonic Structure. Final Report
Crawford, Henry J.; Engelage, J. M.
2016-08-30
Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- ^{3}_{Λ-bar}H, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- ^{4}He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.
Nuclear effects on tetraquark production by double parton scattering
NASA Astrophysics Data System (ADS)
Carvalho, F.; Navarra, F. S.
2017-03-01
In this work we study the nuclear effects in exotic meson production. We estimate the total cross section as a function of the energy for pPb scattering using a version of the color evaporation model (CEM) adapted to Double Parton Scattering (DPS). We fond that the cross section grows significantly with the atomic number, indicating that the hypothesis of tetraquark states can be tested in pA collisions at LHC.
Reconstruction of Monte Carlo replicas from Hessian parton distributions
NASA Astrophysics Data System (ADS)
Hou, Tie-Jiun; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Stump, Daniel; Wang, Bo-Ting; Xie, Ke Ping; Dulat, Sayipjamal; Pumplin, Jon; Yuan, C. P.
2017-03-01
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
The role of the input scale in parton distribution analyses
Pedro Jimenez-Delgado
2012-08-01
A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.
Concurrent approaches to Generalized Parton Distribution modeling: the pion's case
NASA Astrophysics Data System (ADS)
Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2017-03-01
The concept of Generalized Parton Distributions promises an understanding of the generation of the charge, spin, and energy-momentum structure of hadrons by quarks and gluons. Forthcoming measurements with unprecedented accuracy at Jefferson Lab and at CERN will challenge our quantitative description of the three-dimensional structure of hadrons. To fully exploit these future measurements, new tools and models are currently being developed. We explain the difficulties of Generalized Parton Distribution modeling, and present some recent progresses. In particular we describe the symmetry-preserving Dyson-Schwinger and Bethe-Salpeter framework. We also discuss various equivalent parameterizations and sketch how to combine them to obtain models satisfying a priori all required theoretical constraints. At last we explain why these developments naturally fit in a versatile software framework, named PARTONS, dedicated to the theory and phenomenology of GPDs.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.
Parton distribution functions in Monte Carlo factorisation scheme
NASA Astrophysics Data System (ADS)
Jadach, S.; Płaczek, W.; Sapeta, S.; Siódmok, A.; Skrzypek, M.
2016-12-01
A next step in development of the KrkNLO method of including complete NLO QCD corrections to hard processes in a LO parton-shower Monte Carlo is presented. It consists of a generalisation of the method, previously used for the Drell-Yan process, to Higgs-boson production. This extension is accompanied with the complete description of parton distribution functions in a dedicated, Monte Carlo factorisation scheme, applicable to any process of production of one or more colour-neutral particles in hadron-hadron collisions.
Higher twist parton distributions from light-cone wave functions
Braun, V. M.; Lautenschlager, T.; Pirnay, B.; Manashov, A. N.
2011-05-01
We explore the possibility to construct higher-twist parton distributions in a nucleon at some low reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and unpolarized parton densities at large values of the Bjorken variable x{>=}0.5. Twist-three parton distributions are then constructed as convolution integrals of qqqg and the usual three-quark WFs. The cases of the polarized structure function g{sub 2}(x,Q{sup 2}) and single transverse spin asymmetries are considered in detail. We find that the so-called gluon pole contribution to twist-three distributions relevant for single spin asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the spirit of Glueck-Reya-Vogt parton distributions.
Recent progress in the statistical approach of parton distributions
Soffer, Jacques
2011-07-15
We recall the physical features of the parton distributions in the quantum statistical approach of the nucleon. Some predictions from a next-to-leading order QCD analysis are compared to recent experimental results. We also consider their extension to include their transverse momentum dependence.
Unbiased determination of polarized parton distributions and their uncertainties
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-09-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.
Parton Distributions in the pion from lattice QCD
W. Detmold; Wally Melnitchouk; Anthony Thomas
2003-03-01
We analyze the moments of parton distribution functions in the pion calculated in lattice QCD, paying particular attention to their chiral extrapolation. Using the lowest three non-trivial moments calculated on the lattice, we assess the accuracy with which the x-dependence of both the valence and sea quark distributions in the pion can be extracted. The resulting valence quark distributions at the physical pion mass are in fair agreement with existing Drell-Yan data, but the statistical errors are such that one cannot yet confirm (or rule out) the large-x behavior expected from hadron helicity conservation in perturbative QCD. One can expect, however, that the next generation of calculations in lattice QCD will allow one to extract parton distributions with a level of accuracy comparable with current experiments.
New parton distributions from large-x and low-Q^{2} data
Alberto Accardi; Christy, M. Eric; Keppel, Cynthia E.; Melnitchouk, Wally; Monaghan, Peter A.; Morfin, Jorge G.; Owens, Joseph F.
2010-02-11
We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. Furthermore, the behavior of the d quark as x → 1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.
Deeply Pseudoscalar Meson Electroproduction with CLAS and Generalized Parton Distributions
Guidal, Michel; Kubarovsky, Valery P.
2015-06-01
We discuss the recent data of exclusive $\\pi^0$ (and $\\pi^+$) electroproduction on the proton obtained by the CLAS collaboration at Jefferson Lab. It is observed that the cross sections, which have been decomposed in $\\sigma_T+\\epsilon\\sigma_L$, $\\sigma_{TT}$ and $\\sigma_{LT}$ structure functions, are dominated by transverse amplitude contributions. The data can be interpreted in the Generalized Parton Distribution formalism provided that one includes helicity-flip transversity GPDs.
Generalized Parton Distributions, Analyticity and Formfactors
Teryaev, O. V
2008-10-13
The QCD factorization for hard exclusive amplitudes is compared with their crossing and analytic properties. The crucial role is played by their mathematical structure described by Radon and Abel transforms, leading to 'holographic' property of GPDs at LO. These transforms are very different in the even- and odd-dimensional spaces, the latter case related to 'creation' GPDs describing, say, the deuteron breakup. The bounds implied by crossing and analyticity for the angular distributions in two-photon processes are obtained. The contributions of different types of QCD factorization and duality between them are considered. The relations of GPDs to (gravitational) formfactors, equivalence principle (EP) and its extension (EEP) are analyzed. EEP is also considered for the case of vector mesons, showing the possible link with AdS/QCD correspondence.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Grados Luyando, J.; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J. P.; Lykasov, G.; Madrigal Martinez, J. D.; Mulders, P. J.; Nocera, E. R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Signori, A.; Szymanowski, L.; Taheri Monfared, S.; Van der Veken, F. F.; van Haevermaet, H. J.; Van Mechelen, P.; Vladimirov, A. A.; Wallon, S.
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q_{T} spectra of Higgs and vector bosons for low q_{T}, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD_{LIB}, to parton density fits and parameterizations.
Pion and kaon valence-quark parton distribution functions
Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.
2011-06-15
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Pion and kaon valence-quark parton distribution functions.
Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.
2011-06-16
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Parton distributions in the LHC era: MMHT 2014 PDFs.
Harland-Lang, L A; Martin, A D; Motylinski, P; Thorne, R S
We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the 'MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the 'MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the [Formula: see text] valence quark difference at small [Formula: see text] due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the [Formula: see text] branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.
Parton distributions in the LHC era: MMHT 2014 PDFs
NASA Astrophysics Data System (ADS)
Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.
2015-05-01
We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the `MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the `MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the valence quark difference at small due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.
Transverse Momentum-Dependent Parton Distributions From Lattice QCD
Michael Engelhardt, Bernhard Musch, Philipp Haegler, Andreas Schaefer
2012-12-01
Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; Gamberg, L.; Mirazita, M.; Musch, B.; Prokudin, A.; Rossi, P.
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Proton structure and parton distribution functions from HERA
NASA Astrophysics Data System (ADS)
Chekelian, Vladimir
2016-11-01
The H1 and ZEUS collaborations at the electron-proton collider HERA collected e± p scattering data corresponding to an integrated luminosity of about 1 fb-1. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV, with different electric charges and longitudinal polarisation of the electron beam. Using these data inclusive neutral and charged current deep inelastic cross sections were measured over six orders of magnitude in negative four-momentum-transfer squared, Q2, and Bjorken x. A combination of all inclusive cross sections, published by the H1 and ZEUS collaborations at HERA, was performed. Using these combined HERA data and the individual H1 and ZEUS data taken using the polarised electron beams, the proton structure functions F2, FγZ2, xFγZ3 and FL were obtained, and scaling violations, electroweak unification, and polarisation effects in the charged current process were demonstrated. The combined cross sections were used as a sole input to QCD analyses at leading, next-to-leading and next-to-next-to-leading orders, providing a new set of parton distribution functions, denoted as HERAPDF2.0. An extension of the analysis by including HERA data on charm and jet production allowed a simultaneous determination of parton distributions and the strong coupling.
Transverse momentum-dependent parton distribution functions in lattice QCD
Engelhardt, Michael G.; Musch, Bernhard U.; Haegler, Philipp G.; Negele, John W.; Schaefer, Andreas
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Transverse momentum-dependent parton distribution functions from lattice QCD
Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer
2012-12-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particular on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.
From Bethe-Salpeter Wave functions to Generalised Parton Distributions
NASA Astrophysics Data System (ADS)
Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2016-09-01
We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.
Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.
2010-08-05
Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.
How large is the gluon polarization in the statistical parton distributions approach?
Soffer, Jacques; Bourrely, Claude; Buccella, Franco
2015-04-10
We review the theoretical foundations of the quantum statistical approach to parton distributions and we show that by using some recent experimental results from Deep Inelastic Scattering, we are able to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.
Multiple parton scattering in nuclei: Parton energy loss
Wang, Xin-Nian; Guo, Xiao-feng
2001-02-17
Multiple parton scattering and induced parton energy loss are studied in deeply inelastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell quark and the induced parton energy loss is expressed in terms of the modification to the quark fragmentation functions. The authors derive such modified quark fragmentation functions and their QCD evolution equations in DIS using the generalized factorization of higher twist parton distributions. They consider double-hard and hard-soft parton scattering as well as their interferences in the same framework. The final result, which depends on both the diagonal and off-diagonal twist-four parton distributions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference features and predicts a unique nuclear modification of the quark fragmentation functions.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
Dual parametrization of generalized parton distributions in two equivalent representations
NASA Astrophysics Data System (ADS)
Müller, D.; Polyakov, M. V.; Semenov-Tian-Shansky, K. M.
2015-03-01
The dual parametrization and the Mellin-Barnes integral approach represent two frameworks for handling the double partial wave expansion of generalized parton distributions (GPDs) in the conformal partial waves and in the t-channel SO(3) partial waves. Within the dual parametrization framework, GPDs are represented as integral convolutions of forward-like functions whose Mellin moments generate the conformal moments of GPDs. The Mellin-Barnes integral approach is based on the analytic continuation of the GPD conformal moments to the complex values of the conformal spin. GPDs are then represented as the Mellin-Barnes-type integrals in the complex conformal spin plane. In this paper we explicitly show the equivalence of these two independently developed GPD representations. Furthermore, we clarify the notions of the J = 0 fixed pole and the D-form factor. We also provide some insight into GPD modeling and map the phenomenologically successful Kumerički-Müller GPD model to the dual parametrization framework by presenting the set of the corresponding forward-like functions. We also build up the reparametrization procedure allowing to recast the double distribution representation of GPDs in the Mellin-Barnes integral framework and present the explicit formula for mapping double distributions into the space of double partial wave amplitudes with complex conformal spin.
Deeply Virtual Exclusive Processes and Generalized Parton Distributions
,
2011-06-01
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e, e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.
Agreement of neutrino deep inelastic scattering data with global fits of parton distributions.
Paukkunen, Hannu; Salgado, Carlos A
2013-05-24
The compatibility of neutrino-nucleus deep inelastic scattering data within the universal, factorizable nuclear parton distribution functions has been studied independently by several groups in the past few years. The conclusions are contradictory, ranging from a violation of the universality up to a good agreement, most of the controversy originating from the use of the neutrino-nucleus data from the NuTeV Collaboration. Here, we pay attention to non-negligible differences in the absolute normalization between different neutrino data sets. We find that such variations are large enough to prevent a tensionless fit to all data simultaneously and could therefore misleadingly point towards nonuniversal nuclear effects. We propose a concrete method to deal with the absolute normalization and show that an agreement between independent neutrino data sets is established.
The ABM parton distributions tuned to LHC data
NASA Astrophysics Data System (ADS)
Alekhin, S.; Blümlein, J.; Moch, S.
2014-03-01
We present a global fit of parton distributions at next-to-next-to-leading order (NNLO) in QCD. The fit is based on the world data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and includes, for the first time, data from the Large Hadron Collider (LHC) for the Drell-Yan process and the hadroproduction of top-quark pairs. The analysis applies the fixed-flavor number scheme for nf=3, 4, 5, uses the MS¯ scheme for the strong coupling αs and the heavy-quark masses and keeps full account of the correlations among all nonperturbative parameters. At NNLO this returns the values of αs(MZ)=0.1132±0.0011 and mt(pole)=171.2±2.4 GeV for the top-quark pole mass. The fit results are used to compute benchmark cross sections for the Higgs production at the LHC to NNLO accuracy. We compare our results to those obtained by other groups and show that differences can be linked to different theoretical descriptions of the underlying physical processes.
Accardi, A.; Brady, L. T.; Melnitchouk, W.; ...
2016-06-20
A new set of leading twist parton distribution functions, referred to as "CJ15", is presented, which take advantage of developments in the theoretical treatment of nuclear corrections as well as new data. The analysis includes for the first time data on the free neutron structure function from Jefferson Lab, and new high-precision charged lepton and W-boson asymmetry data from Fermilab, which significantly reduce the uncertainty on the d/u ratio at large values of x.
Spin-dependent parton distributions in the nucleon
I.C. Cloet; W. Bentz; A.W. Thomas
2005-04-01
Spin-dependent quark light-cone momentum distributions are calculated for a nucleon in the nuclear medium. We utilize a modified NJL model where the nucleon is described as a composite quark-diquark state. Scalar and vector mean fields are incorporated in the nuclear medium and these fields couple to the confined quarks in the nucleon. The effect of these fields on the spin-dependent distributions and consequently the axial charges is investigated. Our results for the ''spin-dependent EMC effect'' are also discussed.
Q2-DEPENDENCE of the Statistical Parton Distributions in the Valon Approach
NASA Astrophysics Data System (ADS)
Sohaily, S.; Yazdanpanah, M. M.; Mirjalili, A.
2012-06-01
We employ the statistical approach to obtain the nucleon parton distributions. Statistical distributions are considered as well for partons in the valon model in which a nucleon is assumed to be a state of three valence quark clusters (valon). Analytic expressions of the x-dependent of parton distribution functions (PDFs) in the valon model are obtained statistically in the whole x region [0, 1] in terms of the statistical parameters such as temperature, chemical potential and accessible volume. Since PDFs are obtained by taking the required sum rules including Gottfried sum rule at different energy scales, the Q2-dependence of these parameters can be obtained. Therefore the parton distributions as a function of Q2 will be resulted. To make the calculations more precise, we extend our results to contain three flavors rather than two light u and d quarks.
Working Group I: Parton distributions: Summary report for the HERA LHC Workshop Proceedings
Dittmar, M.; Forte, S.; Glazov, A.; Moch, S.; Alekhin, S.; Altarelli, G.; Andersen, Jeppe R.; Ball, R.D.; Blumlein, J.; Bottcher, H.; Carli, T.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; Corcella, G.; Del Debbio, L.; Dissertori, G.; Feltesse, J.; Guffanti, A.; Gwenlan, C.; Huston, J.; /Zurich, ETH /DESY, Zeuthen /Serpukhov, IHEP /CERN /Rome III U. /INFN, Rome3 /Cambridge U. /Edinburgh U. /Florence U. /INFN, Florence /Oxford U. /DSM, DAPNIA, Saclay /Michigan State U. /Uppsala U. /Barcelona U., ECM /Podgorica U. /Turin U. /INFN, Turin /Harish-Chandra Res. Inst. /Fermilab /Hamburg U., Inst. Theor. Phys. II
2005-11-01
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC.We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of F{sub L}), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.
Generalized parton distributions and Deeply Virtual Compton Scattering on proton at CLAS
R. De Masi
2007-12-01
Two measurements of target and beam spin asymmetries for the reaction ep→epγ were performed with CLAS at Jefferson Laboratory. Polarized 5.7 GeV electrons were impinging on a longitudinally polarized ammonia and liquid hydrogen target respectively. These measurements are sensitive to Generalized Parton Distributions. Sizable sin phi azimuthal angular dependences were observed in both experiments, indicating the dominance of leading twist terms and the possibility of extracting combinations of Generalized Parton Distributions on the nucleon.
CARROLL,J.
1999-09-10
The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.
Transverse-momentum-dependent parton distributions in a spectator diquark model
F Conti, A Bacchetta, M Radici
2009-09-01
Within the framework of a spectator diquark model of the nucleon, involving both scalar and axial-vector diquarks, we calculate all the leading-twist transverse-momentum-dependent parton distribution functions (TMDs). Naive Time-odd densities are generated through a one-gluon-loop rescattering mechanism, simulating the final state interactions required for these functions to exist. Analytic results are obtained for all the TMDs, and a connection with the light-cone wave functions formalism is also established. The model parameters are fixed by reproducing the phenomenological parametrizations of unpolarized and helicity parton distributions at the lowest available scale. Predictions for the other parton densities are given and, whenever possible, compared with available parametrizations.
Generalized Parton Distributions and Deep Exclusive Reactions: Present Program at Jlab
Michel Garcon
2004-07-01
We review briefly the physical concept of generalized parton distributions and the experimental challenges associated with the corresponding measurements of deep exclusive reactions. The first data obtained at Jefferson Lab for exclusive photon (DVCS) and vector meson (DVMP) electroproduction above the resonance-excitation region are described. Two upcoming dedicated DVCS experiments are presented in some detail.
Correlations in double parton distributions: perturbative and non-perturbative effects
NASA Astrophysics Data System (ADS)
Rinaldi, Matteo; Scopetta, Sergio; Traini, Marco; Vento, Vicente
2016-10-01
The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.
The parton distributions in nuclei and in polarized nucleons
Close, F.E.
1988-01-01
The emerging information was reviewed on the way quark and anti-quark, and gluon distributions are modified in nuclei relative to free nucleons. Some implications of the recent data on polarized leptoproduction are discussed. 27 refs., 6 figs.
An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities.
Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A; Zurita, Pía
2016-01-01
We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.
An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities
NASA Astrophysics Data System (ADS)
Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A.; Zurita, Pía
2016-04-01
We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.
The Generalized Parton Distribution program after the Jefferson Lab 12 GeV upgrade
Franck Sabatie
2009-12-01
The Generalized Parton Distribution framework was introduced in the late 90's and describes the nucleon in a revolutionary way, correlating the information from both momentum and transverse position space into experimentally accessible functions. After a brief introduction, this article reviews the Jefferson Lab 6 GeV measurements of Deeply Virtual Compton Scattering in Halls A and B, which give a unique access to Generalized Parton Distributions (GPD). The second half of this article reviews the Jefferson Lab 12 GeV upgrade in general terms, and then focuses on the GPD program in Halls A and B. This second generation of experiments will yield more accurate, more complete data in a wider kinematical range than any experiment ever before, using the full capability of a higher beam energy, higher luminosities, upgraded detectors and refined extraction techniques.
NASA Astrophysics Data System (ADS)
Kusina, A.; Stavreva, T.; Berge, S.; Olness, F. I.; Schienbein, I.; Kovařík, K.; Ježo, T.; Yu, J. Y.; Park, K.
2012-05-01
Global analyses of parton distribution functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark parton distribution function has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.
Accardi, A.; Brady, L. T.; Melnitchouk, W.; Owens, J. F.; Sato, N.
2016-06-20
A new set of leading twist parton distribution functions, referred to as "CJ15", is presented, which take advantage of developments in the theoretical treatment of nuclear corrections as well as new data. The analysis includes for the first time data on the free neutron structure function from Jefferson Lab, and new high-precision charged lepton and W-boson asymmetry data from Fermilab, which significantly reduce the uncertainty on the d/u ratio at large values of x.
Photon parton distributions in nuclei and the EMC effect
Frankfurt, L.; Strikman, M.
2010-12-15
Photons, as well as quarks and gluons, are constituents of the infinite momentum frame (IMF) wave function of an energetic particle. They are mostly equivalent photons whose amplitude follows from the Lorentz transformation of the particle rest frame Coulomb field into the IMF and from the conservation of the electromagnetic current. We evaluate in a model independent way the dominant photon contribution {proportional_to}{alpha}{sub em}(Z{sup 2}/A{sup 4/3})ln(1/R{sub A}m{sub N}x) to the nuclear structure functions as well as the term {proportional_to}{alpha}{sub em}Z/A. In addition we show that the definition of x consistent with the exact kinematics of eA scattering (with exact sum rules) works in the same direction as the nucleus field of equivalent photons. Combined, these effects account for the bulk of the hadronic European Muon Collaboration (EMC) effect for x{<=}0.5 where Fermi motion effects are small. In particular, for these x the hadronic mechanism contribution to the EMC effect does not exceed {approx}3% for all nuclei. Also, the A dependence of the hadronic mechanism of the EMC effect for x>0.5 is significantly modified.
Photon parton distributions in nuclei and the EMC effect
Frankfurt, Leonid; Strikman, Mark
2010-12-01
Photons as well as quarks and gluons are constituents of the infinite momentum frame (IMF) wave function of an energetic particle. They are mostly equivalent photons whose amplitude follows from the Lorentz transformation of the particle rest frame Coulomb field into the IMF and from the conservation of the electromagnetic current. We evaluate in a model independent way the dominant photon contribution \\propto \\alpha_{em}(Z^2/A^{4/3})\\ln(1/R_{A}m_{N}x) to the nuclear structure functions as well as the term \\propto \\alpha_{em}Z/A. In addition we show that the definition of x consistent with the exact kinematics of eA scattering (with exact sum rules) works in the same direction as the nucleus field of equivalent photons. Combined, these effects account for the bulk of the EMC effect for x\\le 0.5 where Fermi motion effects are small. In particular for these x the hadronic mechanism contribution to the EMC effect does not exceed \\sim 3% for all nuclei. Also the A-dependence of the hadronic mechanism of the EMC effect for x > 0.5 is significantly modified.
The Generalized Parton Distribution program in Hall A at Jefferson Lab
Camacho, C. Munoz
2008-10-13
Recent results on the Generalized Parton Distribution (GPD) program at Jefferson Lab (JLab) will be presented. The emphasis will be in the Hall A program aiming at measuring Q{sup 2}--dependences of different terms of the Deeply Virtual Compton Scattering (DVCS) cross section. This is a fundamental step before one can extract GPD information from JLab DVCS data. Neutral pion production will also be discussed and results from the CLAS collaboration will be shown. Finally, the upcoming program in Hall A, using both a 6 GeV beam ({approx_equal}2010) and a 11 GeV beam ({approx_equal}2015) will be described.
APFEL Web: a web-based application for the graphical visualization of parton distribution functions
NASA Astrophysics Data System (ADS)
Carrazza, Stefano; Ferrara, Alfio; Palazzo, Daniele; Rojo, Juan
2015-05-01
We present APFEL Web, a Web-based application designed to provide a flexible user-friendly tool for the graphical visualization of parton distribution functions. In this note we describe the technical design of the APFEL Web application, motivating the choices and the framework used for the development of this project. We document the basic usage of APFEL Web and show how it can be used to provide useful input for a variety of collider phenomenological studies. Finally we provide some examples showing the output generated by the application.
The asymptotic behaviour of parton distributions at small and large x.
Ball, Richard D; Nocera, Emanuele R; Rojo, Juan
2016-01-01
It has been argued from the earliest days of quantum chromodynamics that at asymptotically small values of x the parton distribution functions (PDFs) of the proton behave as [Formula: see text], where the values of [Formula: see text] can be deduced from Regge theory, while at asymptotically large values of x the PDFs behave as [Formula: see text], where the values of [Formula: see text] can be deduced from the Brodsky-Farrar quark counting rules. We critically examine these claims by extracting the exponents [Formula: see text] and [Formula: see text] from various global fits of parton distributions, analysing their scale dependence, and comparing their values to the naive expectations. We find that for valence distributions both Regge theory and counting rules are confirmed, at least within uncertainties, while for sea quarks and gluons the results are less conclusive. We also compare results from various PDF fits for the structure function ratio [Formula: see text] at large x, and caution against unrealistic uncertainty estimates due to overconstrained parametrisations.
Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering
Frankfurt, L.; Hyde, C. E.; Strikman, M.; Weiss, C.
2007-03-01
We study rapidity gap survival (RGS) in the production of high-mass systems (H=dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp{yields}p+(gap)+H+(gap)+p. Our approach is based on the idea that hard and soft interactions are approximately independent because they proceed over widely different time and distance scales. We implement this idea in a partonic description of proton structure, which allows for a model-independent treatment of the interplay of hard and soft interactions. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons, whose amplitude is calculable in terms of the gluon generalized parton distribution (GPD), measured in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate neglecting correlations between hard and soft interactions (independent interaction approximation). We obtain an analytic expression for the RGS probability in terms of the phenomenological pp elastic scattering amplitude, without reference to the eikonal approximation. Contributions from inelastic intermediate states are suppressed. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons ('diffraction pattern'). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the
New parton distribution functions from a global analysis of quantum chromodynamics
NASA Astrophysics Data System (ADS)
Dulat, Sayipjamal; Hou, Tie-Jiun; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C.-P.
2016-02-01
We present new parton distribution functions (PDFs) at next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged-lepton rapidity asymmetry data, as well as the use of a more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. These CT14 PDFs include a central set and error sets in the Hessian representation. For completeness, we also present the CT14 PDFs determined at the LO and the NLO in QCD. Besides these general-purpose PDF sets, we provide a series of (N)NLO sets with various αs values and additional sets in general-mass variable flavor number schemes, to deal with heavy partons, with up to three, four, and six active flavors.
New parton distribution functions from a global analysis of quantum chromodynamics
Dulat, Sayipjamal; Hou, Tie -Jiun; Gao, Jun; ...
2016-02-16
Here, we present new parton distribution functions (PDFs) up to next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged lepton rapidity asymmetry data, as well as the use of more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. These CT14 PDFs include a central set and error sets in the Hessian representation. Formore » completeness, we also present the CT14 PDFs determined at the leading order (LO) and the next-to-leading order (NLO) in QCD. Besides these general-purpose PDF sets, we provide a series of (N)NLO sets with various αs values and additional sets in general-mass variable flavor number (GM-VFN) schemes, to deal with heavy partons, with up to 3, 4, and 6 active flavors.« less
New parton distribution functions from a global analysis of quantum chromodynamics
Dulat, Sayipjamal; Hou, Tie -Jiun; Gao, Jun; Guzzi, Marco; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C. -P.; Huston, Joey
2016-02-16
Here, we present new parton distribution functions (PDFs) up to next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged lepton rapidity asymmetry data, as well as the use of more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. These CT14 PDFs include a central set and error sets in the Hessian representation. For completeness, we also present the CT14 PDFs determined at the leading order (LO) and the next-to-leading order (NLO) in QCD. Besides these general-purpose PDF sets, we provide a series of (N)NLO sets with various α_{s} values and additional sets in general-mass variable flavor number (GM-VFN) schemes, to deal with heavy partons, with up to 3, 4, and 6 active flavors.
Parton distribution in pseudoscalar mesons with a light-front constituent quark model
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Ahmed, Isthiaq; Tsushima, Kazuo
2016-05-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function [1, 2, 3]. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions (PDFs), we use both the conditions in the light-cone wave function, i.e., when s ¯ quark is on-shell, and when u quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses [4, 5].
Huston, Joey [Co-Spokesperson; Ownes, Joseph [Co-Spokesperson
The Coordinated Theoretical-Experimental Project on QCD is a multi-institutional collaboration devoted to a broad program of research projects and cooperative enterprises in high-energy physics centered on Quantum Chromodynamics (QCD) and its implications in all areas of the Standard Model and beyond. The Collaboration consists of theorists and experimentalists at 18 universities and 5 national laboratories. More than 65 sets of Parton Distribution Functions are available for public access. Links to many online software tools, information about Parton Distribution Functions, papers, and other resources are also available.
New limits on intrinsic charm in the nucleon from global analysis of parton distributions
Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; ...
2015-02-27
We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2 ≥ 1 GeV2 and W2 ≥ 3.5 GeV2, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)IC at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for ΔX2 = 1.more » We also assess the impact of older EMC measurements of Fc2c at large x, which favor a nonzero IC, but with very large X2 values.« less
NASA Astrophysics Data System (ADS)
Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2017-03-01
The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.
Jo, Hyon -Suk
2015-11-17
Unpolarized and beam-polarized four-fold cross sections $\\frac{d^4 \\sigma}{dQ^2 dx_B dt d\\phi}$ for the $ep\\to e^\\prime p^\\prime \\gamma$ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 ($Q^2,x_B,t$) bins over the widest phase space ever explored in the valence-quark region. Several models of Generalized Parton Distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD $H$, expected to be the dominant contributor to these observables. Thus, through a leading-twist extraction of Compton Form Factors, these results reveal a tomographic image of the nucleon.
Jo, Hyon -Suk
2015-11-17
Unpolarized and beam-polarized four-fold cross sectionsmore » $$\\frac{d^4 \\sigma}{dQ^2 dx_B dt d\\phi}$$ for the $$ep\\to e^\\prime p^\\prime \\gamma$$ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 ($$Q^2,x_B,t$$) bins over the widest phase space ever explored in the valence-quark region. Several models of Generalized Parton Distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD $H$, expected to be the dominant contributor to these observables. Thus, through a leading-twist extraction of Compton Form Factors, these results reveal a tomographic image of the nucleon.« less
Jo, H S; Girod, F X; Avakian, H; Burkert, V D; Garçon, M; Guidal, M; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Adikaram, D; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Garillon, B; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Hattawy, M; Hicks, K; Hirlinger Saylor, N; Ho, D; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Joo, K; Joosten, S; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Kuhn, S E; Kuleshov, S V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; McKinnon, B; Meziani, Z E; Mirazita, M; Mokeev, V; Montgomery, R A; Moutarde, H; Movsisyan, A; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Net, L A; Niculescu, G; Osipenko, M; Ostrovidov, A I; Paolone, M; Park, K; Pasyuk, E; Phillips, J J; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Puckett, A J R; Raue, B A; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Simonyan, A; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S; Strakovsky, I I; Strauch, S; Sytnik, V; Tian, Ye; Tkachenko, S; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-11-20
Unpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD H, expected to be the dominant contributor to these observables. Through a leading-twist extraction of Compton form factors, these results support the model predictions of a larger nucleon size at lower quark-momentum fraction x_{B}.
NASA Astrophysics Data System (ADS)
Jo, H. S.; Girod, F. X.; Avakian, H.; Burkert, V. D.; Garçon, M.; Guidal, M.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Hirlinger Saylor, N.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-11-01
Unpolarized and beam-polarized fourfold cross sections (d4σ /d Q2d xBd t d ϕ ) for the e p →e'p'γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q2,xB,t ) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD H , expected to be the dominant contributor to these observables. Through a leading-twist extraction of Compton form factors, these results support the model predictions of a larger nucleon size at lower quark-momentum fraction xB.
Iterative Monte Carlo analysis of spin-dependent parton distributions
Sato, Nobuo; Melnitchouk, Wally; Kuhn, Sebastian E.; ...
2016-04-05
We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x ≳ 0.1. Furthermore, the study also provides the first determination of the flavor-separated twist-3 PDFsmore » and the d2 moment of the nucleon within a global PDF analysis.« less
Iterative Monte Carlo analysis of spin-dependent parton distributions
Sato, Nobuo; Melnitchouk, Wally; Kuhn, Sebastian E.; Ethier, Jacob J.; Accardi, Alberto
2016-04-05
We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x ≳ 0.1. Furthermore, the study also provides the first determination of the flavor-separated twist-3 PDFs and the d_{2} moment of the nucleon within a global PDF analysis.
Exclusive η electroproduction at W>2 GeV with CLAS and transversity generalized parton distributions
Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; ...
2017-03-10
The cross section of the exclusive η electroproduction reaction ep → e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdΦη and structure functions σU = σT + εσL, σTT, and σLT, as functions of t, were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t, both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. As a result, the π0more » and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.« less
How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function
NASA Astrophysics Data System (ADS)
Manohar, Aneesh; Nason, Paolo; Salam, Gavin P.; Zanderighi, Giulia
2016-12-01
It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (e p ) scattering data, in effect viewing the e p →e +X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of e p data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.
Moments of Nucleon's Parton Distribution for the Sea and Valence Quarks from Lattice QCD
Deka, Mridupawan; Streuer, Thomas; Doi, Takumi; Dong, Shao-Jing; Draper, Terrence; Liu, Keh-Fei; Mathur, Nilmani; Thomas, Anthony
2009-01-01
We extend the study of lowest moments, $
A new phenomenological investigation of KMR and MRW unintegrated parton distribution functions
NASA Astrophysics Data System (ADS)
Modarres, M.; Hosseinkhani, H.; Olanj, N.; Masouminia, M. R.
2015-11-01
We address the longitudinal proton structure function, F_L(x,Q^2), from the k_t-factorization formalism by using the unintegrated parton distribution functions (UPDF) which are generated through the KMR and MRW procedures. The LO UPDF of the KMR prescription is extracted, by taking into account the PDF of Martin et al, i.e., MSTW2008-LO and MRST99-NLO, and next the NLO UPDF of the MRW scheme is generated through the set of MSTW2008-NLO PDF as the input. The different aspects of F_L(x,Q^2) in the two approaches, as well as its perturbative and non-perturbative parts, are calculated. Then the comparison of F_L(x,Q^2) is made with the data given by the ZEUS and H1 collaborations. It is demonstrated that the extracted F_L(x,Q^2), based on the UPDF of two schemes, are consistent with the experimental data, and to a good approximation they are independent of the input PDF. But the one developed from the KMR prescription has better agreement with the data with respect to that of MRW. As has been suggested, by lowering the factorization scale or the Bjorken variable in the related experiments it may be possible to analyze the present theoretical approaches more accurately.
CTEQ-TEA parton distribution functions and HERA Run I and II combined data
NASA Astrophysics Data System (ADS)
Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C.-P.
2017-02-01
We analyze the impact of the recent HERA Run I +II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of parton distribution functions (PDFs). New PDFs at next-to-leading order and next-to-next-to-leading order, called CT14 HERA 2 , are obtained by a refit of the CT14 data ensembles, in which the HERA Run I combined measurements are replaced by the new HERA Run I +II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14 HERA 2 but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I +II data can be fit reasonably well, and both CT14 and CT14 HERA 2 PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14 HERA 2 PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.
Parameterization of Parton Distributions Functions Based on Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Loitiere, Y.; Honkanen, H.; Liuti, S.
2006-11-01
Neural network algorithms have been recently applied to construct Parton Distribution Functions (PDFs) parametrizations which provide an alternative to standard global fitting procedures [1]. In this contribution we propose a different technique, namely an interactive neural network algorithm using Self-Organizing Maps (SOMs) [2]. SOMs generate a nonuniform projection from a high dimensional data space onto a low dimensional one (usually 1 or 2 dimensions) by clustering similar PDF representations together. Our SOMs are trained on progressively narrower selections of data samples. The selection criterion is that of convergence towards a neighborhood of the experimental data. Our procedure utilizes all available data on deep inelastic scattering in the kinematical region of 0.001 <=x <= 0.75, and 1 <=Q^2 <= 100 GeV^2, with a cut on the final state invariant mass, W^2 >= 10 GeV^2. Our main goal is to provide a fitting procedure that, at variance with standard neural network approaches, allows for an increased control of the systematic bias. SOMs, in fact, enable the user to directly control the data selection procedure at various stages of the process. [1] L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione and J. Rojo, [NNPDF Collaboration], JHEP 0503, 080 (2005). [2] T. Kohonen, ``Self Organizing Maps,'' Springer-Verlag, 1997.
Zenaiev, O.; Geiser, A.; Lipka, K.; ...
2015-08-01
The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10-6. This kinematic range is currently not covered by othermore » experimental data in perturbative QCD fits.« less
Zenaiev, O.; Geiser, A.; Lipka, K.; Blumlein, J.; Cooper-Sarkar, A.; Garzelli, M. -V.; Guzzi, M.; Kuprash, O.; Moch, S. -O.; Nadolsky, P.; Placakyte, R.; Rabbertz, K.; Schienbein, I.; Starovoitov, P.
2015-08-01
The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10^{-6}. This kinematic range is currently not covered by other experimental data in perturbative QCD fits.
Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case.
Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin
2012-12-14
We present a calculation of the perturbative quark-to-quark transverse parton distribution function at next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate for the first time that such a definition works beyond the first nontrivial order. We extract from our calculation the coefficient functions relevant for a next-to-next-to-next-to-leading logarithmic Q(T) resummation in a large class of processes at hadron colliders.
Jimenez-Delgado, Pedro; Hobbs, Timothy J.; Londergan, J. T.; Melnitchouk, Wally
2016-01-05
We reply to the Comment of Brodsky and Gardner on our paper "New limits on intrinsic charm in the nucleon from global analysis of parton distributions" [Phys. Rev. Lett. 114, 082002 (2015)]. We address a number of incorrect claims made about our fitting methodology, and elaborate how global QCD analysis of all available high-energy data provides no evidence for a large intrinsic charm component of the nucleon.
CT14QED parton distribution functions from isolated photon production in deep inelastic scattering
NASA Astrophysics Data System (ADS)
Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.
2016-06-01
We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Hosseinkhani, H.; Olanj, N.
2016-01-01
In the spirit of performing a complete phenomenological investigation of the merits of Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDF), we have computed the longitudinal structure function of the proton, FL (x ,Q2), from the so-called dipole approximation, using the LO and the NLO-UPDF, prepared in the respective frameworks. The preparation process utilizes the PDF of Martin et al., MSTW2008-LO and MSTW2008-NLO, as the inputs. Afterwards, the numerical results are undergone a series of comparisons against the exact kt-factorization and the kt-approximate results, derived from the work of Golec-Biernat and Stasto, against each other and the experimental data from ZEUS and H1 Collaborations at HERA. Interestingly, our results show a much better agreement with the exact kt-factorization, compared to the kt-approximate outcome. In addition, our results are completely consistent with those prepared from embedding the KMR and MRW UPDF directly into the kt-factorization framework. One may point out that the FL, prepared from the KMR UPDF shows a better agreement with the exact kt-factorization. This is despite the fact that the MRW formalism employs a better theoretical description of the DGLAP evolution equation and has an NLO expansion. Such unexpected consequence appears, due to the different implementation of the angular ordering constraint in the KMR approach, which automatically includes the resummation of ln (1 / x), BFKL logarithms, in the LO-DGLAP evolution equation.
NASA Astrophysics Data System (ADS)
Tuppan, Sam; Budnik, Garrett; Fox, Jordan
2014-09-01
The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. This research has been supported in part by the
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Engelhardt, M.; Musch, B.; Bhattacharya, T.; ...
2014-06-23
Here, lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297 MeV, on a lattice with spacing 0.084 fm, selected TMD observables are accessed and compared to previous exploration at heavier pion masses on coarser lattices.
Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram
2014-12-01
Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.
NASA Astrophysics Data System (ADS)
Sawada, Takahiro; Chang, Wen-Chen; Kumano, Shunzo; Peng, Jen-Chieh; Sawada, Shinya; Tanaka, Kazuhiro
2016-06-01
Generalized parton distributions (GPDs) encoding multidimensional information of hadron partonic structure appear as the building blocks in a factorized description of hard exclusive reactions. The nucleon GPDs have been accessed by deeply virtual Compton scattering and deeply virtual meson production with lepton beam. A complementary probe with hadron beam is the exclusive pion-induced Drell-Yan process. In this paper, we discuss recent theoretical advances on describing this process in terms of nucleon GPDs and pion distribution amplitudes. Furthermore, we address the feasibility of measuring the exclusive pion-induced Drell-Yan process π-p →μ+μ-n via a spectrometer at the High Momentum Beamline being constructed at J-PARC in Japan. Realization of such measurement at J-PARC will provide a new test of perturbative QCD descriptions of a novel class of hard exclusive reactions. It will also offer the possibility of experimentally accessing nucleon GPDs at large timelike virtuality.
NASA Astrophysics Data System (ADS)
Kwieciński, Jan; Maul, Martin
2003-02-01
In this paper we derive an integral equation for the evolution of unintegrated (longitudinally) polarized quark and gluon parton distributions. The conventional Catani-Ciafaloni-Fiorani-Marchesini (CCFM) framework is modified at small x in order to incorporate the QCD expectations concerning the double ln2(1/x) resummation at low x for the integrated distributions. Complete Altarelli-Parisi splitting functions are included that makes the formalism compatible with the leading order Altarelli-Parisi evolution at large and moderately small values of x. The obtained modified polarized CCFM equation is shown to be partially diagonalized by the Fourier-Bessel transformation. Results of the numerical solution for this modifed polarized CCFM equation for the nonsinglet quark distributions are presented.
NLO+NLL squark and gluino production cross sections with threshold-improved parton distributions.
Beenakker, Wim; Borschensky, Christoph; Krämer, Michael; Kulesza, Anna; Laenen, Eric; Marzani, Simone; Rojo, Juan
We present updated predictions for the cross sections for pair production of squarks and gluinos at the LHC Run II. First of all, we update the calculations based on NLO+NLL partonic cross sections by using the NNPDF3.0NLO global analysis. This study includes a full characterization of theoretical uncertainties from higher orders, PDFs and the strong coupling. Then we explore the implications for this calculation of the recent NNPDF3.0 PDFs with NLO+NLL threshold resummation. We find that the shift in the results induced by the threshold-improved PDFs is within the total theory uncertainty band of the calculation based on NLO PDFs. However, we also observe that the central values of the NLO+NLL cross sections are modified both in a qualitative and a quantitative way, illustrating the relevance and impact of using threshold-improved PDFs together with resummed partonic cross sections. The updated NLO+NLL cross sections based on NNPDF3.0NLO are publicly available in the NLL-fast format, and should be an important ingredient for the interpretation of the searches for supersymmetric particles at Run II.
Summing threshold logs in a parton shower
NASA Astrophysics Data System (ADS)
Nagy, Zoltán; Soper, Davison E.
2016-10-01
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Delineating the polarized and unpolarized partonic structure of the nucleon
Jimenez-Delgado, Pedro
2015-03-01
Reports on our latest extractions of parton distribution functions of the nucleon are given. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are reported, including a careful treatment of hadronic and nuclear corrections, as well as reports on the impact of present and future data in our understanding of the spin of the nucleon.
Delineating the polarized and unpolarized partonic structure of the nucleon
Jimenez-Delgado, Pedro
2015-03-01
Our latest results on the extraction of parton distribution functions of the nucleon are reported. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are given, including a careful treatment of hadronic and nuclear corrections, as well as results on the impact of present and future data in our understanding of the spin of the nucleon.
Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA
Mousseau, J.
2016-04-19
Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less
Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA
Mousseau, J.
2016-04-19
Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.
Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA
NASA Astrophysics Data System (ADS)
Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration
2016-04-01
The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.
NASA Astrophysics Data System (ADS)
Kovalenko, V. N.
2013-10-01
The soft part of proton-proton interaction is considered within a phenomenological model that involves the formation of color strings. Under the assumption that an elementary collision is associated with the interaction of two color dipoles, the total inelastic cross section and the multiplicity of charged particles are estimated in order to fix model parameters. Particular attention is given to modeling of exclusive parton distributions with allowance for the energy-conservation law and for fixing the center of mass, which are necessary for describing correlations. An algorithm that describes the fusion of strings in the transverse plane and which takes into account their finite rapidity width is developed. The influence of string-fusion effects on long-range correlations is found within this mechanism.
NASA Astrophysics Data System (ADS)
Lopez, Annette; ATLAS Collaboration
2017-01-01
Investigating the properties of a proton involved in a proton-proton collision at the Large Hadron Collider furthers our understanding of resulting processes from the collision. In the search for dark matter produced alongside a new heavy resonance, Z', or a W/Z boson, a process characterized by large missing transverse momentum from the undetected dark matter particles, parton distribution functions (PDFs) of protons were utilized to improve the Monte Carlo simulation of proton-proton collisions at &sqrt;s = 13 TeV with the ATLAS detector. The PDF set NNPDF30 leading order was used to generate events with applied cuts: missing transverse momentum greater than 250 GeV, pseudorapidity of | η | < 2 . 5 , and groomed jets with R = 1 . 0 . An algorithm was developed to do PDF reweighting from NNPDF30 leading order to the following PDF sets: NNPDF30 next-to-leading order, MMHT2014, HERAPDF20, CT14, and MSTW2008. Distributions of the transverse momentum, mass, azimuthal angle, rapidity, and pseudorapidity for the leading and subleading jets, as well as the missing transverse momentum, were produced with the PDF reweighting algorithm. The uncertainty associated with the choice of a particular PDF in creating these distributions was calculated.
Spin-flavor structure of chiral-odd generalized parton distributions in the large-Nc limit
Schweitzer, P.; Weiss, C.
2016-10-05
We study the spin-flavor structure of the nucleon's chiral-odd generalized parton distributions (transversity GPDs) in the large-Nc limit of QCD. In contrast to the chiral-even case, only three combinations of the four chiral-odd GPDs are nonzero in the leading order of the 1/Nc expansion: E-barT = ET+2H-tildeT, HT, and E-tildeT. The degeneracy is explained by the absence of spin-orbit interactions correlating the transverse momentum transfer with the transverse quark spin. It can also be deduced from the natural Nc scaling of the quark-nucleon helicity amplitudes associated with the GPDs. In the GPD E-barT the flavor-singlet component u+d is leading inmore » the 1/Nc expansion, while in HT and E-tildeT it is the flavor-nonsinglet components u–d. Furthermore, the large-Nc relations are consistent with the spin-flavor structure extracted from hard exclusive π0 and η electroproduction data, if it is assumed that the processes are mediated by twist-3 amplitudes involving the chiral-odd GPDs and the chiral-odd pseudoscalar meson distribution amplitudes.« less
Strongly interacting parton matter equilibration
Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.
2012-07-15
We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.
Strongly interacting parton matter equilibration
NASA Astrophysics Data System (ADS)
Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.
2012-07-01
We study the kinetic and chemical equilibration in "infinite" parton matter within the Parton-Hadron-String Dynamics transport approach. The "infinite" matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei; Chang, Wen-Chen; Cheng, Hai-Yang; Peng, Jen-Chieh
2012-12-01
According to the path-integral formalism of the hadronic tensor, the nucleon sea contains two distinct components called the connected sea (CS) and the disconnected sea (DS). We discuss how the CS and DS are accessed in the lattice QCD calculation of the moments of the parton distributions. We show that the CS and DS components of u¯(x)+d¯(x) can be extracted by using recent data on the strangeness parton distribution, the CT10 global fit, and the lattice result of the ratio of the strange to u(d) moments in the disconnected insertion. The extracted CS and DS for u¯(x)+d¯(x) have a distinct Bjorken x dependence in qualitative agreement with expectation. The analysis also shows that the momentum fraction of u¯(x)+d¯(x) is about equally divided between the CS and DS at Q2=2.5GeV2. Implications for the future global analysis of parton distributions are presented.
Comment on "Reevaluation of the parton distribution of strange quarks in the nucleon"
NASA Astrophysics Data System (ADS)
Stolarski, M.
2015-11-01
The HERMES collaboration in Phys. Rev. D 89, 097101 (2014) extracted information about the strange quark density in the nucleon. One of the main results is an observation that the shape of the extracted density is very different from the shapes of the strange quark density from global QCD fits and also from that of the light antiquarks. In this paper systematic studies on the HERMES published multiplicity of pion and kaon data are presented. It is shown that the conclusions concerning the strange quark distribution in the nucleon reached in Phys. Rev. D 89, 097101 (2014) are at the moment premature.
NASA Astrophysics Data System (ADS)
Tatur, Stanislaw; Bartelski, Jan; Kurzela, Miroslaw
2000-03-01
We have made next to leading order QCD fit to the deep inelastic spin asymmetries on nucleons and we have determined polarised quark and gluon densities. The functional form for such distributions was inspired by the Martin, Roberts and Stirling fit for unpolarised case. In addition to usually used data points (averaged over x and Q2) we have also considered the sample containing points with similar x and different Q2. It seems that splitting of quark densities into valence and sea contribution is strongly model dependent and only their sum (i.e. , Δ u and Δ d) can be precisely determined from the data. Integrated polarised gluon contribution, contrary to some expectations, is relatively small and the sign of it depends on the fact which sample of data points is used.
Generalized parton correlation functions for a spin-0 hadron
Meissner, Stephan; Metz, Andreas; Schlegel, Marc; Goeke, Klaus
2008-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-0 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects are of relevance for the phenomenology of certain hard exclusive reactions. In particular, they can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist.
NASA Astrophysics Data System (ADS)
Pasquini, B.; Schweitzer, P.
2014-07-01
At leading twist the transverse momentum dependent parton distributions of the pion consist of two functions, the unpolarized f1,π(x,k⊥2) and the Boer-Mulders function h1,π⊥(x ,k⊥2). We study both functions within a light-front constituent model of the pion, comparing the results with different pion models and the corresponding nucleon distributions from a light-front constituent model. After evolution from the model scale to the relevant experimental scales, the results for the collinear pion valence parton distribution function f1,π(x) are in very good agreement with available parametrizations. Using the light-front constituent model results for the Boer-Mulders functions of the pion and nucleon, we calculate the coefficient ν in the angular distribution of Drell-Yan dileptons produced in pion-nucleus scattering, which is responsible for the violation of the Lam-Tung relation. We find a good agreement with the data, and carefully discuss the range of applicability of our approach.
Guegan, Baptiste
2012-11-01
The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.
Perturbative QCD correlations in multi-parton collisions
NASA Astrophysics Data System (ADS)
Blok, B.; Dokshitzer, Yu.; Frankfurt, L.; Strikman, M.
2014-06-01
We examine the role played in double-parton interactions (DPI) by the parton-parton correlations originating from perturbative QCD parton splittings. Also presented are the results of the numerical analysis of the integrated DPI cross sections at Tevatron and LHC energies. To obtain the numerical results the knowledge of the single-parton GPDs gained by the HERA experiments was used to construct the non-perturbative input for generalized double-parton distributions. The perturbative two-parton correlations induced by three-parton interactions contribute significantly to a resolution of the longstanding puzzle of an excess of multi-jet production events in the back-to-back kinematics observed at the Tevatron.
NASA Astrophysics Data System (ADS)
Zhu, Jiacai; Ma, Bo-Qiang
2010-12-01
We show that the polarized proton-antiproton Drell-Yan process is ideal to probe the pretzelosity distribution (h1T⊥), which is one of the new transverse-momentum-dependent parton distributions of the nucleon. We present predictions of the cos(2ϕ+ϕa-ϕb) asymmetry in the transversely polarized proton-antiproton Drell-Yan process at PAX kinematics and find that the results are significantly larger compared with those of the sin(3ϕh-ϕS) asymmetry in the semi-inclusive deep inelastic scattering process at HERMES, COMPASS, and JLab kinematics. We conclude that the cos(2ϕ+ϕa-ϕb) asymmetry in the PAX experiment can probe the new physical quantity of the pretzelosity distribution.
Probe initial parton density and formation time via jet quenching
Wang, Xin-Nian
2002-09-20
Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed.
Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC
L. Frankfurt, M. Strikman, C. Weiss
2011-03-01
We propose a new method to determine at what transverse momenta particle production in high-energy pp collisions is governed by hard parton-parton processes. Using information on the transverse spatial distribution of partons obtained from hard exclusive processes in ep/\\gamma p scattering, we evaluate the impact parameter distribution of pp collisions with a hard parton-parton process as a function of p_T of the produced parton (jet). We find that the average pp impact parameters in such events depend very weakly on p_T in the range 2 < p_T < few 100 GeV, while they are much smaller than those in minimum-bias inelastic collisions. The impact parameters in turn govern the observable transverse multiplicity in such events (in the direction perpendicular to the trigger particle or jet). Measuring the transverse multiplicity as a function of p_T thus provides an effective tool for determining the minimum p_T for which a given trigger particle originates from a hard parton-parton process.
The midpoint between dipole and parton showers
Höche, Stefan; Prestel, Stefan
2015-09-28
We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.
Spin-flavor structure of chiral-odd generalized parton distributions in the large-${N}_{c}$ limit
Schweitzer, P.; Weiss, C.
2016-10-05
We study the spin-flavor structure of the nucleon's chiral-odd generalized parton distributions (transversity GPDs) in the large-N_{c} limit of QCD. In contrast to the chiral-even case, only three combinations of the four chiral-odd GPDs are nonzero in the leading order of the 1/N_{c} expansion: E-bar_{T} = E_{T}+2H-tilde_{T}, H_{T}, and E-tilde_{T}. The degeneracy is explained by the absence of spin-orbit interactions correlating the transverse momentum transfer with the transverse quark spin. It can also be deduced from the natural N_{c} scaling of the quark-nucleon helicity amplitudes associated with the GPDs. In the GPD E-bar_{T} the flavor-singlet component u+d is leading in the 1/N_{c} expansion, while in H_{T} and E-tilde_{T} it is the flavor-nonsinglet components u–d. Furthermore, the large-N_{c} relations are consistent with the spin-flavor structure extracted from hard exclusive π^{0} and η electroproduction data, if it is assumed that the processes are mediated by twist-3 amplitudes involving the chiral-odd GPDs and the chiral-odd pseudoscalar meson distribution amplitudes.
Distributed computing and nuclear reactor analysis
Brown, F.B.; Derstine, K.L.; Blomquist, R.N.
1994-03-01
Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations.
Nucleon Parton Structure from Continuum QCD
NASA Astrophysics Data System (ADS)
Bednar, Kyle; Cloet, Ian; Tandy, Peter
2017-01-01
The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.
Central depression of nuclear charge density distribution
Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang
2010-08-15
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Nuclear PDFs from neutrino deep inelastic scattering
I. Schienbein; J. Y. Yu; C. Keppel; J. G. Morfin; F. Olness; J.F. Owens
2007-11-13
We study nuclear effects in charged current deep inelastic neutrino--iron scattering in the framework of a chi^2-analysis of parton distribution functions. We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea and strange quark distributions. We compare our results with nuclear parton distribution functions from the literature and find good agreement. Our iron PDFs are used to compute nuclear correction factors which are required in global analyses of free nucleon PDFs.
Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries
J.T. Londergan; D.P. Murdock; A.W. Thomas
2006-04-14
Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.
NASA Astrophysics Data System (ADS)
Modarres, M.; Hosseinkhani, H.; Olanj, N.
2014-02-01
The aim of the present work is to study the phenomenological behavior of unitegrated parton distribution functions (UPDF) by using the Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) formalisms. In the first method, the leading order (LO) UPDF of the KMR prescription is extracted, by taking into account the PDF of Martin et al., i.e., MSTW2008-LO and MRST99-NLO and. While in the second scheme, the next-to-leading order (NLO) UPDF of the (MRW) procedure is generated through the set of MSTW2008-NLO PDFas the inputs. The different aspects of the UPDF in the two approaches, as well as the input PDF are discussed. Then, the deep inelastic proton structure functions, F2(x,Q2), are calculated from the above UPDF in the two schemes, and compared with the data, which are extracted from the ZEUS, NMC, and H1+ZEUS experimental measurements. In general, it is shown that the calculated structure functions based on the UPDF of two schemes, are consistent to the experimental data, and by a good approximation, they are independent to the input PDF. But the proton structure functions, which are extracted from the KMR prescription, have better agreement to the data with respect to that of MRW. Although the MRW formalism is in more compliance with the Dokshitzer-Bribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation requisites, but it seems in the KMR case, the angular ordering constraint spreads the UPDF to the whole transverse momentum region, and makes the results to sum up the leading DGLAP and Balitski-Fadin-Kuraev-Lipatov (BFKL) Logarithms. This point is under study by the authors.
Are partons confined tachyons?
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
Parton physics from large-momentum effective field theory
NASA Astrophysics Data System (ADS)
Ji, XiangDong
2014-07-01
Parton physics, when formulated as light-front correlations, are difficult to study non-perturbatively, despite the promise of light-front quantization. Recently an alternative approach to partons have been proposed by re-visiting original Feynman picture of a hadron moving at asymptotically large momentum. Here I formulate the approach in the language of an effective field theory for a large hadron momentum P in lattice QCD, LaMET for short. I show that using this new effective theory, parton properties, including light-front parton wave functions, can be extracted from lattice observables in a systematic expansion of 1/ P, much like that the parton distributions can be extracted from the hard scattering data at momentum scales of a few GeV.
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.
2015-12-01
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay using count distribution (LAMBDA) space
Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA
2012-06-05
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
NASA Astrophysics Data System (ADS)
Pesznyak, Csilla
The aim of the investigation is to give answer to some questions of the QC in the mega-voltage therapy for the sake of making the treatments more trouble-free. We investigated the terms of the usage of CT and PET/CT equipments in treatment planning that were made originally for diagnostic purposes. We compared the calculation algorithms of the Varian CadPlan(TM) and CMS XiORTM treatment planning systems (TPS) for photon and electron radiations of different energy. We also investigated the terms of usage of the PTW EPID QC PHANTOMRTM in the quality control of the EPID's and the portal images, as well. We laid down the terms in a protocol that make the diagnostic CT and PET/CT equipments capable for radiation treatment planning. The protocols should contain the exact patient setup, the tube voltage, detailed directions for use of patient immobilization tools, the review and use of the necessary QA/QC devices, the time consumption of the procedure, the frequency of controls and the worksheet to be used during the measurements. On the base of the measurements, it can be stated that on photon energies the superposition algorithm can be used for patient treatments in the case of the CMS XiORTM TPS while in the case of Varian CadPlan(TM) TPS the PBMB algorithm is the proper choice. It is not allowed to use the TPS without inhomogeneity correction. The CIRS Thorax IMRT phantom can be used for electron measurement only at higher than 10 MeV since only the Farmer chamber can be inserted into the holes of the phantom. On the base of the electron measurements, it can be stated that both planning systems give good results in soft tissue. In lung equivalent material the calculated values of the Varian CadPlan(TM) are in better agreement with the measured values, but the calculated values behind the bones are not accurate enough. In the QA/QC process the PTW EPID QC PHANTOMRTM is usable not only for the amorphous silicon EPID's but the image quality can be analysed on the video based devices and on EPID's operating with liquid filled ionisation chamber array detector and even on port films. In the protocol for measurements, the usable file format should be given since the DICOM implementation is not complete in the case of these systems.
NASA Astrophysics Data System (ADS)
Ozvenchuk, V.; Linnyk, O.; Gorenstein, M. I.; Bratkovskaya, E. L.; Cassing, W.
2013-02-01
We study the kinetic and chemical equilibration in “infinite” parton matter within the parton-hadron-string dynamics off-shell transport approach, which is based on a dynamical quasiparticle model (DQPM) for partons matched to reproduce lattice QCD results—including the partonic equation of state—in thermodynamic equilibrium. The “infinite” parton matter is simulated by a system of quarks and gluons within a cubic box with periodic boundary conditions, at various energy densities, initialized out of kinetic and chemical equilibrium. We investigate the approach of the system to equilibrium and the time scales for the equilibration of different observables. We, furthermore, study particle distributions in the strongly interacting quark-gluon plasma (sQGP) including partonic spectral functions, momentum distributions, abundances of the different parton species, and their fluctuations (scaled variance, skewness, and kurtosis) in equilibrium. We also compare the results of the microscopic calculations with the ansatz of the DQPM. It is found that the results of the transport calculations are in equilibrium well matched by the DQPM for quarks and antiquarks, while the gluon spectral function shows a slightly different shape due to the mass dependence of the gluon width generated by the explicit interactions of partons. The time scales for the relaxation of fluctuation observables are found to be shorter than those for the average values. Furthermore, in the local subsystem, a strong change of the fluctuation observables with the size of the local volume is observed. These fluctuations no longer correspond to those of the full system and are reduced to Poissonian distributions when the volume of the local subsystem becomes small.
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.
2016-10-01
In a series of papers, we have investigated the compatibility of the Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDFs) as well as the description of the experimental data on the proton structure functions. The present work is a sequel to that survey, via calculation of the transverse-momentum distribution of the electroweak gauge vector bosons in the kt-factorization scheme, by the means of the KMR, the leading-order (LO) MRW, and the next-to-leading-order (NLO) MRW UPDF, in the NLO. To this end, we have calculated and aggregated the invariant amplitudes of the corresponding involved diagrams in the NLO and counted the individual contributions in different frameworks. The preparation process for the UPDF utilizes the parton distribution functions of Martin et al., MSTW2008-LO, MSTW2008-NLO, MMHT2014-LO, and MMHT2014-NLO, as the inputs. Afterward, the results have been analyzed against each other as well as the existing experimental data, i.e., D0, CDF, ATLAS, and CMS collaborations. Our calculations show excellent agreement with the experiment data. It is, however, interesting to point out that the calculation using the KMR framework illustrates a stronger agreement with the experimental data, despite the fact that the LO MRW and the NLO MRW formalisms employ a better theoretical description of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation. This is of course due to the use of the different implementation of the angular ordering constraint in the KMR approach, which automatically includes the resummation of ln (1 /x ) , Balitski-Fadin-Kuraev-Lipatov logarithms, in the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation.
NASA Astrophysics Data System (ADS)
Barbara, Betz; Miklos, Gyulassy
2015-12-01
Not Available Supported by the Helmholtz International Centre for FAIR within the Framework of the LOEWE Program, and the US-DOE Nuclear Science under Grant Nos DE-FG02-93ER40764 and DE-AC02-05CH11231.
Generalized parton correlation functions for a spin-1/2 hadron
Stephan Meissner, Andreas Metz, Marc Schlegel
2009-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.
Implications of current constraints on parton charge symmetry
J. T. Londergan; A. W. Thomas
2005-11-01
For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.
Large-x connections of nuclear and high-energy physics
Accardi, Alberto
2013-11-20
I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.
Backward dilepton production in color dipole and parton models
Gay Ducati, Maria Beatriz; Graeve de Oliveira, Emmanuel
2010-03-01
The Drell-Yan dilepton production at backward rapidities is studied in proton-nucleus collisions at Relativistic Heavy Ion Collider and LHC energies by comparing two different approaches: the k{sub T} factorization at next-to-leading order with intrinsic transverse momentum and the same process formulated in the target rest frame, i.e., the color dipole approach. Our results are expressed in terms of the ratio between p(d)-A and p-p collisions as a function of transverse momentum and rapidity. Three nuclear parton distribution functions are used: EKS (Eskola, Kolhinen, and Ruuskanen), EPS08, and EPS09 and, in both approaches, dileptons show sensitivity to nuclear effects, specially regarding the intrinsic transverse momentum. Also, there is room to discriminate between formalisms: the color dipole approach lacks soft effects introduced by the intrinsic k{sub T}. Geometric scaling GBW (Golec-Biernat and Wusthoff) and BUW (Boer, Utermann, and Wessels) color dipole cross section models and also a DHJ (Dumitru, Hayashigaki, and Jalilian-Marian) model, which breaks geometric scaling, are used. No change in the ratio between collisions is observed, showing that this observable is not changed by the particular shape of the color dipole cross section. Furthermore, our k{sub T} factorization results are compared with color glass condensate results at forward rapidities: the results agree at Relativistic Heavy Ion Collider although disagree at LHC, mainly due to the different behavior of target gluon and quark shadowing.
Distribution of Corbicula fluminea at nuclear facilities
Counts, C.L. III
1985-11-01
A review of the zoogeographic records for the exotic Asian clam, Corbicula fluminea (Muller, 1774), reveals its presence in 27 states where nuclear powered electric generating plants are either operating or under construction. Nineteen plant sites reported infestation of varying severity in facilities, or source water bodies immediately adjacent to the facility, by C. fluminea. Thirteen plant sites are located within the zoogeographic limits of C. fluminea but have a low risk of infestation due to either salt water cooling systems or locations a great distance from known populations. Eighteen plant sites are located wholly outside of the known zoogeographic range of C. fluminea. Thirty plant sites are located in close proximity to known populations of C. fluminea and therefore should maintain surveillance of the source water body and within plant water systems for possible infestations by these bivalves. 27 figs.
Emergent phenomena and partonic structure in hadrons
NASA Astrophysics Data System (ADS)
Roberts, Craig D.; Mezrag, Cédric
2017-03-01
Modern facilities are poised to tackle fundamental questions within the Standard Model, aiming to reveal the nature of confinement, its relationship to dynamical chiral symmetry breaking (DCSB) - the origin of visible mass - and the connection between these two, key emergent phenomena. There is strong evidence to suggest that they are intimately connected with the appearance of momentum-dependent masses for gluons and quarks in QCD, which are large in the infrared: mg 500MeV and Mq 350MeV. DCSB, expressed in the dynamical generation of a dressed-quark mass, has an enormous variety of verifiable consequences, including an enigmatic result that the properties of the (almost) massless pion are the cleanest expression of the mechanism which is responsible for almost all the visible mass in the Universe. This contribution explains that these emergent phenomena are expressed with particular force in the partonic structure of hadrons, e.g. in valence-quark parton distribution amplitudes and functions, and, consequently, in numerous hadronic observables, so that we are now in a position to exhibit the consequences of confinement and DCSB in a wide range of hadron observables, opening the way to empirical verification of their expression in the Standard Model.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Júnior, W L Aldá; Alves, G A; Brito, L; Correa Martins Junior, M; Martins, T Dos Reis; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garcia, J Garay; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Biasotto, M; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Montecassiano, F; Pazzini, J; Pozzobon, N; Ronchese, P; Tosi, M; Vanini, S; Ventura, S; Zucchetta, A; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Da Cruz E Silva, C Beir Ao; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Albayrak, E A; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Yetkin, T; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N
The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0[Formula: see text]. The measurement covers a phase space up to 2[Formula: see text] in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass [Formula: see text] is determined to be [Formula: see text], which is in agreement with the world average.
Khachatryan, Vardan
2015-06-26
The inclusive jet cross section for proton–proton collisions at a centre-of-mass energy of 7TeVwas measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0fb-1. The measurement covers a phase space up to 2TeV in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamicsmore » at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass MZ is determined to be αS(MZ)=0.1185±0.0019(exp)+0.0060-0.0037(theo), which is in agreement with the world average.« less
Khachatryan, Vardan
2015-06-26
The inclusive jet cross section for proton–proton collisions at a centre-of-mass energy of 7TeVwas measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0fb^{-1}. The measurement covers a phase space up to 2TeV in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass M_{Z} is determined to be α_{S}(M_{Z})=0.1185±0.0019(exp)^{+0.0060}_{-0.0037}(theo), which is in agreement with the world average.
Study of nuclear matter density distributions using hadronic probes
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2011-05-06
We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.
Quantitative velocity distributions via nuclear magnetic resonance flow metering
NASA Astrophysics Data System (ADS)
O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.
2016-08-01
We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.
Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects
Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay
2010-08-26
Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.
Prompt photon photoproduction at HERA with non-collinear parton dynamics
Lipatov, A. V.; Zotov, N. P.
2011-07-15
We investigate the prompt photon photoproduction at HERA within the framework of the k{sub T}-factorization approach to QCD. Our consideration is based on the off-shell matrix elements for the underlying partonic subprocesses and the Kimber-Martin-Ryskin (KMR) unintegrated parton densities in the proton. We also use the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) unintegrated gluon as well as valence and sea quark distributions.
DETAILED COMPARISON BETWEEN PARTON CASCADE AND HADRONIC CASCADE AT SPS AND RHIC.
NARA,Y.
1998-10-23
The authors study the importance of the partonic phase produced in relativistic heavy ion collision by comparing the parton cascade model and the hadronic cascade model. Hadron yield, baryon stopping and transverse momentum distribution are calculated with JAM and discussions are given comparing with VNI. Both of these models give good description of experimental data. They also discuss the strangeness production mechanism and the directed transverse flow.
Scaling in biological nuclear magnetic resonance spectral distributions.
Lacelle, S
1986-01-01
A statistical analysis of the distribution of the eigenvalues of the chemical shift interaction as detected by nuclear magnetic resonance (NMR) spectroscopy in large biological systems is presented in the light of random matrix theory. A power law dependence is experimentally observed for the distribution of the number of eigenvalues, N, of the shielding hamiltonian with epsilon i less than or equal to E as a function of the energy E. From this cumulative distribution of energy levels, N(E), we also obtain a density of states rho(E). The exponent of the energy variation of N(E) and rho(E) are correlated with the dimensionality of the molecular system. A crossover in the values of the exponents is found in passing from low to higher energy in the spectra. Our method classifies and reduces the chemical shift data base of proteins and also demonstrates a degree of regularity in seemingly irregular spectral patterns. PMID:3730504
Fuel areal density distributions derived from nuclear scattering signatures
NASA Astrophysics Data System (ADS)
Bionta, R. M.; Casey, D. T.; Cerjan, C. J.; Yeamans, C. B.; Gatu Johnson, M. G.
2016-10-01
The spatial variation of activities measured in the array of 20 Nuclear Activation Detectors mounted on the flanges around the NIF target chamber (FNADs) are correlated with asymmetries in the underlying fuel areal density of compressed ICF targets. The asymmetric areal density distributions cause variations in the neutron spectra with direction which are seen in the dsr (down scattered ratio) metric, the ratio of the number of 10-12 MeV neutrons to the number of 13-15 MeV neutrons. We show, using a simple physics based simulation of neutron scattering through an idealized non-uniform DT shell with a realistic neutron source, that for most shots an areal distribution can be found which reproduces both the FNAD activity and the dsr measurements. Furthermore, by linking the simulation to a Marquardt minimizer, we fit the areal distribution to a truncated set of spherical harmonics. Prepared by LLNL under Contract DE-AC52-07NA27344.
Parallelization and automatic data distribution for nuclear reactor simulations
Liebrock, L.M.
1997-07-01
Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.
Distributional properties of stochastic shortest paths for smuggled nuclear material
Cuellar, Leticia; Pan, Feng; Roach, Fred; Saeger, Kevin J
2011-01-05
The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.
Squark production and decay matched with parton showers at NLO
NASA Astrophysics Data System (ADS)
Gavin, R.; Hangst, C.; Krämer, M.; Mühlleitner, M.; Pellen, M.; Popenda, E.; Spira, M.
2015-01-01
Extending previous work on the predictions for the production of supersymmetric (SUSY) particles at the LHC, we present the fully differential calculation of the next-to-leading order (NLO) SUSY-QCD corrections to the production of squark and squark-antisquark pairs of the first two generations. The NLO cross sections are combined with the subsequent decay of the final state (anti)squarks into the lightest neutralino and (anti)quark at NLO SUSY-QCD. No assumptions on the squark masses are made, and the various subchannels are taken into account independently. In order to obtain realistic predictions for differential distributions the fixed-order calculations have to be combined with parton showers. Making use of the Powheg method we have implemented our results in the Powheg-Box framework and interfaced the NLO calculation with the parton shower Monte Carlo programs Pythia6 and Herwig++. The code is publicly available and can be downloaded from the Powheg-Box webpage. The impact of the NLO corrections on the differential distributions is studied and parton shower effects are investigated for different benchmark scenarios.
Pre-equilibrium parton dynamics: Proceedings
Wang, Xin-Nian
1993-12-31
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.
Radon Transform and Light-Cone Distributions
NASA Astrophysics Data System (ADS)
Teryaev, O. V.
2016-08-01
The relevance of Radon transform for generalized and transverse momentum dependent parton distributions is discussed. The new application for conditional (fracture) parton distributions and dihadron fragmentation functions is suggested.
Multiple parton interaction studies at DØ
Lincoln, D.
2016-04-01
Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less
Multiple parton interaction studies at DØ
Lincoln, D.
2016-04-01
Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events in which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.
Radiocesium Distribution in Bamboo Shoots after the Fukushima Nuclear Accident
Higaki, Takumi; Higaki, Shogo; Hirota, Masahiro; Hasezawa, Seiichiro
2014-01-01
The distribution of radiocesium was examined in bamboo shoots, Phyllostachys pubescens, collected from 10 sites located some 41 to 1140 km from the Fukushima Daiichi nuclear power plant, Japan, in the Spring of 2012, 1 year after the Fukushima nuclear accident. Maximum activity concentrations for radiocesium 134Cs and 137Cs in the edible bamboo shoot parts, 41 km away from the Fukushima Daiichi plant, were in excess of 15.3 and 21.8 kBq/kg (dry weight basis; 1.34 and 1.92 kBq/kg, fresh weight), respectively. In the radiocesium-contaminated samples, the radiocesium activities were higher in the inner tip parts, including the upper edible parts and the apical culm sheath, than in the hardened culm sheath and underground basal parts. The radiocesium/potassium ratios also tended to be higher in the inner tip parts. The radiocesium activities increased with bamboo shoot length in another bamboo species, Phyllostachys bambusoides, suggesting that radiocesium accumulated in the inner tip parts during growth of the shoots. PMID:24831096
Parton shower Monte Carlo event generators
NASA Astrophysics Data System (ADS)
Webber, Bryan
2011-12-01
A parton shower Monte Carlo event generator is a computer program designed to simulate the final states of high-energy collisions in full detail down to the level of individual stable particles. The aim is to generate a large number of simulated collision events, each consisting of a list of final-state particles and their momenta, such that the probability to produce an event with a given list is proportional (approximately) to the probability that the corresponding actual event is produced in the real world. The Monte Carlo method makes use of pseudorandom numbers to simulate the event-to-event fluctuations intrinsic to quantum processes. The simulation normally begins with a hard subprocess, shown as a black blob in Figure 1, in which constituents of the colliding particles interact at a high momentum scale to produce a few outgoing fundamental objects: Standard Model quarks, leptons and/or gauge or Higgs bosons, or hypothetical particles of some new theory. The partons (quarks and gluons) involved, as well as any new particles with colour, radiate virtual gluons, which can themselves emit further gluons or produce quark-antiquark pairs, leading to the formation of parton showers (brown). During parton showering the interaction scale falls and the strong interaction coupling rises, eventually triggering the process of hadronization (yellow), in which the partons are bound into colourless hadrons. On the same scale, the initial-state partons in hadronic collisions are confined in the incoming hadrons. In hadron-hadron collisions, the other constituent partons of the incoming hadrons undergo multiple interactions which produce the underlying event (green). Many of the produced hadrons are unstable, so the final stage of event generation is the simulation of the hadron decays.
Vadim Guzey, Mark Strikman
2010-04-01
The leading twist theory of nuclear shadowing predicts nuclear parton distributions in the small $x$ shadowing region by connecting them to the leading twist hard diffraction in electron-nucleon scattering. The uncertainties of the predictions are related to the shadowing effects resulting from the interaction of the hard probe with $N \\ge 3$ nucleons. We argue that the pattern of hard diffraction observed at HERA allows one to reduce these uncertainties, and we develop a new approach to the treatment of these multiple collisions. It is based on the concept of the color fluctuations and accounts for the presence of both point-like and hadron-like configurations in the virtual photon. Using the developed framework, we update our predictions for the effect of the leading twist nuclear shadowing in nuclear parton distributions of heavy nuclei at small $x$.
APFELgrid : A high performance tool for parton density determinations
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2017-03-01
We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and αs evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.
Parton Propagation and Fragmentation in QCD Matter
Alberto Accardi, Francois Arleo, William Brooks, David D'Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Evolution of parton fragmentation functions at finitetemperature
Osborne, Jonathan; Wang, Enke; Wang, Xin-Nian
2002-06-12
The first order correction to the parton fragmentation functions in a thermal medium is derived in the leading logarithmic approximation in the framework of thermal field theory. The medium-modified evolution equations of the parton fragmentation functions are also derived. It is shown that all infrared divergences, both linear and logarithmic, in the real processes are canceled among themselves and by corresponding virtual corrections. The evolution of the quark number and the energy loss (or gain) induced by the thermal medium are investigated.
Vesicle Size Distribution as a Novel Nuclear Forensics Tool
Simonetti, Antonio
2016-01-01
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210
Vesicle Size Distribution as a Novel Nuclear Forensics Tool.
Donohue, Patrick H; Simonetti, Antonio
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28″N, 106°28'31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated "Trinitite". In cross section, Trinitite comprises a thin (1-2 mm), primarily glassy surface above a lower zone (1-2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.
Y. C. Chen; A. Afanasev; S. J. Brodsky; C. E. Carlson; Marc Vanderhaeghen
2004-03-01
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.
Fragmentation of parton jets at small x
Kirschner, R.
1985-08-01
The parton fragmentation function is calculated in the region of small x in the doubly logarithmic approximation of QCD. For this, the method of separating the softest particle, which has hitherto been applied only in the Regge kinematic region, is developed. Simple arguments based on unitarity and gauge invariance are used to derive the well known condition of ordering of the emission angles.
QCD parton model at collider energies
Ellis, R.K.
1984-09-01
Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.
Systematic Improvement of QCD Parton Showers
Winter, Jan; Hoeche, Stefan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Zapp, Korinna; Schumann, Steffen; Siegert, Frank; /Freiburg U.
2012-05-17
In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron-positron collisions and by reporting on recent developments as accomplished within the SHERPA event generation framework.
Nachtmann, O.
2014-11-15
We review ideas on the structure of the QCD vacuum which had served as motivation for the discussion of various non-standard QCD effects in high-energy reactions in articles from 1984 to 1995. These effects include, in particular, transverse-momentum and spin correlations in the Drell–Yan process and soft photon production in hadron–hadron collisions. We discuss the relation of the approach introduced in the above-mentioned articles to the approach, developed later, using transverse-momentum-dependent parton distributions (TDMs). The latter approach is a special case of our more general one which allows for parton entanglement in high-energy reactions. We discuss signatures of parton entanglement in the Drell–Yan reaction. Also for Higgs-boson production in pp collisions via gluon–gluon annihilation effects of entanglement of the two gluons are discussed and are found to be potentially important. These effects can be looked for in the current LHC experiments. In our opinion studying parton-entanglement effects in high-energy reactions is, on the one hand, very worthwhile by itself and, on the other hand, it allows to perform quantitative tests of standard factorisation assumptions. Clearly, the experimental observation of parton-entanglement effects in the Drell–Yan reaction and/or in Higgs-boson production would have a great impact on our understanding how QCD works in high-energy collisions.
Non-dipolar Wilson Links for Parton Densities
NASA Astrophysics Data System (ADS)
Li, Hsiang-nan
We propose a new definition of a transverse-momentum-dependent wave function with simpler soft subtraction. The unsubtracted wave function involves two pieces of non-light-like Wilson links oriented in different directions, so that the rapidity singularity appearing in usual kT factorization is regularized, and the pinched singularity from Wilson-link self-energy corrections is alleviated to a logarithmic one. We show explicitly at one-loop level that the simpler definition with the non-dipolar Wilson links exhibits the same infrared behavior as the one with the dipolar Wilson links. The non-dipolar Wilson links are also introduced to the quasi-parton distribution function (QPDF) with an equal-time correlator in the large momentum limit, which can remove the involved linear divergence, and allow perturbative matching to the standard light-cone parton distribution function. The latter can then be extracted reliably from Euclidean lattice data for the QPDF with the non-dipolar Wilson links.
An O({alpha}{sub s}) Monte Carlo for W production with parton showering
Baer, H.A.
1991-12-31
We construct an event generator for p{bar p}{yields}W{sup +}X{yields}e{sup +}{nu}X including complete O({alpha}{sub s}) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2{yields}2 sub-process. We also compute the {sub qT}(W) distribution, and compare with data.
An O([alpha][sub s]) Monte Carlo for W production with parton showering
Baer, H.A.
1991-01-01
We construct an event generator for p[bar p][yields]W[sup +]X[yields]e[sup +][nu]X including complete O([alpha][sub s]) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2[yields]2 sub-process. We also compute the [sub qT](W) distribution, and compare with data.
Effects produced by multi-parton interactions and color reconnection in small systems
NASA Astrophysics Data System (ADS)
Cuautle, Eleazar; Ortiz, Antonio; Paić, Guy
2016-12-01
Multi-parton interactions and color reconnection can produce QGP-like effects in small systems, specifically, radial flow-like patterns. For pp collisions simulated with Pythia 8.212, in this work we investigate their effects on different observables like event multiplicity, event shapes and transverse momentum distributions.
Nuclear medium effects in Drell–Yan process
NASA Astrophysics Data System (ADS)
Haider, H.; Athar, M. Sajjad; Singh, S. K.; Ruiz Simo, I.
2017-04-01
We study the nuclear medium effects in Drell–Yan process using quark parton distribution functions calculated in a microscopic nuclear model which takes into account the effects of Fermi motion, nuclear binding and nucleon correlations through a relativistic nucleon spectral function. The contributions of π and ρ mesons as well as shadowing effects are also included. The beam energy loss is calculated using a phenomenological approach. The present theoretical results are compared with the experimental results of the E772 and E866 experiments. These results are applicable to the forthcoming experimental analysis of E906 Sea Quest experiment at the Fermi Lab.
Nuclear Shadowing and Select d+Au Observables
NASA Astrophysics Data System (ADS)
Adeluyi, Adeola; Fai, George
2007-04-01
Much of the complexity of the description of d+Au collisions in the framework of perturbative Quantum Chromodynamics (pQCD) derives from effects of the nuclear environment. Here we investigate the effects of the most recent available nuclear shadowing parametrization, the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions (nPDFs) and the updated Albino-Kniehl-Kramer (AKK) fragmentation functions on three select d+Au collision observables. We compare our results to available experimental data from the STAR and BRAHMS collaborations.
Lappi, T.; Venugopalan, R.; Mantysaari, H.
2015-02-25
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong
2016-01-01
The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844
Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.
Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko
2014-09-01
Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.
Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries
Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.
2011-07-05
Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.
Distribution of mitochondrial DNA fragments in the nuclear genome of the honeybee.
Du, W X; Qin, Y C
2015-10-27
Nuclear mitochondrial pseudogenes (numts), which originated from mitochondrial DNA (mtDNA) insertions in the nuclear genome, have been detected in many species. The distribution of numts in the honeybee nuclear genome has not yet been fully reported. By referring to the whole honeybee mtDNA sequence and to the recent version of the honeybee nuclear genome, 236 reference sequences were identified by BLAST, with 90 unmapped. The size of the numts ranged from 219 to 3788 bp, and the homologous identity between numts and their corresponding mtDNA fragments varied from 71 to 93%. Furthermore, identified honeybee numts covered nearly all mitochondrial genes and were distributed over all chromosomes. This study provides useful information for further research related to mitochondrial genes and the evolution of the honeybee.
Excited nucleon as a van der Waals system of partons
Jenkovszky, L. L.; Muskeyev, A. O. Yezhov, S. N.
2012-06-15
Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) is associated with a phase transition between the partonic gas, typical of moderate x and Q{sup 2}, and partonic fluid appearing at increasing Q{sup 2} and decreasing Bjorken x. We suggest the van der Waals equation of state to describe properly this phase transition.
Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.
Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel
2015-07-21
The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.
Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells.
Wilson, Meredith H; Holzbaur, Erika L F
2015-01-01
During skeletal muscle development, nuclei move dynamically through myotubes in a microtubule-dependent manner, driven by the microtubule motor protein kinesin-1. Loss of kinesin-1 leads to improperly positioned nuclei in culture and in vivo. Two models have been proposed to explain how kinesin-1 functions to move nuclei in myotubes. In the cargo model, kinesin-1 acts directly from the surface of the nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-parallel microtubules. Here, we test the hypothesis that an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout the length of syncytial myotubes. First, using an inducible dimerization system, we show that controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear envelope is sufficient to prevent the nuclear aggregation resulting from depletion of endogenous kinesin-1. Second, we identify a conserved kinesin light chain (KLC)-binding motif in the nuclear envelope proteins nesprin-1 and nesprin-2, and show that recruitment of the motor complex to the nucleus via this LEWD motif is essential for nuclear distribution. Together, our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo adaptors. The importance of achieving and maintaining proper nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent recruitment of kinesin-1 to the nuclear envelope through the interaction of a conserved LEWD motif with kinesin light chain might be a general mechanism for cell-type-specific nuclear positioning during development.
PACIAE 2.1: An updated issue of the parton and hadron cascade model PACIAE 2.0
NASA Astrophysics Data System (ADS)
Sa, Ben-Hao; Zhou, Dai-Mei; Yan, Yu-Liang; Dong, Bao-Guo; Cai, Xu
2013-05-01
a given impact parameter possesses an almond-like spatial asymmetry. Because of the strong parton rescattering, the local thermal equilibrium and asymmetric pressure gradient may build up in this initial fireball. The asymmetric pressure gradient then drives a collective anisotropic expansion. The expansion along the almond minor axis (along the large pressure gradient) is faster than the one along the major axis. This results in a strong asymmetric transverse momentum azimuthal distribution and hence a large elliptic flow coefficient v2 of the final hadronic state. As mentioned in [6], PACIAE is a parton and hadron cascade model for the ultra-relativistic nuclear collisions and is based on PYTHIA [7]. In the PACIAE model, a nucleus-nucleus collision is decomposed into a sequence of nucleon-nucleon (NN) collisions according to the collision geometry and the NN total cross section. Each NN collision is performed, in turn, by the PYTHIA model with the string fragmentation switched-off temporarily and the diquark (anti-diquark) broken into quark pairs (anti-quark pairs) randomly. The parton rescattering then proceeds. This parton evolution stage is followed by the hadronization at the moment of partonic freeze-out (exhausting the partonic collisions). The Lund string fragmentation regime and/or phenomenological coalescence model is provided for the hadronization. Then the rescattering among produced hadrons is dealt with by the usual two body collision model [6]. In the PYTHIA model [7] once the transverse momentum pT of a final state hadron generated from the string fragmentation and/or the unstable particle decay is randomly sampled, the px and py components are randomly placed on the circle with radius of pT. This px and py determination may strongly cancel the final state transverse momentum anisotropy developed dynamically. The charged particle transverse sphericity [8-10] may reach to unity (isotropic). This is inconsistent with the experimental observation that
Mass and charge distributions in chlorine-induced nuclear reactions
Marchetti, A.A.
1991-12-31
Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions {sup 37}Cl on {sup 40}Ca and {sup 209}Bi at E/A = 7.3 MeV, and {sup 35}Cl, on {sup 209}Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the {sup 31}Cl on {sup 209}Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system {sup 37}Cl on {sup 40}Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction {sup 37}Cl on {sup 40}Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids.
Long, Fuhui; Peng, Hanchuan; Sudar, Damir; Levievre, Sophie A.; Knowles, David W.
2006-09-05
Background: The distribution of the chromatin-associatedproteins plays a key role in directing nuclear function. Previously, wedeveloped an image-based method to quantify the nuclear distributions ofproteins and showed that these distributions depended on the phenotype ofhuman mammary epithelial cells. Here we describe a method that creates ahierarchical tree of the given cell phenotypes and calculates thestatistical significance between them, based on the clustering analysisof nuclear protein distributions. Results: Nuclear distributions ofnuclear mitotic apparatus protein were previously obtained fornon-neoplastic S1 and malignant T4-2 human mammary epithelial cellscultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 andthe number of days in cultured. A probabilistic ensemble approach wasused to define a set of consensus clusters from the results of multipletraditional cluster analysis techniques applied to the nucleardistribution data. Cluster histograms were constructed to show how cellsin any one phenotype were distributed across the consensus clusters.Grouping various phenotypes allowed us to build phenotype trees andcalculate the statistical difference between each group. The resultsshowed that non-neoplastic S1 cells could be distinguished from malignantT4-2 cells with 94.19 percent accuracy; that proliferating S1 cells couldbe distinguished from differentiated S1 cells with 92.86 percentaccuracy; and showed no significant difference between the variousphenotypes of T4-2 cells corresponding to increasing tumor sizes.Conclusion: This work presents a cluster analysis method that canidentify significant cell phenotypes, based on the nuclear distributionof specific proteins, with high accuracy.
NASA Astrophysics Data System (ADS)
Papoulia, A.; Carlsson, B. G.; Ekman, J.
2016-10-01
Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. The purpose of this work is to investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions can be extracted from measurements. Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts and it is seen that phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the isotope shifts. Using a different approach, we demonstrate the possibility to extract information concerning the nuclear charge densities from the observed field shifts. We deduce that combining methods used in atomic and nuclear structure theory gives an improved description of field shifts and that extracting additional nuclear information from measured isotope shifts is possible in the near future with improved experimental methods.
Double parton scattering in pair production of J /ψ mesons at the LHC revisited
NASA Astrophysics Data System (ADS)
Borschensky, Christoph; Kulesza, Anna
2017-02-01
Double parton scattering (DPS) is studied for the example of J /ψ pair production in the LHCb and ATLAS experiments of the Large Hadron Collider (LHC) at center-of-mass energies of √{S }=7 , 8, and 13 TeV. We report theoretical predictions delivered to the LHCb and ATLAS Collaborations adjusted for the fiducial volumes of the corresponding measurements during run I, and we provide new predictions at 13 TeV collision energy. It is shown that DPS can lead to noticeable contributions in the distributions of longitudinal variables of the di-J /ψ system, especially at 13 TeV. The increased DPS rate in double J /ψ production at high energies will open up more possibilities for the separation of single parton scattering and DPS contributions in future studies.
NASA Technical Reports Server (NTRS)
Deese, J. E.; Hassan, H. A.
1979-01-01
The role played by fission fragments and electron distribution functions in nuclear pumped lasers is considered and procedures for their calculations are outlined. The calculations are illustrated for a He-3/Xe mixture where fission is provided by the He-3(n,p)H-3 reaction. Because the dominant ion in the system depends on the Xe fraction, the distribution functions cannot be determined without the simultaneous consideration of a detailed kinetic model. As is the case for wall sources of fission fragments, the resulting plasmas are essentially thermal but the electron distribution functions are non-Maxwellian.
NASA Astrophysics Data System (ADS)
Shafii, M. A.; Fitriyani, D.; Tongkukut, S. H. J.; Abdullah, A. G.
2017-03-01
To solve the integral neutron transport equation using collision probability (CP) method usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function. The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Leading twist nuclear shadowing phenomena in hard processes with nuclei
L. Franfurt; Guzey, V.; Strikman, M.
2012-01-08
We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.
Leading twist nuclear shadowing phenomena in hard processes with nuclei
L. Franfurt; Guzey, V.; Strikman, M.
2012-01-08
We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less
Kinoshita, Norikazu; Sueki, Keisuke; Sasa, Kimikazu; Kitagawa, Jun-ichi; Ikarashi, Satoshi; Nishimura, Tomohiro; Wong, Ying-Shee; Satou, Yukihiko; Handa, Koji; Takahashi, Tsutomu; Sato, Masanori; Yamagata, Takeyasu
2011-01-01
A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo. PMID:22084070
Thermionic nuclear reactor with internal heat distribution and multiple duct cooling
Fisher, C.R.; Perry, L.W. Jr.
1975-11-01
A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.
Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor
NASA Astrophysics Data System (ADS)
Aguilera, P.; Molina, F.; Romero-Barrientos, J.
2016-07-01
Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.
NASA Astrophysics Data System (ADS)
Žerovnik, Gašper; Trkov, Andrej; Smith, Donald L.; Capote, Roberto
2013-11-01
Inherently positive parameters with large relative uncertainties (typically ≳30%) are often considered to be governed by the lognormal distribution. This assumption has the practical benefit of avoiding the possibility of sampling negative values in stochastic applications. Furthermore, it is typically assumed that the correlation coefficients for comparable multivariate normal and lognormal distributions are equivalent. However, this ideal situation is approached only in the linear approximation which happens to be applicable just for small uncertainties. This paper derives and discusses the proper transformation of correlation coefficients between both distributions for the most general case which is applicable for arbitrary uncertainties. It is seen that for lognormal distributions with large relative uncertainties strong anti-correlations (negative correlations) are mathematically forbidden. This is due to the asymmetry that is an inherent feature of these distributions. Some implications of these results for practical nuclear applications are discussed and they are illustrated with examples in this paper. Finally, modifications to the ENDF-6 format used for representing uncertainties in evaluated nuclear data libraries are suggested, as needed to deal with this issue.
Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients.
Shang, Jingwei; Yamashita, Toru; Nakano, Yumiko; Morihara, Ryuta; Li, Xianghong; Feng, Tian; Liu, Xia; Huang, Yong; Fukui, Yusuke; Hishikawa, Nozomi; Ohta, Yasuyuki; Abe, Koji
2017-03-24
Nuclear pore complexes (NPCs) play important roles in traffic of molecules between the nucleus and cytoplasm, aberrant distributions of components of NPCs were demonstrated in C9orf72 amyotrophic lateral sclerosis (C9-ALS) patients, but it is elusive whether such abnormities are also the case with other cause of ALS disease. In the present study, we investigated the spatiotemporal distributions of RanGAP1 and 4 representative nucleoporins (GP210, NUP205, NUP107 and NUP50) of NPCs in human Cu/Zn superoxide dismutase-1 mutation transgenic (SOD1-Tg) mice and sporadic ALS patients. Compared with wild type (WT), these proteins displayed age-dependent and progressive nuclear precipitations, and cytoplasmic aberrant expressions in motor neurons of lumbar cord in SOD1-Tg mice from 10 to 18weeks (W). Double immunofluorescent analysis showed abnormal nuclear retention and apparent co-localizations of RanGAPl with NUP205 and NUP205 with NUPl07, meanwhile, GP210 with NUP205 mainly co-localized in the nuclear envelope (NE) of motor neurons. Furthermore, RanGAP1, GP210 and NUP50 showed similarly abnormal nuclear precipitations and cytoplasmic upregulations in SOD1-Tg mice and ALS patients, moreover, aberrant co-localizations of RanGAP1 with TDP-43 and NUP205 with TDP-43 were also observed in motor neurons. The present study indicated that the mislocalization of these proteins of NPCs may underlie the pathogenesis of ALS both in SOD1-Tg mice and human sporadic ALS patients, and these dysfunctions may be a fundamental pathway for ALS that is not specific only in C9-ALS but also in SOD1-ALS, which may be amenable to pharmacotherapeutic intervention.
NASA Astrophysics Data System (ADS)
Chen, Yan; Liu, Min; Compton, Stephen G.; Chen, Xiao-Yong
2014-05-01
Nuclear mitochondrial pseudogenes (NUMTs) are nuclear sequences transferred from mitochondrial genomes. Although widespread, their distribution patterns among populations or closely related species are rarely documented. We amplified and sequenced the mitochondrial cytochrome b (Cytb) gene to check for NUMTs in three fig wasp species that pollinate Ficus pumila (Wiebesia sp. 1, 2 and 3) in Southeastern China using direct and cloned sequencing. Unambiguous sequences (332) of 487 bp in length belonging to 33 haplotypes were found by direct sequencing. Their distribution was highly concordant with those of cytochrome c oxidase subunit I (COI). Obvious signs of co-amplification of NUMTs were indicated by their uneven distribution. NUMTs were observed in all individuals of 12 populations of Wiebesia sp. 3, and 13 individuals of three northern populations of Wiebesia sp. 1. Sequencing clones of potential co-amplification products confirmed that they were NUMTs. These NUMTs either clustered as NUMT clades basal to mtDNA Cytb clades (basal NUMTs), or together with Cytb haplotypes. Basal NUMTs had either stop codons or frame-shifting mutations resulting from deletion of a 106 bp fragment. In addition, no third codon or synonymous substitutions were detected within each NUMT clade. The phylogenetic tree indicated that basal NUMTs had been inserted into nuclei before divergence of the three species. No significant pairwise differences were detected in their ratios of third codon substitutions, suggesting that these NUMTs originated from one transfer event, with duplication in the nuclear genome resulting in the coexistence of the 381 bp copy. No significant substitution differences were detected between Cytb haplotypes and NUMTs that clustered with Cytb haplotypes. However, these NUMTs coexisted with Cytb haplotypes in multiple populations, suggesting that these NUMT haplotypes were recently inserted into the nuclear genome. Both basal and recently inserted NUMTs were rare
Martínez-Herrera, Alejandro; Aragón, Jorge; Bermúdez-Cruz, Rosa Ma; Bazán, Ma Luisa; Soid-Raggi, Gabriela; Ceja, Víctor; Santos Coy-Arechavaleta, Andrea; Alemán, Víctor; Depardón, Francisco; Montañez, Cecilia
2015-09-01
Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy) gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids (93)LEQEHNNLV(101) and (168)LLLHDSIQI(176) could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled "EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40" (J. Aragón et al. Neurosci. Lett. 600 (2015) 115-120) [1].
Martínez-Herrera, Alejandro; Aragón, Jorge; Bermúdez-Cruz, Rosa Ma.; Bazán, Ma. Luisa; Soid-Raggi, Gabriela; Ceja, Víctor; Santos Coy-Arechavaleta, Andrea; Alemán, Víctor; Depardón, Francisco; Montañez, Cecilia
2015-01-01
Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy) gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids 93LEQEHNNLV101 and 168LLLHDSIQI176 could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled “EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40” (J. Aragón et al. Neurosci. Lett. 600 (2015) 115–120) [1]. PMID:26217814
Parton distributions with the combined HERA charm production cross sections
Bertone, Valerio; Rojo, Juan
2013-04-15
Heavy quark structure functions from HERA provide a direct handle on the medium and small-x gluon PDF. In this contribution, we discuss ongoing progress on the implementation of the FONLL General-Mass scheme with running heavy quark masses, and of its benchmarking with the HOPPET and OpenQCDrad codes, and then present the impact of the recently released combined HERA charm production cross sections in the NNPDF 2.3 analysis. We find that the combined charm data contribute to constraining the gluon and quarks at small values of Bjorken-x.
NASA Astrophysics Data System (ADS)
Nefedov, M. A.; Saleev, V. A.
2015-11-01
The hadroproduction of prompt isolated photon pairs at high energies is studied in the framework of the parton Reggeization approach. The real part of the NLO corrections is computed (the NLO⋆ approximation), and the procedure for the subtraction of double counting between real parton emissions in the hard-scattering matrix element and unintegrated parton distribution function is constructed for the amplitudes with Reggeized quarks in the initial state. The matrix element of the important next-to-next-to-leading-order subprocess R R →γ γ with full dependence on the transverse momenta of the initial-state Reggeized gluons is obtained. We compare obtained numerical results with diphoton spectra measured at the Tevatron and the LHC and find a good agreement of our predictions with experimental data at the high values of diphoton transverse momentum, pT, and especially at the pT larger than the diphoton invariant mass, M . In this multi-Regge kinematics region, the NLO correction is strongly suppressed, demonstrating the self-consistency of the parton Reggeization approach.
NASA Astrophysics Data System (ADS)
Rueter, Keiti; Novikov, Ivan
2016-09-01
Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measure interaction cross-section. In the presented work, to extract parameters for a halo and core, we compare experimental data on interaction cross section with reaction cross-sections calculated using expressions obtained in the Glauber Model and its optical approximation. These calculations are performed using Markov Chain Monte Carlo algorithm. In addition, we discuss the accuracy of the Monte Carlo approach to calculating the interaction and reaction cross-sections. The dependence of the accuracy of the density parameters of various exotic nuclei on the ``quality'' of the random numbers chains (here, ``quality'' is defined by lag-1 autocorrelation time of a sequence of random numbers) is obtained for the Gaussian density distribution for a core and the Gaussian density distribution for a halo. KY NSF EPSCoR Research Scholars Program.
Ko, Young-Joon
2016-01-01
Nuclear mitochondrial DNA segment (Numt) insertion describes a well-known phenomenon of mitochondrial DNA transfer into a eukaryotic nuclear genome. However, it has not been well understood, especially in plants. Numt insertion patterns vary from species to species in different kingdoms. In this study, the patterns were surveyed in nine plant species, and we found some tip-offs. First, when the mitochondrial genome size is relatively large, the portion of the longer Numt is also larger than the short one. Second, the whole genome duplication event increases the ratio of the shorter Numt portion in the size distribution. Third, Numt insertions are enriched in exon regions. This analysis may be helpful for understanding plant evolution. PMID:27729838
Maltoni, Fabio; Mawatari, Kentarou; Zaro, Marco
Vector-boson fusion and associated production at the LHC can provide key information on the strength and structure of the Higgs couplings to the Standard Model particles. Using an effective field theory approach, we study the effects of next-to-leading order (NLO) QCD corrections matched to a parton shower on selected observables for various spin-0 hypotheses. We find that inclusion of NLO corrections is needed to reduce the theoretical uncertainties on the total rates as well as to reliably predict the shapes of the distributions. Our results are obtained in a fully automatic way via FeynRules and MadGraph5_aMC@NLO.
Nuclear effects in neutrino production of pions
NASA Astrophysics Data System (ADS)
Schmidt, Iván; Siddikov, M.
2015-04-01
In this paper we study nuclear effects in the neutrino production of pions. We found that in a Bjorken kinematics, for moderate xB accessible in ongoing and forthcoming neutrino experiments, the cross section is dominated by the incoherent contribution; the coherent contribution becomes visible only for small |t |≲1 /RA2, which requires xB≲0.1 . Our results could be relevant to the kinematics of the ongoing MINERvA experiment in the middle-energy regime. We provide a code which could be used for the evaluation of the neutrino induced deeply virtual meson production observables using different parametrizations of generalized parton distributions and different models of nuclear structure.
Interference effect in elastic parton energy loss in a finitemedium
Wang, Xin-Nian
2005-04-18
Similar to the radiative parton energy loss due to gluonbremsstrahlung, elastic energy loss of a parton undergoing multiplescattering in a finite medium is demonstrated to be sensitive tointerference effect. The interference between amplitudes of elasticscattering via a gluon exchange and that of gluon radiation reduces theeffective elastic energy loss in a finite medium and gives rise to anon-trivial length dependence. The reduction is most significant for apropagation length L<4/\\pi T in a medium with a temperature T. Thoughthe finite size effect is not significant for the average partonpropagation in the most central heavy-ion collisions, it will affect thecentrality dependence of its effect on jet quenching.
Double Parton Interactions in pp and pA Collisions
NASA Astrophysics Data System (ADS)
Treleani, Daniele; Calucci, Giorgio; Salvini, Simona
2016-11-01
As a consequence of the increasingly large flux of partons at small x, Double Parton Interactions (DPI) play an increasingly important role at high energies. A detail understanding of DPI dynamics is therefore mandatory, for a reliable subtraction of the background in the search of new physics. On the other hand, DPI are an interesting topic of research by themselves, as DPI probe the hadron structure in a rather different way, as compared with the large pt processes usually considered. In this note we will make a short illustration of some of the main features characterizing DPI in pp and in pA collisions.
Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure
NICOLE Collaboration and ISOLDE Collaboration
1996-12-01
We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}
Comparative Analysis of HIV-1 and Murine Leukemia Virus Three-Dimensional Nuclear Distributions
Quercioli, Valentina; Di Primio, Cristina; Casini, Antonio; Mulder, Lubbertus C. F.; Vranckx, Lenard S.; Borrenberghs, Doortje; Gijsbers, Rik; Debyser, Zeger
2016-01-01
Recent advances in fluorescence microscopy allow three-dimensional analysis of HIV-1 preintegration complexes in the nuclei of infected cells. To extend this investigation to gammaretroviruses, we engineered a fluorescent Moloney murine leukemia virus (MLV) system consisting of MLV-integrase fused to enhanced green fluorescent protein (MLV-IN-EGFP). A comparative analysis of lentiviral (HIV-1) and gammaretroviral (MLV) fluorescent complexes in the nuclei of infected cells revealed their different spatial distributions. This research tool has the potential to achieve new insight into the nuclear biology of these retroviruses. PMID:26962222
Dean, Rebecca; Zimmer, Fabian; Mank, Judith E
2014-05-01
Mitochondrial interactions with the nuclear genome represent one of life's most important co-evolved mutualisms. In many organisms, mitochondria are maternally inherited, and in these cases, co-transmission between the mitochondrial and nuclear genes differs across different parts of the nuclear genome, with genes on the X chromosome having two-third probability of co-transmission, compared with one-half for genes on autosomes. These asymmetrical inheritance patterns of mitochondria and different parts of the nuclear genome have the potential to put certain gene combinations in inter-genomic co-adaptation or conflict. Previous work in mammals found strong evidence that the X chromosome has a dearth of genes that interact with the mitochondria (mito-nuclear genes), suggesting that inter-genomic conflict might drive genes off the X onto the autosomes for their male-beneficial effects. Here, we developed this idea to test coadaptation and conflict between mito-nuclear gene combinations across phylogenetically independent sex chromosomes on a far broader scale. We found that, in addition to therian mammals, only Caenorhabditis elegans showed an under-representation of mito-nuclear genes on the sex chromosomes. The remaining species studied showed no overall bias in their distribution of mito-nuclear genes. We discuss possible factors other than inter-genomic conflict that might drive the genomic distribution of mito-nuclear genes.
Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence
Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel; Sedivy, John; Castellani, Gastone
2015-01-01
The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF) undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction), and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome. PMID:26115222
Touati, Said; Chennai, Salim; Souli, Aissa
2015-07-01
The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)
Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin
2013-02-01
We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.
Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong
2011-07-01
The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.
NASA Astrophysics Data System (ADS)
Vaca Chávez, Fabián; Schönhoff, Monika
2007-03-01
Polyelectrolyte multilayers (PEMs) are thin films, which are assembled one molecular layer at a time, by alternatingly adsorbing polycations and polyanions making use of their attractive electrostatic interaction. Since the porosity of PEMs is one of the properties of major interest, in the current work the first pore size distribution of PEMs in samples consisting of silica particles coated with poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) is presented. To this end, the nuclear magnetic resonance (NMR) cryoporometry technique was applied. The proton NMR signal of liquid water is analyzed assuming a log normal distribution of motional correlation times. From the results, it is possible to determine the size of water sites in the layers to around 1nm. In addition, a slight variation with the number of layers is found. The average pore size agrees with cutoff sizes found in permeation experiments.
Goldstein, L; Prescott, D M
1968-01-01
In previous studies, we showed that essentially all the proteins of the Amoeba proteus nucleus could be classified either as Rapidly Migrating Proteins (RMP), which shuttle between nucleus and cytoplasm continuously at a relatively rapid rate during interphase, or as Slow Turnover Proteins (STP), which seem to move hardly at all during interphase. In this paper, we report on the kinetics and direction of the movement of both classes of protein, as well as on aspects of their localization, with and without growth. The effects of growth were observed with and without cell division. These nuclear proteins have been studied in several ways: by transplantation of labeled nuclei into unlabeled cells and noting the rate of distribution to cytoplasm and host cell nuclei; by repeated amputation of cytoplasm from labeled cells-with and without initially labeled cytoplasm-each amputation being followed by refeeding on unlabeled food; by noting the redistribution of the various protein classes following growth and cell division. The data show (a) labeled RMP equilibrate between a grafted labeled nucleus and an unlabeled host nucleus in ca. 3 hr, but are detectable in the latter less than 30 min after the operation; (b) STP label does, indeed, leave the nucleus and does so at a rate of ca. 25% of the nuclear total per cell generation (ca. 36-40 hr at 23 degrees C); (c) the cytoplasm appears to have a reserve of material that is converted to RMP; (d) when labeled cells are amputated just before they would have divided and are refed unlabeled food after each amputation, there is a loss of 20-25% of the nuclear protein label with each amputation; (e) under the latter circumstances, an essentially complete turnover of all nuclear protein can be demonstrated.
In-Medium Parton Branching Beyond Eikonal Approximation
NASA Astrophysics Data System (ADS)
Apolinário, Liliana
2017-03-01
The description of the in-medium modifications of partonic showers has been at the forefront of current theoretical and experimental efforts in heavy-ion collisions. It provides a unique laboratory to extend our knowledge frontier of the theory of the strong interactions, and to assess the properties of the hot and dense medium (QGP) that is produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss of massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (qbar{q} antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This constitutes the final proof that a probabilistic picture of the parton shower evolution holds even in the presence of a QGP.
Nuclear microprobe studies of elemental distributions in dormant seeds of Burkea africana
NASA Astrophysics Data System (ADS)
Witkowski, E. T. F.; Weiersbye-Witkowski, I. M.; Przybyłowicz, W. J.; Mesjasz-Przybyłowicz, J.
1997-07-01
Seed nutrient stores are vital post-germination for the establishment of seedlings in harsh and unpredictable environments. Plants of nutrient-poor environments allocate a substantial proportion of total acquired nutrients to reproduction (i.e. seeds). We propose that differential allocation of mineral resources to specific seed tissues is an indication of a species germination and establishment strategy. Burkea africana Hook is a leguminous tree typical of broad-leaved nutrient-poor savannas in southern Africa. Elemental distributions in dormant B. africana seed structures were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3.0 MeV protons were complemented by simultaneous BS and PIXE point analyses. Mineral nutrient concentrations varied greatly between seed tissues. Elevated levels of metals known to play an important role as plant enzyme co-factors were found in the seed lens and embryonic axis. Distributions of most of these metals (Ca, Mn, Fe and Zn, but not K or Cu) were positively correlated with embryonic P distribution, and probably represent phytin deposits. The distribution of metals within seed structures is 'patchy' due to their complexation with P as electron-dense globoid phytin crystals, which constrains the interpretation of PIXE point analyses.
Costabel, Stephan; Yaramanci, Ugur
2013-01-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
Nuclear effects in the Drell-Yan process.
Raufeisen, J.
2002-01-01
In the target rest frame and at high energies, Drell-Yan (DY) dilepton production looks like bremsstrahlung of massive photons, rather than parton annihilation. The projectile quark is decomposed into a series of Fock states. Configurations with fixed transverse separations in impact parameter space are interaction eigenstates for p p scattering. The DY cross section can then be expressed in terms of the same color dipole cross section as DIS. We compare calculations in this dipole approach with E772 data and with next-to-leading order parton model calculations. This approach is especially suitable to describe nuclear effects, since it allows one to apply Glauber multiple scattering theory. We go beyond the Glauber eikonal approximation by taking into account transitions between states, which would be eigenstates for a proton target. We calculate nuclear shadowing at large Feynman-x{sub F} for DY in proton-nucleus collisions and compare to E772 data. Nuclear effects on the transverse momentum distribution are also investigated.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Li, Wenliang
2017-01-01
Spatial distribution of the molecular harmonic spectra from \\text{H}\\text{2}+ in the presence of inhomogeneous field has been theoretically investigated. It shows that (i) the harmonic intensities from the negative-H nucleus play the dominating role in harmonic emission spectra. (ii) Through the investigations of the nuclear signature effect on the spatial distribution of the molecular harmonic spectra, the differences of the harmonic intensities between the negative-H nucleus and the positive-H nucleus can be enhanced and reduced with the introduction of the higher vibrational state and the heavy nucleus (i.e. \\text{D}2+ ), respectively. The time-frequency analyses of the harmonic spectra, the time-dependent wave function and the electron localization have been shown to explain the harmonic spatial distribution and the electron motion. (iii) Due to the plasmon-resonance-enhancement near the metallic nanostructure, the harmonic cutoff can be remarkably enhanced as the spatial position of the inhomogeneous field moving away from the gap center. The ionization probabilities have been shown to explain the harmonic cutoff extension.
The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane.
Chen, Jingjing; Smoyer, Christine J; Slaughter, Brian D; Unruh, Jay R; Jaspersen, Sue L
2014-02-17
In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain-containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1-Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1-Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.
NASA Astrophysics Data System (ADS)
Chang, Wen-Chen
2016-02-01
The observation of the violation of Lam-Tung relation in the πN Drell-Yan process triggered many theoretical speculations. The TMD Boer-Mulders functions characterizing the correlation of transverse momentum and transverse spin for partons in unpolarized hadrons could nicely account for the violation. The COMPASS experiment at CERN will measure the angular distributions of dimuons from the unpolarized Drell-Yan process over a wide kinematic region and study the beam particle dependence. Significant statistics is expected from a successful run in 2015 which will bring further understanding of the origin of the violation of Lam-Tung relation and of the partonic transverse spin structure of the nucleon.
Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers
Toman, G.; Gazdzinski, R.
1994-05-01
This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.
Chen, Shanshan; Wang, Hongzhi; Yang, Peiqiang; Zhang, Xuelong
2014-06-01
It is difficult to reflect the properties of samples from the signal directly collected by the low field nuclear magnetic resonance (NMR) analyzer. People must obtain the relationship between the relaxation time and the original signal amplitude of every relaxation component by inversion algorithm. Consequently, the technology of T2 spectrum inversion is crucial to the application of NMR data. This study optimized the regularization factor selection method and presented the regularization algorithm for inversion of low field NMR relaxation distribution, which is based on the regularization theory of ill-posed inverse problem. The results of numerical simulation experiments by Matlab7.0 showed that this method could effectively analyze and process the NMR relaxation data.
Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.
Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M
2007-01-01
In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.
Sanada, Yukihisa; Orita, Tadashi; Torii, Tatsuo
2016-12-01
Aerial radiological survey using an unmanned aerial vehicle (UAV) was applied to measurement surface contamination around the Fukushima Daiichi nuclear power station (FDNPS). An unmanned helicopter monitoring system (UHMS) was developed to survey the environmental effect of radioactive cesium scattered as a result of the FDNPS accident. The UHMS was used to monitor the area surrounding the FDNPS six times from 2012 to 2015. Quantitative changes in the radioactivity distribution trend were revealed from the results of these monitoring runs. With this information, we found that the actual reduction of dose rate was faster than the one calculated with radiocesium physical half-life. It is indicated that the attenuation effect of radiation by radiocesium penetration in soil is dominant as for reason of reduction of dose rate.
NASA Astrophysics Data System (ADS)
Warmate, Tamuno-Negiyeofori; Gamberg, Leonard; Prokudin, Alexei
2016-09-01
I have performed a phenomenological analysis of pion production data from Jefferson Laboratory in semi-inclusive deep inelastic scattering of electrons on unpolarized nucleons and deuterium using the transverse momentum dependent (TMD) parton model formalism. We parameterize the data in terms of TMD parton distribution functions that describe the three-dimensional (3-D) partonic structure of the nucleon. One of the main enigmas of data analysis is how to reliably estimate the errors of the parameters that describe some particular physical process. A common method is to use Hessian matrix or vary the delta chi-square of the corresponding fits to the data. In this particular project we use the so-called bootstrap method that is very robust for error estimation. This method has not been extensively used in the description of the TMD distributions that describe the 3-D nucleon structure. The reliable estimate of the errors and thus reliable predictions for future experiments is of great scientific interest. We are using Python and modern methods of data analysis in this project. The results of the project will be useful for understanding the effects of internal motion of quarks and gluons inside of the proton and will be reported in a forthcoming publication.
Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking
Peter Schweitzer, Mark Strikman, Christian Weiss
2013-01-01
The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard
Four-jet production in single- and double-parton scattering within high-energy factorization
NASA Astrophysics Data System (ADS)
Kutak, Krzysztof; Maciula, Rafal; Serino, Mirko; Szczurek, Antoni; van Hameren, Andreas
2016-04-01
We perform a first study of 4-jet production in a complete high-energy factorization (HEF) framework. We include and discuss contributions from both single-parton scattering (SPS) and double-parton scattering (DPS). The calculations are performed for kinematical situations relevant for two experimental measurements (ATLAS and CMS) at the LHC. We compare our results to those reported by the ATLAS and CMS collaborations for different sets of kinematical cuts. The results of the HEF approach are compared with their counterparts for collinear factorization. For symmetric cuts the DPS HEF result is considerably smaller than the one obtained with collinear factorization. The mechanism leading to this difference is of kinematical nature. We conclude that an analysis of inclusive 4-jet production with asymmetric p T -cuts below 50 GeV would be useful to enhance the DPS contribution relative to the SPS contribution. In contrast to the collinear approach, the HEF approach nicely describes the distribution of the Δ S variable, which involves all four jets and their angular correlations.
Large-pT production of D mesons at the LHCb in the parton Reggeization approach
NASA Astrophysics Data System (ADS)
Karpishkov, A. V.; Saleev, V. A.; Shipilova, A. V.
2016-12-01
The production of D mesons in proton-proton collisions at the LHCb detector is studied. We consider the single production of D0/D¯0, D±, D*±, and Ds± mesons and correlation spectra in the production of D D ¯ and D D pairs at the √{S }=7 TeV and √{S }=13 TeV . In case of the single D -meson production we calculate differential cross sections over transverse momentum pT while in the pair D D ¯ , D D -meson production the cross sections are calculated over the azimuthal angle difference Δ φ , rapidity difference Δ y , invariant mass of the pair M and over the pT of the one meson from a pair. The cross sections are obtained at the leading order of the parton Reggeization approach using Kimber-Martin-Ryskin unintegrated parton distribution functions in a proton. To describe the D -meson production we use universal scale-dependent c -quark and gluon fragmentation functions fitted to e+e- annihilation data from CERN LEP1. Our predictions find a good agreement with the LHCb Collaboration data within uncertainties and without free parameters.
Polarised Parton Densities from the Fits to the Deep Inelastic Spin Asymmetries on Nucleons
NASA Astrophysics Data System (ADS)
Bartelski, Jan; Tatur, Stanislaw
2001-07-01
We have updated our next to leading order QCD fit for polarised parton densities [S. Tatur, J. Bartelski, M. Kurzela, Acta Phys. Pol. B31, 647 (2000)] using recent experimental data on the deep inelastic spin asymmetries on nucleons. Our distributions have functional form inspired by the unpolarised ones given by MRST (Martin, Roberts, Stirling and Thorne) fit. In addition to usually used data sample (averaged over variable Q2 for the same value of x variable) we have also considered the points with the same x and different Q2. Our fits to both groups of data give very similar results with substantial antiquark contribution in the measured region of x. In the first case we get rather small (Δ G=0.31) gluon polarisation. For the non averaged data the best fit is obtained when gluon contribution vanishes at Q2=1GeV2. Our new parametrisation of parton densities and additional experimental data taken into account do not change much our previous results.
Parton interpretation of the nucleon spin-dependent structure functions
Mankiewicz, L. ); Ryzak, Z. )
1991-02-01
We discuss the interpretation of the nucleon's polarized structure function {ital g}{sub 2}({ital x}). If the target state is represented by its Fock decomposition on the light cone, the operator-product expansion allows us to demonstrate that moments of {ital g}{sub 2}({ital x}) are related to overlap integrals between wave functions of opposite longitudinal polarizations. In the light-cone formalism such wave functions are related by the kinematical operator {ital scrY}, or light-cone parity. As a consequence, it can be shown that moments of {ital g}{sub 2} give information about the same parton wave function, or probability amplitude to find a certain parton configuration in the target which defines {ital g}{sub 1}({ital x}) or {ital F}{sub 2}({ital x}). Specific formulas are given, and possible applications to the phenomenology of the nucleon structure in QCD are discussed.
Litvinchuk, Spartak N; Rosanov, Jury M; Borkin, Leo J
2007-04-01
We used flow cytometry to measure the nuclear DNA content in erythrocytes of 27 salamandrid species. Across these species, diploid genome size varied more than 2 fold (51.3-104.4 pg). According to genome size and geographic distribution, 3 groups of newt species were recognized: West Palearctics with smaller amounts of nuclear DNA; Nearctic, with intermediate values; and East Asiatic, with higher genome sizes. Viviparous West Palearctic salamanders differed from most of the oviparous West Palearctic newts in possessing larger genome sizes. The nuclear DNA content strongly correlates with species range limits. At the same temperature, embryos of salamandrid species with larger genome sizes have a markedly longer developmental time than those with smaller genomes. We present an analysis of the relationships between the amount of nuclear DNA and water temperature at the breeding sites.
Partonic Flow and phi-Meson production in Au+Au collisions at sqrt radical sNN = 200 GeV.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2007-09-14
We present first measurements of the phi-meson elliptic flow (v2(pT)) and high-statistics pT distributions for different centralities from radical sNN=200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2 of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to pT approximately 4 GeV/c, but disagrees at higher momenta. The nuclear modification factor (R CP) of phi follows the trend observed in the K S 0 mesons rather than in Lambda baryons, supporting baryon-meson scaling. These data are consistent with phi mesons in central Au+Au collisions being created via coalescence of thermalized s quarks and the formation of a hot and dense matter with partonic collectivity at RHIC.
Triple Parton Scatterings in High-Energy Proton-Proton Collisions
NASA Astrophysics Data System (ADS)
d'Enterria, David; Snigirev, Alexander M.
2017-03-01
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.
Gene distribution and isochore organization in the nuclear genome of plants.
Montero, L M; Salinas, J; Matassi, G; Bernardi, G
1990-04-11
The genomic distribution of 23 nuclear genes from three dicotyledons (pea, sunflower, tobacco) and five monocotyledons of the Gramineae family (barley, maize, rice, oat, wheat) was studied by localizing these genes in DNA fractions obtained by preparative centrifugation in Cs2SO4/BAMD density gradients. Each one of these genes (and of many other related genes and pseudogenes) was found to be located in DNA fragments (50-100 Kb in size) that were less than 1-2% GC apart from each other. This definitively demonstrates the existence of isochores in plant genomes, namely of compositionally homogeneous DNA regions at least 100-200 Kb in size. Moreover, the GC levels of the 23 coding sequences studied, of their first, second and third codon positions, and of the corresponding introns were found to be linearly correlated with the GC levels of the isochores harboring those genes. Compositional correlations displayed increasing slopes when going from second to first to third codon position with obvious effects on codon usage. Coding sequences for seed storage proteins and phytochrome of Gramineae deviate from the compositional correlations just described. Finally, CpG doublets of coding sequences were characterized by a shortage that decreased and vanished with increasing GC levels of the sequences. A number of these findings bear a striking similarity with results previously obtained for vertebrate genes.
Hawkley, Gavin
2014-01-01
Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.
Radiation dose distribution for workers in South Korean nuclear power plants.
Lee, Byoung-il; Kim, So-i; Suh, Dong-hee; Jin, Young-woo; Kim, Jeong-in; Choi, Hoon; Lim, Young-khi
2010-07-01
A total of 33 680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from 3.20 mSv man(-1) in 1990 to 1.12 mSv man(-1) at the end of 2007. After the International Commission on Radiological Protection 60 recommendation was generalised in South Korea, no NPP workers received >20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in NPPs was composed mainly of 20-30 y olds (83 %) for 1990-1994 and 30-40 y olds (75 %) for 2003-2007. The difference in individual average dose by age was not significant. Most (77 %) of the NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures was external exposures, representing 95 % of the total exposures, whereas internal exposures represented only 5 %. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium in the pressurised heavy water reactor was the biggest cause of exposure.
Prompt-photon plus jet associated photoproduction at HERA in the parton Reggeization approach
NASA Astrophysics Data System (ADS)
Kniehl, B. A.; Nefedov, M. A.; Saleev, V. A.
2014-06-01
We study the photoproduction of isolated prompt photons associated with hadron jets in the framework of the parton Reggeization approach. The cross section distributions in the transverse energies and pseudorapidities of the prompt photon and the jet as well as the azimuthal-decorrelation variables measured by the H1 and ZEUS collaborations at DESY HERA are nicely described by our predictions. The main improvements with respect to previous studies in the kT-factorization framework include the application of the Reggeized-quark formalism, the generation of exactly gauge-invariant amplitudes with off-shell initial-state quarks, and the exact treatment of the γR→γg box contribution with off-shell initial-state gluons.
Kinase, Sakae; Takahashi, Tomoyuki; Sato, Satoshi; Sakamoto, Ryuichi; Saito, Kimiaki
2014-08-01
Preliminary prediction models have been studied for the radioactive caesium distribution within the 80-km radius of the Fukushima Daiichi nuclear power plant. The models were represented by exponential functions using ecological half-life of radioactive caesium in the environment. The ecological half-lives were derived from the changes in ambient dose equivalent rates through vehicle-borne surveys. It was found that the ecological half-lives of radioactive caesium were not constant within the 80-km radius of the Fukushima Daiichi nuclear power plant. The ecological half-life of radioactive caesium in forest areas was found to be much larger than that in urban and water areas.
Neufeld, Richard B.; Vitev, Ivan M.
2011-01-01
We derive the distribution of energy and momentumtransmitted from a primary fast parton and its medium-induced bremsstrahlung gluons to a thermalized quark-gluon plasma. Our calculation takes into account the important and thus far neglected effects of quantum interference between the resulting color currents. We use our result to obtain the rate at which energy is absorbed by the medium as a function of time and find that the rate is modified by the quantum interference between the primary parton and secondary gluons. This Landau-Pomeranchuk-Migdal type interference persists for time scales relevant to heavy ion phenomenology. We further couple the newly derived source of energy and momentum deposition to linearized hydrodynamics to obtain the bulk medium response to realistic parton propagation and splitting in the quark-gluon plasma. We find that because of the characteristic large angle in-medium gluon emission and the multiple sources of energy deposition in a parton shower, formation of well defined Mach cones by energetic jets in heavy ion reactions is not likely.
Kok-Palma, Yvo; Leenders, Marianne; Meulenbelt, Jan
2010-08-01
Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radioiodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around nuclear power plants where radiological thyroid doses for children might be sufficiently high to warrant iodine administration. Dose calculations for possible releases from the nuclear power plants of Borssele (The Netherlands), Doel (Belgium) and Emsland (Germany) are based on two scenarios in combination with a 1-y set of authentic, high-resolution meteorological data. The dimensions of the circular zones were defined for each nuclear power plant. In these zones, with a radius up to 50 km, distribution of stable iodine tablets is advised.
The distribution of nuclear genetic variation and historical demography of sea otters
Aguilar, A.; Jessup, David A.; Estes, James; Garza, J.C.
2008-01-01
The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis, which represents ???10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes. ?? Journal compilation ?? 2007 The Zoological Society of London No claim to original US government works.
A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor
NASA Astrophysics Data System (ADS)
Fereshteh, Golian; Ali, Pazirandeh; Saeed, Mohammadi
2015-06-01
In order to calculate the electron energy distribution in the fuel rod gap of a VVER-1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach.
Tools for the Future of Nuclear Physics
NASA Astrophysics Data System (ADS)
Geesaman, Donald
2014-03-01
The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.
Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie
2004-01-01
Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143
NASA Astrophysics Data System (ADS)
Godinho, R. M.; Cabrita, M. T.; Alves, L. C.; Pinheiro, T.
2015-04-01
Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution.
LHAPDF6: parton density access in the LHC precision era
NASA Astrophysics Data System (ADS)
Buckley, Andy; Ferrando, James; Lloyd, Stephen; Nordström, Karl; Page, Ben; Rüfenacht, Martin; Schönherr, Marek; Watt, Graeme
2015-03-01
The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, F.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; López, J. A.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.
2016-11-01
Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of √{s}=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37 .3 pb-1, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity | η| ≤ 4 .4, and at least one having p T ≥ 42 .5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at √{s}=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided. [Figure not available: see fulltext.
Computer program for afterheat temperature distribution for mobile nuclear power plant
NASA Technical Reports Server (NTRS)
Parker, W. G.; Vanbibber, L. E.
1972-01-01
ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.
Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion
Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei
2004-02-04
A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal conditions.
Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki
2014-06-01
Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes.
1978-01-01
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651
NASA Astrophysics Data System (ADS)
Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.
2016-08-01
Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.
Double parton effects for jets with large rapidity separation
Szczurek, Antoni; Cisek, Anna; Maciuła, Rafal
2015-04-10
We discuss production of four jets pp → jjjjX with at least two jets with large rapidity separation in proton-proton collisions at the LHC through the mechanism of double-parton scattering (DPS). The cross section is calculated in a factorizaed approximation. Each hard subprocess is calculated in LO collinear approximation. The LO pQCD calculations are shown to give a reasonably good descritption of CMS and ATLAS data on inclusive jet production. It is shown that relative contribution of DPS is growing with increasing rapidity distance between the most remote jets, center-of-mass energy and with decreasing (mini)jet transverse momenta. We show also result for angular azimuthal dijet correlations calculated in the framework of k{sub t} -factorization approximation.
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
NASA Astrophysics Data System (ADS)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-01
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
Li, Zhi; Zhu, Yizhou; Zhai, Yujia; R Castroagudin, Michelle; Bao, Yifei; White, Tommy E; Glavy, Joseph S
2013-12-01
From the surrounding shell to the inner machinery, nuclear proteins provide the functional plasticity of the nucleus. This study highlights the nuclear association of Pore membrane (POM) protein NDC1 and Werner protein (WRN), a RecQ helicase responsible for the DNA instability progeria disorder, Werner Syndrome. In our previous publication, we connected the DNA damage sensor Werner's Helicase Interacting Protein (WHIP), a binding partner of WRN, to the NPC. Here, we confirm the association of the WRN/WHIP complex and NDC1. In established WRN/WHIP knockout cell lines, we further demonstrate the interdependence of WRN/WHIP and Nucleoporins (Nups). These changes do not completely abrogate the barrier of the Nuclear Envelope (NE) but do affect the distribution of FG Nups and the RAN gradient, which are necessary for nuclear transport. Evidence from WRN/WHIP knockout cell lines demonstrates changes in the processing and nucleolar localization of lamin B1. The appearance of "RAN holes" void of RAN corresponds to regions within the nucleolus filled with condensed pools of lamin B1. From WRN/WHIP knockout cell line extracts, we found three forms of lamin B1 that correspond to mature holoprotein and two potential post-translationally modified forms of the protein. Upon treatment with topoisomerase inhibitors lamin B1 cleavage occurs only in WRN/WHIP knockout cells. Our data suggest the link of the NDC1 and WRN as one facet of the network between the nuclear periphery and genome stability. Loss of WRN complex leads to multiple alterations at the NPC and the nucleolus.
NASA Astrophysics Data System (ADS)
Kimura, S.
2015-12-01
As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on effect of mica content on pore size distribution and porosity of sandy sediment. This study used proton nuclear magnetic resonance (NMR) to measure the pore-size distribution and porosity of specimen to investigate mica content effect in sandy sediment. A mixture of silica sand No. 7 and mica (mica of 0 wt. %, 5 wt. % and 20 wt. %) was used in this study. The median D50 by laser diffraction method was obtained as 215.7 μm of silica sand No. 7 and 278.9 μm of mica. Pore-size distributions of specimens by the distribution of transverse magnetic relaxation time (T2) measurement by NMR were performed for the water-saturated sample under effective confining pressure of 1.0 MPa. The peaks of pore-size distribution curves decreased and showed finer shifts with increasing of mica content. The porosity of silica sand No. 7 specimen was 46.3%, and that of mica 5% and 20 % were 45.9% and 42.2%m, respectively. A change in pore-size distribution and porosity were observed with an increasing ratio of mica.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms
Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions
NASA Astrophysics Data System (ADS)
Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena
2012-09-01
We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.
Virtual photon structure functions and the parton content of the electron
Drees, M. ); Godbole, R.M. )
1994-09-01
We point out that in processes involving the parton content of the photon the usual effective photon approximation should be modified. The reason is that the parton content of virtual photons is logarithmically suppressed compared to real photons. We describe this suppression using several simple, physically motivated [ital Ansa]$[ital uml---tze]. Although the parton content of the electron in general no longer factorizes into an electron flux function and a photon structure function, it can still be expressed as a single integral. Numerical examples are given for the [ital e][sup +][ital e][sup [minus
Ojino, Mayo; Yoshida, Sumito; Nagata, Takashi; Ishii, Masami; Akashi, Makoto
2016-12-08
Stable iodine tablets are effective in reducing internal exposure to radioactive iodine, which poses a risk for thyroid cancer and other conditions. After the Fukushima Daiichi nuclear power plant accident, the Japanese government shifted its policy on stable iodine tablet distribution from "after-the-fact" to "before-the-fact" and instructed local governments to pre-distribute stable iodine tablets to residents living within a 5-km radius of nuclear facilities. The nation's first pre-distribution of stable iodine tablets was carried out in June and July of 2014 in Kagoshima Prefecture. Health surveys were conducted so that the medication would not be handed out to people with the possibility of side effects. Of the 4715 inhabitants in the area, 132 were found to require a physician's judgment, mostly to exclude risks of side effects. This was considered important to prevent the misuse of the tablets in the event of a disaster. The importance of collective and individualized risk communication between physicians and inhabitants at the community health level was apparent through this study. Involvement of physicians through the regional Sendai City Medical Association was an important component of the pre-distribution. Physicians of the Sendai City Medical Association were successfully educated by using the Guidebook on Distributing and Administering Stable Iodine Tablets prepared by the Japan Medical Association and Japan Medical Association Research Institute with the collaboration of the National Institute of Radiological Sciences and the Japanese government. Thus, the physicians managed to make decisions on the dispensing of stable iodine tablets according to the health conditions of the inhabitants. All physicians nationwide should be provided continuing medical education on stable iodine tablets. (Disaster Med Public Health Preparedness. 2016;page 1 of 5).
Vázquez-López, C.; Zendejas-Leal, B. E.; Bogard, James S; Golzarri, J. I.; Espinosa Garcia, Guillermo
2009-01-01
This paper presents a device to measure the angular distribution of the diffuse optical transmittance produced by etched nuclear tracks in polyallyl diglycol carbonate (PADC) detector. The device makes use of a stepper motor to move an array of four photodetectors around the sample in 1.8-degree steps. The integrated transmitted light was observed to increase monotonically with the etched track density in a range from zero to 2.8 x 10^5 per cm^2, using a neutron Am Be source.
Altstetter, C.J.
1981-01-01
The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures
Electron energy distribution in a helium plasma created by nuclear radiations
NASA Technical Reports Server (NTRS)
Lo, R. H.; Miley, G. H.
1974-01-01
An integral balance technique for calculation of the electron energy distribution in a radiation-induced plasma is described. Results predict W-values reasonably well and compare favorably with more complicated Monte-Carlo calculations. The distribution found differs from that in a normal electrical discharge and is of interest in radiation-pumped laser research.
González-Barriga, Anchel; Nillessen, Bram; Kranzen, Julia; van Kessel, Ingeborg D G; Croes, Huib J E; Aguilera, Begoña; de Visser, Peter C; Datson, Nicole A; Mulders, Susan A M; van Deutekom, Judith C T; Wieringa, Bé; Wansink, Derick G
2017-04-04
Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood. Here, we report on the unassisted uptake of naked AONs, so-called gymnosis, in muscle cells in culture. We found that gymnosis works similarly well for proliferating myoblasts as for terminally differentiated myotubes. Cell biological analyses combined with microscopy imaging showed that a phosphorothioate backbone promotes efficient gymnosis, that uptake is clathrin mediated and mainly results in endosomal-lysosomal accumulation. Nuclear localization occurred at a low level, but the gymnotically delivered AONs effectively modulated the expression of their nuclear RNA targets. Chloroquine treatment after gymnotic delivery helped increase nuclear AON levels. In sum, we demonstrate that gymnosis is feasible in proliferating and non-proliferating muscle cells and we confirm the relevance of AON chemistry for uptake and intracellular trafficking with this method, which provides a useful means for bio-activity screening of AONs in vitro.
Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois . E-mail: Jean-Francois.Launay@inserm.u-strasbg.fr
2005-02-15
Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins.
NASA Astrophysics Data System (ADS)
Toyama, T.; Tsuchiya, N.; Nagai, Y.; Almazouzi, A.; Hatakeyama, M.; Hasegawa, M.; Ohkubo, T.; van Walle, E.; Gerard, R.
2010-10-01
Irradiation-induced changes of the atomic distributions of solute and impurity elements around carbides in a reactor pressure vessel steel of a Belgium nuclear power reactor were investigated by laser-assisted local electrode-type three-dimensional atom probe, before and after in-service irradiation of 12 years. Before irradiation, nano-scale Fe-Mn-Cr-Mo carbides were found to be intragranular. The atomic distributions of Mn, Cr and Mo inside the carbide indicate that their concentrations around the inner carbide-matrix interface were enhanced, while a clear segregation of P at the interface was observed. After irradiation, the Mn concentration in the carbide increased substantially. In addition, the enhancement of Mn, Cr and Mo concentrations around the interface and the segregation of P were markedly intensified.
Lappi, T; Mäntysaari, H; Venugopalan, R
2015-02-27
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Single perturbative splitting diagrams in double parton scattering
NASA Astrophysics Data System (ADS)
Gaunt, Jonathan R.
2013-01-01
We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that
Apparicio, M; Alves, A E; Pires-Butler, E A; Ribeiro, A P C; Covizzi, G J; Vicente, W R R
2011-10-01
The aim of this study was to evaluate the effects of hCG, progesterone and oestradiol supplementation on nuclear and cytoplasmic maturation of canine oocytes cultured for 24, 48, 72 and 96 h. Oocytes obtained from 18 healthy bitches were divided into three groups according to their reproductive status (follicular, luteal and anoestrus stages) and cultured in TCM 199 + 25 UI/ml of hCG + 1 μg/ml of progesterone + 1 μg/ml of 17-β oestradiol or without hormonal supplementation (control) for different periods. Then, they were stained with FITC-LCA-Hoescht for chromatin configuration and cortical granules distribution and evaluated under an epifluorescence microscope. Culture time and the influence of different stages of the oestrous cycle were also evaluated. The present study demonstrated that there was no significant difference among the reproductive stages. With regards to culture medium, only oocytes from the supplemented medium were able to complete meiosis; however, significant difference was only noticed in the percentage of MI stage oocytes (p < 0.05) in the follicular and luteal group at 72 h of culture. Most oocytes in germinal vesicle, germinal vesicle breakdown and metaphase I stage had cortical granules distributed throughout the cytoplasm (immature pattern), irrespective of the culture period (p < 0.05). Cortical granules distributed immediately beneath the plasma membrane (mature) was only observed in metaphase II stage oocytes, but not all of them presented matured cytoplasm. Our results reveal that cortical granules distribution in canine oocytes matured in vitro did not progressed in correspondence with nuclear stage changes and are in accordance with those from other species.
Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations
Kosior, Amelia; Staszczak, A.; Wong, Cheuk-Yin
2017-01-01
Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.
NASA Astrophysics Data System (ADS)
Denschlag, J. O.
This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.
NASA Astrophysics Data System (ADS)
Crespo López-Urrutia, J. R.; Beiersdorfer, P.; Widmann, K.; Birkett, B. B.; Mårtensson-Pendrill, A.-M.; Gustavsson, M. G. H.
1998-02-01
The F=3 to F=2 hyperfine transitions in the 1s ground state of the two isotopes 185Re74+ and 187Re74+ were measured to be (4560.5+/-3) Å and (4516.9+/-3) Å, respectively, using emission spectroscopy in an electron beam ion trap. After applying appropriate corrections for the nuclear charge distribution and QED effects, a Bohr-Weisskopf effect of ɛ=2.23(9)% and 2.30(9)% are found for 185Re and 187Re, respectively. This value is almost twice that of a previous theoretical estimate, and indicates a distribution of the nuclear magnetization far more extended than that of the nuclear charge. A radius of the magnetization distribution of
Automated parton-shower variations in pythia 8
NASA Astrophysics Data System (ADS)
Mrenna, S.; Skands, P.
2016-10-01
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. The formalism also allows for the enhancement of rare partonic splittings, such as g →b b ¯ and q →q γ , to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separatelymore » preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.« less
Energy flow along the medium-induced parton cascade
Blaizot, J.-P.
2016-05-15
We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.
Estimation of Ground-Level Radioisotope Distributions for Underground Nuclear Test Leakage
Ely, James H.; Fast, James E.; Seifert, Carolyn E.; Warren, Glen A.
2009-06-19
On-site inspections (OSI) will be an important process to deter and help verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An important tool in narrowing the possible locations to collect evidence of a nuclear test during an on-site inspection may be over-flights of the general area using aerial gamma spectroscopy which can measure the energy and intensity of gamma radiation and help identify areas that may warrant further investigation of areas of high concentrations of radioactivity. This paper will investigate the capabilities of gamma ray detectors that are typically used in aerial searches. Modeling and simulation results of the detector response for radionuclide species for an OSI will be presented for a variety of assumed releases, depositions on the ground, and times after a suspected Treaty violation for typical over flight heights and speeds. This data will provide information on the possible applicability for airborne spectroscopy and the challenges and limitations of this tool for OSI. Of particular interest will be analysis of the data for gross count, regions of interest, and isotope identification types of algorithms and the characteristics of each.
NASA Astrophysics Data System (ADS)
Chakraborty, P.; Kapusta, J. I.
2017-01-01
In simulations of high energy heavy ion collisions that employ viscous hydrodynamics, single particle distributions are distorted from their thermal equilibrium form due to gradients in the flow velocity. These are closely related to the formulas for the shear and bulk viscosities in the quasiparticle approximation. Distorted single particle distributions are now commonly used to calculate the emission of photons and dilepton pairs, and in the late stage to calculate the conversion of a continuous fluid to individual particles. We show how distortions of the single particle distribution functions due to both shear and bulk viscous effects can be done rigorously in the quasiparticle approximation and illustrate it with the linear σ model at finite temperature.
High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion
NASA Astrophysics Data System (ADS)
Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven
2017-04-01
An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.
Zhang, Xiaoli; Wen, Zhifeng; Sun, Limei; Wang, Jian; Song, Min; Wang, Enhua; Mi, Xiaoyi
2013-06-28
Highlights: •TRAF2 appears to interact with TRAF4 in breast cancer cell lines. •TRAF2 affects the localization and function of TRAF4 in breast cancer cell lines. •TRAF4 may play an important role in the activation of NF-κB via TRAF2. -- Abstract: Although numerous studies have shown that tumor necrosis factor receptor-associated factor 4 (TRAF4) plays an important role in the carcinogenesis of many tumor types, its exact molecular mechanism remains elusive. In this study, we examined the regulation function of TRAF2 to the cytoplasmic/nuclear distribution of TRAF4 in the breast cancer cell line. Using cell immunofluorescent staining, we found that TRAF2 and TRAF4 were co-localized to the cytoplasm in MCF-7 cells. Co-immunoprecipitation showed that TRAF2 could interact with TRAF4 in MCF-10A, MCF-7 and MDA-MB-231 cell lines. Western blotting showed TRAF2 depletion by targeted siRNA in MDA-MB-231 cells led to reduced TRAF4 expression in the cytoplasm and augmented TRAF4 expression in the nucleus. Cytoplasmic expression of TRAF4 was augmented and nuclear expression was reduced when MCF-7 cells were transfected with hTRAF2pLPCX-HA-Flag/P874. MCF-7 cells expressing hTRAF2pLPCX-HA-Flag/P874 had enhanced cell proliferation rates. The nuclear expression of NF-κB significantly increased after TNF-α treatment. When hTRAF2pLPCX-HA-Flag/P874 and the siRNA-TRAF4 plasmid were cotransfected, the nuclear expression of NF-κB was significantly reduced compared with cells transfected with hTRAF2pLPCX-HA-Flag/P874 only. In conclusion, TRAF2 appears to interact with TRAF4 and affect the localization of TRAF4 in breast cancer cell lines. The overexpression of TRAF2 augmented the cytoplasmic expression of TRAF4 which promoted cell proliferation and inhibited cell apoptosis by activating NF-κB nuclear transcription. TRAF4 may play an important role in the activation of NF-κB via TRAF2.
Transverse momentum distributions inside the nucleon from lattice QCD
Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.
2011-07-15
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Transverse momentum distributions inside the nucleon from lattice QCD
Bernhard Musch, Philipp Haegler, John Negele, Andreas Schaefer
2011-07-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Huntley, J M; Tarvaz, T; Mantle, M D; Sederman, A J; Gladden, L F; Sheikh, N A; Wildman, R D
2014-05-13
We report the results of nuclear magnetic resonance imaging experiments on granular beds of mustard grains fluidized by vertical vibration at ultrasonic frequencies. The variation of both granular temperature and packing fraction with height was measured within the three-dimensional cell for a range of vibration frequencies, amplitudes and numbers of grains. Small increases in vibration frequency were found--contrary to the predictions of classical 'hard-sphere' expressions for the energy flux through a vibrating boundary--to result in dramatic reductions in granular temperature. Numerical simulations of the grain-wall interactions, using experimentally determined Hertzian contact stiffness coefficients, showed that energy flux drops significantly as the vibration period approaches the grain-wall contact time. The experiments thus demonstrate the need for new models for 'soft-sphere' boundary conditions at ultrasonic frequencies.
Osvay, M; Deme, S
2006-01-01
Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.
HMS-burn: a model for hydrogen distribution and combustion in nuclear reactor containments
Travis, J.R.
1985-01-01
It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen combustion in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes.
Huntley, J. M.; Tarvaz, T.; Mantle, M. D.; Sederman, A. J.; Gladden, L. F.; Sheikh, N. A.; Wildman, R. D.
2014-01-01
We report the results of nuclear magnetic resonance imaging experiments on granular beds of mustard grains fluidized by vertical vibration at ultrasonic frequencies. The variation of both granular temperature and packing fraction with height was measured within the three-dimensional cell for a range of vibration frequencies, amplitudes and numbers of grains. Small increases in vibration frequency were found—contrary to the predictions of classical ‘hard-sphere’ expressions for the energy flux through a vibrating boundary—to result in dramatic reductions in granular temperature. Numerical simulations of the grain–wall interactions, using experimentally determined Hertzian contact stiffness coefficients, showed that energy flux drops significantly as the vibration period approaches the grain–wall contact time. The experiments thus demonstrate the need for new models for ‘soft-sphere’ boundary conditions at ultrasonic frequencies. PMID:24711488
First Results on Angular Distributions of Thermal Dileptons in Nuclear Collisions
Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.
2009-06-05
The NA60 experiment at the CERN Super Proton Synchrotron has studied dimuon production in 158A GeV In-In collisions. The strong excess of pairs above the known sources found in the complete mass region 0.2
Masson, Olivier; Ringer, Wolfgang; Malá, Helena; Rulik, Petr; Dlugosz-Lisiecka, Magdalena; Eleftheriadis, Konstantinos; Meisenberg, Olivier; De Vismes-Ott, Anne; Gensdarmes, François
2013-10-01
Segregation and radioactive analysis of aerosols according to their aerodynamic size were performed in France, Austria, the Czech Republic, Poland, Germany, and Greece after the arrival of contaminated air masses following the nuclear accident at the Fukushima Dai-ichi nuclear power plant in March 2011. On the whole and regardless of the location, the highest activity levels correspond either to the finest particle fraction or to the upper size class. Regarding anthropogenic radionuclides, the activity median aerodynamic diameter (AMAD) ranged between 0.25 and 0.71 μm for (137)Cs, from 0.17 to 0.69 μm for (134)Cs, and from 0.30 to 0.53 μm for (131)I, thus in the "accumulation mode" of the ambient aerosol (0.1-1 μm). AMAD obtained for the naturally occurring radionuclides (7)Be and (210)Pb ranged from 0.20 to 0.53 μm and 0.29 to 0.52 μm, respectively. Regarding spatial variations, AMADs did not show large differences from place to place compared with what was observed concerning bulk airborne levels registered on the European scale. When air masses arrived in Europe, AMADs for (131)I were about half those for cesium isotopes. Higher AMAD for cesium probably results from higher AMAD observed at the early stage of the accident in Japan. Lower AMAD for (131)I can be explained by the adsorption of gaseous iodine on particles of all sizes met during transport, especially for small particles. Additionally, weathering conditions (rain) encountered during transport and in Europe in March and April contributed to the equilibrium of the gaseous to total (131)I ratio. AMAD slightly increased with time for (131)I whereas a clear decreasing trend was observed with the AMADs for (137)Cs and (134)Cs. On average, the associated geometric standard deviation (GSD) appeared to be higher for iodine than for cesium isotopes. These statements also bear out a gaseous (131)I transfer on ambient particles of a broad size range during transport. Highest weighted activity levels were
3D dose and TCP distribution for radionuclide therapy in nuclear medicine
NASA Astrophysics Data System (ADS)
Valente, M.; Malano, F.; Pérez, P.
2010-08-01
A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.
Biased distributions and decay of long interspersed nuclear elements in the chicken genome.
Abrusán, György; Krambeck, Hans-Jürgen; Junier, Thomas; Giordano, Joti; Warburton, Peter E
2008-01-01
The genomes of birds are much smaller than mammalian genomes, and transposable elements (TEs) make up only 10% of the chicken genome, compared with the 45% of the human genome. To study the mechanisms that constrain the copy numbers of TEs, and as a consequence the genome size of birds, we analyzed the distributions of LINEs (CR1's) and SINEs (MIRs) on the chicken autosomes and Z chromosome. We show that (1) CR1 repeats are longest on the Z chromosome and their length is negatively correlated with the local GC content; (2) the decay of CR1 elements is highly biased, and the 5'-ends of the insertions are lost much faster than their 3'-ends; (3) the GC distribution of CR1 repeats shows a bimodal pattern with repeats enriched in both AT-rich and GC-rich regions of the genome, but the CR1 families show large differences in their GC distribution; and (4) the few MIRs in the chicken are most abundant in regions with intermediate GC content. Our results indicate that the primary mechanism that removes repeats from the chicken genome is ectopic exchange and that the low abundance of repeats in avian genomes is likely to be the consequence of their high recombination rates.
Künzle, H; Rehkämper, G
1992-01-01
Using retrograde axonal flow and wheatgerm agglutinin conjugated to horseradish peroxidase, we studied the distribution of cortical neurons giving rise to spinal and dorsal column nuclear projections, and correlated the regions involved in the projections with the cytoarchitectonic areas recently identified in the lesser hedgehog tenrec, Echinops telfairi (Insectivora). Labeled cortical neurons were most numerous following injections of tracer into higher cervical segments, whereas almost none were found following thoracic injections. The cortical labeling appeared more prominent ipsilaterally than contralaterally after spinal injections, although it was more prominent on the contralateral side after injection into the dorsal column nuclear complex. The majority of labeled neurons found in lamina V occupied the neocortex adjacent to the interhemispheric fissure along the rostrocaudal extent of the small corpus callosum. This location corresponded to an intermediate rostrocaudal portion of the hemisphere, and particularly to area 2 of Rehkämper. In some cases, adjacent portions of areas 1 and 3 were also involved, as well as neocortical regions of the lateral hemisphere. The present data did not suggest a somatotopic organization of the projections; likewise, evidence for the presence of more than one somatosensorimotor representation was sparse.
Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.
Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard
2016-01-07
A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.
NASA Astrophysics Data System (ADS)
Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs
1986-11-01
Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.
NASA Technical Reports Server (NTRS)
Khandelwal, Govind S.; Khan, Ferdous
1989-01-01
An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.
A Numerical Method for Unfolding the Stabilized Nuclear Cloud Particle Distribution
1986-03-01
TOTAL, DENOM REAL YOU, WIN, CRAB, AVERAG, FISH, PIG REAL EXTRAS INTEGER PLUTO , I, MARK, COLT, FLAG, J, T, FIGS, OMEGA INTEGER M, K, N, Q, P, H, F, U, X, Y...PRINT*, ’YKT = ’,YKT READ(7,111) PLUTO PRINT*, ’NUMBER OF SAMPLES =’,PUT 111 FORMAT(I6) READ(7,107) MOMENT PRINT*, ’DISTRIBUTION MOMENT = ’,MOMENT 107...FORM.AT(F6.0) READ(7,108) MASS PRINT*, ’MASS ALOFT = ’,MASS 108 FORMAT(E13.2) DO 10 I = 1, PLUTO READ(7,109) TOTMAS(I),ALTCHK(I),TONE PRINT*, ’SAMPLE
Distribution of properties in nuclear reactor vessel shells in the unirradiated state
NASA Astrophysics Data System (ADS)
Skundin, M. A.; Chernobaeva, A. A.; Zhurko, D. A.; Krasikov, E. A.; Medvedev, K. I.
2013-04-01
The distributions of the chemical composition, the strength characteristics, and critical ductile-brittle transition temperature T cr are studied in the axial, radial, and tangential directions of the material of a test ring cut from a standard forging used for a VVER-1000 reactor vessel shell. The values of T cr of specimens cut from the test ring are shown to be well below those of the internal volume of the shell, which can explain the substantial scatter of the results obtained on reference specimens cut from the base metal.
Hu, Kan-Nian; Havlin, Robert H; Yau, Wai-Ming; Tycko, Robert
2009-10-02
Solid-state nuclear magnetic resonance (NMR) techniques are used to investigate the structure of the 35-residue villin headpiece subdomain (HP35) in folded, partially denatured, and fully denatured states. Experiments are carried out in frozen glycerol/water solutions, with chemical denaturation by guanidine hydrochloride (GdnHCl). Without GdnHCl, two-dimensional solid-state (13)C NMR spectra of samples prepared with uniform (13)C labeling of selected residues show relatively sharp cross-peaks at chemical shifts that are consistent with the known three-helix bundle structure of folded HP35. At high GdnHCl concentrations, most cross-peaks broaden and shift, qualitatively indicating disruption of the folded structure and development of static conformational disorder in the frozen denatured state. Conformational distributions at one residue in each helical segment are probed quantitatively with three solid-state NMR techniques that provide independent constraints on backbone varphi and psi torsion angles in samples with sequential pairs of carbonyl (13)C labels. Without GdnHCl, the combined data are well fit by alpha-helical conformations. At [GdnHCl]=4.5 M, corresponding to the approximate denaturation midpoint, the combined data are well fit by a combination of alpha-helical and partially extended conformations at each site, but with a site-dependent population ratio. At [GdnHCl]=7.0 M, corresponding to the fully denatured state, the combined data are well fit by a combination of partially extended and polyproline II conformations, again with a site-dependent population ratio. Two entirely different models for conformational distributions lead to nearly the same best-fit distributions, demonstrating the robustness of these conclusions. This work represents the first quantitative investigation of site-specific conformational distributions in partially folded and unfolded states of a protein by solid-state NMR.
Sato, Itaru; Okada, Keiji; Sasaki, Jun; Chida, Hiroyuki; Satoh, Hiroshi; Miura, Kiyoshi; Kikuchi, Kaoru; Otani, Kumiko; Sato, Shusuke
2015-07-01
Radioactivity inspection of slaughtered cattle is generally conducted using a portion of the neck muscle; however, there is limited information about the distribution of radioactive cesium in cattle. In this study, therefore, we measured not only radioactive cesium but also stable cesium in various tissues of 19 cattle that had been kept in the area highly contaminated by the Fukushima nuclear accident. Skeletal muscles showed approximately 1.5-3.0 times higher concentration of radioactive cesium than internal organs. Radioactive cesium concentration in the tenderloin and top round was about 1.2 times as high as that in the neck muscle. The kidney showed the highest concentration of radioactive cesium among internal organs, whereas the liver was lowest. Radioactive cesium concentration in the blood was about 8% of that in the neck muscle. Characteristics of stable cesium distribution were almost the same as those of radioactive cesium. Correlation coefficient between radioactive cesium and stable cesium in tissues of individual cattle was 0.981 ± 0.012. When a suspicious level near 100 Bq/kg is detected in the neck of slaughtered cattle, re-inspection should be conducted using a different region of muscle, for example top round, to prevent marketing of beef that violates the Food Sanitation Act.
Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.
Szerlong, Heather J; Hansen, Jeffrey C
2011-02-01
Genetic information in eukaryotes is managed by strategic hierarchical organization of chromatin structure. Primary chromatin structure describes an unfolded nucleosomal array, often referred to as "beads on a string". Chromatin is compacted by the nonlinear rearrangement of nucleosomes to form stable secondary chromatin structures. Chromatin conformational transitions between primary and secondary structures are mediated by both nucleosome-stacking interactions and the intervening linker DNA. Chromatin model system studies find that the topography of secondary structures is sensitive to the spacing of nucleosomes within an array. Understanding the relationship between nucleosome spacing and higher order chromatin structure will likely yield important insights into the dynamic nature of secondary chromatin structure as it occurs in vivo. Genome-wide nucleosome mapping studies find the distance between nucleosomes varies, and regions of uniformly spaced nucleosomes are often interrupted by regions of nonuniform spacing. This type of organization is found at a subset of actively transcribed genes in which a nucleosome-depleted region near the transcription start site is directly adjacent to uniformly spaced nucleosomes in the coding region. Here, we evaluate secondary chromatin structure and discuss the structural and functional implications of variable nucleosome distributions in different organisms and at gene regulatory junctions.
Probing the spatial distribution of nuclear magnetism in francium by optical spectroscopy
NASA Astrophysics Data System (ADS)
Aubin, S.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Gomez, E.
2013-10-01
The recently commissioned Francium Trapping Facility at TRIUMF in Vancouver, Canada will enable experiments to study weak interactions in francium atoms. We have successfully trapped and cooled 206 , 207 , 209 , 213 , 221Fr isotopes in large quantities (104 to 105) with trap lifetimes comparable to the radioactive lifetimes of the shortest lived trapped isotope (t1/2 = 14.8s). We use a combination of radio-frequency and optical spectroscopy to determine the hyperfine splittings of the 7P1 / 2 level of isotopes 206 , 207 , 209 , 213Fr to the 100 ppm level. These measurements, in combination with the known hyperfine ground state splittings, can be used to study the hyperfine anomaly in these isotopes. Our results extend previous work on the neutron distribution to a closed neutron shell isotope (213) and to neutron deficient isotopes (206, 207). These spectroscopic measurements also allow us to extract the isotope shifts to study changes in the charge radius. Work supported by NSERC and NRC from Canada, NSF and DOE from USA, and CONACYT from Mexico.
Blando, James; Robertson, Corwin; Pearl, Katina; Dixon, Carline; Valcin, Martin; Bresnitz, Eddy
2007-02-01
The primary objective of this study was to evaluate a joint state and local government-sponsored potassium iodide (KI) distribution program in New Jersey. This program is part of a radiological emergency response system for residents living within the Emergency Planning Zones (EPZs) of nuclear power facilities. KI pills and an informational fact sheet were distributed locally at six different public clinics in the summer of 2002. In this study, a mailed survey was developed, pilot tested, and sent to the general public to assess knowledge about KI use. The survey consisted of two groups of people, those who attended a KI distribution clinic and those that did not attend a clinic. There was a statistically significant difference in knowledge among the two groups of survey respondents regarding KI prophylaxis, with a mean of 46% of survey questions answered correctly by those who attended a clinic vs. 15% by those who did not attend. Certain questions were problematic for the public to answer correctly and included potential low compliance with government instructions for taking KI, confusion regarding where the public can obtain KI pills during an emergency, and the lack of awareness on the proper use of KI for children, pregnant women, and persons over the age of 40 y. Additional outreach in these specific areas is warranted. This study also found that there was a highly variable geographic pattern of homes that have a supply of KI pills, with some areas having 60% of the households supplied with pills from the clinic while other areas had as low as 1% of the homes supplied with KI pills.
QCD-aware partonic jet clustering for truth-jet flavour labelling
NASA Astrophysics Data System (ADS)
Buckley, Andy; Pollard, Chris
2016-02-01
We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudojet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging.
Revealing Partons in Hadrons: From the ISR to the SPS Collider
NASA Astrophysics Data System (ADS)
Darriulat, Pierre; di Lella, Luigi
2015-07-01
Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron-positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton-antiproton SPS Collider to this chapter of physics.
DESHPANDE,A.; VOGELSANG, W.
2007-10-08
The determination of the polarized gluon distribution is a central goal of the RHIC spin program. Recent achievements in polarization and luminosity of the proton beams in RHIC, has enabled the RHIC experiments to acquire substantial amounts of high quality data with polarized proton beams at 200 and 62.4 GeV center of mass energy, allowing a first glimpse of the polarized gluon distribution at RHIC. Short test operation at 500 GeV center of mass energy has also been successful, indicating absence of any fundamental roadblocks for measurements of polarized quark and anti-quark distributions planned at that energy in a couple of years. With this background, it has now become high time to consider how all these data sets may be employed most effectively to determine the polarized parton distributions in the nucleon, in general, and the polarized gluon distribution, in particular. A global analysis of the polarized DIS data from the past and present fixed target experiments jointly with the present and anticipated RHIC Spin data is needed.
Two jet energy and rapidity distributions
Blazey, G.C.; For the D {O} Collaboration
1992-11-01
The D0 detector has been recording data at the Tevatron {bar p}p Collider since May 1992. Because the D0 calorimeter is hermetic and has large acceptance it is well suited for semi-exclusive final state jet studies. We present a primary measurement of the distribution d{sup 3}N/dE{sub t1}/d{eta}{sub 1}/d{eta}{sub 2} at {radical}s TeV over a large range of {eta}. The sensitivity of this cross-section to parton momentum distributions and the ability of D0 to discriminate between possible parton distributions is discussed.
Medium-induced gluon radiation in hard forward parton scattering in the saturation formalism
NASA Astrophysics Data System (ADS)
Munier, Stéphane; Peigné, Stéphane; Petreska, Elena
2017-01-01
We derive the medium-induced, fully coherent soft gluon radiation spectrum associated with the hard forward scattering of an energetic parton off a nucleus, in the saturation formalism within the Gaussian approximation for the relevant correlators of Wilson lines and for finite number of colors. The validity range of the result is rigorously specified by keeping track of the order of magnitude of subleading contributions to the spectrum. The connection between the saturation formalism and the opacity expansion used in previous studies of the same observable is made apparent. Our calculation sets the basis for further studies of the interplay between saturation and fully coherent energy loss in hard forward parton scattering.
Studies of Parton Propagation and Hadron Formation in the Space-Time Domain
Brooks, Will; Hakobyan, Hayk
2008-10-13
Over the past decade, new data from HERMES, Jefferson Lab, Fermilab, and RHIC that connect to parton propagation and hadron formation have become available. Semi-inclusive DIS on nuclei, the Drell-Yan reaction, and heavy-ion collisions all bring different kinds of information on parton propagation within a medium, while the most direct information on hadron formation comes from the DIS data. Over the next decade one can hope to begin to understand these data within a unified picture. We briefly survey the most relevant data and the common elements of the physics picture, then highlight the new Jefferson Lab data, and close with a prospective for the future.
Examining the Crossover from the Hadronic to Partonic Phase in QCD
Xu Mingmei; Yu Meiling; Liu Lianshou
2008-03-07
A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.
Nuclear Effects in Neutrino Scattering at MINERvA
NASA Astrophysics Data System (ADS)
Tice, Brian
2014-09-01
MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino interactions. Neutrino scattering measurements complement those done with charged leptons, because neutrino scattering directly probes axial structure and is sensitive to the deep inelastic structure function F3. In addition, precise neutrino-nucleus measurements will reduce the significant nuclear model uncertainties incurred by using heavy nuclear targets to obtain high statistics in neutrino experiments. Such nuclear effects include both changes to the interaction cross section and alterations to the final state products through their interactions in the target nucleus. These uncertainties have implications for the utilization of neutrino deep inelastic scattering data in fitting parton distribution functions and for the extraction of neutrino oscillation parameters. We present three recent results from MINERvA that address this need for better knowledge of nuclear effects in neutrino scattering. First, measurements of νμ and νμ quasielastic cross sections. Then, a measurement of charged pion production from inclusive νμ interactions. Lastly, the first measurements of inclusive νμ cross section ratios of carbon, iron, and lead to scintillator as functions of neutrino energy and Bjorken-x. MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino
Nuclear physics with a medium-energy Electron-Ion Collider
A. Accardi, V. Guzey, A. Prokudin, C. Weiss
2012-06-01
A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.
Nuclear physics with a medium-energy Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.
2012-06-01
A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.
NASA Astrophysics Data System (ADS)
Higashi, H.; Morino, Y.; Furuichi, N.; Ohara, T.
2015-12-01
Massive amounts of anthropogenic radiocaesium 137Cs that were released into the environment by the Fukushima Daiichi Nuclear Power Plant accident in March 2011 are widely known to have extensively migrated to Pacific Ocean sediment off of eastern Japan. Several recent reports have stated that the sedimentary 137Cs is now stable with a remarkably heterogeneous distribution. The present study elucidates ocean dynamic processes causing this heterogeneous sedimentary 137Cs distribution in and around the shelf off Fukushima and adjacent prefectures. We performed a numerical simulation of oceanic 137Cs behaviour for about 10 months after the accident, using a comprehensive dynamic model involving advection-diffusion transport in seawater, adsorption and desorption to and from particulate matter, sedimentation and suspension on and from the bottom, and vertical diffusion transport in the sediment. A notable simulated result was that the sedimentary 137Cs significantly accumulated in a swath just offshore of the shelf break (along the 50-100 m isobath) as in recent observations, although the seabed in the entire simulation domain was assumed to have ideal properties such as identical bulk density, uniform porosity, and aggregation of particles with a single grain diameter. This result indicated that the heterogeneous sedimentary 137Cs distribution was not necessarily a result of the spatial distribution of 137Cs sediment adsorptivity. The present simulation suggests that the shape of the swath is mainly associated with spatiotemporal variation between bottom shear stress in the shallow shelf (< 50 m depths) and that offshore of the shelf break. In a large part of the shallow shelf, the simulation indicated that strong bottom friction suspending particulate matter from the seabed frequently occurred via a periodic spring tide about every 2 weeks and via occasional strong wind. The sedimentary 137Cs thereby could hardly stay on the surface of the seabed with the result that
NASA Astrophysics Data System (ADS)
Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.
2015-04-01
The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.
Tinsley, J H; Minke, P F; Bruno, K S; Plamann, M
1996-01-01
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae. Images PMID:8744947
NASA Astrophysics Data System (ADS)
Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham
2005-04-01
The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).
Ozaydin, Tugba; Sur, Emrah; Oznurlu, Yasemin; Celik, Ilhami; Uluisik, Deniz
2016-04-01
The aim of the present study was to investigate immunohistochemical distribution of heat shock protein 70 (Hsp70) and proliferating cell nuclear antigen (PCNA) in the mouse placenta at different gestational stages. For this purpose a total of 18 Swiss albino female mice at 12-14 weeks of age were used. Females were sacrificed on days 3 (early), 10 (mid-), and 17 (late) of pregnancy and the implantation sites of the pregnant uterus were sampled. The sections were made transversely through the central region of the implantation site and stained with hematoxylin and eosin for histological examination. PCNA and Hsp70 was stained immunohistochemically. Since the definitive placenta was not still formed on day 3 of pregnancy, Hsp70 and PCNA positivity were evaluated in only luminal epithelium and decidual-stromal cells. On days 10 and 17 of pregnancy, Hsp70 and PCNA positivity were evaluated in labyrinth zone, junctional zone and decidual layer of placenta. Hsp70 expression was observed trophoblast cells and decidual cells and was relatively constant throughout the pregnancy. This protein was strongly labeled in the trophoblast cells; while decidual cells were displayed moderate staining. In early pregnant mouse uteri, PCNA was mainly localized in decidual-stromal cells. The trophoblast cells and decidual cells displayed highly proliferative activity at the midgestational period. However there was a significant decrease in the percentage of PCNA positive cells in late gestation.
NASA Astrophysics Data System (ADS)
Hino, S.; Kumano, S.
1999-09-01
We analyze the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons in a parton model. Quark and antiquark correlation functions are expressed in terms of possible combinations of Lorentz vectors and pseudovectors with the constrains of Hermiticity, parity conservation, and time-reversal invariance. Then, we find tensor-polarized distributions for a spin-1 hadron. The naive parton model predicts that there exist 19 structure functions. However, there are only four or five nonvanishing structure functions, depending on whether the cross section is integrated over the virtual-photon transverse momentum Q-->T or the limit QT-->0 is taken. One of the finite structure functions is related to the tensor-polarized distribution b1, and it does not exist in the proton-proton reactions. The vanishing structure functions should be associated with higher-twist physics. The tensor distributions can be measured by the quadrupole polarization measurements. The Drell-Yan process has an advantage over the lepton reaction in the sense that the antiquark tensor polarization could be extracted rather easily.
Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD
NASA Technical Reports Server (NTRS)
Roychoudhury, R.
1985-01-01
Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.
NASA Astrophysics Data System (ADS)
Matsuzaki, Hiroyuki; Muramatsu, Yasuyuki; Toyama, Chiaki; Ohno, Takeshi; Kusuno, Haruka; Miyake, Yasuto; Honda, Maki
2014-05-01
Among various radioactive nuclides emitted from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, Iodine-131 displayed high radioactivity just after the accident. Moreover if taken into human body, Iodine-131 concentrates in the thyroid and may cause the thyroid cancer. The recognition about the risk of Iodine-131 dose originated from the experience of the Chernobyl accident based on the epidemiological study [1]. It is thus important to investigate the detailed deposition distribution of I-131 to evaluate the radiation dose due to I-131 and watch the influence on the human health. However I-131 decays so rapidly (half life = 8.02 d) that it cannot be detected several months after the accident. At the recognition of the risk of I-131 on the Chernobyl occasion, it had gone several years after the accident. The reconstruction of I-131 distribution from Cs-137 distribution was not successful because the behavior of iodine and cesium was different because they have different chemical properties. Long lived radioactive isotope I-129 (half life = 1.57E+7 yr,), which is also a fission product as well as I-131, is ideal proxy for I-131 because they are chemically identical. Several studies had tried to quantify I-129 in 1990's but the analytical technique, especially AMS (Accelerator Mass Spectrometry), had not been developed well and available AMS facility was limited. Moreover because of the lack of enough data on I-131 just after the accident, the isotopic ratio I-129/I-131 of the Chernobyl derived iodine could not been estimated precisely [2]. Calculated estimation of the isotopic ratio showed scattered results. On the other hand, at the FDNPP accident detailed I-131 distribution is going to be successfully reconstructed by the systematical I-129 measurements by our group. We measured soil samples selected from a series of soil collection taken from every 2 km (or 5km, in the distant area) meshed region around FDNPP conducted by the Japanese Ministry of
Iijima, K.; Funaki, H.; Tokizawa, T.; Nakayama, S.
2013-07-01
In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident following the Great Tohoku earthquake and tsunami of March 11, 2011. In addition to buildings, roads and farmland, the forest adjacent to living areas was one of the main decontamination targets. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. This forest was located 1.3 km southwest of the Fukushima Daiichi Nuclear Power Plant and is dominated by Japanese cedar trees and fir trees. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of {sup 134}Cs and {sup 137}Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 100 x 60 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10- m width) of the forest also slightly decreased these dose rates. After decontamination, the
Drell-Yan production at NNLL'+NNLO matched to parton showers
NASA Astrophysics Data System (ADS)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Tackmann, Frank J.; Walsh, Jonathan R.
2015-11-01
We present results for Drell-Yan production from the geneva Monte-Carlo framework. We combine the fully differential next-to-next-to leading order (NNLO) calculation with higher-order resummation in the 0-jettiness resolution variable. The resulting parton-level events are further combined with parton showering and hadronization provided by pythia8. The 0-jettiness resummation is carried out to NNLL' , which consistently incorporates all singular virtual and real NNLO corrections. It thus provides a natural perturbative connection between the NNLO calculation and the parton shower regime, including a systematic assessment of perturbative uncertainties. In this way, inclusive observables are correct to NNLO, up to small power corrections in the resolution cutoff. Furthermore, the perturbative accuracy of zero-jet-like resummation variables is significantly improved beyond the parton shower approximation. We provide comparisons with LHC measurements of Drell-Yan production at 7 TeV from ATLAS, CMS, and LHCb. As already observed in e+e- collisions, for resummation-sensitive observables, the agreement with data is noticeably improved by using a lower value of αs(MZ)=0.1135 .
Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD
NASA Astrophysics Data System (ADS)
Hernández-Pinto, R. J.; Epele, M.; de Florian, D.; Sassot, R.; Stratmann, M.
2016-10-01
In this review, we discuss the results on the parton-to-pion fragmentation functions obtained in a combined NLO fit to data of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and lepton-nucleon deep-inelastic scattering. A more complete discussion can be found in Ref. [1].
Drell-Yan Lepton pair production at NNLO QCD with parton showers
Hoeche, Stefan; Li, Ye; Prestel, Stefan
2015-04-13
We present a simple approach to combine NNLO QCD calculations and parton showers, based on the UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair production at the Large Hadron Collider. We comment on possible improvements and intrinsic uncertainties.
Making Sense in the City: Dolly Parton, Early Reading and Educational Policy-Making
ERIC Educational Resources Information Center
Hall, Christine; Jones, Susan
2016-01-01
In this paper, we present a case study of a philanthropic literacy initiative, Dolly Parton's Imagination Library, a book-gifting scheme for under 5s, and consider the impact of the scheme on literacy policy in the English city where it was introduced. We bring four lenses to bear on the case study. First, we analyse the operation of the scheme in…
Abe, Yasuyuki; Yamashiro, Hideaki; Kuwahara, Yoshikazu; Nihei, Hidekazu; Sano, Yosuke; Irisawa, Ayumi; Shimura, Tsutomu; Fukumoto, Motoi; Shinoda, Hisashi; Obata, Yuichi; Saigusa, Shin; Sekine, Tsutomu; Isogai, Emiko; Fukumoto, Manabu
2013-01-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident released large amounts of radioactive substances into the environment. In order to provide basic information for biokinetics of radionuclides and for dose assessment of internal exposure brought by the FNPP accident, we determined the activity concentration of radionuclides in the organs of 79 cattle within a 20-km radius around the FNPP. In all the specimens examined, deposition of Cesium-134 (134Cs, half-life: 2.065 y) and 137Cs (30.07 y) was observed. Furthermore, organ-specific deposition of radionuclides with relatively short half-lives was detected, such as silver-110m (110mAg, 249.8 d) in the liver and tellurium-129m (129mTe, 33.6 d) in the kidney. Regression analysis showed a linear correlation between the radiocesium activity concentration in whole peripheral blood (PB) and that in each organ. The resulting slopes were organ dependent with the maximum value of 21.3 being obtained for skeletal muscles (R2 = 0.83, standard error (SE) = 0.76). Thus, the activity concentration of 134 Cs and 137Cs in an organ can be estimated from that in PB. The level of radioactive cesium in the organs of fetus and infants were 1.19-fold (R2 = 0.62, SE = 0.12), and 1.51-fold (R2 = 0.70, SE = 0.09) higher than that of the corresponding maternal organ, respectively. Furthermore, radiocesium activity concentration in organs was found to be dependent on the feeding conditions and the geographic location of the cattle. This study is the first to reveal the detailed systemic distribution of radionuclides in cattle attributed to the FNPP accident. PMID:23372703
Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru
2013-01-01
For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.
NASA Astrophysics Data System (ADS)
Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.
1996-12-01
Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.
Höche, Stefan; Schönherr, Marek
2012-11-01
We quantify uncertainties in the Monte Carlo simulation of inclusive and dijet final states, which arise from using the MC@NLO technique for matching next-to-leading order parton-level calculations and parton showers. We analyse a large variety of data from early measurements at the LHC. In regions of phase space where Sudakov logarithms dominate over high-energy effects, we observe that the main uncertainty can be ascribed to the free parameters of the parton shower. In complementary regions, the main uncertainty stems from the considerable freedom in the simulation of underlying events.
Randrup, Jørgen; Möller, Peter
2011-04-01
Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.
2007-06-01
Foundation, (Jerusalem: Israel Program for Scientific Translation, 1965), 158. 54 E. Fermi , Nuclear Physics, Rev. ed., A course given by Enrico Fermi ...1993. England, T.R., and B.F. Rider. LA-UR-94-3106; ENDF-349. Los Alamos National Laboratory, 1993. Fermi , Enrico . Nuclear Physics, Rev. ed., A course...given by Enrico Fermi at the University of Chicago with notes compiled by J. Orear, A.H. Rosenfeld, and R.A. Schluter. Chicago: The University of
NASA Astrophysics Data System (ADS)
Alvioli, M.; Ciofi degli Atti, C.; Morita, H.
2016-10-01
Background: The two-nucleon momentum distributions of nucleons N1 and N2 in a nucleus A , nAN1N2(krel,Kc .m .) , is a relevant quantity that determines the probability of finding two nucleons with relative momentum krel and center-of-mass (c.m.) momentum Kc .m .; at high values of the relative momentum and, at the same time, low values of the c.m. momentum, nAN1N2(krel,Kc .m .) provides information on the short-range structure of nuclei. Purpose: Our purpose is to calculate the momentum distributions of proton-neutron and proton-proton pairs in 3He, 4He, 12C, 16O, and 40Ca, in correspondence to various values of krel and Kc .m .. Methods: The momentum distributions for A >4 nuclei are calculated as a function of the relative, krel, and center-of-mass, Kc.m., momenta and relative angle Θ , within a linked cluster many-body expansion approach, based upon realistic local two-nucleon interaction of the Argonne family and variational wave functions featuring central, tensor, and spin-isospin correlations. Results: Independently of the mass number A , at values of the relative momentum krel≳1.5 -2 fm-1 the momentum distributions exhibit the property of factorization, nAN1N2(krel,Kc .m .) ≃nrelN1N2(krel) nc.m . N1N2(Kc .m .) ; in particular, for p n back-to-back pairs one has nAp n(krel,Kc .m .=0 ) ≃CAp nnD(krel) nc.m . p n(Kc .m .=0 ) , where nD is the deuteron momentum distribution, nc.m . p n(Kc .m .=0 ) the c.m. motion momentum distribution of the pair, and CAp n the p n nuclear contact measuring the number of back-to-back p n pairs with deuteron-like momenta (kp≃-kn,Kc .m .=0 ). Conclusions: The values of the p n nuclear contact are extracted from the general properties of the two-nucleon momentum distributions corresponding to Kc .m .=0 . The Kc .m .-integrated p n momentum distributions exhibit the property nAp n(krel) ≃CAp nnD(krel) but only at very high values of krel, ≳3.5 -4 fm-1. The theoretical ratio of the p p /p n momentum distributions of 4He
Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs)
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Bhattacharya, T.; Green, J. R.; Gupta, R.; Hägler, P.; Krieg, S.; Negele, J.; Pochinsky, A.; Schäfer, A.; Syritsyn, S.; Yoon, B.
2016-03-01
An ongoing program of evaluating TMD observables within Lattice QCD is reviewed, summarizing recent progress with respect to several challenges faced by such calculations. These lattice calculations are based on a definition of TMDs through hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for a lattice calculation. Data on the naively T-odd Sivers and Boer-Mulders effects as well as the transversity TMD are presented.
Bedlinskiy, Ivan; Niccolai, Silvia; Stoler, Paul; Adhikari, Krishna; Aghasyan, Mher; Amaryan, Moskov; Anghinolfi, Marco; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bennett, Robert; Biselli, Angela; Bookwalter, Craig; Boyarinov, Sergey; Briscoe, William; Brooks, Williams; Burkert, Volker; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Charles, Gabriel; Contalbrigo, Marco; Crede, Volker; D'Angelo, Annalisa; Daniel, Aji; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Doughty, David; Dupre, Raphael; Egiyan, Hovanes; El Alaoui, Ahmed; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Fegan, Stuart; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Giovanetti, Kevin; Girod, Francoi-Xavier; Gohn, Wesley; Gothe, Ralf; Graham, Lewis; Griffioen, Keith; Guegan, Baptiste; Guidal, Michel; Guo, Lei; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Heddle, David; Hicks, Kenneth; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jo, Hyon-Suk; Joo, Kyungseon; Keller, Dustin; Khanddaker, Mahbubul; Khertarpal, Puneet; Kim, Andrey; Kim, Wooyoung; Klein, Franz; Koirala, Suman; Kubarovsky, A; Kuhn, Sebastian; Kuleshov, Sergey; Kvaltine, Nicholas; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Mao, Yuqing; Markov, Nikolai; Martinez, D; Mayer, Michael; McKinnon, Bryan; Meyer, Curtis; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Moutarde, Herve; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niculescu, Gabriel; Niculescu, Maria-Ioana; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Permuzyan, Rafayel; Park, Kijun; Park, Sungkyun; Pasyuk, Eugene; Pereira, Sergio; Phelps, Evan; Pisano, Silvia; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Prok, Yelena; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Ricco, Giovanni; Rimal, Dipak; Ripani, Marco; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Saylor, Nicholas; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Seraydaryan, Heghine; Sharabian, Youri; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Samuel; Strauch, Steffen; Taiuti, Mauro; Tang, Wei; Taylor, Charles; Tian, Ye; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vineyard, Michael; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Weygan, Dennis; Wood, Michael; Zachariou, Nicholas; Zhang, Jixie; Zhao, Zhiwen; Zonta, Irene
2012-09-01
Exclusive $\\pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $\\phi_\\pi$, in the $Q^2$ range from 1.0 to 4.6 GeV$^2$,\\ $-t$ up to 2 GeV$^2$, and $x_B$ from 0.1 to 0.58. Structure functions $\\sigma_T +\\epsilon \\sigma_L, \\sigma_{TT}$ and $\\sigma_{LT}$ were extracted as functions of $t$ for each of 17 combinations of $Q^2$ and $x_B$. The data were compared directly with two handbag-based calculations including both longitudinal and transversity GPDs. Inclusion of only longitudinal GPDs very strongly underestimates $\\sigma_T +\\epsilon \\sigma_L$ and fails to account for $\\sigma_{TT}$ and $\\sigma_{LT}$, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity flip and helicity non-flip processes. The results confirm that exclusive $\\pi^0$ electroproduction offers direct experimental access to the transversity GPDs.
Off-shell single-top production at NLO matched to parton showers
Frederix, R.; Frixione, S.; Papanastasiou, A. S.; Prestel, S.; Torrielli, P.
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the general case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.
Off-shell single-top production at NLO matched to parton showers
Frederix, R.; Frixione, S.; Papanastasiou, A. S.; ...
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the generalmore » case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.« less
COLLINEAR SPLITTING, PARTON EVOLUTION AND THE STRANGE-QUARK ASYMMETRY OF THE NUCLEON IN NNLO QCD.
RODRIGO,G.CATANI,S.DE FLORIAN, D.VOGELSANG,W.
2004-04-25
We consider the collinear limit of QCD amplitudes at one-loop order, and their factorization properties directly in color space. These results apply to the multiple collinear limit of an arbitrary number of QCD partons, and are a basic ingredient in many higher-order computations. In particular, we discuss the triple collinear limit and its relation to flavor asymmetries in the QCD evolution of parton densities at three loops. As a phenomenological consequence of this new effect, and of the fact that the nucleon has non-vanishing quark valence densities, we study the perturbative generation of a strange-antistrange asymmetry s(x)-{bar s}(x) in the nucleon's sea.
Studies of partonic transverse momentum and spin structure of the nucleon
NASA Astrophysics Data System (ADS)
Contalbrigo, M.
2014-06-01
The investigation of the partonic degrees of freedom beyond collinear approximation (3D description) has been gained increasing interest in the last decade. The Thomas Jefferson National Laboratory, after the CEBAF upgrade to 12 GeV, will become the most complete facility for the investigation of the hadron structure in the valence region by scattering of polarized electron off various polarized nucleon targets. A compendium of the planned experiments is here presented.
Diphoton production in the ADD model to NLO + parton shower accuracy at the LHC
NASA Astrophysics Data System (ADS)
Frederix, R.; Mandal, Manoj K.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit; Torrielli, P.; Zaro, M.
2012-12-01
In this paper, we present the next-to-leading order predictions for diphoton production in the ADD model, matched to the HERWIG parton shower using the MC@NLO formalism. A selection of the results is presented for d = 2-6 extra dimensions, using generic cuts as well as analysis cuts mimicking the search strategies as pursued by the ATLAS and CMS experiments.
One-Loop Multi-Parton Amplitudes with a Vector Boson for the LHC
Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Ita, H.; Kosower, D.A.; Maitre, D.; /SLAC
2008-08-11
In this talk, we present the first, numerically stable, results for the one-loop amplitudes needed for computing W; Z + 3 jet cross sections at the LHC to next-to-leading order in the QCD coupling. We implemented these processes in BlackHat, an automated program based on on-shell methods. These methods scale very well with increasing numbers of external partons, and are applicable to a wide variety of problems of phenomenological interest at the LHC.
Ma, Guo -Liang; Bzdak, Adam
2014-11-04
In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
Alwall, J.; Hoche, S.; Krauss, F.; Lavesson, N.; Lonnblad, L.; Maltoni, F.; Mangano, M.L.; Moretti, M.; Papadopoulos, C.G.; Piccinini, F.; Schumann, S.; Treccani, M.; Winter, J.; Worek, M.; /SLAC /Durham U., IPPP /Lund U. /Louvain U. /CERN /Ferrara U. /INFN, Ferrara /Athens U. /INFN, Pavia /Dresden, Tech. U. /Karlsruhe U., TP /Silesia U.
2007-06-27
We compare different procedures for combining fixed-order tree-level matrix-element generators with parton showers. We use the case of W-production at the Tevatron and the LHC to compare different implementations of the so-called CKKW and MLM schemes using different matrix-element generators and different parton cascades. We find that although similar results are obtained in all cases, there are important differences.
NASA Astrophysics Data System (ADS)
Matsson, Ingvar; Grapengiesser, Björn; Andersson, Björn
2006-12-01
An important issue in the operations of nuclear power plants is the independent validation of core physics codes like e.g. Westinghouse PHOENIX-4/POLCA-7. Such codes are used to predict the thermal power distribution down to single node level in the core. In this paper, a dedicated measurement system (LOKET) is described and experimental results are discussed. The system is based on a submergible housing, containing a high-resolution germanium detector, allowing for measurements in-pool. The system can be transported to virtually any nuclear power plant's fuel storage pool for measurements in-pool during outage. The methodology utilises gamma radiation specific for 140La, whose decay is governed by the parent 140Ba, reflecting a weighted average power distribution, representative for the last weeks of operation of the core. Good agreements between measured power distribution and core physics calculations (Ba distribution) have been obtained during a series of experiments at Leibstadt NPP in Switzerland and Cofrentes NPP in Spain (BWRs) for both fuel assemblies and single fuel rods. The system has proven as a very useful tool for the experimental validation of core calculations also for the most complex fuel designs and challenging core configurations. Experimental errors (on the 1- σ level), has been demonstrated below ±2% on nodal level for assembly measurements.
NASA Astrophysics Data System (ADS)
Calleya, N. L.; Souza, S. R.; Carlson, B. V.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.; Winkelbauer, J. R.
2014-11-01
The fragmentation of thermalized sources is studied using a version of the Statistical Multifragmentation Model which employs state densities that take the pairing gap in the nuclear levels into account. Attention is focused on the properties of the charge distributions observed in the breakup of the source. Since the microcanonical version of the model used in this study provides the primary fragment excitation energy distribution, one may correlate the reduction of the odd-even staggering in the charge distribution with the increasing occupation of high-energy states. Thus, in the framework of this model, such staggering tends to disappear as a function of the total excitation energy of the source, although the energy per particle may be small for large systems. We also find that, although the deexcitation of the primary fragments should, in principle, blur these odd-even effects as the fragments follow their decay chains, the consistent treatment of pairing may significantly enhance these staggering effects on the final yields. In the framework of this model, we find that odd-even effects in the charge distributions should be observed in the fragmentation of relatively light systems at very low excitation energies. Our results also suggest that the odd-even staggering may provide useful information on the nuclear state density.
Balmain, A; Minty, A J; Birnie, G D
1980-01-01
Hybridisation of cDNA probes for abundant and rare polysomal polyadenylated RNAs with polyadenylated and non-polyadenylated nuclear RNA from Friend cells indicated that the abundant polysomal polyadenylated RNA sequences were present at a higher concentration in the nucleus than rare polysomal sequences, but at a reduced range of concentrations. The ratio of the concentrations of abundant and rare sequences was about 3 in non-polyadenylated nuclear RNA, 9 in polyadenylated nuclear RNA and 13 in polysomal polyadenylated RNA. This suggests that polyadenylation may play a role in the quantitative selection of sequences for transport to the cytoplasm. Polyadenylation cannot be the only signal for transport, since a highly complex population of nucleus-confined polyadenylated molecules exists, each of which is present on average at less than one copy per cell. PMID:7433127
ERIC Educational Resources Information Center
Bowers, Wayne A.
This monograph was written for the Conference of the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for students who have had an introductory college physics course. It seeks to provide an introduction to the idea of distributions in general, and to some aspects of the subject in…
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part of the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.
Regnier, D.; Dubray, N.; Schunck, N.; ...
2016-05-13
Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.
Sycheva, A M; Kel, A; Nikolaev, E N; Moshkovskii, S A
2014-06-01
There are two physical processes that influence the spatial distribution of transcription factor molecules entering the nucleus of a eukaryotic cell, the binding to genomic DNA and the diffusion throughout the nuclear volume. Comparison of the DNA-protein association rate constant and the protein diffusion constant may determine which one is the limiting factor. If the process is diffusion-limited, transcription factor molecules are captured by DNA before their even distribution in the nuclear volume. Otherwise, if the reaction rate is limiting, these molecules diffuse evenly and then find their binding sites. Using well-studied human NF-κB dimer as an example, we calculated its diffusion constant using the Debye-Smoluchowski equation. The value of diffusion constant was about 10(-15) cm(3)/s, and it was comparable to the NF-κB association rate constant for DNA binding known from previous studies. Thus, both diffusion and DNA binding play an equally important role in NF-κB spatial distribution. The importance of genome 3D-structure in gene expression regulation and possible dependence of gene expression on the local concentration of open chromatin can be hypothesized from our theoretical estimate.
Sasaki, Keisuke; Hayashi, Masayuki; Narita, Takumi; Motoyama, Michiyo; Oe, Mika; Ojima, Koichi; Nakajima, Ikuyo; Muroya, Susumu; Chikuni, Koichi; Aikawa, Katsuhiro; Ide, Yasuyuki; Nakanishi, Naoto; Suzuki, Nobuaki; Shioya, Shigeru; Takenaka, Akio
2012-01-01
This study examined the accumulation and tissue distribution of radioactive cesium nuclides in Japanese Black beef heifers raised on roughage contaminated with radioactive fallout due to the accident at the Fukushima Daiichi Nuclear Power Station on March 2011. Radiocesium feeding increased both (134)Cs and (137)Cs levels in all tissues tested. The kidney had the highest level and subcutaneous adipose had the lowest of radioactive cesium in the tissues. Different radioactive cesium levels were not found among parts of the muscles. These results indicate that radiocesium accumulated highly in the kidney and homogenously in the skeletal muscles in the heifers.
Absolute nuclear material assay
Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
NASA Astrophysics Data System (ADS)
Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S.; Aryal, M. M.; Cho, Hwa-Suck; Scheicher, R. H.; Chow, Lee; Jeong, Junho; Das, T. P.
2006-03-01
The electron structures of Selenium chains and rings with Te impurities in hexagonal and monoclinic structures respectively and Se impurities in Te chains in hexagonal lattice have been studied using Hartree-Fock cluster model including many-body effects, including lattice relaxation effects. The calculated electronic wave-functions are utilized to obtain ^77Se and ^125Te nuclear quadrupole coupling constants e^2qQ and asymmetry parameters η and compared with available experimental data from Mossbauer and perturbed angular correlation measurements. From our results, the expected nature of nuclear quadrupole interactions associated with Sb impurities will be discussed. *Supported by NSF US-Nepal Program and UGC Nepal **Also at UCF, Orlando
Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S.
2011-05-01
The statistical methodology of population balance (PB) has been applied in order to predict the effects of cross-linking and chain-scissioning induced by ionizing radiation on the distribution of molecular weight between cross-links (MWBC) of a siloxane-based elastomer. Effective molecular weight distributions were extracted from the quantification of residual dipolar couplings via multiple quantum nuclear magnetic resonance (MQ-NMR) measurements and are taken to reflect actual MWBC distributions. The PB methodology is then applied to the unirradiated MWBC distribution and considers both chain-scissioning and the possibility of the formation of three types of cross-links: random recombination of scissioned-chain ends (end-linking), random covalent bonds of free radicals on scissioned-chain ends (Y-cross-linking), and the formation of random cross-links from free radicals on side groups (H-cross-linking). The qualitative agreement between the statistical modeling approach and the NMR data confirms that it is possible to predict trends for the evolution of the distribution of MWBC of polymers under irradiation. The approach described herein can also discern heterogeneities in radiation effects in different structural motifs in the polymer network.
Amirov, R. Kh. Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.
2015-10-15
Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.
Fragmentation functions in nuclear media
NASA Astrophysics Data System (ADS)
Sassot, Rodolfo; Stratmann, Marco; Zurita, Pia
2010-03-01
We perform a detailed phenomenological analysis of how well hadronization in nuclear environments can be described in terms of effective fragmentation functions. The medium modified fragmentation functions are assumed to factorize from the partonic scattering cross sections and evolve in the hard scale in the same way as the standard or vacuum fragmentation functions. Based on precise data on semi-inclusive deep-inelastic scattering off nuclei and hadron production in deuteron-gold collisions, we extract sets of effective fragmentation functions for pions and kaons at next-to-leading order accuracy. The obtained sets provide a rather accurate description of the kinematical dependence of the analyzed cross sections and are found to differ significantly from standard fragmentation functions both in shape and magnitude. Our results support the notion of factorization and universality in the studied nuclear environments, at least in an effective way and within the precision of the available data.
NASA Astrophysics Data System (ADS)
Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.
2016-07-01
Associated production of bottomonia and open charm hadrons in pp collisions at √{s}=7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb-1 accumulated with the LHCb detector. The observation of five combinations, Y(1S)D0, Y(2S)D0, Y(1S)D+, Y(2S)D+ and Y(1S)D s + , is reported. Production crosssections are measured for Y(1S)D0 and Y(1S)D+ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. [Figure not available: see fulltext.
Watabe, Teruhisa; Oikawa, Shinji; Isoyama, Naohiko; Suzuki, Chiyoshi; Misonoo, Jun; Morizono, Shigemitsu
2013-10-01
The historic spatiotemporal distribution of 137Cs in the seawaters and sea-floor sediments adjacent to nuclear power plants in Japan are summarized, using data obtained over a period of time more than 20 years prior to the disaster at the Fukushima Daiichi Nuclear Power Plant in 2011. Relatively uniform distributions of 137Cs were observed both in the surface seawaters (1 m in depth) and in deeper seawaters (10 to 30 m above the seabed and ranging from tens to hundreds of meters in depth) independent of the geographical position, although lower concentrations were observed in significantly deeper bottom seawaters. Conversely, there were wide variations in 137Cs levels between sediments, such that higher 137Cs concentrations were observed in the deeper sampling locations. A mathematical model describing the successive transfer of 137Cs from surface waters through deeper waters to sediments suggested that the transfer rate of 137Cs from deep water to the sediments, and the loss rate from bottom sediments, were both greater than the transfer rate from surface water to deeper water. It was found that the calculated regression lines for 137Cs depletion rates over time for surface waters, deeper waters, and sediments were approximately parallel when plotted on a semi-logarithmic coordinate system, regardless of the sampling location. A radionuclide depletion half-life was calculated to be 4 months to 16 years with the geometric mean of 2.22 y for the sediments in the Fukushima region, suggesting that nuclear contamination will be remediated over time through sediment redistribution processes such as remobilization, bioturbation, and migration due to sea currents.
Sullivan T.
2014-06-09
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.
Sullivan, T.
2014-09-24
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.
Peemoeller, H; Pintar, M M
1979-01-01
The proton free-induction decays, spin-spin relaxation times, local fields in the rotating frame, and spin-lattice relaxation times in the laboratory and rotating frames, in natural and fully deuterated mouse muscle, are reported. Measurements were taken above and below freezing temperature and at two time windows on the free-induction decay. A comparative analysis show that the magnetization fractions deduced from the different experiments are in good agreement. The main conclusion is that the resolution of the (heterogeneous) muscle nuclear magnetic resonance (NMR) response is improved by the multiwindow analysis. PMID:262554
Anomalous coupling, top-mass and parton-shower effects in W + W - production
NASA Astrophysics Data System (ADS)
Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.
2016-05-01
We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng
2016-02-03
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
QCD CORRECTIONS TO DILEPTON PRODUCTION NEAR PARTONIC THRESHOLD IN PP SCATTERING.
SHIMIZU, H.; STERMAN, G.; VOGELSANG, W.; YOKOYA, H.
2005-10-02
We present a recent study of the QCD corrections to dilepton production near partonic threshold in transversely polarized {bar p}p scattering, We analyze the role of the higher-order perturbative QCD corrections in terms of the available fixed-order contributions as well as of all-order soft-gluon resummations for the kinematical regime of proposed experiments at GSI-FAIR. We find that perturbative corrections are large for both unpolarized and polarized cross sections, but that the spin asymmetries are stable. The role of the far infrared region of the momentum integral in the resummed exponent and the effect of the NNLL resummation are briefly discussed.
Double parton interactions as a background to associated HW production at the Tevatron
Bandurin, Dmitry; Golovanov, Georgy; Skachkov, Nikolai
2010-11-01
In this paper we study events with W+jets final state, produced in double parton (DP) interactions, as a background to the associated Higgs boson (H) and W production, with H {yields} b{bar b} decay, at the Tevatron. We have found that the event yield from the DP background can be quite sizable, what necessitates a choice of selection criteria to separate the HW and DP production processes. We suggest a set of variables sensitive to the kinematics of DP and HW events. We show that these variables, being used as an input to the artificial neural network, allow one to significantly improve a sensitivity to the Higgs boson production.
Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions
Brodsky, Stanley J.; /SLAC
2009-04-10
I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light-front wavefunctions of
NASA Astrophysics Data System (ADS)
Wotawa, Gerhard; Becker, Andreas; Kalinowski, Martin; Saey, Paul; Tuma, Matthias; Zähringer, Matthias
2010-05-01
Monitoring of radioactive noble gases, in particular xenon isotopes, is a crucial element of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The capability of the noble gas network, which is currently under construction, to detect signals from a nuclear explosion critically depends on the background created by other sources. Therefore, the global distribution of these isotopes based on emissions and transport patterns needs to be understood. A significant xenon background exists in the reactor regions of North America, Europe and Asia. An emission inventory of the four relevant xenon isotopes has recently been created, which specifies source terms for each power plant. As the major emitters of xenon isotopes worldwide, a few medical radioisotope production facilities have been recently identified, in particular the facilities in Chalk River (Canada), Fleurus (Belgium), Pelindaba (South Africa) and Petten (Netherlands). Emissions from these sites are expected to exceed those of the other sources by orders of magnitude. In this study, emphasis is put on 133Xe, which is the most prevalent xenon isotope. First, based on the emissions known, the resulting 133Xe concentration levels at all noble gas stations of the final CTBT verification network were calculated and found to be consistent with observations. Second, it turned out that emissions from the radioisotope facilities can explain a number of observed peaks, meaning that atmospheric transport modelling is an important tool for the categorization of measurements. Third, it became evident that Nuclear Power Plant emissions are more difficult to treat in the models, since their temporal variation is high and not generally reported. Fourth, there are indications that the assumed annual emissions may be underestimated by factors of two to ten, while the general emission patterns seem to be well understood. Finally, it became evident that 133Xe sources mainly influence the sensitivity of the
Novotný, Ivan; Podolská, Kateřina; Blažíková, Michaela; Valášek, Leoš Shivaya; Svoboda, Petr; Staněk, David
2012-01-01
Processing bodies (P-bodies) are dynamic cytoplasmic structures involved in mRNA degradation, but the mechanism that governs their formation is poorly understood. In this paper, we address a role of Like-Sm (LSm) proteins in formation of P-bodies and provide evidence that depletion of nuclear LSm8 increases the number of P-bodies, while LSm8 overexpression leads to P-body loss. We show that LSm8 knockdown causes relocalization of LSm4 and LSm6 proteins to the cytoplasm and suggest that LSm8 controls nuclear accumulation of all LSm2–7 proteins. We propose a model in which redistribution of LSm2–7 to the cytoplasm creates new binding sites for other P-body components and nucleates new, microscopically visible structures. The model is supported by prolonged residence of two P-body proteins, DDX6 and Ago2, in P-bodies after LSm8 depletion, which indicates stronger interactions between these proteins and P-bodies. Finally, an increased number of P-bodies has negligible effects on microRNA-mediated translation repression and nonsense mediated decay, further supporting the view that the function of proteins localized in P-bodies is independent of visible P-bodies. PMID:22875987
NASA Astrophysics Data System (ADS)
Izumi, F.; Momma, K.
2011-03-01
The analysis of observed structure factors estimated after Rietveld analysis by the maximum-entropy method (MEM) gives electron or nuclear densities in the unit cell. The resultant densities are, more or less, biased toward a structural model in the Rietveld analysis. To overcome such a problem, we devised a sophisticated technique named MEM-based pattern fitting (MPF). For this purpose, a pattern-fitting system, RIETAN-FP, and a MEM analysis programs, PRIMA or its successor called Dysnomia, were virtually integrated into a structure-refinement system, whereby the pattern calculated from structure factors obtained by MEM is fit to the whole observed pattern. The resulting observed structure factors are analyzed again by MEM. In this way, whole-pattern fitting and MEM analysis are alternately repeated until R factors in the former no longer decrease. MPF virtually represents the crystal structure by electron or nuclear densities. MPF is, therefore, very effective in visualizing positional, occupational, and orientational disorder, chemical bonding, and anharmonic thermal motion. New programs, MPF_multi and VESTA 3, used in MPF are briefly introduced, and two representative applications of MPF to inorganic materials containing highly disordered chemical species are demonstrated.
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Wells, W. C.
1980-01-01
A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.
PARTON BUBBLE MODEL FOR TWO PARTICLE ANGULAR CORRELATIONS AT RHIC/LHC.
LINDENBAUM S.J.; LONGACRE, R.S.
2006-06-27
In an earlier paper we developed a bubble model, based on a view we had shared with van Hove for over two decades. Namely, that if a quark-gluon plasma is produced in a high energy heavy ion collider, then its hadronization products would likely be emitted from small bubbles localized in phase space containing plasma. In this paper we refined the model to become a parton bubble model in which each localized bubble contains initially 3-4 partons which are almost entirely gluons forming a gluon hot spot. We greatly expanded the transverse momentum interval investigated, and thus are able to treat recombination effects within each bubble. We again utilize two particle correlations as a sensitive method for detecting the average bubble substructure. In this manuscript we make many predictions for angular correlations detectable at RHIC and which will be later modified to LHC conditions. Some early available low precision correlation analyses is qualitatively explained. However a critical consistency test of the model can be made with high precision data expected in the near future.
Hard scattering of partons as a probe of collisions at RHIC using the STAR detector system
Christie, W.B.
1995-07-15
Presented here is the current state of the author`s investigations into the use of hard probes to study pp, pA, and AA collisions at the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven National Laboratory. The overall goal of the RHIC program is the discovery and study of the Quark-Gluon Plasma (QGP), which is predicted to be formed at the high energy densities reached at RHIC in high energy AA collisions. The term {open_quotes}Hard probes{close_quotes} as used in this document includes those particles whose origin is the result of a direct hard parton scatter (i.e qq, qg, or gg). The final states of these hard parton scatters which the author proposes to study include dijets, gamma-jet coincidences, and inclusive high P{sub t} particle spectra. A brief discussion of the physics objectives is given in section 1. This is followed by an introduction to the STAR detector system in section 2, with particular details given for the proposed STAR Electromagnetic Calorimeter (EMC). The present simulation studies and results are given in section 3. The author concludes with a summary and a discussion of future plans in section 4.
2012-06-01
transport imaging using the electron beam from the SEM and an external CCD array camera . .........................................15 Figure 5. System...schematic for transport imaging using the electron beam from the SEM and an external CCD array camera ...Intensity, as measured by counts recorded on the CCD array camera , and (b) Normalized scale, with each distribution normalized to its own maximum
JPRS Report Nuclear Developments
2007-11-02
release; Distribution Unlimited | -—fb 40 Nuclear Developments JPRS-TND-88-016 CONTENTS 2 SEPTEMBER 1988 CHINA Nuclear Power Chief Seeks...Foreign Cooperation [Yuan Zhou; CHINA DAILY (BUSINESS WEEKLY) 1 Aug 88] 1 Nuclear Fusion Study Reaches Advanced Level [Xiao Longlian; Beijing...Government ’Welcomes’ Group [Beijing XINHUA 12 Aug 88] 4 No Decision on Disposal of Daya Nuclear Waste [Andy Ho; Hong Kong SOUTH CHINA MORNING POST
Vlahov, Giovanna
2006-01-01
Linear models were selected from a large data set acquired for Italian olive oil samples by quantitative 13C nuclear magnetic resonance (NMR) spectroscopy with distortionless enhancement by polarization transfer (DEPT). The models were used to determine the composition of the 2 fatty acid pools esterifying the 1,3- and 2-positions of triacylglycerols. The linear models selected proved that the 1,3- and 2-distribution of saturated, oleate, and linoleate chains in olive oil triacylglycerols deviated from the random distribution pattern to an extent that depended on the concentration of the fatty acid in the whole triacylglycerol. To calculate the fatty acid composition of the 1,3- and 2-positions of olive oil triacylglycerols, the equations of the selected linear models were applied to the fatty acid percentages determined by gas chromatography. These data were compared with the values predicted by the computer method (used to determine the theoretical amounts of triacylglycerols), which is based on the 1,3-random-2-random theory of the fatty acid distribution in triacylglycerols. The biggest differences were found in the linoleate chain, which is the chain that deviated the most from a random distribution pattern. The results confirmed that the 1,3-random-2-random distribution theory provides an approximate method for determining the structure of triacylglycerols; however, the linear models calculated by the direct method that applies 13C NMR spectroscopy represent a more precise measurement of the composition of the 2 fatty acid pools esterifying the 1,3- and 2-positions of triacylglycerols.
NASA Astrophysics Data System (ADS)
Batyunya, B. V.; Boguslavsky, I. V.; Gramenitsky, I. M.; Lednický, R.; Levonian, S. V.; Tikhonova, L. A.; Valkárová, A.; Vrba, V.; Zlatanov, Z.; Boos, E. G.; Samoilov, V. V.; Takibaev, Zh. S.; Temiraliev, T.; Lichard, P.; Mašejová, A.; Dumbrajs, S.; Ervanne, J.; Hannula, E.; Villanen, P.; Dementiev, R. K.; Korzhavina, I. A.; Leikin, E. M.; Rud, V. I.; Herynek, I.; Reimer, P.; Řídký, J.; Sedlák, J.; Šimák, V.; Suk, M.; Khudzadze, A. M.; Kuratashvili, G. O.; Topuriya, T. P.; Tzintzadze, V. D.
1980-03-01
We compare the inclusive characteristics ofbar pp interactions at 22.4 GeV/ c with quark-parton model predictions in terms of collective variables. The model qualitatively agrees with the data in contradiction to the simple cylindrical phase space and randomized charge model. The ways are proposed of a further development of the quark-parton model.
Ohashi, Shinta; Okada, Naoki; Tanaka, Atsushi; Nakai, Wataru; Takano, Shigeyoshi
2014-08-01
The radial and vertical distributions of radiocesium in tree stems were investigated to understand radiocesium transfer to trees at an early stage of massive contamination from the Fukushima nuclear disaster. A conifer species (Japanese red pine) and a broad-leaved species (Japanese konara oak) were selected to determine whether the radiocesium contamination pattern differs between species. Stem disks were collected at several heights and separated into outer bark, inner bark, and wood. The radiocesium concentration was the highest in the outer bark, followed by that in the inner bark and wood. The vertical distribution of the radiocesium concentration at each stem part differed between the species. The difference between species in radiocesium concentration of the outer bark could be explained by presence or absence of leaves at the time of the disaster. However, the reasons for the differences between species in the radiocesium concentration of the inner bark and wood are unclear. The radial distribution in the wood of the studied species showed a common pattern across stem disk heights and species. However, the radiocesium concentration ratio between sapwood and inner bark was significantly different between species. Although the radial contamination pattern in the wood was similar in the studied species during the early stage of contamination, the radiocesium transport pathway and allocation would be different between the species, and the contamination pattern will likely be different between the species at later stages. Continued investigations are important for understanding the radiocesium cycle and the accumulation of radiocesium in the tree stems of each species.
Asaturyan, R.; Ent, R.; Mkrtchyan, H.; ...
2012-01-01
A large set of cross sections for semi-inclusive electroproduction of charged pions (π±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, Pt2 < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx or W',more » is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and Pt2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π+ and π-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less
NASA Astrophysics Data System (ADS)
Torii, T.; Nishizawa, Y.
2015-12-01
Many radioactive substances were released by the Fukushima Daiichi nuclear power plant accident occurred on March 11, 2011 in the atmosphere. A lot of short half-life nuclides which are 131I, 132Te (132I) and 133I, etc., in addition to longer half-lived nuclides such as 134Cs and 137Cs. The estimated release amount of these nuclides from the reactor 1st to 3rd unit is reported, but it's found to be quite different in the short half-lived nuclides by the reactor units. Because the radioactivity ratio of 134Cs and 137Cs was slight different between the reactor units, it can be considered that the valuable source is obtained by the measurement of 134Cs/137Cs ratio in the environment around the Fukushima Daiichi nuclear power station at the present stage when the nuclides with short half-lives had already decayed. We have measured high-resolution gamma-ray spectrum using an unmanned helicopter equipped with LaBr3(Ce) detector in a 3-km range from the power station which was near to the release source of the radioactive cesium. Because the LaBr3(Ce) detector has high resolution of gamma rays, the discrimination of many nuclides is possible. In addition, there is extremely much number of the data provided by the distribution measurement with the unmanned helicopter. Because a new map was illustrated by the analysis of the 134Cs/137Cs ratio, we report the outline.
Hu, Quanjun; Peng, Huichao; Bi, Hao; Lu, Zhiqiang; Wan, Dongshi; Wang, Qian; Mao, Kangshan
2016-01-01
Interspecific hybridization and introgression can lead to partial genetic homogenization at certain neutral loci between morphologically distinct species and may obscure the species delimitation using nuclear genes. In this study, we investigated this phenomenon through population genetic survey of two alpine plants (Gentiana siphonantha and G. straminea) in the Qinghai-Tibet Plateau, where the distributions of two species are partly overlapped. We identified two clusters of chloroplast DNA haplotypes which correspond to the two species, and three clusters of ITS ribotypes. In addition to clusters specific to each species, the third ITS cluster, which was most likely derived from hybridization between the other two clusters and subsequent recombination and concerted evolution, was widely shared by two species in their adjacent areas. In contrast to the morphological distinctiveness of the two species, interspecific gene flow possibly led to genetic homogenization at their ITS loci. The new ITS lineage recovered for species in adjacent areas is distinctly different from original lineages found in allopatric areas. These findings may have general implications for our understanding of cryptic changes at some genetic loci caused by interspecific gene flow in the history, and they indicate that species delimitation should be based on a combination of both nuclear and chloroplast DNA sequence variations. PMID:27687878
Marcuzzi, A; Van Ness, B; Rouse, T; Lafrenz, D
1989-01-01
Polyclonal activation of murine B cells with bacterial lipopolysaccharide (LPS) and dextran sulfate (DxS) results in cell proliferation as well as increased immunoglobulin gene transcription and antibody secretion. When added to B cell cultures during mitogen activation, anti-mu antibody suppresses the rate of proliferation and immunoglobulin gene expression. Using this model system we show that co-cultures of B cells with LPS/DxS and anti-mu resulted in a decrease of both mu and kappa chain mRNA. Suppression did not prevent B cell entry into cycle nor a significant alteration in the distribution of cells in phases of cell cycle, although it did prolong the cycle transit time in a dose dependent fashion as determined by bromodeoxyuridine pulse labelling. Analysis of B cell specific nuclear binding factors, which previously have been shown to be important in regulating immunoglobulin gene transcription were examined. Results show that the kappa-specific enhancer binding activity of NF-kappa B was induced in activated as well as suppressed cultures. The lymphoid specific factor NF-A2, which recognizes the octamer sequence motif in the promoters of immunoglobulin genes, was induced by the polyclonal activation but was selectively lost in extracts from suppressed cells. Thus, specific regulation of the nuclear factor which plays a critical role in both heavy and light chain immunoglobulin gene expression may contribute to the transcriptional suppression observed in anti-mu treated B cells. Images PMID:2481271
Tanaka, Kazuya; Iwatani, Hokuto; Sakaguchi, Aya; Fan, Qiaohui; Takahashi, Yoshio
2015-01-01
We investigated the particle size distribution of radiocesium in riverbed sediments after the Fukushima Daiichi Nuclear Power Plant accident. Riverbed sediments were collected in the Abukuma River system in Fukushima and Miyagi Prefectures. The collected sediments were separated into 11 fractions, ranging from granular size (>2000 μm) to clay size (<2 μm) fractions. Cesium-137 concentrations were higher in the smaller particle size fractions, possibly reflecting specific surface areas and the mineralogy, in particular the clay mineral content. A gap in (137)Cs concentration was observed between the silt size and sand size fractions of riverbed sediments at downstream sites, whereas riverbed sediments at an upstream site did not show such a concentration gap. It is likely that selective transport of small particles in suspended state from upstream areas resulted in an accumulation of radiocesium in downstream areas.
Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahn, S A; Ahn, S U; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, W; Carena, F; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, I; Das, D; Das, K; Das, S; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, M; Gheata, A; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Harton, A; Hasegan, D; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, S A; Khan, P; Khan, K H; Khan, M M; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D J; Kim, T; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, B; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kour, R; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Lee, K S; Legrand, I; Lehnert, J; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matthews, Z L; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Navin, S; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oliveira Da Silva, A C; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymański, M; Takahashi, J; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, Y; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, Y; Wang, M; Wang, D; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, H; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhou, Y; Zhou, F; Zhou, D; Zhu, X; Zhu, J; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M
2013-02-22
The transverse momentum (p(T)) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p+Pb collisions at sqrt[s(NN)]=5.02 TeV with the ALICE detector at the LHC. The p(T) spectra measured near central rapidity in the range 0.5
nuclear modification factor R(pPb) is consistent with unity for p(T) above 2 GeV/c. This measurement indicates that the strong suppression of hadron production at high p(T) observed in Pb+Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.
Hadronization measurements in cold nuclear matter
Dupre, Raphael
2015-05-01
Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.
Hirono, Yuhei; Nonaka, Kunihiko
2016-02-01
Radiocaesium ((134)Cs and (137)Cs) release following the accident at the Fukushima Dai-ichi Nuclear Power Plant, belonging to the Tokyo Electric Power Company caused severe contamination of new tea plant (Camellia sinensis (L.)) shoots by radiocaesium in many prefectures in eastern Japan. Because tea plants are perennial crops, there is the fear that the contamination might last for a long time. The objectives of this study were to reveal time series changes in the distribution of radiocaesium in tea plants after radioactive fallout and to evaluate the effect of pruning on reduction of radiocaesium concentrations in new shoots growing next year. The experimental tea field was located in Shizuoka, Japan, approximately 400 km away from the Fukushima Dai-ichi Nuclear Power Plant in a southwest direction. Time series changes in radiocaesium concentrations in unrefined tea, a tea product primarily produced for making Japanese green tea, from May 2011 to June 2013 and distribution of radiocaesium in tea plants from May 2011 to May 2012 were monitored. The radiocaesium concentrations in unrefined tea exponentially decreased; the effective half-lives for (134)Cs and (137)Cs were 0.30 and 0.36 y during the first 2 y after the accident, respectively. With time, the highest concentrations of (137)Cs moved from the upper to the lower parts of plants. Medium pruning 2-3 months after the accident reduced the concentration of (137)Cs in new shoots harvested in the first crop season of the following year by 56% compared with unpruned tea plants; thus, pruning is an effective measure for reducing radiocaesium concentration in tea.
Takahashi, Junko; Tamura, Kenji; Suda, Tomoya; Matsumura, Ryo; Onda, Yuichi
2015-01-01
We monitored the vertical distribution of (137)Cs in soil profiles under eight different land uses for the 2 y after the Fukushima Dai-ichi Nuclear Power Plant accident, and discussed the temporal changes in the early-stage of the migration and the determinants of the initial distribution. The soil samples were collected for four surveys using a scraper plate at each study site, which consisted of three forests (mixed forest, mature cedar, and young cedar), two grasslands (pasture and meadow) and three abandoned agricultural fields (farm land, tobacco field, and paddy field). The land use patterns have a large influence on some soil properties and the migration processes of (137)Cs above ground, resulting in different distribution of (137)Cs in those soil profiles. Specifically, the secondary deposition of (137)Cs from the coniferous canopy, retention of (137)Cs by litter layer, and the homogenization of (137)Cs concentrations in surface soil by natural soil mixing such as the disturbance by cattle grazing, roots growing and the formation of needle ice were important to cause redistribution of the deposited (137)Cs. Only in the paddy field, the (137)Cs inventory in subsurface soils (5-10 cm) gradually increased and comprised 26% of the total (137)Cs in 2 y, showing the downward migration of (137)Cs to subsurface soil. In the other sites, it was considered that (137)Cs were strongly adsorbed by soil particles and rarely migrated downward as soluble form. Vertical distributions during the first survey were able to be used as the initial distributions and were well fitted to the exponential equation. The distribution parameters α (relaxation depth) and β (relaxation mass depth), calculated by the exponential equation were correlated with RIP (r = -0.806, p < 0.05), macro pore (r = 0.651, p = 0.11), and dispersible fine particle content (r = 0.856, p < 0.05). It indicated that the initial distribution would be influenced by the Cs fixation ability of
Investigating GPDs in the framework of the double distribution model
NASA Astrophysics Data System (ADS)
Nazari, F.; Mirjalili, A.
2016-06-01
In this paper, we construct the generalized parton distribution (GPD) in terms of the kinematical variables x, ξ, t, using the double distribution model. By employing these functions, we could extract some quantities which makes it possible to gain a three-dimensional insight into the nucleon structure function at the parton level. The main objective of GPDs is to combine and generalize the concepts of ordinary parton distributions and form factors. They also provide an exclusive framework to describe the nucleons in terms of quarks and gluons. Here, we first calculate, in the Double Distribution model, the GPD based on the usual parton distributions arising from the GRV and CTEQ phenomenological models. Obtaining quarks and gluons angular momenta from the GPD, we would be able to calculate the scattering observables which are related to spin asymmetries of the produced quarkonium. These quantities are represented by AN and ALS. We also calculate the Pauli and Dirac form factors in deeply virtual Compton scattering. Finally, in order to compare our results with the existing experimental data, we use the difference of the polarized cross-section for an initial longitudinal leptonic beam and unpolarized target particles (ΔσLU). In all cases, our obtained results are in good agreement with the available experimental data.
Multidimensional Analysis of Nuclear Detonations
2015-09-17
reconstructions and temperature distributions of the early time nuclear fireballs. Initial developments have resulted in the first 2-dimensional... temperature distribution of a nuclear fireball using digitized film. This temperature analysis underwent verification using the Digital Imaging and Remote... temperature profile of the nuclear fireball as a function of optical path length. A 3-dimensional reconstruction was performed using a variation of a
NASA Astrophysics Data System (ADS)
Seguin, Fredrick; Rinderknecht, H. G.; Zylstra, A.; Sio, H.; Frenje, J.; Li, C. K.; Petrasso, R.; Rosenberg, M.; Marshall, F. J.; Sangster, T. C.; McKenty, P.; Craxton, S.; Rygg, J. R.; Le Pape, S.; Smalyuk, V.; Amendt, P. A.; Wilks, S. C.; MacKinnon, A.; Hoffman, N. M.
2015-11-01
Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Spatial distributions of the D3He and DD reactions are studied with a penumbral imaging camera that utilizes a CR-39-based imaging detector to detect the protons. Up to three orthogonal cameras have been used simultaneously at OMEGA to study the 3-D structure of asymmetric implosions, and two orthogonal cameras have now been used to study an exploding-pusher implosion at the NIF. Recent data from OMEGA and from the NIF will be shown. This work was supported in part by NLUF, US DOE, and LLE.
NASA Astrophysics Data System (ADS)
Konoplev, A. V.; Golosov, V. N.; Yoschenko, V. I.; Nanba, K.; Onda, Y.; Takase, T.; Wakiyama, Y.
2016-05-01
Presented are results of the study of radiocesium vertical distribution in the soils of the irrigation pond catchments in the near field 0.25 to 8 km from the Fukushima Dai-ichi NPP, on sections of the Niida River floodplain, and in a forest ecosystem typical of the territory contaminated after the accident. It is shown that the vertical migration of radiocesium in undisturbed forest and grassland soils in the zone affected by the Fukushima accident is faster than it was in the soils of the 30-km zone of the Chernobyl NPP for a similar time interval after the accident. The effective dispersion coefficients in the Fukushima soils are several times higher than those for the Chernobyl soils. This may be associated with higher annual precipitation (by about 2.5 times) in Fukushima as compared to the Chernobyl zone. In the forest soils the radiocesium dispersion is faster as compared to grassland soils, both in the Fukushima and Chernobyl zones. The study and analysis of the vertical distribution of the Fukushima origin radiocesium in the Niida gawa floodplain soils has made it possible to identify areas of contaminated sediment accumulation on the floodplain. The average accumulation rate for sediments at the study locations on the Niida gawa floodplain varied from 0.3 to 3.3 cm/year. Taking into account the sediments accumulation leading to an increase in the radiocesium inventory in alluvial soils is key for predicting redistribution of radioactive contamination after the Fukushima accident on the river catchments, as well as for decision-making on contaminated territories remediation and clean-up. Clean-up of alluvial soils does not seem to be worthwhile because of the following accumulation of contaminated sediments originating from more contaminated areas, including the exclusion zone.
Analytical Expressions for the Hard-Scattering Production of Massive Partons
Wong, Cheuk-Yin
2016-01-01
We obtain explicit expressions for the two-particle differential cross section $E_c E_\\kappa d\\sigma (AB \\to c\\kappa X) /d\\bb c d \\bb \\kappa$ and the two-particle angular correlation function \\break $d\\sigma(AB$$ \\to$$ c\\kappa X)/d\\Delta \\phi \\, d\\Delta y$ in the hard-scattering production of massive partons in order to exhibit the ``ridge" structure on the away side in the hard-scattering process. The single-particle production cross section $d\\sigma(AB \\to cX) /dy_c c_T dc_T $ is also obtained and compared with the ALICE experimental data for charm production in $pp$ collisions at 7 TeV at LHC.
Heavy quarkonium production at collider energies: Partonic cross section and polarization
Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; Sterman, George
2015-01-27
We calculate the O(α³_{s}) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, _{pT}, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.
Heavy quarkonium production at collider energies: Partonic cross section and polarization
Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...
2015-01-27
We calculate the O(α³s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinearmore » factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less
Parton Energy Loss and Momentum Broadening at NLO in High Temperature QCD Plasmas
NASA Astrophysics Data System (ADS)
Ghiglieri, Jacopo; Teaney, Derek
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2 ↔ 2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas
NASA Astrophysics Data System (ADS)
Ghiglieri, Jacopo; Teaney, Derek
2015-10-01
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
Tsuji, Hideki; Yasutaka, Tetsuo; Kawabe, Yoshishige; Onishi, Takeo; Komai, Takeshi
2014-09-01
This study involved measurement of concentrations of dissolved and particulate radiocesium ((134)Cs and (137)Cs) in river water, and determination of the quantitative relations between the amount of deposited (137)Cs and (137)Cs concentrations in river waters after the Fukushima Daiichi nuclear power plant accident. First, the current concentrations of dissolved and particulate (134)Cs·(137)Cs were determined in a river watershed from 20 sampling locations in four contaminated rivers (Abukuma, Kuchibuto, Shakado, and Ota). Distribution characteristics of different (137)Cs forms varied with rivers. Moreover, a higher dissolved (137)Cs concentration was observed at the sampling location where the (137)Cs deposition occurred much more heavily. In contrast, particulate (137)Cs concentration along the river was quite irregular, because fluctuations in suspended solids concentrations occur easily from disturbance and heavy precipitation. A similar tendency with dissolved (137)Cs distribution was observed for the (137)Cs concentration per unit weight of suspended solids. Regression analysis between deposited (137)Cs and dissolved/particulate (137)Cs concentrations was performed for the four rivers. The results showed a strong correlation between deposited (137)Cs and dissolved (137)Cs, and a relatively weak correlation between deposited (137)Cs and particulate (137)Cs concentration for each river. However, if the particulate (137)Cs concentration was converted to (137)Cs concentration per unit weight of suspended solid, the values showed a strong correlation with deposited (137)Cs.
NASA Astrophysics Data System (ADS)
Gabbasov, R.; Polikarpov, M.; Safronov, V.; Sozontov, E.; Yurenya, A.; Panchenko, V.
2016-12-01
In this work was proposed a new radiotherapy enhancement method consisting of the administration of magnetic nanoparticles into the cells with further irradiation with a gamma-ray beam. As a result, adjusting the energy distribution of a gamma-ray beam and 57Fe abundance it is possible to achieve an extremely intensive electron emission because of a nuclear resonance. The produced conversion and Auger electrons can be used as an effective tool for DNA lesions production. We developed a Monte Carlo model for an electron and gamma emission by 57Fe nucleus using the Geant4 program package. The parameters of a resonant absorption were taken from Mössbauer spectra of magnetite nanoparticles synthesized for the administration into live cells. The space distribution of the radiation dose showed an increase in the dose of 2-2.5 times in the case of the natural abundance and more than 50 times in the case of the 66 % enrichment of the nanoparticles.
NASA Astrophysics Data System (ADS)
Frolov, A. A.; Sedov, A. A.
2016-08-01
A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.
Henry, Michael G; Cai, Lei; Liu, Xifeng; Zhang, Li; Dong, Jingyan; Chen, Liang; Wang, Zaiqin; Wang, Shanfeng
2015-03-10
This study clarifies how hydroxyapatite (HA) allocation and microgroove dimension affect mouse preosteoblastic MC3T3-E1 cell functions on microgrooved substrates of polymer nanocomposites. Using replica molding from micromachined silicon wafer templates, we fabricated photocured poly(ε-caprolactone) triacrylate (PCLTA)/HA nanocomposite substrates with parallel microgrooves (two groove widths of 5 and 15 μm and one groove depth of 5 μm). Four types of microgrooved substrates were made: "homogeneous" ones of PCLTA and PCLTA/HA with uniform distribution and two "heterogeneous" laminated microgrooved substrates with HA only in the PCLTA matrix in the ridges or bottom. These substrates were used to regulate MC3T3-E1 cell attachment, proliferation, alignment, nuclear circularity and distribution, and mineralization. MC3T3-E1 cell attachment and proliferation were much higher on the microgrooved substrates of PCLTA/HA than on those of PCLTA, in particular, on the 5 μm wide microgrooved substrate with PCLTA/HA ridges and PCLTA bottom. The shape and distribution of MC3T3-E1 cytoskeleton and nuclei were altered by the substrate topography and HA allocation. For 5 μm wide heterogeneous microgrooved substrates with HA only in the ridges, MC3T3-E1 cells exhibited better spreading perpendicular to the microgrooves but tended to extend along the microgrooves containing HA in the bottom. The widest cells and the roundest/largest cell nuclei were observed on the heterogeneous substrate with PCLTA/HA ridges, while the narrowest cells with the best elongation were found on the homogeneous PCLTA/HA substrate. The trend in MC3T3-E1 cell mineralization on the substrates was consistent with that in cell/nuclear elongation. Osteocalcin mRNA expression was significantly higher on the PCLTA/HA substrates than on the PCLTA ones and also on the microgrooved substrates of PCLTA/HA than on the flat ones, regardless of the groove width of 5 or 15 μm.
NASA Astrophysics Data System (ADS)
Saidian, Milad
There are various methods to assess the pore size distribution (PSD) of porous materials; amongst all, NMR is the only technique that can be utilized for subsurface applications. The key parameter to transform NMR time domain response to PSD size domain data is surface relaxivity. The common practice is to consider a constant surface relaxivity throughout a well, formation or rock type regardless of the variations in rock compositions; this results in inaccurate PSD estimation using NMR log data. In this thesis I established a methodology to calculate the surface relaxivity in shales considering the rock composition and texture. I present the steps to achieve this goal in three steps: (a) Understanding the challenges of NMR acquisition, analysis and interpretation in shales, (b) Measuring the porosity, PSD and surface area and providing a practice to check the reliability of these measurements in shales, (c) Developing a methodology to calculate the surface relaxivity honoring the variations paramagnetic mineral content, susceptibility, distribution and texture. Application of NMR in unconventional rocks requires adjustment of NMR data acquisition and analysis to the unique properties of these rocks such as high level of heterogeneity, complex pore structure, fine grains, and presence of nano-scale pores. Identifying these challenges improves our understanding of NMR response in shales and increases the quality of the acquired and analyzed data. Calculation of surface relaxivity, as a measure of how fluids and rock surfaces react, requires reliable measurement of different petrophysical properties of the rock such as porosity, total specific surface area, and PSD using other techniques. I studied the reliability of different techniques to measure these petrophysical properties for shales by performing a thorough comparative study of porosity and PSD for different shale formations. The result of my study showed that clay type and content, total organic carbon (TOC
HIGH ENERGY NUCLEAR INTERACTIONS AND QCD : AN INTRODUCTION.
KHARZEEV,D.E.; RAUFEISEN,J.
2002-01-07
The goal of these lectures, oriented towards the students just entering the field, is to provide an elementary introduction to QCD and the physics of nuclear interactions at high energies. We first introduce the general structure of QCD and discuss its main properties. Then we proceed to Glauber multiple scattering theory which lays the foundation for the theoretical treatment of nuclear interactions at high energies. We introduce the concept of Gribov's inelastic shadowing, crucial for the understanding of quantum formation effects. We outline the problems facing Glauber approach at high energies, and discuss how asymptotic freedom of QCD helps to resolve them, introducing the concepts of parton saturation and color glass condensate.
Roussel, Valérie; Van Wormhoudt, Alain
2017-04-01
The genetic differentiation among the populations of the European abalone Haliotis tuberculata was investigated using different markers to better understand the evolutionary history and exchanges between populations. Three markers were used: mitochondrial cytochrome oxidase I (COI), the sperm lysin nuclear gene, and eight nuclear microsatellites. These markers present different characteristics concerning mutation rate and inheritance, which provided complementary information about abalone history and gene diversity. Genetic diversity and relationships among subspecies were calculated from a sample of approximately 500 individuals, collected from 17 different locations in the north-eastern Atlantic Ocean, Macaronesia, and Mediterranean Sea. COI marker was used to explore the phylogeny of the species with a network analysis and two phylogenetic methods. The analysis revealed 18 major haplotypes grouped into two distinct clades with a pairwise sequence divergence up to 3.5 %. These clades do not correspond to subspecies but revealed many contacts along Atlantic coast during the Pleistocene interglaciations. The sperm lysin gene analysis separated two different subtaxa: one associated to Macaronesian islands, and the other to all other populations. Moreover, a small population of the northern subtaxon was isolated in the Adriatic Sea-probably before the separation of the two lineages-and evolved independently. Microsatellites were analyzed by different genetics methods, including the Bayesian clustering method and migration patterns analysis. It revealed genetically distinct microsatellite patterns among populations from Mediterranean Sea, Brittany and Normandy, Morocco, and Canary and Balearic islands. Gene flow is asymmetric among the regions; the Azores and the Canary Islands are particularly isolated and have low effective population sizes. Our results support the hypothesis that climate changes since the Pleistocene glaciations have played a major role in the
Voitsekhovitch, O.V.; Zheleznyak, M.J.; Onishi, Y.
1994-06-01
This report describes joint activities of Program 7.1.F, ``Radionuclide Transport in Water and Soil Systems,`` of the USA/Commonwealth of Independent States (CIS) Joint Coordinating Committee of Civilian Nuclear Reactor Safety to study the hydrogeochemical behavior of radionuclides released to the Pripyat and Dnieper rivers from the Chernobyl Nuclear Power Plant in Ukraine. These joint activities included rapid evaluation of radionuclide distributions in the Pripyat and Dnieper river system and field data evaluation and modeling for the 1993 summer flood to assist the Ukrainian government in their emergency response during the flood. In July-August 1993, heavy rainfall over the Pripyat River Catchment in Belarus and Ukraine caused severe flooding, significantly raising {sup 90}Sr concentrations in the river. Near the Chernobyl area, the maximum {sup 90}Sr concentration in the Pripyat River reached 20--25 PCi/L in early August; near the Pripyat River mouth, the concentration rose to 35 pCi/L. The peak {sup 90}Sr concentration in the Kiev Reservoir (a major source of drinking water for Kiev) was 12 pCi/L. Based on these measured radionuclide levels, additional modeling results and the assumption of water purification in a water treatment station, {sup 90}Sr concentrations in Kiev`s drinking water were estimated to be less than 8 pCi/L. Unlike {sup 90}Sr, {sup 137}Cs concentrations in the Pripyat River during the flood did not rise significantly to the pre-flood levels. Estimated {sup 137}Cs concentrations for the Kiev drinking water were two orders of magnitude lower than the drinking water standard of 500 pCi/L for {sup 137}Cs.
Phenomenological extraction of Transverse Momentum Dependent distributions
Prokudin, Alexei
2011-10-24
We discuss phenomenological extraction of Transverse Momentum Dependent Distributions (TMDs) from experimental data. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. TMDs reveal three-dimensional distribution of partons inside polarised nucleon. Experimentally these functions can be studied in polarised experiments using Spin Asymmetries in particular Single Spin Asymmetries (SSAs). We discuss transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon and Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon.
NASA Astrophysics Data System (ADS)
Higashi, H.; Morino, Y.; Furuichi, N.; Ohara, T.
2015-08-01
Massive amounts of anthropogenic radiocaesium 137Cs that was released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident on March 2011 are widely known to have extensively migrated to Pacific oceanic sediment off of east Japan. Several recent reports have stated that the sedimentary 137Cs is now stable with a remarkably heterogeneous distribution. The present study elucidates ocean dynamic processes causing this heterogeneous sedimentary 137Cs distribution in and around the shelf off Fukushima and adjacent prefectures. We performed a numerical simulation of oceanic 137Cs behaviour for about 10 months after the accident, using a comprehensive dynamic model involving advection-diffusion transport in seawater, adsorption and desorption to and from particulate matter, sedimentation and suspension on and from the bottom, and vertical diffusion transport in the sediment. A notable simulated result was that the sedimentary 137Cs significantly accumulated in a swath just offshore of the shelf break (along the 50-100 m isobath) as in recent observations, although the seabed in the entire simulation domain was assumed to have ideal properties such as identical bulk density, uniform porosity, and aggregation of particles with a single grain diameter. This result indicated that the heterogeneous sedimentary 137Cs distribution was not necessarily a result of the spatial distribution of 137Cs sediment adsorptivity. The present simulation suggests that the shape of the swath is mainly associated with spatiotemporal variation between bottom shear stress in the shallow shelf (< 50 m depths) and that offshore of the shelf break. In a large part of the shallow shelf, the simulation indicated that strong bottom friction suspending particulate matter from the seabed frequently occurred via a periodic spring tide about every 2 weeks and via occasional strong wind. The sedimentary 137Cs thereby could hardly stay on the surface of the seabed with the result that
Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac
2008-07-01
Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.
Perez, Manolo F; Carstens, Bryan C; Rodrigues, Gustavo L; Moraes, Evandro M
2016-02-01
The Pilosocereus aurisetus complex consists of eight cactus species with a fragmented distribution associated to xeric enclaves within the Cerrado biome in eastern South America. The phylogeny of these species is incompletely resolved, and this instability complicates evolutionary analyses. Previous analyses based on both plastid and microsatellite markers suggested that this complex contained species with inherent phylogeographic structure, which was attributed to recent diversification and recurring range shifts. However, limitations of the molecular markers used in these analyses prevented some questions from being properly addressed. In order to better understand the relationship among these species and make a preliminary assessment of the genetic structure within them, we developed anonymous nuclear loci from pyrosequencing data of 40 individuals from four species in the P. aurisetus complex. The data obtained from these loci were used to identify genetic clusters within species, and to investigate the phylogenetic relationship among these inferred clusters using a species tree methodology. Coupled with a palaeodistributional modelling, our results reveal a deep phylogenetic and climatic disjunction between two geographic lineages. Our results highlight the importance of sampling more regions from the genome to gain better insights on the evolution of species with an intricate evolutionary history. The methodology used here provides a feasible approach to develop numerous genealogical molecular markers throughout the genome for non-model species. These data provide a more robust hypothesis for the relationship among the lineages of the P. aurisetus complex.
Hutchins, D.A.; Stupakoff, I.; Hook, S.; Luoma, S.N.; Fisher, N.S.
1998-01-01
The disposal of radioactive wastes in Arctic seas has made it important to understand the processes affecting the accumulation of radionuclides in food webs in coldwater ecosystems. We examined the effects of temperature on radionuclide assimilation and retention by the bioindicator bivalve Macoma balthica using three representative nuclear waste components, 241Am, 57Co, and 137Cs. Experiments were designed to determine the kinetics of processes that control uptake from food and water, as well as kinetic constants of loss. 137Cs was not accumulated in soft tissue from water during short exposures, and was rapidly lost from shell with no thermal dependence. No effects of temperature on 57Co assimilation or retention from food were observed. The only substantial effect of polar temperatures was that on the assimilation efficiency of 241Am from food, where 10% was assimilated at 2??C and 26% at 12??C. For all three radionuclides, body distributions were correlated with source, with most radioactivity obtained from water found in the shell and food in the soft tissues. These results suggest that in general Arctic conditions had relatively small effects on the biological processes which influence the bioaccumulation of radioactive wastes, and bivalve concentration factors may not be appreciably different between polar and temperate waters.
Accessing the quark orbital angular momentum with Wigner distributions
NASA Astrophysics Data System (ADS)
Lorcé, Cédric; Pasquini, Barbara
2013-04-01
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Chatrchyan, Serguei
2014-03-05
Double parton scattering is investigated in proton-proton collisions at √s = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 fb^{–1}, collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 +/- 0.002 (stat.) +/- 0.014 (syst.). Finally, the effective cross section, σ_{eff}, characterizing the effective transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 +/- 0.8 (stat.) +/- 6.6 (syst.) mb.
Chatrchyan, Serguei
2014-03-05
Double parton scattering is investigated in proton-proton collisions at √s = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 fb–1, collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 +/- 0.002 (stat.) +/- 0.014 (syst.). Finally, the effective cross section, σeff, characterizing the effectivemore » transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 +/- 0.8 (stat.) +/- 6.6 (syst.) mb.« less
Double parton interactions in photon+3 jet events in ppbar collisions sqrt{s}=1.96 TeV
Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; /Northeastern U. /Rio de Janeiro, CBPF
2009-12-01
We have used a sample of photon+3 jets events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} to determine the fraction of events with double parton scattering (f{sub DP}) in a single ppbar collision at {radical}s = 1.96 TeV. The DP fraction and effective cross section (sigma{sub eff}), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in p{sub T}) jet transverse momentum pT{sub jet2} within the range 15 < pT{sub jet2} < 30 GeV. In this range, f{sub DP} varies between 0.23 < f{sub DP} < 0.47, while sigma{sub eff} has the average value sigma{sub effave} = 16.4 {+-} 0.3(stat) {+-} 2.3(syst) mb.
Nuclear rights - nuclear wrongs
Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.
1986-01-01
This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.
Nuclear Dependence of Proton-Induced Drell-Yan Dimuon Production at 120 GeV at Seaquest
Dannowitz, Bryan P.
2016-01-01
A measurement of the atomic mass (A) dependence of p + A → µ+µ- + X Drell-Yan dimuons produced by 120 GeV protons is presented here. The data was taken by the SeaQuest experiment at Fermilab using a proton beam extracted from its Main Injector. Over 61,000 dimuon pairs were recorded with invariant mass 4.2 < Mγ* < 10 GeV and target parton momentum fraction 0.1 ≤ x^{2} ≤ 0.5 for nuclear targets 1H, 2H, C, Fe, and W . The ratio of dimuon yields per nucleon (Y ) for heavy nuclei versus 2H, RDY = 2 2 Y (A)/Y ( H) ≈ u¯(A)(x)/u¯( H)(x), is sensitive to modifications in the anti-quark sea distributions in nuclei for the case of proton-induced Drell-Yan. The data analyzed here and in the future of SeaQuest will provide tighter constraints on various models that attempt to define the anomalous behavior of nuclear modification as seen in deep inelastic lepton scattering, a phenomenon generally known as the EMC effect.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fang, W; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Delaere, C; Delcourt, M; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beirão; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Chadeeva, M; Chistov, R; Danilov, M; Rusinov, V; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Sunar Cerci, D; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lewis, J; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Bruner, C; Kenny, R P; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Kumar, A; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms
2016-01-01
Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of [Formula: see text] is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb[Formula: see text] is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range [Formula: see text] in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about [Formula: see text] is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at [Formula: see text]. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
Parton shower uncertainties in jet substructure analyses with deep neural networks
NASA Astrophysics Data System (ADS)
Barnard, James; Dawe, Edmund Noel; Dolan, Matthew J.; Rajcic, Nina
2017-01-01
Machine learning methods incorporating deep neural networks have been the subject of recent proposals for new hadronic resonance taggers. These methods require training on a data set produced by an event generator where the true class labels are known. However, this may bias the network towards learning features associated with the approximations to QCD used in that generator which are not present in real data. We therefore investigate the effects of variations in the modeling of the parton shower on the performance of deep neural network taggers using jet images from hadronic W bosons at the LHC, including detector-related effects. By investigating network performance on samples from the Pythia, Herwig and Sherpa generators, we find differences of up to 50% in background rejection for fixed signal efficiency. We also introduce and study a method, which we dub zooming, for implementing scale invariance in neural-network-based taggers. We find that this leads to an improvement in performance across a wide range of jet transverse momenta. Our results emphasize the importance of gaining a detailed understanding of what aspects of jet physics these methods are exploiting.
Nuclear dependence of structure functions in the shadowing region of deep inelastic scattering
Berger, E.L.; Qiu, Jianwei
1988-07-27
A discussion of nuclear shadowing in deep inelastic lepton scattering is presented. We show that the parton recombination model suggests that shadowing should begin to occur at larger values of Bjorken x as A increases. This expectation as well as that of weak dependence on Q/sup 2/, and the trend of the x dependence of the shadowing phenomenon are consistent with recent data. Shadowing at small x is combined with nuclear bound state effects, responsible for nuclear dependence at larger x, to provide description of the A dependence of the structure function for the entire range of x. 21 refs., 5 figs.
Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; Baker, O. K.; Benmouna, N.; Bertoncini, C.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Breuer, H.; Christy, M. E.; Connell, S. H.; Cui, Y.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Fenker, H. C.; Frolov, V. V.; Gan, L.; Gaskell, D.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Hungerford, E.; Jiang, X.; Jones, M.; Joo, K.; Kalantarians, N.; Kelly, J. J.; Keppel, C. E.; Kubarovsky, V.; Li, Y.; Liang, Y.; Mack, D.; Malace, S. P.; Markowitz, P.; McGrath, E.; McKee, P.; Meekins, D. G.; Mkrtchyan, A.; Moziak, B.; Niculescu, G.; Niculescu, I.; Opper, A. K.; Ostapenko, T.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tang, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Wang, M.; Warren, G.; Wesselmann, F. R.; Wojtsekhowski, B.; Wood, S. A.; Xu, C.; Yuan, L.; Zheng, X.
2012-01-01
A large set of cross sections for semi-inclusive electroproduction of charged pions (π^{±}) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W^{2} > 4 GeV^{2} and range in four-momentum transfer squared 2 < Q^{2} < 4 (GeV/c)^{2}, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, P_{t}^{2} < 0.2 (GeV/c)^{2}. The invariant mass that goes undetected, M_{x} or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and P_{t}^{2} dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π^{+} and π^{-}) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.
NASA Astrophysics Data System (ADS)
Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.
2013-10-01
We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950s and early 1960s, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 × [3H]/H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ± 0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred metres had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion revealed by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean
NASA Astrophysics Data System (ADS)
Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.
2013-04-01
We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950's and early 1960's, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 · [3H]/[H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ±0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred meters had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion found by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean. We
ERIC Educational Resources Information Center
Badawi, Ramsey D.
2001-01-01
Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)
All orders results for self-crossing Wilson loops mimicking double parton scattering
Dixon, Lance J.; Esterlis, Ilya
2016-07-21
Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limitmore » to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.« less
All orders results for self-crossing Wilson loops mimicking double parton scattering
Dixon, Lance J.; Esterlis, Ilya
2016-07-21
Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.
All orders results for self-crossing Wilson loops mimicking double parton scattering
NASA Astrophysics Data System (ADS)
Dixon, Lance J.; Esterlis, Ilya
2016-07-01
Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar {N} = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.
Top-pair production and decay at NLO matched with parton showers
Campbell, John M.; Ellis, R. Keith; Nason, Paolo; ...
2015-04-21
We present a next-to-leading order (NLO) calculation of tt¯ production in hadronic collisions interfaced to shower generators according to the POWHEG method. We start from an NLO result from previous work, obtained in the zero width limit, where radiative corrections to both production and decays are included. The POWHEG interface required an extension of the POWHEG BOX framework, in order to deal with radiation from the decay of resonances. This extension is fully general (i.e. it can be applied in principle to any process considered in the zero width limit), and is here applied for the first time. In ordermore » to perform a realistic simulation, we introduce finite width effects using different approximations, that we validated by comparing with published exact NLO results. We have interfaced our POWHEG code to the PYTHIA8 shower Monte Carlo generator. At this stage, we dealt with novel issues related to the treatment of resonances, especially with regard to the initial scale for the shower that needs to be set appropriately. This procedure affects, for example, the fragmentation function of the b quark, that we have studied with particular attention. We believe that the tool presented here improves over previous generators for all aspects that have to do with top decays, and especially for the study of issues related to top mass measurements that involve B hadrons or b jets. As a result, the work presented here also constitutes a first step towards a fully consistent matching of NLO calculations involving intermediate resonances decaying into coloured particles, with parton showers.« less
Yamaguchi, Masaaki; Kitamura, Akihiro; Oda, Yoshihiro; Onishi, Yasuo
2014-09-01
Radioactive materials deposited on the land surface of Fukushima Prefecture from the Fukushima Dai-ichi Nuclear Power Plant explosion is a crucial issue for a number of reasons, including external and internal radiation exposure and impacts on agricultural environments and aquatic biota. Predicting the future distribution of radioactive materials and their fates is therefore indispensable for evaluation and comparison of the effectiveness of remediation options regarding human health and the environment. Cesium-137, the main radionuclide to be focused on, is well known to adsorb to clay-rich soils; therefore its primary transportation mechanism is in the form of soil erosion on the land surface and transport of sediment-sorbed contaminants in the water system. In this study, we applied the Soil and Cesium Transport model, which we have developed, to predict a long-term cesium distribution in the Fukushima area, based on the Universal Soil Loss Equation and simple sediment discharge formulas. The model consists of calculation schemes of soil erosion, transportation and deposition, as well as cesium transport and its future distribution. Since not all the actual data on parameters is available, a number of sensitivity analyses were conducted here to find the range of the output results due to the uncertainties of parameters. The preliminary calculation indicated that a large amount of total soil loss remained in slope, and the residual sediment was transported to rivers, deposited in rivers and lakes, or transported farther downstream to the river mouths. Most of the sediment deposited in rivers and lakes consists of sand. On the other hand, most of the silt and clay portions transported to river were transported downstream to the river mouths. The rate of sediment deposition in the Abukuma River basin was three times as high as those of the other 13 river basins. This may be due to the larger catchment area and more moderate channel slope of the Abukuma River basin
Direct Photon Production in a Nuclear Environment
NASA Astrophysics Data System (ADS)
Guo, Xiaofeng
The photon is a very good probe of short distance physics in strong interactions. It can be produced directly at short-distance or through fragmentation processes. Through one-loop order in perturbation theory of quantum chromodynamics (QCD), this thesis provides complete analytic expressions for both the inclusive and the isolated prompt photon production cross sections in hadronic final states of e^+e ^- annihilations. It is the first time that the full angular dependence of the cross sections is derived. Extraction of photon fragmentation functions from e^+e ^- annihilations is addressed. Using e ^+e^--->gamma+X as an example, this work demonstrates for the first time that conventional perturbative QCD factorization breaks down for isolated photon production in e^+e ^- annihilations in a specific region of phase space. The impact of this breakdown for computations of prompt photon production in hadron-hadron reactions is also discussed. In hadron-nucleus collisions, high energy photons can be produced through a single hard scattering as well as through multiple scattering. The contribution from the multiple scattering can be presented in terms of multi-parton correlation functions. Using information on the multi-parton correlation functions extracted from photon-nucleus experiments, for the first time, the nuclear dependence of direct photon production in hadron-nucleus collisions was predicted without any free parameter, and was tested at Fermi Lab experiment E706.
Irons, Trevor P.; Martin, Kathryn; Finn, Carol A.; Bloss, Benjamin; Horton, Robert J.
2014-01-01
Surface and laboratory Nuclear Magnetic Resonance (NMR) measurements combined with transient electromagnetic (TEM) data are powerful tools for subsurface water detection. Surface NMR (sNMR) and TEM soundings, laboratory NMR, complex resistivity, and X-Ray Diffraction (XRD) analysis were all conducted to characterise the distribution of water within Sherman Crater on Mt. Baker, WA. Clay rich rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-travelled, destructive debris flows. Detecting the presence and volume of shallow groundwater is critical for evaluating these landslide hazards. The TEM data identified a low resistivity layer (<10 ohm-m), under 60 m of glacial ice related to water saturated clays. The TEM struggles to resolve the presence or absence of a plausible thin layer of bulk liquid water on top of the clay. The sNMR measurements did not produce any observable signal, indicating the lack of substantial accumulated bulk water below the ice. Laboratory analysis on a sample from the crater wall that likely represented the clays beneath the ice confirmed that the controlling factor for the lack of sNMR signal was the fine-grained nature of the media. The laboratory measurements further indicated that small pores in clays detected by the XRD contain as much as 50% water, establishing an upper bound on the water content in the clay layer. Forward modelling of geologic scenarios revealed that bulk water layers as thin as ½ m between the ice and clay layer would have been detectable using sNMR. The instrumentation conditions which would allow for sNMR detection of the clay layer are investigated. Using current instrumentation the combined analysis of the TEM and sNMR data allow for valuable characterisation of the groundwater system in the crater. The sNMR is able to reduce the uncertainty of the TEM in regards to the presence of a bulk water layer, a valuable
Lee, Jin-Seon; Kim, Eun-Young; Iwata, Hisato; Tanabe, Shinsuke
2007-04-01
High levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are accumulated in fish-eating birds including common cormorant (Phalacrocorax carbo). Most of the biochemical and toxic effects of TCDD are mediated by a basic helix-loop-helix and a conserved region among Per, ARNT, and Sim (bHLH/PAS) proteins, aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT). To study the molecular mechanism of TCDD toxicity in common cormorant as an avian model species, characterization of the AHR/ARNT signaling pathway in this species is necessary. The present study focuses on molecular characterization of ARNT from common cormorant (ccARNT). The cDNA of the ccARNT isoform, ccARNT1 obtained by the screening of hepatic cDNA library contains a 2424-bp open reading frame that encodes 807 amino acids, exhibiting high identities (92%) with chicken ARNT. This isoform contains a unique 22 amino acid residue in 3' end of PAS A domain as is also recognized in chicken ARNT. The ccARNT2 cDNA isolated from brain tissue has a 2151-bp open reading frame. The deduced amino acid sequence of ccARNT2 protein (716 aa) shows a conservation of bHLH and PAS motif in its N-terminal region with high similarities (96% and 78%, respectively) to that of ccARNT1. Using quantitative RT-PCR methods, the tissue distribution profiles of ccARNT1 and ccARNT2 were unveiled. Both ccARNT1 and ccARNT2 mRNAs were ubiquitously expressed in all examined tissues including liver. The expression profile of ccARNT1 was comparable with that of rodent ARNT1, but ccARNT2 was not with rodent ARNT2, implying different roles of ARNT2 between the two species. There was a significant positive correlation between ARNT1 and ARNT2 mRNA expression levels in the liver of wild cormorant population, indicating that their expressions may be enforced by similar transcriptional regulation mechanism. Novel variants of ccARNT1 and ccARNT2 isoforms that were supposed to
Research in theoretical nuclear and neutrino physics. Final report
Sarcevic, Ina
2014-06-14
The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.
Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/ c
NASA Astrophysics Data System (ADS)
Adolph, C.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2013-08-01
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a 6LiD target have been measured as a function of the DIS variables x Bj , Q 2, W 2 and the final state hadron variables p T and z. The distributions are fitted with a single exponential function at low values of to determine the dependence of on x Bj , Q 2, W 2 and z. The z-dependence of is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, , as a function of x Bj and Q 2 in a leading order QCD parton model.
Nuclear excitation and precompound nuclear reactions
De, A.; Ray, S.; Ghosh, S.K.
1988-06-01
The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.
Multiple Parton Interactions in p$bar{p}$ Collisions in D0 Experiment at the Tevatron Collider
Golovanov, Georgy
2016-01-01
The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy
Baï, Siau Wei; Rouquette, Jacques; Umeda, Makoto; Faigle, Wolfgang; Loew, Damarys; Sazer, Shelley; Doye, Valérie
2004-01-01
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (RanSp)/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of RanSp/Spi1, whereas overexpression of a nonfunctional RanSp/Spi1-GFP allele was specifically toxic in the Δnup120 and Δnup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the RanSp/Spi1 pathway. PMID:15226438
Nuclear Experiments in the Chemistry Curriculum
ERIC Educational Resources Information Center
Clark, Herbert M.
1970-01-01
Describes nuclear teaching experiments and their distribution within the undergraduate curriculum. In addition, sources of information on published nuclear teaching experiments and on the supplier's of nuclear instruments, radiochemical and miscellaneous special materials are identified. Approximate costs for selected nuclear instrument systems…
Khachatryan, Vardan
2016-07-04
In this study, inclusive jet production in pPb collisions at a nucleon–nucleon (NN) center-of-mass energy of √sNN = 5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb-1 is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0 < ηCM < 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about ηCM=0 is observed in the measured kinematic range. The measurements in the pPb system are compared to referencemore » jet spectra obtained by extrapolation from previous measurements in pp collisions at √s = 7 TeV. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.« less
Khachatryan, Vardan
2016-07-04
In this study, inclusive jet production in pPb collisions at a nucleon–nucleon (NN) center-of-mass energy of √^{s}NN = 5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb^{-1} is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0 < η_{CM} < 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about ηCM=0 is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at √s = 7 TeV. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fang, W.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.
2016-07-01
Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of √{s_{_NN}} =5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb^{-1} is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0<η _{CM}< 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about η _{CM} = 0 is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at √{s}=7 TeV . In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
Phenomenological Extraction of Transverse-Momentum-Dependent Distributions
Alexei Prokudin
2011-10-01
We discuss phenomenological extraction of Transverse Momentum Dependent Distributions (TMDs) from experimental data. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. TMDs reveal three-dimensional distribution of partons inside polarised nucleon. Experimentally these functions can be studied in polarised experiments using Spin Asymmetries in particular Single Spin Asymmetries (SSAs). We discuss transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon and Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon.
NASA Astrophysics Data System (ADS)
Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi
1994-01-01
Calorimeter Geometry * Simulations with EGS4/PRESTA for Thin Si Sampling Calorimeter * SIBERIA -- Monte Carlo Code for Simulation of Hadron-Nuclei Interactions * CALOR89 Predictions for the Hanging File Test Configurations * Estimation of the Multiple Coulomb Scattering Error for Various Numbers of Radiation Lengths * Monte Carlo Generator for Nuclear Fragmentation Induced by Pion Capture * Calculation and Randomization of Hadron-Nucleus Reaction Cross Section * Developments in GEANT Physics * Status of the MC++ Event Generator Toolkit * Theoretical Overview of QCD Event Generators * Random Numbers? * Simulation of the GEM LKr Barrel Calorimeter Using CALOR89 * Recent Improvement of the EGS4 Code, Implementation of Linearly Polarized Photon Scattering * Interior-Flux Simulation in Enclosures with Electron-Emitting Walls * Some Recent Developments in Global Determinations of Parton Distributions * Summary of the Workshop on Simulating Accelerator Radiation Environments * Simulating the SDC Radiation Background and Activation * Applications of Cluster Monte Carlo Method to Lattice Spin Models * PDFLIB: A Library of All Available Parton Density Functions of the Nucleon, the Pion and the Photon and the Corresponding αs Calculations * DTUJET92: Sampling Hadron Production at Supercolliders * A New Model for Hadronic Interactions at Intermediate Energies for the FLUKA Code * Matrix Generator of Pseudo-Random Numbers * The OPAL Monte Carlo Production System * Monte Carlo Simulation of the Microstrip Gas Counter * Inner Detector Simulations in ATLAS * Simulation and Reconstruction in H1 Liquid Argon Calorimetry * Polarization Decomposition of Fluxes and Kinematics in ep Reactions * Towards Object-Oriented GEANT -- ProdiG Project * Parallel Processing of AMY Detector Simulation on Fujitsu AP1000 * Enigma: An Event Generator for Electron-Photon- or Pion-Induced Events in the ~1 GeV Region * SSCSIM: Development and Use by the Fermilab SDC Group * The GEANT-CALOR Interface
Fountain, M.S.; Blanchard, J.; Erikson, R.L.; Kurath, D.E.; Howe, D.T.; Adkins, H.; Jenks, J.
2012-07-01
Accurate particle size and density distributions for nuclear tank waste materials are essential information that helps determine the engineering requirements for a host of waste management unit operations (e.g., tank mixing, pipeline transport, and filtration). The most prevalent approach for determining particle size and density distribution is highly laborious and involves identifying individual particles using scanning electron microscope/x-ray diffraction and then acquiring the density of the materials from the technical literature. Other methods simply approximate individual particle densities by assuming chemical composition, rather than obtaining actual measurements of particle density. To overcome these limitations, a Particle Shadow-graph Velocimetry and Size (PSVS) system has been designed to simultaneously obtain particle size and density distributions for a broad range of Hanford tank waste materials existing as both individual particles and agglomerates. The PSVS system uses optical hardware, a temperature-controlled settling column, and particle introduction chamber to accurately and reproducibly obtain images of settling particles. Image analysis software provides a highly accurate determination of both particle terminal velocity and equivalent spherical particle diameter. The particle density is then calculated from Newton's terminal settling theory. The PSVS system was designed to accurately image particle/agglomerate sizes between 10 and 1000 μm and particle/agglomerate densities ranging from 1.4 to 11.5 g/cm{sup 3}, where the maximum terminal velocity does not exceed 10 cm/s. Preliminary testing was completed with standard materials and results were in good agreement with terminal settling theory. Recent results of this method development are presented, as well as experimental design. The primary goal of these PSVS system tests was to obtain accurate and reproducible particle size and velocity measurements to estimate particle densities within
Nuclear Wallet Cards from the National Nuclear Data Center (NNDC)
Tuli, Jagdish K.
Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are: spin and parity assignments, nuclear mass excesses, half-life, isotopic abundances, and decay modes. Appendices contain properties of elements, fundamental constants and other useful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated. The Nuclear Wallet Cards by Dr. Jagdish K. Tuli, presently in its 8th edition, is distributed in print as well as in PDA-adaptable Palm Pilot format; the data table as an ASCII file is available upon request. [Taken from http://www.nndc.bnl.gov/wallet/
Maures, Travis J; Su, Hsiao-Wen; Argetsinger, Lawrence S; Grinstein, Sergio; Carter-Su, Christin
2011-05-01
An intriguing question in cell biology is what targets proteins to, and regulates their translocation between, specific cellular locations. Here we report that the polybasic nuclear localization sequence (NLS) required for nuclear entry of the adapter protein and candidate human obesity gene product SH2B1β, also localizes SH2B1β to the plasma membrane (PM), most probably via electrostatic interactions. Binding of SH2B1β to the PM also requires its dimerization domain. Phosphorylation of serine residues near this polybasic region, potentially by protein kinase C, releases SH2B1β from the PM and enhances nuclear entry. Release of SH2B1β from the PM and/or nuclear entry appear to be required for SH2B1β enhancement of nerve growth factor (NGF)-induced expression of urokinase plasminogen activator receptor gene and neurite outgrowth of PC12 cells. Taken together, our results provide strong evidence that the polybasic NLS region of SH2B1 serves the dual function of localizing SH2B1 to both the nucleus and the PM, the latter most probably through electrostatic interactions that are enhanced by SH2B1β dimerization. Cycling between the different cellular compartments is a consequence of the phosphorylation and dephosphorylation of serine residues near the NLS and is important for physiological effects of SH2B1, including NGF-induced gene expression and neurite outgrowth.
Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.
2016-05-13
Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.
Biswas, Chhanda; Shah, Nidhi; Muthu, Manasa; La, Ping; Fernando, Amal P.; Sengupta, Shaon; Yang, Guang; Dennery, Phyllis A.
2014-01-01
With oxidative injury as well as in some solid tumors and myeloid leukemia cells, heme oxygenase-1 (HO-1), the anti-oxidant, anti-inflammatory, and anti-apoptotic microsomal stress protein, migrates to the nucleus in a truncated and enzymatically inactive form. However, the function of HO-1 in the nucleus is not completely clear. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor and master regulator of numerous antioxidants and anti-apoptotic proteins, including HO-1, also accumulates in the nucleus with oxidative injury and in various types of cancer. Here we demonstrate that in oxidative stress, nuclear HO-1 interacts with Nrf2 and stabilizes it from glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation coupled with ubiquitin-proteasomal degradation, thereby prolonging its accumulation in the nucleus. This regulation of Nrf2 post-induction by nuclear HO-1 is important for the preferential transcription of phase II detoxification enzymes such as NQO1 as well as glucose-6-phosphate dehydrogenase (G6PDH), a regulator of the pentose phosphate pathway. Using Nrf2 knock-out cells, we further demonstrate that nuclear HO-1-associated cytoprotection against oxidative stress depends on an HO-1/Nrf2 interaction. Although it is well known that Nrf2 induces HO-1 leading to mitigation of oxidant stress, we propose a novel mechanism by which HO-1, by modulating the activation of Nrf2, sets an adaptive reprogramming that enhances antioxidant defenses. PMID:25107906
Chatrchyan, Serguei
2014-07-23
Dijet production has been measured in pPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. A data sample corresponding to an integrated luminosity of 35 inverse-nanobarns was collected using the Compact Muon Solenoid detector at the Large Hadron Collider. The dijet transverse momentum balance, azimuthal angle correlations, and pseudorapidity distributions are studied as a function of the transverse energy in the forward calorimeters (more » $$E_T^{4\\lt |\\eta| \\lt 5.2}$$). For pPb collisions, the dijet transverse momentum ratio and the width of the distribution of dijet azimuthal angle difference are comparable to the same quantities obtained from a simulated pp reference and insensitive to $$E_T^{4\\lt |\\eta| \\lt 5.2}$$. In contrast, the mean value of the dijet pseudorapidity is found to change monotonically with increasing $$E_T^{4\\lt |\\eta| \\lt 5.2}$$, indicating a correlation between the energy emitted at large pseudorapidity and the longitudinal motion of the dijet frame. As a result, the pseudorapidity distribution of the dijet system is compared with next-to-leading-order perturbative QCD predictions obtai