Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos
NASA Astrophysics Data System (ADS)
Parsons, D. Kent
2017-09-01
Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.
MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
Oe, Misari; Maeda, Masaharu; Ohira, Tetsuya; Itagaki, Shuntaro; Harigane, Mayumi; Suzuki, Yuriko; Yabe, Hirooki; Yasumura, Seiji; Kamiya, Kenji; Ohto, Hitoshi
2018-01-06
The Fukushima Daiichi Nuclear Power Plant accident, which occurred in March 2011, is having long-term effects on children. We planned this study to describe the trajectories of emotional symptoms and peer relationship problems in children and to examine potential risks and protective factors over the 35 months following the accident. The sample was 11,791 children in the first to sixth elementary grades. We identified four patterns for emotional symptoms and three patterns for peer relationship problems, using group-based trajectory modelling. For emotional symptoms, female gender, experience of tsunami and nuclear plant accident, out-of-prefecture evacuees, and insufficient physical activity were associated with the very severe trajectory. In contrast, for peer relationship problems, male gender, experience of nuclear plant accident, and insufficient physical activity were associated with the very severe trajectory. Different factors might be related to the very severe trajectories of emotional symptoms and peer relationship problems.
Maeda, Masaharu; Itagaki, Shuntaro; Harigane, Mayumi; Suzuki, Yuriko; Yabe, Hirooki; Yasumura, Seiji; Kamiya, Kenji; Ohto, Hitoshi
2018-01-01
The Fukushima Daiichi Nuclear Power Plant accident, which occurred in March 2011, is having long-term effects on children. We planned this study to describe the trajectories of emotional symptoms and peer relationship problems in children and to examine potential risks and protective factors over the 35 months following the accident. The sample was 11,791 children in the first to sixth elementary grades. We identified four patterns for emotional symptoms and three patterns for peer relationship problems, using group-based trajectory modelling. For emotional symptoms, female gender, experience of tsunami and nuclear plant accident, out-of-prefecture evacuees, and insufficient physical activity were associated with the very severe trajectory. In contrast, for peer relationship problems, male gender, experience of nuclear plant accident, and insufficient physical activity were associated with the very severe trajectory. Different factors might be related to the very severe trajectories of emotional symptoms and peer relationship problems. PMID:29316618
Post detonation nuclear forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jay
2014-05-09
The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.
Modern hadron spectroscopy: a bridge between nuclear and particle physics.
NASA Astrophysics Data System (ADS)
Szczepaniak, A. P.
2018-05-01
In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczepaniak, Adam P.
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
Szczepaniak, Adam P.
2018-05-01
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Lattice QCD Calculations in Nuclear Physics towards the Exascale
NASA Astrophysics Data System (ADS)
Joo, Balint
2017-01-01
The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V.M.
1995-10-01
The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less
The concept of physical surface in nuclear matter
NASA Astrophysics Data System (ADS)
Mazilu, Nicolae; Agop, Maricel
2015-02-01
The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.
ERIC Educational Resources Information Center
Laughlin, John S.
1983-01-01
Traces the development of basic radiation physics that underlies much of today's medical physics and looks separately at the historical development of two major subfields of medical physics: radiation therapy and nuclear medicine. Indicates that radiation physics has made important contributions to solving biomedical problems in medical…
Power counting and Wilsonian renormalization in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Goulding, F S; Stone, Y
1970-10-16
The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.
Computational nuclear quantum many-body problem: The UNEDF project
NASA Astrophysics Data System (ADS)
Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.
2013-10-01
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
Experimental Physical Sciences Vitae 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances
Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, T.D.; Williams, A.R.
1995-06-01
The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less
[Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapusta, J.I.
1993-12-31
The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...
2015-01-26
We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less
ERIC Educational Resources Information Center
Spada, Hans; And Others
1977-01-01
As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)
NASA Astrophysics Data System (ADS)
2016-05-01
A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research, T K Breus, V N Binhi, A A Petrukovich Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 502-510
Physics in ;Real Life;: Accelerator-based Research with Undergraduates
NASA Astrophysics Data System (ADS)
Klay, J. L.
All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker-Loud, Andre
2014-11-01
Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.
Coupling Schemes for Multiphysics Reactor Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay Mahadeven; Jean Ragusa
2007-11-01
This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less
Bergström, Malin; Fransson, Emma; Modin, Bitte; Berlin, Marie; Gustafsson, Per A; Hjern, Anders
2015-08-01
In many Western countries, an increasing number of children with separated parents have joint physical custody, that is, live equally much in their parent's respective homes. In Sweden, joint physical custody is particularly common and concerns between 30% and 40% of the children with separated parents. It has been hypothesised that the frequent moves and lack of stability in parenting may be stressful for these children. We used data from a national classroom survey of all sixth and ninth grade students in Sweden (N=147839) to investigate the association between children's psychosomatic problems and living arrangements. Children in joint physical custody were compared with those living only or mostly with one parent and in nuclear families. We conducted sex-specific linear regression analyses for z-transformed sum scores of psychosomatic problems and adjusted for age, country of origin as well as children's satisfaction with material resources and relationships to parents. Clustering by school was accounted for by using a two-level random intercept model. Children in joint physical custody suffered from less psychosomatic problems than those living mostly or only with one parent but reported more symptoms than those in nuclear families. Satisfaction with their material resources and parent-child relationships was associated with children's psychosomatic health but could not explain the differences between children in the different living arrangements. Children with non-cohabitant parents experience more psychosomatic problems than those in nuclear families. Those in joint physical custody do however report better psychosomatic health than children living mostly or only with one parent. Longitudinal studies with information on family factors before and after the separation are needed to inform policy of children's postseparation living arrangements. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.
NASA Technical Reports Server (NTRS)
Biggerstaff, J. A. (Editor)
1985-01-01
Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, Moshe
The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less
Project Physics Tests 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 6 are presented in this booklet. Included are 70 multiple-choice and 24 problem-and-essay questions. Nuclear physics fundamentals are examined with respect to the shell model, isotopes, neutrons, protons, nuclides, charge-to-mass ratios, alpha particles, Becquerel's discovery, gamma rays, cyclotrons,…
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, P.B.
1979-05-01
The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2010-06-01
Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter. The focus of these collected articles is therefore on the discussion of topics that are not yet understood, or that are poorly understood. We very much welcomed presentations on: (i) contradictory approaches, models, or theories that are, at present, difficult to reconcile, (ii) unsolved theoretical problems that hamper applications of existing methods, (iii) limitations of current approaches, (iv) difficulties in deriving and justifying models and theories, (v) generic problems in understanding or describing specific experimental data, and even (vi) all possible, wildest speculations and/or conjectures. The main idea behind the focus issue was to stimulate creative, unbounded thinking and provide young, but not only young, researchers with ideas that would promote further progress in this domain of science. The community of nuclear structure theorists enthusiastically responded to the idea of publishing the volume on OPeNST. It seemed that the idea struck the right chord and many colleagues were willing to share their observations on what research directions to follow and which problems to attack. The volume turned out to be a snapshot of the domain, revealing the burning questions that the community wants to address. All the articles also have a very interesting personal touch. They sometimes even present opposing or conflicting points of view, which is exactly what one would expect within a vibrant scientific discussion. All in all, the Editors of Journal of Physics G are very happy to offer you this unique collection, which will constitute very interesting reading for all those working in nuclear structure theory.
NASA Astrophysics Data System (ADS)
2006-06-01
It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields. Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of PRAGMA Congressi, who took charge of all the administrative and accommodation procedures, is also acknowledged. The Local Organizing Committee (Pavia, January 2006)
ERIC Educational Resources Information Center
Sneed, G. C.
This book discusses how some of the topics taught in a conventional physics course have been used to solve interesting technical problems in industry, medicine, agriculture, transportation, and other areas of society. The topics include heat, optics, magnetism and electricity, nuclear physics, and sound. (MLH)
Nuclear Physics Activities in Asia and ANPhA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, H.
2011-05-06
On 18 July 2009 the Asian Nuclear Physics Association (ANPhA) has been officially launched in Beijing by the representatives from China, Korea, Japan and Vietnam. Since then Australia, India, Mongolia and Taiwan have joined to ANPhA and now the member country/region has increased to eight. Some activities and features on ANPhA are introduced. In addition, pleasant collaboration with Professor Arima by the author in regard to the Gamow-Teller quenching problem is also briefly mentioned.
Some nuclear physics aspects of BBN
NASA Astrophysics Data System (ADS)
Coc, Alain
2017-09-01
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.
Temperature and Density Conditions for Nucleogenesis by Fusion Processes in Stars
DOE R&D Accomplishments Database
Fowler, W. A.
1958-06-01
An attempt is made to correlate nuclear findings with what is known about stellar evolution. Some discussion is given to present research in nuclear physics and astrophysics which may lead to further elucidation of the problem of nucleogenesis and of its cosmological implications. (M.H.R.)
NASA Astrophysics Data System (ADS)
Khuwaileh, Bassam
High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliadis, C.; Anderson, K. S.; Coc, A.
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less
Evaluation of coupling approaches for thermomechanical simulations
Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...
2015-08-10
Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less
Summary of sessions on nuclear astrophysics
NASA Astrophysics Data System (ADS)
Rolfs, C.
In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&
Chemistry Division. Quarterly progress report for period ending June 30, 1949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1949-09-14
Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less
NASA Astrophysics Data System (ADS)
Buttery, N. E.
2008-03-01
Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.
Increasing science literacy among the educated elite
NASA Astrophysics Data System (ADS)
Bender, Carl M.
1997-03-01
The Physics Department at Washington University is making a serious and continuing effort to raise the level of understanding of science for bright students who do not intend to take further courses in science or mathematics. We have established a course called Physics and Society, which considers such issues as availability of energy, nuclear power, nuclear weapons, the greenhouse effect, the ozone hole, risk analysis, the scientific method, and claims of the paranormal. By examining such topics quantitatively, we hope to improve the students' ability to grasp and assess critically the problems that society faces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, J.
1980-07-01
This report was prepared to assist the Graduate Medical Education National Advisory Committee (GMENAC) in its efforts to model physician manpower requirements in six specialties: anesthesiology, neurology, nuclear medicine, pathology, physical medicine and rehabilitation, and radiology. The purpose of this report is to (1) survey and present the existing literature on manpower requirements in each of these six specialties, and (2) discuss the special problems present in each specialty in modeling manpower requirements, and where possible, suggest possible avenues of resolution.
XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin
2017-01-01
The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.
Selberg, Kurt; Ross, Michael
2012-12-01
Nuclear scintigraphy is a mainstay of diagnostic imaging and has preserved its relevance in the imaging of acute and chronic trauma. It is particularly useful in the evaluation of athletic injuries. Pitfalls of interpretation, false negatives and false positives exist as with many imaging modalities. Synthesis of physical exam findings, lameness evaluation and, when possible, diagnostic analgesia in combination with nuclear scintigraphy imaging findings, will allow for the most information to be applied to the patient's clinical problem. Published by Elsevier Inc.
The Origin of the Chemical Elements, 1
ERIC Educational Resources Information Center
Selbin, Joel
1973-01-01
The problem of the origin is inextricably interwoven with such matters as the origin of the universe, the structure and evolution of galaxies, stars and other astronomical objects, and with nuclear physics. (Author/DF)
Hasegawa, Arifumi; Tanigawa, Koichi; Ohtsuru, Akira; Yabe, Hirooki; Maeda, Masaharu; Shigemura, Jun; Ohira, Tetsuya; Tominaga, Takako; Akashi, Makoto; Hirohashi, Nobuyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Shibuya, Kenji; Yamashita, Shunichi; Chhem, Rethy K
2015-08-01
437 nuclear power plants are in operation at present around the world to meet increasing energy demands. Unfortunately, five major nuclear accidents have occurred in the past--ie, at Kyshtym (Russia [then USSR], 1957), Windscale Piles (UK, 1957), Three Mile Island (USA, 1979), Chernobyl (Ukraine [then USSR], 1986), and Fukushima (Japan, 2011). The effects of these accidents on individuals and societies are diverse and enduring. Accumulated evidence about radiation health effects on atomic bomb survivors and other radiation-exposed people has formed the basis for national and international regulations about radiation protection. However, past experiences suggest that common issues were not necessarily physical health problems directly attributable to radiation exposure, but rather psychological and social effects. Additionally, evacuation and long-term displacement created severe health-care problems for the most vulnerable people, such as hospital inpatients and elderly people. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drechsler, Hauke; McAinsh, Andrew D.
2012-01-01
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis. PMID:23271831
Psychological Aid to the Children Who Suffered from the Chernobyl Catastrophe.
ERIC Educational Resources Information Center
Garnets, O. N.; And Others
This document considers the problems faced by the children and adolescents who were affected by the 1986 accident at the Chernobyl nuclear power plant in the Ukraine. It discusses problems with psycho-physical, social, and spiritual development. It is noted that the Chernobyl children do not form a homogeneous population, but can be divided into…
NASA Astrophysics Data System (ADS)
Voronchev, V. T.; Kukulin, V. I.
2000-12-01
A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydrogen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B, and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is considered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of low-energy D+6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear-structure factors leads to an additional enhancement of the rate parameters <σv> for the ( d, pt) and ( d, nτ) channels by 10-40%. The possibility of using nuclear reactions that lead to photon emission as a means for determining the ion temperature of a thermonuclear plasma is discussed.
Applications of NASTRAN to nuclear problems
NASA Technical Reports Server (NTRS)
Spreeuw, E.
1972-01-01
The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.
Neutron physics with accelerators
NASA Astrophysics Data System (ADS)
Colonna, N.; Gunsing, F.; Käppeler, F.
2018-07-01
Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.
Iowa State University – Final Report for SciDAC3/NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vary, James P
The Iowa State University (ISU) contributions to the NUCLEI project are focused on developing, implementing and running an efficient and scalable configuration interaction code (Many-Fermion Dynamics – nuclear or MFDn) for leadership class supercomputers addressing forefront research problems in low-energy nuclear physics. We investigate nuclear structure and reactions with realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. We select a few highlights from our work that has produced a total of more than 82 refereed publications and more than 109 invited talks under SciDAC3/NUCLEI.
Nuclear physics: Macroscopic aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiatecki, W.J.
1993-12-01
A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions {h_bar} {yields} 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case ofmore » statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses.« less
PREFACE: Nuclear Physics in Astrophysics III
NASA Astrophysics Data System (ADS)
Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.
2008-01-01
The Europhysics Conference `Nuclear Physics in Astrophysics III' (NPA3) took place from 26 31 March 2007 in Dresden, Germany, hosted by Forschungszentrum Dresden-Rossendorf. The present special issue of Journal of Physics G: Nuclear and Particle Physics contains all peer-reviewed contributions to the proceedings of this conference. NPA3 is the third conference in the Nuclear Physics in Astrophysics series of conferences devoted to the interplay between nuclear physics and astrophysics. The first and second editions of the series were held in 2002 and 2005 in Debrecen, Hungary. NPA3 has been organized under the auspices of the Nuclear Physics Board of the European Physical Society as its XXI Divisional Conference. The conference marks the 50th anniversary of the landmark paper B2FH published in 1957 by E M Burbidge, G R Burbidge, W A Fowler and F Hoyle. A public lecture by Claus Rolfs (Ruhr-Universität Bochum, Germany) commemorated the progress achieved since 1957. NPA3 aimed to bring together experimental and theoretical nuclear physicists, astrophysicists and astronomers to address the important part played by nuclear physics in current astrophysical problems. A total of 130 participants from 71 institutions in 26 countries attended the conference, presenting 33 invited and 38 contributed talks and 25 posters on six subject areas. The astrophysical motivation and the nuclear tools employed to address it are highlighted by the titles of the subject areas: Big Bang Nucleosynthesis Stellar Nucleosynthesis and Low Cross Section Measurement Explosive Nucleosynthesis and Nuclear Astrophysics with Photons Nuclei far from Stability and Radioactive Ion Beams Dense Matter in Neutron Stars and Relativistic Nuclear Collisions Neutrinos in Nuclear Astrophysics The presentations and discussions proved that Nuclear Astrophysics is a truly interdisciplinary subject. The remarkable progress in astronomical observations achieved in recent years is matched by advances in astrophysical modelling, and new theoretical approaches in nuclear physics are spurned by a wealth of new experimental data. It has been recognized by all participants that a joint effort by these disciplines is required in order to further our understanding of stars in all the phases of their lifespan and of the creation of energy and the chemical elements. The conference took place in the city of Dresden, in the geographical heart of Europe. Dresden is a traditional centre of culture and the fine arts, and its recently reconstructed Frauenkirche (Church of Our Lady) symbolizes the desire of Europeans to leave war and division behind them and revive their traditionally lively cultural and scientific exchange. Scientists from all parts of Europe attended NPA3, as well as participants from North America, Japan and the Near East. Especially encouraging was the great echo among young scientists whose devotion promises a bright future to the field. Fresh, dedicated and interdisciplinary efforts are indeed needed to solve some of the astrophysical puzzles presented at NPA3. New satellite observatories, unprecedented computing power, and new experimental facilities such as underground accelerator laboratories and radioactive ion beam facilities will contribute to these efforts. We look forward to hearing about these and other developments in the fourth conference of the Nuclear Physics in Astrophysics series (NPA4) which is to be held in Gran Sasso, Italy in 2009. The financial support of the hosting institution Forschungszentrum Dresden-Rossendorf, of the Free State of Saxony and of the European Physical Society has been essential in ensuring the success of the conference. We thank the Publisher and the staff of it Journal of Physics G: Nuclear and Particle Physics for the fruitful collaboration in preparing this issue. The conference website is located at http://www.fzd.de/npa3 Cover image of Dresden by C. Preußel, Forschungszentrum Dresden-Rossendorf Conference photograph Participants of the Nuclear Physics in Astrophysics III conference.
Learning to Embrace Nuclear Physics through Education
NASA Astrophysics Data System (ADS)
Avadanei, Camelia
2010-01-01
Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ("Radiation protection") defining norms and requirements for "assuring the radiological safety of the workers, population and environment," and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of specialists in the field. Facing new challenges, society becomes aware of the fact that education represents the real solution to escalade them. Nuclear physics plays an important role in ensuring energetic resources for the near future and in reducing greenhouse effects. On the other hand, especially nuclear physics will permit to solve the enigma of universe birth. As in any other field, development involves continuous education and knowledge upgrading for all categories carrying out nuclear activities. For radiation protection workers and specialists, periodically refreshment courses are mandatory, in compliance with the national and international specific requirements.
Wing, Steve; Richardson, David B; Hoffmann, Wolfgang
2011-04-01
In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. We review epidemiologic principles used in studies of generic exposure-response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes.
JPRS Report Science & Technology Europe & Latin America.
1997-09-11
mixture of barium, yttrium, copper, and oxygen) was that of the Institute for Research in Non -Traditional Materials of the CNR [National Research...the necessary equipment for this kind of experimental work. The problem now is to coordinate all these branches of research which were begun...Nuclear Physics, the CNR [National Research Council] Institute for Non -Traditional Materials Technology, the physics departments of Naples and Salerno
Technological survey of tellurium and its compounds
NASA Technical Reports Server (NTRS)
Steindler, M. J.; Vissers, D. R.
1968-01-01
Review includes data on the chemical and physical properties of tellurium, its oxides, and fluorides, pertinent to the process problem of handling fission product tellurium in fluoride form. The technology of tellurium handling in nonaqueous processing of nuclear fuels is also reviewed.
NASA Astrophysics Data System (ADS)
Siegel, Edward
2011-04-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5+1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information and computing non-Shore factorization, millennium-problem Riemann-hypotheses physics-proof as numbers/digits Goodkin Bose-Einstein Condensation intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!
Extrapolation techniques applied to matrix methods in neutron diffusion problems
NASA Technical Reports Server (NTRS)
Mccready, Robert R
1956-01-01
A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.
Atomic physics constraints on the X boson
NASA Astrophysics Data System (ADS)
Jentschura, Ulrich D.; Nándori, István
2018-04-01
Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.
NASA Astrophysics Data System (ADS)
Whittle, Karl
2016-06-01
Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less
Transmutation of Isotopes --- Ecological and Energy Production Aspects
NASA Astrophysics Data System (ADS)
Gudowski, Waclaw
2000-01-01
This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.
Calculation of electron Dose Point Kernel in water with GEANT4 for medical application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.
2009-06-03
The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models,more » the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.« less
Progress report on nuclear spectroscopic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativisticmore » heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.« less
An assessment of coupling algorithms for nuclear reactor core physics simulations
Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...
2016-04-01
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
An assessment of coupling algorithms for nuclear reactor core physics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Steven; Berrill, Mark; Clarno, Kevin
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
An assessment of coupling algorithms for nuclear reactor core physics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov
This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less
Kerman's Problem in the Continuum
NASA Astrophysics Data System (ADS)
Macchiavelli, A. O.; Casten, R. F.; Clark, R. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Jones, M. D.; Salathe, M.
2017-09-01
In 1956 Kerman published a seminal paper on rotational perturbations in nuclei. Since then, Coriolis and rotational alignment effects have been extensively studied and are rather well understood. With the development of exotic beam facilities and advanced instrumentation it is becoming possible to access regions of deformation in the nuclear chart, near the neutron drip-line. Here, the effects of weak binding are expected to play an important role, affecting the dynamics of the nuclear motion. In this work we study Kerman's problem when the single-particle levels involved are resonant states. We will present results showing the behavior of the kinematic and dynamic moments of inertia as a function of the state widths. Connection to possible experiments will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).
Wing, Steve; Richardson, David B.; Hoffmann, Wolfgang
2011-01-01
Background In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. Objectives We review epidemiologic principles used in studies of generic exposure–response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Discussion Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Conclusions Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes. PMID:21147606
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
DOE pushes for useful quantum computing
NASA Astrophysics Data System (ADS)
Cho, Adrian
2018-01-01
The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.
Hadron therapy: history, status, prospects
NASA Astrophysics Data System (ADS)
Klenov, G. I.; Khoroshkov, V. S.
2016-08-01
A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.
NASA Astrophysics Data System (ADS)
Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.
2018-04-01
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.
The cosmological lithium problem revisited
NASA Astrophysics Data System (ADS)
Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak
2016-07-01
After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.
NASA Astrophysics Data System (ADS)
Siegel, Edward
2011-10-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!
A Simple Global View of Fuel Burnup
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Reactor physics and fuel burnup are discussed in order to obtain a simple global view of the effects of nuclear reactor characteristics to fuel cycle system performance. It may provide some idea of free thinking and overall vision, though it is still a small part of nuclear energy system. At the beginning of this lecture, governing equations for nuclear reactors are presented. Since the set of these equations is so big and complicated, it is simplified by imposing some extreme conditions and the nuclear equilibrium equation is derived. Some features of future nuclear equilibrium state are obtained by solving this equation. The contribution of a nucleus charged into reactor core to the system performance indexes such as criticality is worth for understanding the importance of each nuclide. It is called nuclide importance and can be evaluated by using the equations adjoint to the nuclear equilibrium equation. Examples of some importances and their application to criticalily search problem are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goriely, S.; Bauswein, A.; Janka, H.-T.
About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularlymore » in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.« less
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
Tungsten - Yttrium Based Nuclear Structural Materials
NASA Astrophysics Data System (ADS)
Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo
2013-04-01
The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.
Recent Advances in Our Understanding of Nuclear Forces
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht
2007-05-01
The attempts to find the right (underlying) theory for the nuclear force have a long and stimulating history. Already in 1953, Hans Bethe stated that ``more man-hours have been given to this problem than to any other scientific question in the history of mankind.'' In search for the nature of the nuclear force, the idea of sub-nuclear particles was created which, eventually, generated the field of particle physics. I will review this productive history of hope, error, and desperation. Finally, I will discuss recent ideas which apply the concept of an effective field theory to low-energy QCD. There are indications that this concept may provide the right framework to properly understand the nuclear force. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B2.1
Beam Dynamics Considerations in Electron Ion Colliders
NASA Astrophysics Data System (ADS)
Krafft, Geoffrey
2015-04-01
The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
Dynamics of Nuclear Regions of Galaxies
NASA Technical Reports Server (NTRS)
Miller, Richard H.
1996-01-01
Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.
Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xiao-Chuan; Keyes, David; Yang, Chao
2014-09-29
The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementationmore » since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.« less
Durham, J. M.; Poulson, D.; Bacon, J.; ...
2018-04-10
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. M.; Poulson, D.; Bacon, J.
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles
NASA Astrophysics Data System (ADS)
Bednyakov, V. A.; Russakovich, N. A.
2018-05-01
The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.
New applications of the renormalization group method in physics: a brief introduction.
Meurice, Y; Perry, R; Tsai, S-W
2011-07-13
The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
Infinite variance in fermion quantum Monte Carlo calculations.
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
The cosmological lithium problem revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertulani, C. A., E-mail: carlos.bertulani@tamuc.edu; Department of Physics and Astronomy, Texas A&M University, College Station, TX 75429; Mukhamedzhanov, A. M., E-mail: akram@comp.tamu.edu
After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although ourmore » attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.« less
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
Towards a Conceptual Diagnostic Survey in Nuclear Physics
ERIC Educational Resources Information Center
Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa
2011-01-01
Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…
Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL
linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A.; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
Turner, John A.; Clarno, Kevin; Sieger, Matt; ...
2016-09-08
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
Contis, George; Foley, Thomas P
2015-05-01
The Chernobyl Childhood Illness Program (CCIP) was a humanitarian assistance effort funded by the United States Congress. Its purpose was to assist the Ukrainian Government to identify and treat adolescents who developed mental and physical problems following their exposure as young children to Chernobyl radiation. Thirteen years after the Chernobyl nuclear plant accident in 1986, the CCIP examined 116,655 Ukrainian adolescents for thyroid diseases. Of these, 115,191 were also screened for depression, suicide ideation, and psychological problems. The adolescents lived in five of Ukraine's seven most Chernobyl radiation contaminated provinces. They were up to 6 years of age or in utero when exposed to nuclear fallout, or were born up to 45 months after Chernobyl. Ukrainian endocrinologist and ultrasonographers used physical examination and ultrasonography of the neck to evaluate the adolescents for thyroid tumors. The adolescents were then screened for depression by the Children's Depression Inventory (CDI). After this, Ukrainian psychologists conducted individual psychological interviews to corroborate the adolescents' CDI responses. Papillary thyroid carcinoma was diagnosed in eight adolescents, a high prevalence rate similar to that reported by other studies from the Soviet Union. Screening identified thyroid nodules in 1,967 adolescents (1.7%). Depression was diagnosed in 15,399 adolescents (13.2%), suicide ideation in 813 (5.3%), and attempted suicide in 354 (2.3%). Underlying components of the participants' depression were negative mood, interpersonal difficulties, negative self-esteem, ineffectiveness, and anhedonia. Depression was greater in females (77%). Those with thyroid and psychological problems were referred for treatment. The adolescents screened by CCIP represent the largest Ukrainian cohort exposed to Chernobyl radiation as children who were evaluated for both thyroid tumors and depression. The group had an increased prevalence of thyroid cancer, thyroid tumors, depression, and suicide ideation. CCIP demonstrated that psychological problems among Chernobyl exposed adolescents began earlier in life than previously reported. They also experienced socioeconomic problems from their relocation from radiation-affected areas and from the Soviet's inadequate responses to their health needs. CCIP's findings underscore the requirement that governments prepare plans to deal promptly with the diagnosis and treatment of nuclear accident victims' medical and psychological problems.
Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview
NASA Astrophysics Data System (ADS)
Weisenberger, Andrew G.
A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.
Sam Goudsmit--His Physics and His Statesmanship
NASA Astrophysics Data System (ADS)
Bederson, Benjamin
2010-03-01
Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.
American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be awaremore » of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.« less
Reverse engineering nuclear properties from rare earth abundances in the r process
NASA Astrophysics Data System (ADS)
Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.
2017-03-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.
The Paucity Problem: Where Have All the Space Reactor Experiments Gone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Marshall, Margaret A.
2016-10-01
The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that themore » international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.« less
Sensor placement in nuclear reactors based on the generalized empirical interpolation method
NASA Astrophysics Data System (ADS)
Argaud, J.-P.; Bouriquet, B.; de Caso, F.; Gong, H.; Maday, Y.; Mula, O.
2018-06-01
In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to address the problem of sensor placement in nuclear reactors. This task is challenging due to the accumulation of a number of difficulties like the complexity of the underlying physics and the constraints in the admissible sensor locations and their number. As a result, the placement, still today, strongly relies on the know-how and experience of engineers from different areas of expertise. The present methodology contributes to making this process become more systematic and, in turn, simplify and accelerate the procedure.
NASA Astrophysics Data System (ADS)
Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo
2013-08-01
One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
Evolving landscape of low-energy nuclear physics publications
Pritychenko, B.
2016-10-01
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Evolving landscape of low-energy nuclear physics publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Current and Perspective Applications of Dense Plasma Focus Devices
NASA Astrophysics Data System (ADS)
Gribkov, V. A.
2008-04-01
Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.
Experiments in intermediate energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehnhard, D.
Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana Universitymore » Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.« less
An integrated radiation physics computer code system.
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Harris, D. W.
1972-01-01
An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.
Art as a Vehicle for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Kilburn, Micha
2013-04-01
One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.
NASA Astrophysics Data System (ADS)
Greiner, Walter
2012-01-01
This symposium was very special. It was topical: Some of the most outstanding problems in Nuclear Physics were discussed: Superheavy elements; extremely neutron rich elements, as well as nuclei with strangeness and their possible creation in the cosmos and on earth; the nuclear equation of state has to be identified within strongly compressed and hot nuclear matter as it appears in nucleus-nucleus encounters; giant nuclear systems which are short lived (˜ 10-19 - 10-20 seconds) and extremely important for identifying the vacuum decay in overcritical electric fields (this is a very fundamental process - the most fundamental one in Quantum Electrodynamics!); astrophysical centers of extreme high density around which magnificent sun-like objects are Kepler-orbiting are discovered in our Galaxy by R. Genzel and colleagues (these centers are no black holes those don't exist at all because repulsive gravitational forces may play an important role - the pseudocomplex general relativity eliminates the Schwarzschild singularity); network physics for distributing energy (nuclear, wind, sun, tides,...) all over Europe (and over the world) is basic for energy consumption now and even more so in future. We heard wonderful talks and I am grateful to all the friends and speakers (from Russia, America, Europe and India) for coming to Goa. It was a great symposium! Particular thanks go to Professor Bikash Sinha and especially to Professor Debades Bandyopadhyay from Calcutta who had the idea for and organized this Goa-symposium....
The ``Folk Theorem'' on effective field theory: How does it fare in nuclear physics?
NASA Astrophysics Data System (ADS)
Rho, Mannque
2017-10-01
This is a brief history of what I consider as very important, some of which truly seminal, contributions made by young Korean nuclear theorists, mostly graduate students working on PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as the first-principle approach to nuclear physics. The theoretical framework employed is an effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian constructed in the spirit of Weinberg's "Folk Theorem" on effective field theory. The problems addressed are the high-precision calculations on the thermal np capture, the solar pp fusion process, the solar hep process — John Bahcall's challenge to nuclear theorists — and the quenching of g A in giant Gamow-Teller resonances and the whopping enhancement of first-forbidden beta transitions relevant in astrophysical processes. Extending adventurously the strategy to a wild uncharted domain in which a systematic implementation of the "theorem" is far from obvious, the same effective Lagrangian is applied to the structure of compact stars. A surprising, unexpected, result on the properties of massive stars, totally different from what has been obtained up to day in the literature, is predicted, such as the precocious onset of conformal sound velocity together with a hint for the possible emergence in dense matter of hidden symmetries such as scale symmetry and hidden local symmetry.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Physics through the 1990s: Nuclear physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.
Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment
NASA Technical Reports Server (NTRS)
Dent, William V., Jr.
1998-01-01
The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.
Reverse engineering nuclear properties from rare earth abundances in the r process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
Reverse engineering nuclear properties from rare earth abundances in the r process
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...
2017-02-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
From Confrontation to Cooperation: 8th International Seminar on Nuclear War
NASA Astrophysics Data System (ADS)
Zichichi, A.; Dardo, M.
1992-09-01
The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION
The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems
NASA Astrophysics Data System (ADS)
Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael
2018-04-01
This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient of the theory, especially in the normal phase where they account for precursor pairing effects. After an introduction to present the key concepts of the BCS-BEC crossover, this report discusses the mean-field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems, as well as for symmetric (spin- or isospin-balanced) and asymmetric (spin- or isospin-imbalanced) matter. Pairing fluctuations in the normal phase are then considered, with their manifestations in thermodynamic and dynamic quantities. The last two Sections provide a more specialized discussion of the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, respectively. The separate discussion in the two contexts aims at cross communicating to both communities topics and aspects which, albeit arising in one of the two fields, share a strong common interest.
Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)
NASA Astrophysics Data System (ADS)
Skobelev, N. K.
2017-09-01
The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.
Induced starburst and nuclear activity: Faith, facts, and theory
NASA Technical Reports Server (NTRS)
Shlosman, Isaac
1990-01-01
The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.
Climate and smoke: an appraisal of nuclear winter.
Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C
1990-01-12
The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.
NASA Technical Reports Server (NTRS)
Stubblefield, F. W. (Editor)
1987-01-01
Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.
OECD-NEA Expert Group on Multi-Physics Experimental Data, Benchmarks and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, Timothy; Rohatgi, Upendra S.
High-fidelity, multi-physics modeling and simulation (M&S) tools are being developed and utilized for a variety of applications in nuclear science and technology and show great promise in their abilities to reproduce observed phenomena for many applications. Even with the increasing fidelity and sophistication of coupled multi-physics M&S tools, the underpinning models and data still need to be validated against experiments that may require a more complex array of validation data because of the great breadth of the time, energy and spatial domains of the physical phenomena that are being simulated. The Expert Group on Multi-Physics Experimental Data, Benchmarks and Validationmore » (MPEBV) of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) was formed to address the challenges with the validation of such tools. The work of the MPEBV expert group is shared among three task forces to fulfill its mandate and specific exercises are being developed to demonstrate validation principles for common industrial challenges. This paper describes the overall mission of the group, the specific objectives of the task forces, the linkages among the task forces, and the development of a validation exercise that focuses on a specific reactor challenge problem.« less
NASA Astrophysics Data System (ADS)
Smith, A.; Siegel, Edward Carl-Ludwig
2011-03-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility/ factorization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16, ... Could inter-digit Feshbach-resonances exist??? Possible applications to: quantum-information/ computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory "short-cut" method: Rayleigh(1870)-Polya(1922)-"Anderson"(1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics; ...abound!!! Watkins [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] "Number-Theory in Physics" many interconnections: "pure"-maths number-theory to physics including Siegel [AMS Joint Mtg.(2002)-Abs.# 973-60-124] inversion of statistics on-average digits' Newcomb(1881)-Weyl(14-16)-Benford(38)-law to reveal both the quantum and BEQS (digits = bosons = digits:"spinEless-boZos"). 1881 1885 1901 1905 1925 < 1927, altering quantum-theory history!!!
The search for axion-like dark matter using magnetic resonance
NASA Astrophysics Data System (ADS)
Sushkov, Alexander; Casper Collaboration
2016-05-01
The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.
Alcohol use disorder due to social isolation after a nuclear disaster in Fukushima
Morita, Tomohiro; Tanimoto, Tetsuya; Hori, Arinobu; Kanazawa, Yukio
2015-01-01
It is well-known that a nuclear disaster causes health problems including cancer, however, information on mental disorders linked to a nuclear disaster is limited. On 11 March 2011, there was a serious nuclear power plant accident in Fukushima, Japan. Subsequently, in October 2012, a 78-year-old man living 31 km from the plant was admitted to the hospital with head trauma. This was his third physical trauma since the nuclear accident. A thorough interview revealed that his alcohol intake had increased after the disaster, suggesting that his injuries might be related to alcohol use. The diagnosis of alcohol use disorder was established based on the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. He had been exposed to social isolation after evacuation of his neighbourhood. Using education and intervention, he was successfully treated. We should recognise that a nuclear disaster might cause social isolation among the elderly, leading to mental disorders and alcohol use disorder. Early diagnosis and intervention might be beneficial for individuals presenting the above symptoms. PMID:26101299
Alcohol use disorder due to social isolation after a nuclear disaster in Fukushima.
Morita, Tomohiro; Tanimoto, Tetsuya; Hori, Arinobu; Kanazawa, Yukio
2015-06-21
It is well-known that a nuclear disaster causes health problems including cancer, however, information on mental disorders linked to a nuclear disaster is limited. On 11 March 2011, there was a serious nuclear power plant accident in Fukushima, Japan. Subsequently, in October 2012, a 78-year-old man living 31 km from the plant was admitted to the hospital with head trauma. This was his third physical trauma since the nuclear accident. A thorough interview revealed that his alcohol intake had increased after the disaster, suggesting that his injuries might be related to alcohol use. The diagnosis of alcohol use disorder was established based on the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. He had been exposed to social isolation after evacuation of his neighbourhood. Using education and intervention, he was successfully treated. We should recognise that a nuclear disaster might cause social isolation among the elderly, leading to mental disorders and alcohol use disorder. Early diagnosis and intervention might be beneficial for individuals presenting the above symptoms. 2015 BMJ Publishing Group Ltd.
Non-extensive Statistics to the Cosmological Lithium Problem
NASA Astrophysics Data System (ADS)
Hou, S. Q.; He, J. J.; Parikh, A.; Kahl, D.; Bertulani, C. A.; Kajino, T.; Mathews, G. J.; Zhao, G.
2017-01-01
Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, 3He, 4He, and 7Li produced in the early universe. The primordial abundances of D and 4He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial 7Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q, and reduces to the usually assumed Maxwell-Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, 4He, and 7Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.
Self-optimizing Monte Carlo method for nuclear well logging simulation
NASA Astrophysics Data System (ADS)
Liu, Lianyan
1997-09-01
In order to increase the efficiency of Monte Carlo simulation for nuclear well logging problems, a new method has been developed for variance reduction. With this method, an importance map is generated in the regular Monte Carlo calculation as a by-product, and the importance map is later used to conduct the splitting and Russian roulette for particle population control. By adopting a spatial mesh system, which is independent of physical geometrical configuration, the method allows superior user-friendliness. This new method is incorporated into the general purpose Monte Carlo code MCNP4A through a patch file. Two nuclear well logging problems, a neutron porosity tool and a gamma-ray lithology density tool are used to test the performance of this new method. The calculations are sped up over analog simulation by 120 and 2600 times, for the neutron porosity tool and for the gamma-ray lithology density log, respectively. The new method enjoys better performance by a factor of 4~6 times than that of MCNP's cell-based weight window, as per the converged figure-of-merits. An indirect comparison indicates that the new method also outperforms the AVATAR process for gamma-ray density tool problems. Even though it takes quite some time to generate a reasonable importance map from an analog run, a good initial map can create significant CPU time savings. This makes the method especially suitable for nuclear well logging problems, since one or several reference importance maps are usually available for a given tool. Study shows that the spatial mesh sizes should be chosen according to the mean-free-path. The overhead of the importance map generator is 6% and 14% for neutron and gamma-ray cases. The learning ability towards a correct importance map is also demonstrated. Although false-learning may happen, physical judgement can help diagnose with contributon maps. Calibration and analysis are performed for the neutron tool and the gamma-ray tool. Due to the fact that a very good initial importance map is always available after the first point has been calculated, high computing efficiency is maintained. The availability of contributon maps provides an easy way of understanding the logging measurement and analyzing for the depth of investigation.
NASA Astrophysics Data System (ADS)
Cameron, A. G. W.
I was born and educated in Canada, obtaining my PhD in experimental nuclear physics. When I learned that technetium had been found in stellar spectra, I taught myself some astrophysics and began to study stellar nucleosynthesis. This is an account of those studies and of the pathway through much of theoretical astrophysics and planetary physics that was a natural outgrowth of the pursuit of nucleosynthesis problems. I also discuss my experiences in government service and in academia, in organization of conferences, in governmental advising, and in academic administration. In particular, I emphasize the logical connections among the various scientific themes that I have pursued.
Nuclear winter - Physics and physical mechanisms
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.
1991-01-01
The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.
The contribution of Medical Physics to Nuclear Medicine: looking back - a physicist's perspective.
Hutton, Brian F
2014-12-01
This paper is the first in a series of invited perspectives by four pioneers of Nuclear Medicine imaging and physics. A medical physicist and a Nuclear Medicine clinical specialist each take a backward look and a forward look at the contributions of Medical Physics to Nuclear Medicine. Contributions of Medical Physics are presented from the early discovery of radioactivity, development of first imaging devices, computers and emission tomography to recent development of hybrid imaging. There is evidence of significant contribution of Medical Physics throughout the development of Nuclear Medicine.
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
Contis, George; Foley, Thomas P.
2015-01-01
Background The Chernobyl Childhood Illness Program (CCIP) was a humanitarian assistance effort funded by the United States Congress. Its purpose was to assist the Ukrainian Government to identify and treat adolescents who developed mental and physical problems following their exposure as young children to Chernobyl radiation. Thirteen years after the Chernobyl nuclear plant accident in 1986, the CCIP examined 116,655 Ukrainian adolescents for thyroid diseases. Of these, 115,191 were also screened for depression, suicide ideation, and psychological problems. The adolescents lived in five of Ukraine’s seven most Chernobyl radiation contaminated provinces. They were up to 6 years of age or in utero when exposed to nuclear fallout, or were born up to 45 months after Chernobyl. Methods Ukrainian endocrinologist and ultrasonographers used physical examination and ultrasonography of the neck to evaluate the adolescents for thyroid tumors. The adolescents were then screened for depression by the Children’s Depression Inventory (CDI). After this, Ukrainian psychologists conducted individual psychological interviews to corroborate the adolescents’ CDI responses. Results Papillary thyroid carcinoma was diagnosed in eight adolescents, a high prevalence rate similar to that reported by other studies from the Soviet Union. Screening identified thyroid nodules in 1,967 adolescents (1.7%). Depression was diagnosed in 15,399 adolescents (13.2%), suicide ideation in 813 (5.3%), and attempted suicide in 354 (2.3%). Underlying components of the participants’ depression were negative mood, interpersonal difficulties, negative self-esteem, ineffectiveness, and anhedonia. Depression was greater in females (77%). Those with thyroid and psychological problems were referred for treatment. Conclusions The adolescents screened by CCIP represent the largest Ukrainian cohort exposed to Chernobyl radiation as children who were evaluated for both thyroid tumors and depression. The group had an increased prevalence of thyroid cancer, thyroid tumors, depression, and suicide ideation. CCIP demonstrated that psychological problems among Chernobyl exposed adolescents began earlier in life than previously reported. They also experienced socioeconomic problems from their relocation from radiation-affected areas and from the Soviet’s inadequate responses to their health needs. CCIP’s findings underscore the requirement that governments prepare plans to deal promptly with the diagnosis and treatment of nuclear accident victims’ medical and psychological problems. PMID:25780482
NASA Astrophysics Data System (ADS)
Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.
2018-03-01
This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.
Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response
Buraczynski, M.; Gandolfi, S.; Gezerlis, A.; ...
2016-03-14
Neutron matter is related to the physics of neutron stars and that of neutron-rich nuclei. Moreover, Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-body problem non-perturbatively, providing feedback on features of nuclear interactions and addressing scenarios that are inaccessible to other approaches. Our contribution goes over two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to find an ab initio solution to the problem of static response.
Shadow poles in coupled-channel problems calculated with the Berggren basis
NASA Astrophysics Data System (ADS)
Id Betan, R. M.; Kruppa, A. T.; Vertse, T.
2018-02-01
Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.
Some Notes on Wideband Feedback Amplifiers
DOE R&D Accomplishments Database
Fitch, V.
1949-03-16
The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.
Comprehensive Glossary of Nuclear Science
NASA Astrophysics Data System (ADS)
Langlands, Tracy; Stone, Craig; Meyer, Richard
2001-10-01
We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.
Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy.
Mananga, Eugène S; Charpentier, Thibault
2011-07-28
In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) and the Floquet theory (FT), which have been successful for designing sophisticated pulse sequences and understanding of different experiments. To the best of our knowledge, this is the first report of the FME scheme in the context of solid state NMR and we compare this approach with other series expansions. We present a modified FME scheme highlighting the importance of the (time-periodic) boundary conditions. This modified scheme greatly simplifies the calculation of higher order terms and shown to be equivalent to the Floquet theory (single or multimode time-dependence) but allows one to derive the effective Hamiltonian in the Hilbert space. Basic applications of the FME scheme are described and compared to previous treatments based on AHT, FT, and static perturbation theory. We discuss also the convergence aspects of the three schemes (AHT, FT, and FME) and present the relevant references. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrilyuk, V. I.; Gavrylyuk, A. V.; Kirischuk, V. I.
2004-01-01
The George Kuzmycz Training Center for Physical Protection, Control and Accounting of Nuclear Material (GKTC) was established in October 1998 at the Kiev Institute for Nuclear Research. During the past six years, about 700 professionals from all Ukrainian nuclear installations, executive and regulatory bodies were trained at the GKTC. Future Material Control and Accounting (MC&A) training courses are going to be held even more frequently because Ukraine has already signed the Additional Model Protocol and its ratification by Ukrainian Parliament is expected to happen very soon. Additionally, a number of new training courses will be developed. US DOE trough Argonnemore » National Laboratory has made significant efforts to transfer Automated Inventory/Material Accounting System (AIMAS) software to Ukraine. As a result, AIMAS software can be used as a basic code for the development of the Computerized MC&A System for all Ukrainian nuclear facilities despite their differences. In 2003, a new laboratory for Nondestructive Assay (NDA) was established with assistance from the U.S. Department of Energy. As a result, GKTC training capabilities will increase substantially. Furthermore, in order to increase the efficiency of NDA laboratory, it is planned to use the NDA equipment for a program of interdiction of illicit traffic of nuclear materials in Ukraine. American-Ukrainian MC&A efforts for the last 6 years, the problems encountered and the solutions to these problems, as well as comments, suggestions and recommendations for future activity at GKTC to promote and improve the nuclear material management culture in Ukraine are discussed in detail.« less
The contribution of medical physics to nuclear medicine: a physician's perspective.
Ell, Peter J
2014-12-01
This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.
Physics Division progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)
PREFACE: XXXVII Brazilian Meeting on Nuclear Physics
NASA Astrophysics Data System (ADS)
2015-07-01
The XXXVII Brazilian Meeting on Nuclear Physics (or XXXVII RTFNB 2014) gave continuity to a long sequence of workshops held in Brazil, devoted to the study of the different aspects of nuclear physics. The meeting took place in the Maresias Beach Hotel, in the town of Maresias (state of São Paulo) from 8th to 12th September 2014. Offering gentle weather, a charming piece of green land of splendid natural beauty with beach and all amenities, the place had all the conditions for very pleasant and fruitful discussions. The meeting involved 162 participants and attracted undergraduate and graduate students, Brazilian and South American physicists and invited speakers from overseas (USA, Italy, Spain, France, England, Switzerland, Germany and South Corea). In the program we had plenary morning sessions with review talks on recent developments in theory, computational techniques, experimentation and applications of the many aspects of nuclear physics. In the parallel sessions we had a total of 58 seminars. This volume contains 60 written contributions based on these talks and on the poster sessions. Evening talks and poster sessions gave still more insight and enlarged the scope of the scientific program. The contributed papers, representing mainly the scientific activity of young physicists, were exhibited as posters and are included in the present volume. Additional information about the meeting can be found at our website: http://www.sbfisica.org.br/~rtfnb/xxxvii-en Support and sponsorship came from brazilian national agencies: Conselho Nacional de Desenvolvimento Científico e Tecnoógico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Amparo á Pesquisa do Estado de São Paulo (FAPESP); Fundação de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ); Sociedade Brasileira de Física (SBF) and Instituto de Física da Universidade de São Paulo (IFUSP). We honored Professor Alejandro Szanto de Toledo, who completed fifty years of scientific activities at the University of Sao Paulo (USP). He dedicated most of his life to the development of experimental nuclear physics in the country. We had a special session where his life and achievements were remembered. The organization of the XXXVII RTFNB 2014 was one more step in a big effort to build in our part of the world a community of physicists engaged in the difficult problems of fundamental and applied nuclear physics. The international contacts bring new knowledge, provide reference framework and stimulate collaborations that are essential for a true participation in the scientific frontier. The Editors, the Organizing Committee and the whole Brazilian community of nuclear physicists were pleased and very grateful to the visitors that were together with us during the five days in Maresias. The Editors
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
NASA Astrophysics Data System (ADS)
Glazoff, Michael Vasily
In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value is in developing multi-faceted understanding of complex processes taking place in nuclear fuel rods. It helped identify several problems pertaining to the safe operations with nuclear fuel: limits of temperature that should be strictly obeyed in storage to retard zircaloy hydriding; understanding the benefits and limitations of coatings; developing in-depth understanding of Zr plasticity; developing original algorithms for defect identification in SiC-braided zircaloy. The obtained results will be useful for the nuclear industry.
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Historical flight qualifications of space nuclear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, G.L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {italmore » 1997 American Institute of Physics.}« less
Teaching Nuclear Physics in a General Education Curriculum
NASA Astrophysics Data System (ADS)
Lesher, Shelly R.
2017-01-01
The general public is unaware how physics shapes the world. This is especially true for nuclear physics, where many people are scared of the words ``nuclear'' and ``radiation''. To combat these perceptions, the Physics Department at the University of Wisconsin - La Crosse teaches a general education class on nuclear weapons, energy, and policy in society. This includes the social, economic, cultural, and political aspects surrounding the development of nuclear weapons and their place in the world, especially in current events. This talk will discuss the course, how it has grown, and sample student responses.
Cloud physics laboratory project science and applications working group
NASA Technical Reports Server (NTRS)
Hung, R. J.
1977-01-01
The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Nuclear War and Science Teaching.
ERIC Educational Resources Information Center
Hobson, Art
1983-01-01
Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)
Disclinations in Carbon-Carbon Composites.
1983-09-01
8i-C-0641 U LASIFIED F/6G ii/4 N I uuuuullu ..D un n ." =25 1321. MICROCOP EOUINTSLHR NATONL = BUR A FSADRS16- UNCLASSI FI ED SECURITY CLASIrICA’sJM...Applications nuclear carbon carbon fiber intercalation compounds biocarbons and potential uses - Fundamentals physics chemistry technology The technical...Graphite intercalation compounds : old and new University of Munich problems in the chemist’s view West Germany L. S. Singer Carbon fibers from mesophase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples.
Statistical sensitivity analysis of a simple nuclear waste repository model
NASA Astrophysics Data System (ADS)
Ronen, Y.; Lucius, J. L.; Blow, E. M.
1980-06-01
A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.
The Nuclear Barcode: a New Taggant for Identifying Explosives
NASA Astrophysics Data System (ADS)
Seman, James; Johnson, Catherine; Castaño, Carlos
2017-06-01
Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.
Teaching ``The Physics of Energy'' at MIT
NASA Astrophysics Data System (ADS)
Jaffe, Robert
2009-05-01
New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.
Science with radioactive beams: the alchemist's dream
NASA Astrophysics Data System (ADS)
Gelletly, W.
2001-05-01
Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.
Harel, Elad; Schröder, Leif; Xu, Shoujun
2008-01-01
Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)
NASA Astrophysics Data System (ADS)
Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique
2014-03-01
logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
2017-03-30
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
Physics Division annual review, 1 April 1980-31 March 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less
NON-EXTENSIVE STATISTICS TO THE COSMOLOGICAL LITHIUM PROBLEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, S. Q.; He, J. J.; Parikh, A.
Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, {sup 3}He, {sup 4}He, and {sup 7}Li produced in the early universe. The primordial abundances of D and {sup 4}He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial {sup 7}Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated themore » impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q , and reduces to the usually assumed Maxwell–Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, {sup 4}He, and {sup 7}Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.« less
The Nuclear Power and Nuclear Weapons Connection.
ERIC Educational Resources Information Center
Leventhal, Paul
1990-01-01
Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)
Technetium-99m: basic nuclear physics and chemical properties.
Castronovo, F P
1975-05-01
The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.
SciDAC Computational Astrophysics Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, Adam
Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe. Recently, there is evidence that gamma-ray bursts (GRBs) originate inmore » a small fraction of core collapses, thereby connecting two of the most energetic phenomena in the universe. However, the mechanism by which core-collapse supernovae explode has not yet been unambiguously determined. Arguably, this is one of the great unsolved problems in modern astrophysics and its investigation draws on nuclear physics, particle physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. It is the quest for the mechanism and new insights our team has recently had that motivate this proposal.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical Security Requirements 1.0... the ZNPS Physical Security Plan (PSP) for the protection of the nuclear material while in transit to... the new physical security requirements in 10 CFR 73.55. The December 2, 2010, letter included...
Nuclear Computational Low Energy Initiative (NUCLEI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Sanjay K.
This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less
Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Anne C.
1999-07-01
The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less
Macrofouling control in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.
1991-11-01
Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofoulingmore » organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.« less
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2015-11-01
Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
Shannon information entropy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Ma, Yu-Gang
2018-03-01
The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
Communicating Certainty About Nuclear Winter
NASA Astrophysics Data System (ADS)
Robock, A.
2013-12-01
I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), I inserted a paragraph pointing out that volcanic eruptions serve as an analog that supports new work on nuclear winter. This is the first time that nuclear winter has been in the IPCC report. I will tell the story of the discussions within our chapter, with review editors, and with the IPCC leadership that resulted in a box in Chapter 8 that discusses nuclear winter. We gave a briefing to John Holdren, the President's Science Advisor, about the work. Daniel Ellsberg, Fidel Castro, and Mikhail Gorbachev found out about our work, and used the results to appeal for nuclear abolition. In 2013 the work was featured at the Conference on the Humanitarian Impact of Nuclear Weapons in Oslo, Norway attended by 132 nations, and I gave a TEDx talk, I published an opinion piece on the CNN website, and I gave an invited public lecture in Nagasaki, Japan, all about the climatic consequences of nuclear war. I am now using Twitter and Facebook to communicate about nuclear winter. The threat that nuclear weapons pose to the planet is a much easier problem to solve than global warming. We need to eliminate nuclear weapons so we have the luxury of working on the global warming problem without the possibility of the existential global threat still posed by the global nuclear arsenal.
NASA Astrophysics Data System (ADS)
Holzner, Steve; Ph., D.
2005-11-01
The fun and easy way to understand the basic principles of physics How does gravity work? What does e=mc2 really mean? And what's a charm quark? Physics For Dummies answers these questions and more, explaining the basics of physical science and its importance in our everyday lives in a simple, clear, and entertaining fashion. Whether readers are taking a class, helping kids with homework, or are simply interested in how the world works, this plain-English guide gives them the knowledge they need to understand basic physics. Through real-world examples and problems, it covers such key topics as motion, energy, and waves (sound, light, wave-particle); solids, liquids, and gases; thermodynamics; electromagnetism; relativity; atomic and nuclear structures; and the Big Bang and stars. Steven Holzner, PhD (Ithaca, NY), is the author of more than 40 books and a former contributing editor at PC Magazine. He has been on the faculty of MIT and taught Physics 101 and 102 at Cornell for over ten years.
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.
Mankoff, David A; Pryma, Daniel A
2014-12-01
Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.
From X-Rays to MRI: Physics in GE
NASA Astrophysics Data System (ADS)
Schmitt, Roland W.
2004-03-01
The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.
Physics division annual report 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2008-02-28
This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less
NASA Astrophysics Data System (ADS)
Armantrout, Guy A.
1988-02-01
The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
ERIC Educational Resources Information Center
Morrison, Philip; And Others
Three papers on nuclear weapons and nuclear war, based on talks given by distinguished physicists during an American Physical Society-sponsored symposium, are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS"…
NASA Astrophysics Data System (ADS)
Carlson, Joe; Carpenter, Michael P.; Casten, Richard; Elster, Charlotte; Fallon, Paul; Gade, Alexandra; Gross, Carl; Hagen, Gaute; Hayes, Anna C.; Higinbotham, Douglas W.; Howell, Calvin R.; Horowitz, Charles J.; Jones, Kate L.; Kondev, Filip G.; Lapi, Suzanne; Macchiavelli, Augusto; McCutchen, Elizabeth A.; Natowitz, Joe; Nazarewicz, Witold; Papenbrock, Thomas; Reddy, Sanjay; Riley, Mark A.; Savage, Martin J.; Savard, Guy; Sherrill, Bradley M.; Sobotka, Lee G.; Stoyer, Mark A.; Betty Tsang, M.; Vetter, Kai; Wiedenhoever, Ingo; Wuosmaa, Alan H.; Yennello, Sherry
2017-05-01
Over the last decade, the Low-Energy Nuclear Physics (LENP) and Nuclear Astrophysics (NAP) communities have increasingly organized themselves in order to take a coherent approach to resolving the challenges they face. As a result, there is a high level of optimism in view of the unprecedented opportunities for substantial progress. In preparation of the 2015 US Nuclear Science Long Range Plan (LRP), the two American Physical Society Division of Nuclear Physics town meetings on LENP and NAP were held jointly on August 21-23, 2014, at Texas A&M, College Station, in Texas. These meetings were co-organized to take advantage of the strong synergy between the two fields. The present White Paper attempts to communicate the sense of great anticipation and enthusiasm that came out of these meetings. A unanimously endorsed set of joint resolutions condensed from the individual recommendations of the two town meetings were agreed upon. The present LENP White Paper discusses the above and summarizes in detail for each of the sub-fields within low-energy nuclear physics, the major accomplishments since the last LRP, the compelling near-term and long-term scientific opportunities plus the resources needed to achieve these goals, along with the scientific impact on, and interdisciplinary connections to, other fields.
Evaluating nuclear physics inputs in core-collapse supernova models
NASA Astrophysics Data System (ADS)
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudley, H.C.
1976-01-01
One of the main objectives of this volume is to analyze certain bizarre developments in science, particularly physics, which have made their appearance since radioactivity was discovered, some 80 years ago. These changes in the basic ways of going about the business of science are the counterpart of the equally bizarre changes in political and economic climates which have occurred during the same period. This volume has three purposes: (1) to pose the question, ''Is it morally acceptable for the great majority of mankind to be forced to depend for their safety on a very special brand of mathematical gymnasticsmore » which physicists use in their solution of nuclear problems''; (2) to examine the historical development of the means by which physicists interpret the very visible effects of nuclear reactions; and (3) to focus attention on certain concepts that were universally accepted by older scientists as being logically necessary to explain much of the workings of the physical world. For many, many years there have been scientific arguments and learned discussions between ''etherists'' and ''non-etherists.'' This volume is an attempt to feed back into an earlier (pre 1920) climate of opinion, that which has developed out of the current ''Information Explosion.'' A scientific revolution of unprecendented magnitude, which had its beginning about 1950, is about at its mid-way point now. (MCW)« less
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
Intriguing Trends in Nuclear Physics Articles Authorship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.
75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...
Nuclear Physics of neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
2015-04-01
One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.
Contributions to the NUCLEI SciDAC-3 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogner, Scott; Nazarewicz, Witek
This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less
Physics Division progress report for period ending June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco
2008-11-01
The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.
Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging
NASA Astrophysics Data System (ADS)
Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.
2016-04-01
Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.
Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Jr., P. B.; Erickson, A. S.; Mayer, Michael F.
Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less
Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging
Rose, P. B.; Erickson, A. S.; Mayer, M.; ...
2016-04-18
Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less
Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging
Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.
2016-01-01
Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications. PMID:27087555
Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.
Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I
2016-04-18
Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.
Quantum Mechanics - Fundamentals and Applications to Technology
NASA Astrophysics Data System (ADS)
Singh, Jasprit
1996-10-01
Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
Recent developments for realistic solar models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serenelli, Aldo M.
2014-05-02
The 'solar abundance problem' has triggered a renewed interest in revising the concept of SSM from different perspectives: 1) constituent microphysics: equation of state, nuclear rates, radiative opacities; 2) constituent macrophysics: the physical processes impact the evolution of the Sun and its present-day structure, e.g. dynamical processes induced by rotation, presence of magnetic fields; 3) challenge the hypothesis that the young Sun was chemically homogeneous: the possible interaction of the young Sun with its protoplanetary disk. Here, I briefly review and then present a (personal) view on recent advances and developments on solar modeling, part of them carried out asmore » attempts to solve the solar abundance problem.« less
Status and Prospects of Hirfl Experiments on Nuclear Physics
NASA Astrophysics Data System (ADS)
Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpeshin, F. F., E-mail: fkarpeshin@gmail.com; Trzhaskovskaya, M. B.
2015-09-15
Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at anmore » energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.« less
Excitation of the 229 m Th nuclear isomer via resonance conversion in ionized atoms
NASA Astrophysics Data System (ADS)
Karpeshin, F. F.; Trzhaskovskaya, M. B.
2015-09-01
Pressing problems concerning the optical pumping of the 7.6-eV 229 m Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8 s-7 s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7 s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
Hadronic and nuclear interactions in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less
Introduction to Nuclear Physics (4/4)
Goutte, D.
2018-05-04
The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.
76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in...
75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics.... Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November...
Early history of neutron scattering at oak ridge
NASA Astrophysics Data System (ADS)
Wilkinson, M. K.
1986-03-01
Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world.
Radiobiological research at JINR's accelerators
NASA Astrophysics Data System (ADS)
Krasavin, E. A.
2016-04-01
The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.
Nuclear Physics Research at ELI-NP
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2018-05-01
The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.
AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.
Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J
2015-09-08
The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.
AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training
Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.
2015-01-01
The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325
PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy
NASA Astrophysics Data System (ADS)
Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.
2014-07-01
This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello, L E Marcucci, S Rosati
NASA Astrophysics Data System (ADS)
Ehlmann, Bryon K.
Current scientific experiments are often characterized by massive amounts of very complex data and the need for complex data analysis software. Object-oriented database (OODB) systems have the potential of improving the description of the structure and semantics of this data and of integrating the analysis software with the data. This dissertation results from research to enhance OODB functionality and methodology to support scientific databases (SDBs) and, more specifically, to support a nuclear physics experiments database for the Continuous Electron Beam Accelerator Facility (CEBAF). This research to date has identified a number of problems related to the practical application of OODB technology to the conceptual design of the CEBAF experiments database and other SDBs: the lack of a generally accepted OODB design methodology, the lack of a standard OODB model, the lack of a clear conceptual level in existing OODB models, and the limited support in existing OODB systems for many common object relationships inherent in SDBs. To address these problems, the dissertation describes an Object-Relationship Diagram (ORD) and an Object-oriented Database Definition Language (ODDL) that provide tools that allow SDB design and development to proceed systematically and independently of existing OODB systems. These tools define multi-level, conceptual data models for SDB design, which incorporate a simple notation for describing common types of relationships that occur in SDBs. ODDL allows these relationships and other desirable SDB capabilities to be supported by an extended OODB system. A conceptual model of the CEBAF experiments database is presented in terms of ORDs and the ODDL to demonstrate their functionality and use and provide a foundation for future development of experimental nuclear physics software using an OODB approach.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... may be addressed to: Dr. Marc Garland, Program Manager, Office of Nuclear Physics, Office of Science... Management Division, Office of Nuclear Physics, Office of Science, U.S. Department of Energy, Germantown..., Office of Nuclear Physics, Office of Science. [FR Doc. 2013-05444 Filed 3-7-13; 8:45 am] BILLING CODE...
IAEA support to medical physics in nuclear medicine.
Meghzifene, Ahmed; Sgouros, George
2013-05-01
Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance
Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng
2011-01-01
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607
76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... of Energy and National Science Foundation's Nuclear Physics Office. Status of the Isotopes Program... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing at: http://www...
Novel scintillators and silicon photomultipliers for nuclear physics and applications
NASA Astrophysics Data System (ADS)
Jenkins, David
2015-06-01
Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.
Nuclear Physics in High School: what are the previous knowledge?
NASA Astrophysics Data System (ADS)
Pombo, F. de O.
2017-11-01
Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.
High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin
2014-06-01
Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.
Developing Discontinuous Galerkin Methods for Solving Multiphysics Problems in General Relativity
NASA Astrophysics Data System (ADS)
Kidder, Lawrence; Field, Scott; Teukolsky, Saul; Foucart, Francois; SXS Collaboration
2016-03-01
Multi-messenger observations of the merger of black hole-neutron star and neutron star-neutron star binaries, and of supernova explosions will probe fundamental physics inaccessible to terrestrial experiments. Modeling these systems requires a relativistic treatment of hydrodynamics, including magnetic fields, as well as neutrino transport and nuclear reactions. The accuracy, efficiency, and robustness of current codes that treat all of these problems is not sufficient to keep up with the observational needs. We are building a new numerical code that uses the Discontinuous Galerkin method with a task-based parallelization strategy, a promising combination that will allow multiphysics applications to be treated both accurately and efficiently on petascale and exascale machines. The code will scale to more than 100,000 cores for efficient exploration of the parameter space of potential sources and allowed physics, and the high-fidelity predictions needed to realize the promise of multi-messenger astronomy. I will discuss the current status of the development of this new code.
Statistical methods for nuclear material management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen W.M.; Bennett, C.A.
1988-12-01
This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
Nuclear cartography: patterns in binding energies and subatomic structure
NASA Astrophysics Data System (ADS)
Simpson, E. C.; Shelley, M.
2017-11-01
Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements around us were formed in stars. One way of visualising these nuclear properties is through the nuclide chart, which maps all nuclides as a function of their proton and neutron numbers. Here we use the nuclide chart to illustrate various aspects of nuclear physics, and present 3D visualisations of it produced as part of the binding blocks project.
Real Time Conference 2016 Overview
NASA Astrophysics Data System (ADS)
Luchetta, Adriano
2017-06-01
This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.
American Nuclear Society 1994 student conference eastern region
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.
Thirty years from now: future physics contributions in nuclear medicine.
Bailey, Dale L
2014-12-01
This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-04-01
The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure
ERIC Educational Resources Information Center
Simpson, E. C.; Shelley, M.
2017-01-01
Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…
75 FR 4879 - Juan E. Pérez Monté, M.D.; Confirmatory Order Modifying License (Effective Immediately)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... the Health Physics Society, and the Journal of Nuclear Medicine; and, 2. Dr. P[eacute]rez will also... national meetings of the Health Physics Society and the Society of Nuclear Medicine. If the request to make... following: Galenus (Puerto Rico), the Journal of the Health Physics Society, and the Journal of Nuclear...
Educational activities with a tandem accelerator
NASA Astrophysics Data System (ADS)
Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.
2018-05-01
Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.
The Nuclear Astrophysics Explorer
NASA Technical Reports Server (NTRS)
Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.
1989-01-01
The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.
NASA Astrophysics Data System (ADS)
Kocher, D. C.; Smith, J. S.
Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.
Overview of Nuclear Physics Data: Databases, Web Applications and Teaching Tools
NASA Astrophysics Data System (ADS)
McCutchan, Elizabeth
2017-01-01
The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, and authoritative data for use in pure and applied areas of nuclear science and engineering. This is accomplished by compiling, evaluating, and disseminating extensive datasets. Our main products include the Evaluated Nuclear Structure File (ENSDF) containing information on nuclear structure and decay properties and the Evaluated Nuclear Data File (ENDF) containing information on neutron-induced reactions. The National Nuclear Data Center (NNDC), through the website www.nndc.bnl.gov, provides web-based retrieval systems for these and many other databases. In addition, the NNDC hosts several on-line physics tools, useful for calculating various quantities relating to basic nuclear physics. In this talk, I will first introduce the quantities which are evaluated and recommended in our databases. I will then outline the searching capabilities which allow one to quickly and efficiently retrieve data. Finally, I will demonstrate how the database searches and web applications can provide effective teaching tools concerning the structure of nuclei and how they interact. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
Search for resonant states in 10C and 11C and their impact on the primordial 7Li abundance
NASA Astrophysics Data System (ADS)
Hammache, F.; Coc, A.; de Séréville, N.; Stefan, I.; Roussel, P.; Assié, M.; Audouin, L.; Beaumel, D.; Franchoo, S.; Fernandez-Dominguez, B.; Fox, S.; Hamadache, C.; Kiener, J.; Laird, A.; Le Crom, B.; Lefebvre-Schuhl, A.; Lefebvre, L.; Matea, I.; Matta, A.; Mavilla, G.; Mrazek, J.; Morfouace, P.; de Oliveira Santos, F.; Parikh, A.; Perrot, L.; Sanchez-Benitez, A. M.; Suzuki, D.; Tatischeff, V.; Ujic, P.; Vandebrouck, Marine
2018-01-01
The cosmological 7Li problem arises from the significant discrepancy of about a factor 3 between the predicted primordial 7Li abundance and the observed one. The main process for the production of 7Li during Big-Bang nucleosynthesis is the decay of 7Be. Many key nuclear reactions involved in the production and destruction of 7Be were investigated in attempt to explain the 7Li deficit but none of them led to successful conclusions. However, some authors suggested recently the possibility that the destruction of 7Be by 3He and 4He may reconcile the predictions and observations if missing resonant states in the compound nuclei 10C and 11C exist. Hence, a search of these missing resonant states in 10C and 11C was investigated at the Orsay Tandem-Alto facility through 10B(3He,t)10C and 11B(3He,t)11C charge-exchange reactions respectively. After a short overview of the cosmological 7Li problem from a nuclear physics point of view, a description of the Orsay experiment will be given as well as the obtained results and their impact on the 7Li problem.
PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)
NASA Astrophysics Data System (ADS)
Stoyanov, Chavdar; Dimitrova, Sevdalina
2014-09-01
The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in nuclear waste treatment. Nuclear methods for applications. A special session in honor of the late Mario Stoitsov, was also part of the program. Many colleagues of Mario from all over the world came to Varna to pay tribute to this prominent scientist and loyal friend. Several colleagues contributed to the organization of the School. We would like to thank them and especially the Scientific Secretary of the School Dr Elena Stefanova and the members of the Organizing Committee Dr Dimitar Tarpanov and Peter Zivkov for their cordiality and high level assistance. We are also grateful to Dr Jacek Dobaczewski, who reached out to the collaborators of Mario Stoitsov on behalf of the conference. Sofia, 20 March 2014 Co-chair persons of the Organizing Committee Prof Dr Sc Ch Stoyanov Prof Dr Sc S Dimitrova Details of the committees are available in the PDF.
Physics division annual report 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2007-03-12
This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less
Medical health physics: a review.
Vetter, Richard J
2004-05-01
Medical health physics is the profession dedicated to the protection of healthcare providers, members of the public, and patients from unwarranted radiation exposure. Medical health physicists must be knowledgeable in the principles of health physics and in the applications of radiation in medicine. Advances in medical health physics require the definition of problems, testing of hypotheses, and gathering of evidence to defend changes in health physics practice and to assist medical practitioners in making changes in their practices as appropriate. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples included in this review include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This review summarizes evidence that supports changes in consensus recommendations, regulations, and health physics practices associated with recent advances in radiology, nuclear medicine, and radiation oncology. Medical health physicists must continue to gather evidence to support intelligent but practical methods for protection of personnel, the public, and patients as modalities and applications evolve in the practice of medicine.
Medical health physics: a review.
Vetter, Richard J
2005-06-01
Medical health physics is the profession dedicated to the protection of healthcare providers, members of the public, and patients from unwarranted radiation exposure. Medical health physicists must be knowledgeable in the principles of health physics and in the applications of radiation in medicine. Advances in medical health physics require the definition of problems, testing of hypotheses, and gathering of evidence to defend changes in health physics practice and to assist medical practitioners in making changes in their practices as appropriate. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples included in this review include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This review summarizes evidence that supports changes in consensus recommendations, regulations, and health physics practices associated with recent advances in radiology, nuclear medicine, and radiation oncology. Medical health physicists must continue to gather evidence to support intelligent but practical methods for protection of personnel, the public, and patients as modalities and applications evolve in the practice of medicine.
NASA Astrophysics Data System (ADS)
Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.
2013-02-01
This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to the status of the equation of state, hyperonic and quark matter and neutrino physics, as well as the applications of nuclear structure in astrophysics, were also on the School's agenda. There were many discussions and questions both during and after presentations. An open and friendly atmosphere characterized our School, although different opinions quite often divided the participants. Many discussions continued during coffee breaks and excursions organized in the beautiful surroundings. We hope that this proceedings volume will be useful for future reference to both young scientists and senior researchers working in various fields of nuclear physics. We cannot end without expressing our many thanks to the National Authority for Scientific Research and the Romanian Academy (Elias Foundation) for their financial support. We acknowledge the Horia Hulubei National Institute of Physics and Nuclear Engineering and Bioterra University for their important contribution in organizing the School. Guest Editors D S Delion, N V Zamfir, A R Raduta and F Gulminelli First Week International Summer School on Nuclear Physics: First Week Second Week International Summer School on Nuclear Physics: Second Week Sponsors Sponsor logoSponsor logoSponsor logoSponsor logoSponsor logo
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical security standards. 110.44 Section 110.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Review of License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient...
Functional renormalization group and Kohn-Sham scheme in density functional theory
NASA Astrophysics Data System (ADS)
Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo
2018-04-01
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
Critical Resolution and Physical Dependenices of Supernovae: Stars in Heat and Under Pressure
NASA Astrophysics Data System (ADS)
Vartanyan, David; Burrows, Adam Seth
2017-01-01
For over five decades, the mechanism of explosion in core-collapse supernova continues to remain one of the last untoppled bastions in astrophysics, presenting both a technical and physical problem.Motivated by advances in computation and nuclear physics and the resilience of the core-collapse problem, collaborators Adam Burrows (Princeton), Joshua Dolence (LANL), and Aaron Skinner (LNL) have developed FORNAX - a highly parallelizable multidimensional supernova simulation code featuring an explicit hydrodynamic and radiation-transfer solver.We present the results (Vartanyan et. al 2016, Burrows et. al 2016, both in preparation) of a sequence of two-dimensional axisymmetric simulations of core-collapse supernovae using FORNAX, probing both progenitor mass dependence and the effect of physical inputs in explosiveness in our study on the revival of the stalled shock via the neutrino heating mechanism. We also performed a resolution study, testing spatial and energy group resolutions as well as compilation flags. We illustrate that, when the protoneutron star bounded by a stalled shock is close to the critical explosion condition (Burrows & Goshy 1993), small changes of order 10% in neutrino energies and luminosities can result in explosion, and that these effects couple nonlinearly.We show that many-body medium effects due to neutrino-nucleon scattering as well as inelastic neutrino-nucleon and neutrino-electron scattering are strongly favorable to earlier and more vigorous explosions by depositing energy in the gain region. Additionally, we probe the effects of a ray-by-ray+ transport solver (which does not include transverse velocity terms) employed by many groups and confirm that it artificially accelerates explosion (see also Skinner et. al 2016).In the coming year, we are gearing up for the first set of 3D simulations yet performed in the context of core-collapse supernovae employing 20 energy groups, and one of the most complete nuclear physics modules in the field with the ambitious goal of simulating supernova remants like Cas A. The current environment for core-collapse supernova provides for invigorating optimism that a robust explosion mechanism is within reach on graduate student lifetimes.
Homeland Security and Contraband Detection
NASA Astrophysics Data System (ADS)
Lanza, R. C.
Detection of contraband and illicit materials has become increasingly important, especially since the terrorist attacks in the United States on September 11, 2001. The nature of the detection problem embodies both physics issues and a set of operational constraints that limit the practical application of neutrons. The issue under consideration is detection of materials that are considered serious threats; these may include explosives; radioactive materials, fissile materials, and other materials associated with nuclear weapons, often referred to as special nuclear material (SNM). The overriding constraint is in the physics: systems must be based on clean physics; but unlike physics experiments, detection systems work under the limitation that materials must be identified nonintrusively, without interrupting the normal flow of commerce and with a high probability of detection and a low probability of false alarms. A great deal of work has been reported in the literature on neutron-based techniques for detecting explosives and drugs. The largest impetus by far for detecting explosives comes from aviation industry requirements for inspecting luggage and, to a lesser extent, cargo. The major alternative techniques are either X-ray-based or chemical trace detection methods that look for small traces of explosive residues. The limitations of the X-ray and trace methods in detecting explosives are well known, but currently (2008) it is safe to say that no neutron- or nuclear-based technique is being used routinely for security inspection, despite extensive development of these methods. Smuggling of nuclear materials has become a concern, and neutron techniques are particularly attractive for detecting them. Given the limitations of X-ray techniques and the need for SNM detection, it is now useful to reexamine neutron methodologies, particularly imaging. A significant number of neutron-based techniques have been proposed and are under development for security applications, especially SNM detection, but describing how they work is beyond the scope of the chapter. Instead, one particular approach to neutron imaging, neutron resonance radiography (NRR), is discussed in detail as it illustrates many of the issues connected with imaging and detection.
Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen
2012-01-01
Nuclear receptors (NRs) form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1thyroid hormone like, NR2HNF4-like, NR3estrogen like, NR4nerve growth factor IB-like, NR5fushi tarazu-F1 like, NR6germ cell nuclear factor like, and NR0knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may become a useful high throughput tool for both basic research and drug design. PMID:22363503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.; Hamilton, Steven P.; Jarrett, Michael G.
This report describes the performance improvements made to the VERA Core Simulator (VERA-CS) during FY2016. The development of the VERA Core Simulator has focused on the capability needed to deplete physical reactors and help solve various problems; this capability required the accurate simulation of many operating cycles of a nuclear power plant. The first section of this report introduces two test problems used to assess the run-time performance of VERA-CS using a source dated February 2016. The next section provides a brief overview of the major modifications made to decrease the computational cost. Following the descriptions of the major improvements,more » the run-time for each improvement is shown. Conclusions on the work are presented, and further follow-on performance improvements are suggested.« less
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Vavrek, Jayson R; Henderson, Brian S; Danagoulian, Areg
2018-04-24
Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618-8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy "genuine" and "hoax" objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Kothe, Douglas B.
2016-05-01
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry.
78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2010-0340; NRC-2009-0163] RIN 3150-AI64 Physical..., ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This revised document sets forth means... physical protection of spent nuclear fuel (SNF) during transportation by road, rail, and water; and for...
78 FR 69139 - Physical Security-Design Certification and Operating Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...
Application of nuclear physics in medical physics and nuclear medicine
NASA Astrophysics Data System (ADS)
Hoehr, Cornelia
2016-09-01
Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.
Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN
NASA Astrophysics Data System (ADS)
Talbot, Paul W.
As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many simulations, input design parameters and intrinsic experiment properties are sources of uncertainty. Often small perturbations in uncertain parameters have significant impact on the experiment outcome. For instance, in nuclear fuel performance, small changes in fuel thermal conductivity can greatly affect maximum stress on the surrounding cladding. The difficulty quantifying input uncertainty impact in such systems has grown with the complexity of numerical models. Traditionally, uncertainty quantification has been approached using random sampling methods like Monte Carlo. For some models, the input parametric space and corresponding response output space is sufficiently explored with few low-cost calculations. For other models, it is computationally costly to obtain good understanding of the output space. To combat the expense of random sampling, this research explores the possibilities of using advanced methods in Stochastic Collocation for generalized Polynomial Chaos (SCgPC) as an alternative to traditional uncertainty quantification techniques such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) methods for applications in nuclear engineering. We consider traditional SCgPC construction strategies as well as truncated polynomial spaces using Total Degree and Hyperbolic Cross constructions. We also consider applying anisotropy (unequal treatment of different dimensions) to the polynomial space, and offer methods whereby optimal levels of anisotropy can be approximated. We contribute development to existing adaptive polynomial construction strategies. Finally, we consider High-Dimensional Model Reduction (HDMR) expansions, using SCgPC representations for the subspace terms, and contribute new adaptive methods to construct them. We apply these methods on a series of models of increasing complexity. We use analytic models of various levels of complexity, then demonstrate performance on two engineering-scale problems: a single-physics nuclear reactor neutronics problem, and a multiphysics fuel cell problem coupling fuels performance and neutronics. Lastly, we demonstrate sensitivity analysis for a time-dependent fuels performance problem. We demonstrate the application of all the algorithms in RAVEN, a production-level uncertainty quantification framework.
Underground physics and the barometric pumping effect observed for thermal neutron flux underground
NASA Astrophysics Data System (ADS)
Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.
2017-05-01
It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.
Vladimir Naumovich Gribov (1930-1997)
NASA Astrophysics Data System (ADS)
Frenkel, Andor
V.N. Gribov was incapable of sparing himself. All his life he has acted as passionately, as intensively as he did in his youth when he worked with Landau and Pomeranchuk and led the Theoretical Physics Department of the Ioffe Institute and later of the Nuclear Physics Institute in Leningrad. For him "leading" meant just hiring the most talented students to join the institute and then engaging in merciless, endless but fruitful discussions with them on the problems they worked on. He did not care about who was right, he cared only about the right answer. Incidentally, only in physics did he push tirelessly to reach a decision. In conversations about literature or politics as a rule he argued mildly and kindly. Not that he did not have thoughtful and firm opinions about many questions, but because he seemed to realize that in these matters different points of view were arguable...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, G.F.; Janssens, R.V.
1997-07-01
An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}
Extraction study on uranyl nitrate for energy applications
NASA Astrophysics Data System (ADS)
Giri, R.; Nath, G.
2017-07-01
Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...
2016-04-13
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less
Analysis of physics-based preconditioning for single-phase subchannel equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansel, J. E.; Ragusa, J. C.; Allu, S.
2013-07-01
The (single-phase) subchannel approximations are used throughout nuclear engineering to provide an efficient flow simulation because the computational burden is much smaller than for computational fluid dynamics (CFD) simulations, and empirical relations have been developed and validated to provide accurate solutions in appropriate flow regimes. Here, the subchannel equations have been recast in a residual form suitable for a multi-physics framework. The Eigen spectrum of the Jacobian matrix, along with several potential physics-based preconditioning approaches, are evaluated, and the the potential for improved convergence from preconditioning is assessed. The physics-based preconditioner options include several forms of reduced equations that decouplemore » the subchannels by neglecting crossflow, conduction, and/or both turbulent momentum and energy exchange between subchannels. Eigen-scopy analysis shows that preconditioning moves clusters of eigenvalues away from zero and toward one. A test problem is run with and without preconditioning. Without preconditioning, the solution failed to converge using GMRES, but application of any of the preconditioners allowed the solution to converge. (authors)« less
Rydberg phases of Hydrogen and low energy nuclear reactions
NASA Astrophysics Data System (ADS)
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
NASA Astrophysics Data System (ADS)
Vizgin, Vladimir P.
1999-12-01
This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948.
NASA Astrophysics Data System (ADS)
2014-02-01
On 5 - 6 June 2013, an extended session of the all-institute seminar was held at the Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics' (ITEP). It was devoted to the 100th anniversary of the birth of Academician Isaak Yakovlevich Pomeranchuk, the founder of the Theory Department of ITEP. The announced agenda of the session on the ITEP website http://www.itep.ru/rus/Pomeranchuk100.html contained the following reports: (1) Gershtein S S (SRC 'Institute for High Energy Physics', Protvino, Moscow region) "I Ya Pomeranchuk and the large accelerator";(2) Keldysh L V (Lebedev Physical Institute, RAS (FIAN), Moscow) "Dynamic tunneling";(3) Vaks V G (National Research Centre 'Kurchatov Institute' (NRC KI), Moscow) "Brief reminiscences";(4) Smilga A V (Laboratoire Physique Subatomique et des technologies associées, Université de Nantes, France) "Vacuum structure in 3D supersymmetric gauge theories";(5) Khriplovich I B (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Gravitational four-fermion interaction and early Universe dynamics";(6) Dremin I M (FIAN, Moscow) "Elastic scattering of hadrons";(7) Belavin A A (Landau Institute of Theoretical Physics, RAS, Moscow) "Correlators in minimal string models";(8) Voloshin M B (Theoretical Physics Institute, University of Minnesota, USA) "Exotic quarkonium";(9) Nekrasov N A (Institut des hautes études scientifiques (IHES), France) "BPS/CFT correspondence";(10) Zarembo K (Uppsala Universitet, Sweden) "Exact results in supersymmetric theories and AdS/CFT correspondence";(11) Gorsky A S (ITEP, Moscow) "Baryon as a dyon instanton";(12) Blinnikov S I (ITEP, Moscow) "Mirror substance and other models for dark matter";(13) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Test-tube Universe";(14) Kancheli O V (ITEP, Moscow) "50 years of reggistics";(15) Shevchenko V I (NRC KI) "In search of the chiral magnetic effect";(16) Kirilin V P (ITEP, Moscow) "Anomalies and long-range action";(17) Narozhny N B (National Research Nuclear University 'MEPhI', Moscow) "Superpower lasers as instruments for studying the properties of vacuum";(18) Kerbikov B O (ITEP, Moscow) "Hadrons in strong magnetic fields";(19) Neznamov V P, Safronov I I (Russian Federal Nuclear Center - All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), Sarov, Nizhny Novgorod region) "A new method for solving the 'Z > 137' problem and determining hydrogen-like energy levels";(20) Vysotsky M I, Godunov S I (ITEP, Moscow) "Critical charge in a superstrong magnetic field";(21) Dolgov A D (Universitè degli Studi di Ferrara, Italy) "Cosmology: from Pomeranchuk to the present day".Papers written around the reports Nos 4, 5, 11, 12, 19 - 21 are published below. The content of report 6 in an extended form is reflected in I M Dremin's 2013 review of the same title published in Phys. Usp. 56 3 (2013). An extended version of report 13 is published in the present issue of Phys. Usp. 57 128 (2014). • Vacuum structure in 3D supersymmetric gauge theories, A V Smilga Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 155-166 • Gravitational four-fermion interaction in the early Universe, A S Rudenko, I B Khriplovich Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 167-170 • Limit cycles in renormalization group dynamics, K M Bulycheva, A S Gorsky Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 171-182 • Mirror matter and other dark matter models, S I Blinnikov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 183-188 • New method for solving the Z>137 problem and determining hydrogen-like energy levels, V P Neznamov, I I Safronov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 189-193 • Critical charge in a superstrong magnetic field, M I Vysotskii, S I Godunov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 194-198 • Cosmology: from Pomeranchuk to the present day, A D Dolgov Physics-Uspekhi, 2014, Volume 57, Number 2, Pages 199-208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Robert P.; Miller, Paul; Howley, Kirsten
The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less
A review of the Los Alamos effort in the development of nuclear rocket propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, F.P.; Kirk, W.L.; Bohl, R.J.
1991-01-01
This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-01
Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.
America COMPETES Act and the FY2010 Budget
2009-06-15
Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development...Spallation Neutron Source Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this...Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing
Psychosocial problems in families of children with cancer.
Rajajee, Sarala; Ezhilarasi, S; Indumathi, D
2007-09-01
The aim of this study is to assess the effect of diagnosis of cancer on the parents, to study the coping response adopted by the child and the family and to evolve counseling strategies. Prospective questionnaire based. Thirty-four parents of children suffering from cancer were included, of which 15 belonged to joint families and 19 to nuclear families. The family support played an important role in giving emotional sustenance, besides shared care of the child, the sibling and the household. Emotional and psychological impact was maximum on the mothers. Siblings of the cancer child were also affected both by way of behaviour problems and school performance. Behaviour problems in the cancer child included temper tantrums, as also verbal and physical abuse of mothers. Group therapy was useful for sharing emotional trauma and exchanging day to day problems of childcare. Positive outlook helped in better care of the cancer child. The family structure was the foundation for emotional and psychological security. Psychological support by professional tumour support group would enhance this.
How a Physicist Can Add Value In the Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Poitzsch, Martin
2011-03-01
The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio management, and more recently, management of applied physics research for evaluating reservoir rocks and fluids and enhancing the productivity of reservoirs.
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
The recent history of theoretical investigations of the supernova mechanism is considered, giving attention also to a number of nuclear physical problems which have yet to be solved in connection with the thermonuclear detonation. A variety of different processes of nucleo-synthesis are expected to occur in association with the supernova explosions. Aspects of the chemical evolution of the galaxy are discussed including the cosmic ray production of lithium, beryllium, and boron in the interstellar medium. Various hypotheses to account for the very large amount of light that comes from a supernova explosion are also examined.
NASA Astrophysics Data System (ADS)
Cassette, P.; Bouchard, J.; Chauvenet, B.
1994-01-01
Iodine-129 is a long-lived fission product, with physical and chemical properties that make it a good candidate for evaluating the environmental impact of the nuclear energy fuel cycle. To avoid solid source preparation problems, liquid scintillation has been used to standardize this nuclide for a EUROMET intercomparison. Two methods were used to measure the iodine-129 activity: triple-to-double-coincidence ratio liquid scintillation counting and 4π β-γ coincidence counting; the results are in good agreement.
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
NASA Astrophysics Data System (ADS)
Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.; Shubin, Yu. N.
2001-11-01
General problems arising in development of intense neutron sources as a part of accelerator-driven systems and first experience accumulated in IPPE during last several years are briefly discussed. The calculation and analysis of nuclear-physical properties of the targets, such as the accumulation of spallation reaction products, activity and heat release for various versions of heavy liquid metal targets were performed in IPPE. The sensitivity of the results of calculations to the various sets of nuclear data was considered. The main radiology characteristics of the lead-bismuth target, which is now under construction in the frame of ISTC Project # 559, are briefly described. The production of short-lived nuclides was estimated, the total activity and volatile nuclide accumulation, residual heat release, the energies of various decay modes were analysed.
The Application of High Energy Resolution Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.
2012-04-01
Radiation detectors installed at key interdiction points provide defense against nuclear smuggling attempts by scanning vehicles and traffic for illicit nuclear material. These hypothetical threat scenarios may be modeled using radiation transport simulations. However, high-fidelity models are computationally intensive. Furthermore, the range of smuggler attributes and detector technologies create a large problem space not easily overcome by brute-force methods. Previous research has demonstrated that decomposing the scenario into independently simulated components using Green's functions can simulate photon detector signals with coarse energy resolution. This paper extends this methodology by presenting physics enhancements and numerical treatments which allow for an arbitrary level of energy resolution for photon transport. As a result, spectroscopic detector signals produced from full forward transport simulations can be replicated while requiring multiple orders of magnitude less computation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swazo, S.
The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less
Culley, Marci R; Angelique, Holly
2010-06-01
Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-01-01
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-02-03
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.
Significance of breeding in fast nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, S.M.; Abidi, S.B.M.
1983-12-01
Only breeder reactors--nuclear power plants that produce more fuel than they consume--are capable in principle of extracting the maximum amount of fission energy contained in uranium ore, thus offering a practical long-term solution to uranium supply problems. Uranium would then constitute a virtually inexhaustible fuel reserve for the world's future energy needs. The ultimate argument for breeding is to conserve the energy resources available to mankind. A long-term role for nuclear power with fast reactors is proven to be economically viable, environmentally acceptable and capable of wide scale exploitation in many countries. In this paper, various suggestions pertaining to themore » fuel fabrication route, fuel cycle economics, studies of the physics of fast nuclear reactors and of engineering design simplifications are presented. Fast reactors contain no moderator and inherently require enriched fuel. In general, the main aim is to suggest an improvement in the understanding of the safety and control characteristics of fast breeder power reactors. Development work is also being devoted to new carbide and nitride fuels, which are likely to exhibit breeding characteristics superior to those of the oxides of plutonium and uranium.« less
Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.
2012-10-01
In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly moremore » complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.« less
Marie Curie: the Curie Institute in Senegal to Nuclear Physics
NASA Astrophysics Data System (ADS)
Gueye, Paul
Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.
White Paper on Nuclear Data Needs and Capabilities for Basic Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batchelder, J.; Kawano, T.; Kelley, J.
Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less
Pika: A snow science simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.; Johnson, M.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
List of Organizing Committees and Conference Programme
NASA Astrophysics Data System (ADS)
2012-03-01
Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.
Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.
NASA Astrophysics Data System (ADS)
Montazeri, A.; West, C.; Monk, S. D.; Taylor, C. J.
2017-04-01
This paper concerns the problem of dynamic modelling and parameter estimation for a seven degree of freedom hydraulic manipulator. The laboratory example is a dual-manipulator mobile robotic platform used for research into nuclear decommissioning. In contrast to earlier control model-orientated research using the same machine, the paper develops a nonlinear, mechanistic simulation model that can subsequently be used to investigate physically meaningful disturbances. The second contribution is to optimise the parameters of the new model, i.e. to determine reliable estimates of the physical parameters of a complex robotic arm which are not known in advance. To address the nonlinear and non-convex nature of the problem, the research relies on the multi-objectivisation of an output error single-performance index. The developed algorithm utilises a multi-objective genetic algorithm (GA) in order to find a proper solution. The performance of the model and the GA is evaluated using both simulated (i.e. with a known set of 'true' parameters) and experimental data. Both simulation and experimental results show that multi-objectivisation has improved convergence of the estimated parameters compared to the single-objective output error problem formulation. This is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the inherent structure of the multi-objective GA for this specific system identification problem.
The role of the health physicist in nuclear security.
Waller, Edward J; van Maanen, Jim
2015-04-01
Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.
The Role of the Health Physicist in Nuclear Security
Waller, Edward J.; van Maanen, Jim
2015-01-01
Abstract Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards. PMID:25706142
Nuclear physics experiments with low cost instrumentation
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz
2016-11-01
One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.
Nucleology, nuclear medicine, molecular nuclear medicine and subspecialties.
Grammaticos, Philip C
2005-01-01
Henry N. Wagner Jr started the presentation of the highlights of the 39th Annual Meeting of the Society of Nuclear Medicine by quoting: "The economist JM Keynes said: "the difficult lies not in new ideas but in escaping from the old ones". Many changes have taken place in the actual term describing our specialty during the last 15 years. Cardiologists have adopted an important chapter of nuclear medicine and to describe that they use the term of "nuclear cardiology". Radiologists have proposed the term "radionuclide radiology". "Nuclear endocrinology", "nuclear oncology", "nuclear nephrology" may be considered as terms describing chapters of nuclear medicine related to other specialties. Will that indicate that our specialty will be divided into smaller chapters and be offered to colleagues working in other specialties leaving to us the role of the supervisor or perhaps the radioprotection officer for in vivo studies? Of course this role is now being exercised by our colleagues in medical physics. It is suggested to use the word " nucleology", instead of "nuclear medicine" where "nuclear" is used as an adjective. Thus, we will avoid being part of another specialty and cardiologists would use the term cardiac nucleology where "cardiac" is the adjective. The proposed term "nucleology" as compared to the existing term "nuclear medicine" has the advantage of being simpler, correct from the grammar point of view and not related to combined terms that may seem to offer part of our specialty to other specialties. At present our specialty faces many problems. The term "nucleology" supports our specialty from the point of view of terminology. During the 3rd International Meeting of Nuclear Medicine of N. Greece which was held in Thessaloniki, Macedonia, Greece on 4-6 November 2005, a discussion arose among participants as to whether the name of "nucleology" could replace the existing name of "nuclear medicine". Finally, a vote (between "yes" and "no") for the new proposed term showed that the "yes" votes were 72 and the "no" votes were 49.
Hans Bethe, Powering the Stars, and Nuclear Physics
dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joe; Carpenter, Michael P.; Casten, Richard
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
Carlson, Joe; Carpenter, Michael P.; Casten, Richard; ...
2017-01-04
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
Nuclear astrophysics in the laboratory and in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.
Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )
Nuclear Physics Made Very, Very Easy
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1968-01-01
The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.
Rare Isotopes Physics in the Multimessenger Era
NASA Astrophysics Data System (ADS)
Schatz, Hendrik
2018-06-01
While these isotopes only exist for fractions of seconds, their properties shape the resulting cosmic distribution of elements and the astronomical observables including spectra, neutrinos, and gravitational waves. The long standing challenge in nuclear astrophysics of the production of the relevant isotopes in the laboratory is now overcome with a new generation of rare isotope accelerator facilities now coming online. One example is the FRIB facility under construction at Michigan State University for the US Department of Energy, Office of Science, Office of Nuclear Physics. These new capabilities in nuclear physics coincide with advances in astronomy directly related to the cosmic sites where these isotopes are created, in particular in time domain and gravitational wave astronomy. I will discuss the importance of rare isotope physics in interpreting multi-messenger observations and how advances in nuclear physics and astronomy when combined promise to lead us towards a comprehensive theory of the origin of the elements.
PREFACE: Advanced many-body and statistical methods in mesoscopic systems
NASA Astrophysics Data System (ADS)
Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe
2012-02-01
It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius University (where the conference took place), the Academy of Romanian Scientists and the Romanian National Authority for Scientific Research. This conference proceedings volume brings together some of the invited and contributed talks of the conference. The hope of the editors is that they will constitute reference material for applying many-body techniques to problems in mesoscopic and nuclear physics. We thank all the participants for their contribution to the success of this conference. D V Anghel and D S Delion IFIN-HH, Bucharest, Romania G S Paraoanu Aalto University, Finland Conference photograph
New Technological Platform for the National Nuclear Energy Strategy Development
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Rachkov, V. I.
2017-12-01
The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
The threat of nuclear war: Some responses
Marcattilio, A. J. M.; Nevin, John A.
1986-01-01
The possibility of nuclear holocaust threatens the very existence of the world community. Biologists, earth scientists, educators, lawyers, philosophers, physicists, physicians, and social scientists have addressed the problem from their special perspectives, and have had substantial impact on the public. Behavior analysts, however, have not as a whole contributed a great deal to the goal of preventing nuclear catastrophe. We argue that the threat of nuclear war is primarily a behavioral problem, and present an analysis of that problem. In addition, we address the difficulty of implementing behavioral interventions that would contribute to the survival of the World. PMID:22478648
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled reactor that was operated from... the safeguards contingency plan.'' Part 73 of 10 CFR, ``Physical Protection of Plant and Materials... physical protection system which will have capabilities for the protection of special nuclear material at...
ERIC Educational Resources Information Center
Haynes, Gail E.
1991-01-01
A third-semester physics course that covers the topics of atomic physics, the theory of relativity, and nuclear energy is described. Activities that include the phenomenon of radioactivity, field trips to a nuclear power plant, a simulation of a chain reaction, and comparing the size of atomic particles are presented. (KR)
NASA Astrophysics Data System (ADS)
Caruana, C. J.
2011-09-01
The objectives of EC project 'Guidelines on Medical Physics Expert' are to provide for improved implementation of the provisions relating to the Medical Physics Expert within Council Directive 97/43/EURATOM and the proposed recast Basic Safety Standards directive. This includes harmonisation of the mission statement for Medical Physics Services as well as the education and training of the MPE. It also includes detailed knowledge-skills-competence inventories for the Medical Physics Expert in each of Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy. This paper presents the proposed Qualification and Curriculum Frameworks and their application to the Medical Physics Expert in Nuclear Medicine.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Present and future prospects of accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
Kutschera, Walter
1988-05-01
Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.
The America COMPETES Act and the FY2009 Budget
2008-10-17
Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced...Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.20 The DOE Summer Institutes authorization in the act is $20 million in FY2009...corresponds to pre-existing High Energy Physics Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma
A Random Variable Approach to Nuclear Targeting and Survivability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Undem, Halvor A.
We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, P.H.
The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
Physics Applied to Oil and Gas Exploration
NASA Astrophysics Data System (ADS)
Schwartz, Larry
2002-03-01
Problems involving transport in porous media are of interest throughout the fields of petroleum exploration and environmental monitoring and remediation. The systems being studied can vary in size from centimeter scale rock or soil samples to kilometer scale reservoirs and aquifers. Clearly, the smaller the sample the more easily can the medium's structure and composition be characterized, and the better defined are the associated experimental and theoretical modeling problems. The study of transport in such geological systems is then similar to corresponding problems in the study of other heterogeneous systems such as polymer gels, catalytic beds and cementitious materials. The defining characteristic of porous media is that they are comprised of two percolating interconnected channels, the solid and pore networks. Transport processes of interest in such systems typically involve the flow of electrical current, viscous fluids or fine grained particles. A closely related phenomena, nuclear magnetic resonance (NMR), is controlled by diffusion in the pore network. Also of interest is the highly non-linear character of the stress-strain response of granular porous media. We will review the development of two and three dimensional model porous media, and will outline the calculation of their physical properties. We will also discuss the direct measurement of the pore structure by synchrotron X-ray microtomography.
NASA Astrophysics Data System (ADS)
2016-11-01
A year has passed since Raymond left us, but for many of us it seems like it was yesterday. Indeed, since his departure last July, not a week or even a day has gone by without his former collaborators, students, colleagues having a thought for him. Some initiatives have already been taken in order to celebrate Raymond's memory. The special day for Raymond organized at CERN last December was an opportunity to celebrate this exceptional man. In Annecy, with the implication of CERN and Marseille and thanks to a spontaneous and generous gift of Raymond's wife Marie-Françoise and their children Olivier and Thierry, the opening of a special room containing a huge collection of scientific books of Raymond is almost completed. It is in the same spirit that the present editors decided to dedicate a special issue of Nuclear Physics in memory of Raymond. In the following pages, some important problems Raymond was interested in are presented, discussed and sometimes solved. The diversity of topics in this issue reflects well the extent of Raymond's interests in Physics and Mathematics. Raymond was not only a gifted man for the so-called theoretical sciences, mathematics and physics, but he was also passionate about arts, music, drawing and of course literature, just as he was a leader always ready to bring his help and share his deep knowledge in physics and mathematics with others. Many people were deeply touched by Paul Sorba's tribute during Raymond's funeral. This is why we asked Paul to translate his speech, originally given in French, which seemed to us a perfect Prolegomena for this special volume of Nuclear Physics. The volume "Mathematical Foundations of Quantum Field Theory" is organized as follows: General and historical contributions
NRV web knowledge base on low-energy nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.
Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip
2008-03-01
This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerningmore » the physical protection for the transportation of nuclear fuel materials.« less
Control rod calibration and reactivity effects at the IPEN/MB-01 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos
2014-11-11
Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less
Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities
NASA Astrophysics Data System (ADS)
Sakaguchi, H.; Zenihiro, J.
2017-11-01
Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vavrek, Jayson R.; Henderson, Brian S.; Danagoulian, Areg
Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618–8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal frommore » the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here in this paper we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy “genuine” and “hoax” objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.« less
Vavrek, Jayson R.; Henderson, Brian S.; Danagoulian, Areg
2018-04-10
Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618–8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal frommore » the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here in this paper we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy “genuine” and “hoax” objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.« less
NASA Astrophysics Data System (ADS)
2014-12-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243
Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.
ERIC Educational Resources Information Center
American Nuclear Society, La Grange Park, IL.
This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…
Importance of Nuclear Physics to NASA's Space Missions
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.
Investigation Of Vapor Explosion Mechanisms Using High Speed Photography
NASA Astrophysics Data System (ADS)
Armstrong, Donn R.; Anderson, Richard P.
1983-03-01
The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.
Target with a frozen nuclear polarization for experiments at low energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisov, N.S.; Matafonov, V.N.; Neganov, A.B.
1995-09-01
The short history of the development of frozen spin polarized targets at the Laboratory of Nuclear Problems JINR is given. The latest development is the target with a frozen spin polarization of protons in 1,2- propanediol with a paramagnetic Cr{sup {ital V}} impurity, intended for polarization parameter studies in np-scattering at approximately 15 MeV neutron energy. The target of cylindrical shape of 2 cm diameter and 6 cm long with an initial polarization of 95{plus_minus}3{percent} obtainable by the dynamic polarization technique is placed at a temperature about 20 mK in a magnetic field of 0.37 T generated by a magneticmore » system, which provides a large aperture for scattered particles. The relaxation time for the spin polarization is about 1000 hours. {copyright} {ital 1995 American Institute of Physics.}« less
Advances in Nuclear Monitoring Technologies
NASA Astrophysics Data System (ADS)
Park, Brent
2006-03-01
Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.
SNM-DAT: Simulation of a heterogeneous network for nuclear border security
NASA Astrophysics Data System (ADS)
Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.
2007-08-01
We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.
Nuclear physics in particle therapy: a review
NASA Astrophysics Data System (ADS)
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Nuclear physics in particle therapy: a review.
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Accelerating Innovation: How Nuclear Physics Benefits Us All
DOE R&D Accomplishments Database
2011-01-01
Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.
Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.
This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Danneels, Jeffrey John
2009-03-01
Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Grant; Keegan, E.; Young, E.
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Griffiths, Grant; Keegan, E.; Young, E.; ...
2018-01-06
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redondo, Antonio
2010-01-01
The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, ourmore » opinion of the overall status of the theme area, and challenges and issues.« less
Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.
Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...
2016-12-28
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less
White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcones, Almudena; Escher, Jutta E.; Others, M.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9more » - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.« less
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
NASA Astrophysics Data System (ADS)
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael
2017-05-01
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
Reexamining the Ethics of Nuclear Technology.
Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor
2015-08-01
This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.
Photoneutron Reaction Data for Nuclear Physics and Astrophysics
NASA Astrophysics Data System (ADS)
Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji
2018-05-01
We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).
NASA Astrophysics Data System (ADS)
Ubben, Malte; Heusler, Stefan
2018-07-01
Vibration modes in spherical geometry can be classified based on the number and position of nodal planes. However, the geometry of these planes is non-trivial and cannot be easily displayed in two dimensions. We present 3D-printed models of those vibration modes, enabling a haptic approach for understanding essential features of bound states in quantum physics and beyond. In particular, when applied to atomic physics, atomic orbitals are obtained in a natural manner. Applied to nuclear physics, the same patterns of vibration modes emerge as cornerstone for the nuclear shell model. These applications of the very same model in a range of more than 5 orders of magnitude in length scales leads to a general discussion of the applicability and limits of validity of physical models in general.
NASA Astrophysics Data System (ADS)
Trifonenkov, A. V.; Trifonenkov, V. P.
2017-01-01
This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.
Computing Interactions Of Free-Space Radiation With Matter
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.; Townsend, L. W.; Badavi, F. F.; Tripathi, R. K.; Silberberg, R.; Tsao, C. H.; Badwar, G. D.
1995-01-01
High Charge and Energy Transport (HZETRN) computer program computationally efficient, user-friendly package of software adressing problem of transport of, and shielding against, radiation in free space. Designed as "black box" for design engineers not concerned with physics of underlying atomic and nuclear radiation processes in free-space environment, but rather primarily interested in obtaining fast and accurate dosimetric information for design and construction of modules and devices for use in free space. Computational efficiency achieved by unique algorithm based on deterministic approach to solution of Boltzmann equation rather than computationally intensive statistical Monte Carlo method. Written in FORTRAN.
Arcsec source location measurements in gamma-ray astronomy from a lunar observatory
NASA Astrophysics Data System (ADS)
Koch, D. G.; Hughes, B. E.
1990-03-01
The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.
An extrapolation scheme for solid-state NMR chemical shift calculations
NASA Astrophysics Data System (ADS)
Nakajima, Takahito
2017-06-01
Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.
A useful observable for estimating keff in fast subcritical systems
NASA Astrophysics Data System (ADS)
Saracco, Paolo; Borreani, Walter; Chersola, Davide; Lomonaco, Guglielmo; Ricco, Gianni; Ripani, Marco
2017-09-01
The neutron multiplication factor keff is a key quantity to characterize subcritical neutron multiplying devices and for understanting their physical behaviour, being related to the fundamental eigenvalue of Boltzmann transport equation. Both the maximum available power - and all quantities related to it, like, e.g. the effectiveness in burning nuclear wastes - as well as reactor kinetics and dynamics depend on keff. Nevertheless, keff is not directly measurable and its determination results from the solution of an inverse problem: minimizing model dependence of the solution for keff then becomes a critical issue, relevant both for practical and theoretical reasons.
Improved models of stellar core collapse and still no explosions: what is missing?
Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K
2003-06-20
Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.
NASA Astrophysics Data System (ADS)
2014-05-01
A scientific session "Prospects of Studies in Neutrino Particle Physics and Astrophysics," of the Physical Sciences Division of the Russian Academy of Sciences (DPS RAS), devoted to the centenary of B M Pontecorvo, was held on 2-3 September 2014 at the JINR international conference hall (Dubna, Moscow region).The following reports were put on the session agenda as posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow; Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region; National Research Nuclear University MEPhI, Moscow) "Long-baseline neutrino accelerator experiments: results and prospects";(2) Spiering Ch (Deutsches Elektronen-Synchrotron (DESY), Germany) "Results obtained by ICECUBE and prospects of neutrino astronomy";(3) Barabash A S (Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "Double beta decay experiments: current status and prospects";(4) Bilenky S M (Joint Institute for Nuclear Research, Dubna, Moscow region; Technische Universitat M'unchen, Garching, Germany) "Bruno Pontecorvo and the neutrino";(5) Olshevskiy A G (Joint Institute for Nuclear Research, Dubna, Moscow region) "Reactor neutrino experiments: results and prospects";(6) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Low-energy neutrino research at the Baksan Neutrino Laboratory";(7) Gorbunov D S (Institute for Nuclear Research, RAS, Moscow): "Sterile neutrinos and their role in particle physics and cosmology";(8) Derbin A V (Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad region) "Solar neutrino experiments";(9) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Prospects of studies in the field of neutrino particle physics and astrophysics." An article by V N Gavrin, close in essence to talk 6, was published in Usp. Fiz. Nauk 181 (9), 975 (2011) [Phys. Usp. 54 (9) 941 (2011)]. Articles by V A Rubakov, close in essence to talk 9, were published in Usp. Fiz. Nauk 182 (10) 1017 (2012); 181 (6) 655 (2011) [Phys. Usp. 55 (10) 949 (2012); 54 (6) 633 (2011)]. Articles based on talks 1-5, 7, and 8 are published below. • Long-baseline neutrino accelerator experiments: results and prospects, Yu G Kudenko Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 462-469 • High-energy neutrino astronomy: a glimpse of the promised land, Ch Spiering Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 470-481 • Double beta decay experiments: current status and prospects, A S Barabash Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 482-488 • Bruno Pontecorvo and the neutrino, S M Bilenky Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 489-496 • Reactor neutrino experiments: results and prospects, A G Olshevskiy Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 497-502 • Sterile neutrinos and their role in particle physics and cosmology, D S Gorbunov Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 503-511 • Solar neutrino experiments, A V Derbin Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 512-524
Marshak Lectureship Talk: Women in Physics in Egypt and the Arab World
NASA Astrophysics Data System (ADS)
El Sayed, Karimat
2009-03-01
Until the end of the 19th Century Science was not classified into different disciplines. The first woman named in the history of science was Merit Ptah (2700 BC) in Egypt's Valley of the Kings. In the new Egypt the first girl's school started in Cairo in 1873 and the first University in 1908. Only a few girls attended the University at that time, mainly studying the humanities. The first Egyptian woman physicist graduated in 1940 and received her PhD in nuclear physics in the USA. Nowadays the number of women in physics is increasing in all branches of physics, some of them are senior managers and others have been decorated with various prizes. In this talk some statistics will be given to show the percentage of women in physics in relation to other fields of science in Egypt. In Saudi Arabia the first girls' school started in 1964 and the first college for women, which was a section of King Abdul-Aziz University (where education is not mixed), started in 1975. I was the founder of the Physics Department of this women's section. Egyptians have played significant roles in teaching schoolchildren and university students of both sexes in all the Arab countries: Saudi Arabia, Sudan, Kuwait, Yemen, the Gulf States, Libya, Lebanon, Syria, and Jordan. But with respect to Algeria, Tunisia and Morocco, our role was limited, since classes are taught in French. Arab women living in the countries located east of Egypt still have many difficulties facing them, needing to overcome many technical, academic, and social problems, while women in the countries located west of Egypt have fewer problems. There were many problems in the early days of education in Egypt but the women of Egypt worked hard to gain the same rights as men and were able to pave the way for all Arab women. I myself met many difficulties in my early days. This talk will also describe the impact of the regional conference on Women in Physics in Africa and Middle East, which was held in Cairo in 2007.
Nuclear disarmament verification via resonant phenomena.
Hecla, Jake J; Danagoulian, Areg
2018-03-28
Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.
NASA Astrophysics Data System (ADS)
Freedman, Stuart
2011-10-01
Everybody knows that nuclear physics is the study the kind of matter found inside the atomic nucleus whether they it is at the center of atoms or the core of neutron stars. Nevertheless, nuclear physicists have made important discoveries about the neutrino. Figuring out where the neutrinos go in nuclear physics has challenged nuclear scientists, policy makers and those responsible for funding the enterprise. I will consider these and other challenges and how insightful scientific management has contributed the feast of wonderful discoveries about the neutrino.
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
Britain's nuclear secrets: inside Sellafield
NASA Astrophysics Data System (ADS)
Marino, Antigone
2017-11-01
Lying on the remote north west coast of England, Sellafield is one of the most secret places in UK, and even one of the most controversial nuclear fuel reprocessing and nuclear decommissioning sites in Britain. The film director Tim Usborne let us enter into the world's first nuclear power station, revealing Britain's attempts to harness the almost limitless power of the atom. It is precisely the simplicity and the scientific rigor used in the film to speak of nuclear, which led this documentary to win the Physics Prize supported by the European Physical Society at the European Science TV and New Media Festival and Awards 2016.
FOREWORD: Nuclear Physics in Astrophysics V
NASA Astrophysics Data System (ADS)
Auerbach, Naftali; Hass, Michael; Paul, Michael
2012-02-01
The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and the conference dinner banquet at the Dan hotel. An excursion to the 'Red Canyon' in the Eilat Mountains on Wednesday afternoon was one of the social highlights of the conference. A total number of 140 scientists attended NPA5 and about 30 accompanying persons; about 25% of these were young participants (less than 36 years old). 23 participants were from Israel, and 27 were from outside of Europe (including two from Africa). The subjects covered at the conference in Eilat concentrated mainly on the spirit of the original idea - to probe experimental and theoretical activity in nuclear structure and reactions that is directly related to the physics of the Universe. There were also sessions of general interest in astrophysics, as well as a poster session on Tuesday evening featuring 40 posters. The topics included: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis, Radioactive Beams and Exotic Nuclei-New Facilities and Future Possibilities for Astrophysics Neutrino Physics - the Low and High-Energy Frontiers Rare events, Dark Matter, Double beta-decay, Symmetries The conference started with an excellent exposé of the progress made in the discovery of super-heavy elements and the study of their properties. The progress in this field is enormous, and this subject should be communicated to more general audiences. The role of the nuclear equation of state and of the precise determination of nuclear masses in nucleosynthesis was emphasized in several talks. The role of neutrinos in astrophysics was discussed extensively in several sessions. One of the highlights of this was the presentation about the IceCube and DeepCore detectors operating deep in the Antarctic ice. These facilities are able to detect cosmogenic neutrinos in a wide energy range, from 10 GeV to 1010 GeV. The subject of solar neutrinos was discussed in a number of talks. Topics related to properties of neutrinos, such as double-beta decay and neutrino mixing were well represented at the conference. One of the central problems in modern cosmology and astrophysics is the search for dark matter. Several talks dealt with this subject and with methods to detect dark matter. Another intriguing and rather novel subject that was discussed at the meeting was time variation of fundamental physical constants. Two speakers have examined the sensitivity of Big-Bang Nucleosynthesis to the variation of the values of the fundamental constants. The role of some specific nuclei (such as Ni 56) in cosmology was pointed out. Many of the presentations at the conference described experimental studies of reactions relevant to nucleosynthesis at various stages of cosmic evolution. As reflected in the conference, these activities are widespread, encompassing many laboratories. Rare Isotope Beam (RIB) facilities are in the forefront of these studies. To understand the various processes of nucleosynthesis one has to have a good theory of nuclei far from the stability line. A number of presentations dealt with the description of such exotic nuclei. It is clear from the presentations that the future of experimental nuclear astrophysics looks promising as existing experimental facilities are being upgraded and new facilities are being built. X-Ray and Gamma-Ray Bursts and cosmic explosions were the subject of several talks. A discussion of various experiments attempting to measure time-reversal violation was the subject of one lecture. The solution of the puzzle as to why the universe is asymmetric with respect to matter-antimatter requires knowledge of the limit of time-reversal conservation. The late John Bahcall was a great astrophysicist and a supporter of the conference series 'Nuclear physics in Astrophysics'. On the last day of the conference, following a talk by Neta Bahcall from Princeton University on dark matter in the Universe, a short commemoration for John was held. Detailed information about the NPA5 conference and its scientific program can be found at: www.weizmann.ac.il/conferences/NPA5/ Naftali Auerbach Michael Hass Michael Paul Editors Conference photograph Conference photograph The PDF also contains lists of the committees and participants.
Direct conversion of nuclear radiation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.
1970-01-01
This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE depletion with TRITON (T5-DEPL/T6-DEPL),• CE sensitivity/uncertainty analysis with TSUNAMI-3D,• Simplified and efficient LWR lattice physics with Polaris,• Large scale detailed spent fuel characterization with ORIGAMI and ORIGAMI Automator,• Advanced fission source convergence acceleration capabilities with Sourcerer,• Nuclear data library generation with AMPX, and• Integrated user interface with Fulcrum.Enhanced capabilities include:• Accurate and efficient CE Monte Carlo methods for eigenvalue and fixed source calculations,• Improved MG resonance self-shielding methodologies and data,• Resonance self-shielding with modernized and efficient XSProc integrated into most sequences,• Accelerated calculations with TRITON/NEWT (generally 4x faster than SCALE 6.1),• Spent fuel characterization with 1470 new reactor-specific libraries for ORIGEN,• Modernization of ORIGEN (Chebyshev Rational Approximation Method [CRAM] solver, API for high-performance depletion, new keyword input format)• Extension of the maximum mixture number to values well beyond the previous limit of 2147 to ~2 billion,• Nuclear data formats enabling the use of more than 999 energy groups,• Updated standard composition library to provide more accurate use of natural abundances, andvi• Numerous other enhancements for improved usability and stability.« less
Nuclear Medicine Physics: The Basics. 7th ed.
Mihailidis, Dimitris
2012-10-01
Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.
Theoretical physics: Quarks fuse to release energy
NASA Astrophysics Data System (ADS)
Miller, Gerald A.
2017-11-01
In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. The discovery of an analogue of this process involving particles called quarks has implications for both nuclear and particle physics. See Letter p.89
The Wisdom of Sages: Nuclear Physics Education, Knowledge-Inquiry, and Wisdom-Inquiry
ERIC Educational Resources Information Center
Cottey, Alan
2012-01-01
This article addresses the difference between knowledge-inquiry and wisdom-inquiry in nuclear physics education. In the spirit of an earlier study of 57 senior-level textbooks for first-degree physics students, this work focuses here on a remarkable use of literary quotations in one such book. "Particles and Nuclei: an introduction to the physical…
Using a 400 kV Van de Graaff accelerator to teach physics at West Point
NASA Astrophysics Data System (ADS)
Marble, D. K.; Bruch, S. E.; Lainis, T.
1997-02-01
A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.
NASA Astrophysics Data System (ADS)
Gubkin, M. K.; Ivanov, D. A.; Ivanova, I. V.; Spivak, V. S.
2017-11-01
The Department of General physics and nuclear fusion, National Research University “Moscow Power Engineering Institute”, developed a set of tests (over 1000 questions) for the current control of knowledge of students in the section “Electricity and magnetism” of the General physics course using the internet distance learning system “Prometheus” (fourth generation). Under this section of the proposed test tasks are divided into sections corresponding to the topics section. These tasks include quality issues, design tasks, tasks with a choice of answers (one of many, many of many), the job with the selection region in the figure, tasks with detailed answer. The variety of tasks allows the teacher not only to objectively assess the student acquired knowledge but also to develop his problem-solving skills, to learn to be fluent in theory. The results of testing conducted for several years, show the high interest of students in the repeated independent execution of tasks and correlate well with the results of intermediate certification (exams).
NASA Astrophysics Data System (ADS)
Sinha, Bikash; Pal, Santanu; Raha, Sibaji
Quark-Gluon Plasma (QGP) is a state of matter predicted by the theory of strong interactions - Quantum Chromodynamics (QCD). The area of QGP lies at the interface of particle physics, field theory, nuclear physics and many-body theory, statistical physics, cosmology and astrophysics. In its brief history (about a decade), QGP has seen a rapid convergence of ideas from these previously diverging disciplines. This volume includes the lectures delivered by eminent specialists to students without prior experience in QGP. Each course thus starts from the basics and takes the students by steps to the current problems. The chapters are self-contained and pedagogic in style. The book may therefore serve as an introduction for advanced graduate students intending to enter this field or for physicists working in other areas. Experts in QGP may also find this volume a handy reference. Specific examples, used to elucidate how theoretical predictions and experimentally accessible quantities may not always correspond to one another, make this book ideal for self-study for beginners. This feature will also make the volume thought-provoking for QGP practitioners.
Experimental Nuclear Physics Activity in Italy
NASA Astrophysics Data System (ADS)
Chiavassa, E.; de Marco, N.
2003-04-01
The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks
1978-12-01
results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was
NASA Astrophysics Data System (ADS)
Gasior, P.
2014-11-01
Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.
Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy
2013-03-01
To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
After Action Report - Kazakhstan NSDD July 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Caterina; Eppich, Gary; Kips, Ruth
On Monday 20 July, Caterina Fox, Ruth Kips and Kim Knight were invited to participate in Kazakhstan's nuclear material inventory management working group meeting coordinated by Alexander Vasilliev as nuclear forensics subject matter experts. The meeting included participants from Kazakhstan's nuclear regulatory agency (CAESC, the Committee on Atomic and Energetic Supervision and Control) and 3 institutes 1. Institute of Nuclear Physics, INP (Almaty), 2. National Nuclear Center, NNC (Kurchatov), and 3. Ulba Metallurgical Plant, UMP (Oskemen). CAESC requested attendance of an MC&A expert, an IT Specialist, and a Physical Security Specialist from each site. The general meeting concerned considerations formore » creating unified or compatible systems for nuclear material inventory management. NSDD representatives provided an overview of nuclear forensics and presented considerations for developments of inventory management that might be synergistic with future consideration of development of a National Nuclear Forensics Library to support nuclear forensics investigations.« less
PREFACE: XXXV Symposium on Nuclear Physics
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Bijker, R.
2012-09-01
Conference logo The XXXV Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 3-6 2012. Conceived in 1978 as a small meeting, over the years and thanks to the efforts of various organizing committees, the symposium has become a well known international conference on nuclear physics. To the best of our knowledge, the Mexican Symposium on Nuclear Physics represents the conference series with longest tradition in Latin America and one of the longest-running annual nuclear physics conferences in the world. The Symposium brings together leading scientists from all around the world, working in the fields of nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. Its main goal is to provide a relaxed environment where the exchange of ideas, discussion of new results and consolidation of scientific collaboration are encouraged. To celebrate the 35th edition of the symposium 53 colleagues attended from diverse countries including: Argentina, Australia, Canada, Japan, Saudi Arabia and USA. We were happy to have the active participation of Eli F Aguilera, Eduardo Andrade, Octavio Castaños, Alfonso Mondragón, Stuart Pittel and Andrés Sandoval who also participated in the first edition of the Symposium back in 1978. We were joined by old friends of Cocoyoc (Stuart Pittel, Osvaldo Civitarese, Piet Van Isacker, Jerry Draayer and Alfredo Galindo-Uribarri) as well as several first time visitors that we hope will come back to this scientific meeting in the forthcoming years. The scientific program consisted of 33 invited talks, proposed by the international advisory committee, which nicely covered the topics of the Symposium giving a balanced perspective between the experimental and the theoretical work that is currently underway in each line of research. Fifteen posters complemented the scientific sessions giving the opportunity for Mexican students to present their current research and interact with the visiting scientists. The present volume contains 21 research articles based on invited talks presented at the symposium. We cannot thank enough to all the authors for their enthusiastic contribution, to the anonymous referees for the time they devoted to the review process, which helped us to maintain the high standard of the Conference Proceedings. Finally we would like to thank the International Advisory Committee and the Sponsoring Organizations that made this event possible. E Padilla-Rodal and R Bijker Editors Conference photograph International Advisory Committee Osvaldo Civitarese, Universidad Nacional de La Plata, Argentina Jerry P Draayer, Louisiana State University, USA Alfredo Galindo-Uribarri, Oak Ridge National Laboratory, USA Paulo Gomes, Universidade Federal Fluminense, Brazil Piet Van Isacker, GANIL, France James J Kolata, University of Notre Dame, USA Reiner Krücken, TRIUMF, Canada Jorge López, The University of Texas at El Paso, USA Stuart Pittel, University of Delaware, USA W Michael Snow, Indiana University, USA Adam Szczepaniak, Indiana University, USA Michael Wiescher, University of Notre Dame, USA Organizing Committee Elizabeth Padilla-Rodal (Chair), Instituto de Ciencias Nucleares, UNAM, Mexico Roelof Bijker, Instituto de Ciencias Nucleares, UNAM, Mexico Sponsoring Organizations División de Física Nuclear, SMF Dirección General de Asuntos de Personal Académico, UNAM Centro Latino-Americano de Física Instituto de Ciencias Nucleares, UNAM Instituto de Física, UNAM Instituto Nacional de Investigaciones Nucleares
Scenario-Based Case Study Analysis of Asteroid Mitigation in the Short Response Time Regime
NASA Astrophysics Data System (ADS)
Seery, B.; Greenaugh, K. C.
2017-12-01
Asteroid impact on Earth is a rare but inevitable occurrence, with potentially cataclysmic consequences. If a pending impact is discovered, mitigation options include civil-defense preparations as well as missions to deflect the asteroid and/or robustly disrupt and disperse it to an extent that only a negligible fraction remains on a threatening path (National Research Council's "Defending the Planet," 2010). If discovered with sufficient warning time, a kinetic impactor can deflect smaller objects, but response delays can rule out the option. If a body is too large to deflect by kinetic impactor, or the time for response is insufficient, deflection or disruption can be achieved with a nuclear device. The use of nuclear ablation is considered within the context of current capabilities, requiring no need for nuclear testing. Existing, well-understood devices are sufficient for the largest known Potentially Hazardous Objects (PHOs). The National Aeronautics and Space Administration/Goddard Space Flight Center and the Department of Energy/National Nuclear Security Administration are collaborating to determine the critical characterization issues that define the boundaries for the asteroid-deflection options. Drawing from such work, we examine the timeline for a deflection mission, and how to provide the best opportunity for an impactor to suffice by minimizing the response time. This integrated problem considers the physical process of the deflection method (impact or ablation), along with the spacecraft, launch capability, risk analysis, and the available intercept flight trajectories. Our joint DOE/NASA team has conducted case study analysis of three distinctly different PHOs, on a hypothetical earth impacting trajectory. The size of the design reference bodies ranges from 100 - 500 meters in diameter, with varying physical parameters such as composition, spin state, and metallicity, to name a few. We assemble the design reference of the small body in question using known values for key parameters and expert elicitation to make educated guesses on the unknown parameters, including an estimate of the overall uncertainties in those values. Our scenario-based systems approach includes 2-D and 3-D physics-based modeling and simulations.
Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration
NASA Astrophysics Data System (ADS)
Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel
2017-11-01
In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Recent measurements for hadrontherapy and space radiation: nuclear physics
NASA Technical Reports Server (NTRS)
Miller, J.
2001-01-01
The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.
Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.
PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"
NASA Astrophysics Data System (ADS)
Yamada, Taiichi; Kanada-En'yo, Yoshiko
2014-12-01
The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP (Research Center for Nuclear Physics, Osaka University), CNS (Center for Nuclear Study, University of Tokyo), JICFuS (Joint Institute for Computational Fundamental Science), and RIKEN (Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research). This workshop was supported by Yokohama Convention & Visitors Bureau and Kanto Gakuin University. It remains to be announced that the next, the fourth in this series of SOTANCP workshops, SOTANCP4, will be held in Galveston, Texas, USA, in 2018.
Gravity Before Einstein and Schwinger Before Gravity
NASA Astrophysics Data System (ADS)
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
ERIC Educational Resources Information Center
Finegold, M.; Mass, R.
1985-01-01
Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
NASA Astrophysics Data System (ADS)
Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.
2016-06-01
We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.
Reactor physics teaching and research in the Swiss nuclear engineering master
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI
Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)
Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-03-15
The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.
The solid state physics programme at ISOLDE: recent developments and perspectives
NASA Astrophysics Data System (ADS)
Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.
2017-10-01
Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.
Beyond detection: nuclear physics with a webcam in an educational setting
NASA Astrophysics Data System (ADS)
Pallone, Arthur
2015-03-01
Nuclear physics affects our daily lives in such diverse fields from medicine to art. I believe three obstacles - limited time, lack of subject familiarity and thus comfort on the part of educators, and equipment expense - must be overcome to produce a nuclear-educated populace. Educators regularly use webcams to actively engage students in scientific discovery as evidenced by a literature search for the term webcam paired with topics such as astronomy, biology, and physics. Inspired by YouTube videos that demonstrate alpha particle detection by modified webcams, I searched for examples that go beyond simple detection with only one education-oriented result - the determination of the in-air range of alphas using a modified CCD camera. Custom-built, radiation-hardened CMOS detectors exist in high energy physics and for soft x-ray detection. Commercial CMOS cameras are used for direct imaging in electron microscopy. I demonstrate charged-particle spectrometry with a slightly modified CMOS-based webcam. When used with inexpensive sources of radiation and free software, the webcam charged-particle spectrometer presents educators with a simple, low-cost technique to include nuclear physics in science education.
NASA Astrophysics Data System (ADS)
Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.
2018-05-01
The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.
Nuclear Technology Series. Course l: Radiation Physics.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 12: Reactor Physics.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
SkyNet: A Modular Nuclear Reaction Network Library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-12-01
Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.
PLANTS AS BIO-MONITORS FOR 137CS, 238PU, 239, 240PU AND 40K AT THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, E.; Duff, M.; Ferguson, C.
2010-12-16
The nuclear fuel cycle generates a considerable amount of radioactive waste, which often includes nuclear fission products, such as strontium-90 ({sup 90}Sr) and cesium-137 ({sup 137}Cs), and actinides such as uranium (U) and plutonium (Pu). When released into the environment, large quantities of these radionuclides can present considerable problems to man and biota due to their radioactive nature and, in some cases as with the actinides, their chemical toxicity. Radionuclides are expected to decay at a known rate. Yet, research has shown the rate of elimination from an ecosystem to differ from the decay rate due to physical, chemical andmore » biological processes that remove the contaminant or reduce its biological availability. Knowledge regarding the rate by which a contaminant is eliminated from an ecosystem (ecological half-life) is important for evaluating the duration and potential severity of risk. To better understand a contaminants impact on an environment, consideration should be given to plants. As primary producers, they represent an important mode of contamination transfer from sediments and soils into the food chain. Contaminants that are chemically and/or physically sequestered in a media are less likely to be bio-available to plants and therefore an ecosystem.« less
PREFACE: International Nuclear Physics Conference 2010 (INPC2010)
NASA Astrophysics Data System (ADS)
Dilling, Jens
2011-09-01
The International Nuclear Physics Conference 2010 (INPC 2010) was held from 4-9 July in Vancouver, Canada, hosted by TRIUMF, the Canadian National Laboratory for Particle and Nuclear Physics. The INPC is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union for Pure and Applied Physics) and held every three years. This year's conference was the 25th in the series and attracted over 750 delegates (150 graduate students) from 43 countries. The conference's hallmark is its breadth in nuclear physics; topics included structure, reactions, astrophysics, hadronic structure, hadrons in nuclei, hot and dense QCD, new accelerators and underground nuclear physics facilities, neutrinos and nuclei, and applications and interdisciplinary research. The conference started with a public lecture 'An Atom from Vancouver' by L Krauss (Arizona), who gave a broad perspective on how nuclear physics is key to a deeper understanding of how the Universe was formed and the birth, life, and death of stars. The conference opened its scientific plenary program with a talk by P Braun-Munzinger (GSI/EMMI Darmstadt) who highlighted the progress that has been made since the last conference in Tokyo 2007. The presentation showcased theoretical and experimental examples from around the world. All topics were well represented by plenary sessions and well attended afternoon parallel sessions where over 250 invited and contributed talks were presented, in addition to over 380 poster presentations. The poster sessions were among the liveliest, with high participation and animated discussions from graduate students and post-doctoral fellows. Many opportunities were found to connect to fellow nuclear physicists across the globe and, particularly for conferences like the INPC which span an entire field, many unexpected links exist, often leading to new discussions or collaborations. Among the scientific highlights were the presentations in the fields of Hot and Dense QCD reporting on experimental and theoretical progress at the RHIC facility. The Nuclear Reactions session provided highlights from the many new and exciting facilities including the RIKEN RIBF in Japan, and an outlook of what we can expect from FAIR (Germany) and FRIB (USA). The quest towards the 'Island of Stability' for the Superheavy Element community is still on, and new progress was reported with the identification of element 114. Impressive progress in the theoretical sector, in particular with ab-initio approaches, was presented as well. Applications of these methods and progress in the nucleon-nucleon interactions were presented in the Nuclear Structure session, where 3-body forces interactions are now considered state of the art. Predictions of such calculations can then be tested by experiments, as presented, for example, for ground state properties of exotic nuclei with laser experiments and ion trap measurements. In-beam or in-flight experiments pave the way to even more exotic isotopes where new magic numbers for the nuclear shell model are appearing. This will also prove relevant for Nuclear Astrophysics, where significant progress was achieved experimentally with new direct capture reaction measurements with rare beams and background suppressed facilities located in underground laboratories. Neutron star research and new modeling results of core-collapse supernovae were presented, which clearly indicated the need for neutrino interactions. Neutrinos also played a large role in other sessions such as the New Facilities and Instrumentation session where, among other new exciting projects, the deep underground facilities were presented. The first beam results from long-baseline oscillation experiments showed progress in this field, and double-beta decay experiments are nearing their first possible results, something that the community of nuclear physicists, but also others, are keenly waiting for. The Standard Model Tests and Fundamental Symmetries session is always one of the conference highlights. There, progress on Standard Model tests employing atomic nuclei or nuclear physics methods - which are used to probe complimentary sectors to large particle physics experiments, for example atomic and neutron EDM experiments - is reported. Recent progress was reported in the sector of nuclear beta decay as related to the testing of the CKM unitarity matrix, as well as the W-mass and the Weak Mixing Angle. The muon anomalous magnetic moment and its sensitivity for probing new physics and future experimental improvements are anticipated and showcase the activity in the field. The large oral and poster presentation program was extended to include special presentations by the IUPAP young scientist award winners. This prize is given out in the field of nuclear physics every three years during the INPC conference, and this year's winners were: Kenji Fukushima (Yukawa Institute for Theoretical Physics, Kyoto University), Peter Mueller (Argonne National Laboratory), and Lijuan Ruan (Brookhaven National Laboratory). These three scientists represent future excellence in nuclear physics in the fields of theoretical QCD, experimental techniques related to quark gluon plasma, and precision experiments in low energy nuclear halo physics. One keenly anticipated presentation, 'The Lamb shift in muonic hydrogen experiment', presented the results of the measurement of the proton rms charge radius. These results claimed a 5 sigma deviation from the established CODATA-value and in the future more tests will be needed to verify these findings. INPC 2010 made a special effort to attract many graduate students and post-doctoral fellows to the conference. This was achieved by a number of efforts, for example, TRIUMF combined its traditional summer school with the US National Science Foundation summer school for nuclear physics, and offered the school directly prior to the conference. This allowed the school to recruit some of the INPC delegates as lecturers, but also gave a broad overview of the field of nuclear physics before the conference. In addition INPC 2010 teamed up with the publishing house of Nuclear Physics A to provide awards to the best student oral presentation and the three top poster presentations at the conference. An international panel of judges together with members from the editorial board of Nuclear Physics A finally decided on the following award winners among a very strong field of applicants: P Finlay (Guelph, Canada), oral presentation; Y J Kim (Indiana, USA), E Rand (Guelph, Canada), and T Brunner (Munich, Germany) for posters. A treat of a different kind was in store for delegates at the conference banquet at the Museum of Anthropology. Olivia Fermi, the granddaughter of nuclear physics 'royalty' Enrico Fermi, was among the guests and shared in the after-dinner speech some anecdotes from her life growing up in the Fermi household. This, together with the unique setting of the museum of First Nations' artefacts and art pieces and overlooking the Pacific Ocean and the skyline of Vancouver, was a perfect fit for a very special conference. The field of nuclear physics clearly presented itself in a healthy and dynamic state, with many young people eagerly anticipating the advent of new experiments, theory, and facilities. At the end of the conference IUPAP announced the selection of the host of the next INPC conference: it will be held in 2013 in Florence, Italy. On behalf of the Local Organizing Committee we would like to acknowledge the great work of the Program Committee and the Session Chairs, who were responsible for the excellent selection and execution of the Parallel Session Program, the International Advisory Program and the work for the Plenary Session selections, and the judges for the Student Awards. Moreover, we would like to acknowledge the support of TRIUMF as the host and main organizer of the conference. Additional support was provided by the Canadian Institute for Nuclear Physics and the International Union for Pure and Applied Physics (IUPAP). Very grateful acknowledgments go to the many volunteers and student helpers who ensured the frictionless and seamless execution of a very fruitful and exciting conference. We wish the organizers of the next INPC in Florence the best of luck and we hope to see you there. On behalf of the Local Organizing Committee Jens Dilling (Chair of INPC 2010)
Canonical Descriptions of High Intensity Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Le Cornu, B. J.
The problem of laser-plasma interaction has been studied extensively in the context of inertial confinement fusion (ICF). These studies have focussed on effects like the nonlinear force, self-focusing, Rayleigh- Taylor instabilities, stimulated Brillouin scattering and stimulated Raman scattering observed in ICF schemes. However, there remains a large discrepancy between theory and experiment in the context of nuclear fusion schemes. Several authors have attempted to gain greater understanding of the physics involved by the application of standard or 'canonical' methods used in Lagrangian and Hamiltonian mechanics to the problem of plasma physics. This thesis presents a new canonical description of laser-plasma interaction based on the Podolsky Lagrangian. Finite self-energy of charged particles, incroporation of high-frequency effects and an ability to quantise are the main advantages of this new model. The nature of the Podolsky constant is also analysed in the context of plasma physics, specifically in terms of the plasma dispersion relation. A new gauge invariant expression of the energy-momentum tensor for any gauge invariant Lagrangian dependent on second order derivatives is derived for the first time. Finally, the transient and nontransient expressions of the nonlinear ponderomotive force in laser-plasma interaction are discussed and shown to be closely approximated by a canonical derivation of the electromagnetic Lagrangian, a fact that seems to have been missed in the literature.
The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclearmore » Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.« less
The Dark Side of Nuclear Arms Education.
ERIC Educational Resources Information Center
Jungerman, Nancy K.; Jungerman, John A.
1985-01-01
Outlines a course (offered jointly by physics and applied science departments) which focuses on basic physics and nuclear war effects. Due to the emotional impact of issues discussed in the course, faculty implemented a plan which included the use of counseling professionals. (DH)
Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschall, Olivia C.
2016-07-18
The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.
Nuclear Physics Laboratory 1979 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelberger, E.G.
1979-07-01
Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)
NASA Astrophysics Data System (ADS)
Zhang, Meggie
2013-03-01
Our research discovered logical inconsistence in physics and mathematics. Through reviewing the entire history of physics and mathematics we gained new understanding about our earlier assumptions, which led to a new interpretation of the wave function and quantum physics. We found the existing experimental data supported a 4-dimensional fractal structure of matter and the universe, we found the formation of wave, matter and the universe through the same process started from a single particle, and the process itself is a fractal that contributed to the diversity of matter. We also found physical evidence supporting a not-continuous fractal space structure. The new understanding also led to a reinterpretation of nuclear collision theories, based on this we succeeded a room-temperature low-energy photon-photon collision (RT-LE-PPC), this method allowed us to observe a topological disconnected fractal structure and succeeded a simulation of the formation of matter and the universe which provided evidences for the nature of light and matter and led to a quantum structure interpretation, and we found the formation of the universe started from two particles. However this work cannot be understood with current physics theories due to the logical problems in the current physics theories.
The sciences and applications of the Electron LINAC-driven neutron source in Argentina
NASA Astrophysics Data System (ADS)
Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.
2016-06-01
The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.
Nuclear Structure Aspects in Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael Scott
2006-12-01
Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less
NP2010: An Assessment and Outlook for Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, James
This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principalmore » conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.« less
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
The Structure of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our conclusions should be more reliably extended to AGN as a class.
NASA Astrophysics Data System (ADS)
Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders
2009-08-01
The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.
Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm.
Lu, Canyi; Tang, Jinhui; Yan, Shuicheng; Lin, Zhouchen
2016-02-01
The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm-based relaxed convex problem usually leads to a suboptimal solution of the original rank minimization problem. In this paper, we propose to use a family of nonconvex surrogates of L0-norm on the singular values of a matrix to approximate the rank function. This leads to a nonconvex nonsmooth minimization problem. Then, we propose to solve the problem by an iteratively re-weighted nuclear norm (IRNN) algorithm. IRNN iteratively solves a weighted singular value thresholding problem, which has a closed form solution due to the special properties of the nonconvex surrogate functions. We also extend IRNN to solve the nonconvex problem with two or more blocks of variables. In theory, we prove that the IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthesized data and real images demonstrate that IRNN enhances the low rank matrix recovery compared with the state-of-the-art convex algorithms.
New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems
ERIC Educational Resources Information Center
Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry
2013-01-01
This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…
Beyond detection: nuclear physics with a webcam in an educational setting
NASA Astrophysics Data System (ADS)
Pallone, A.; Barnes, P.
2016-09-01
Basic understanding of nuclear science enhances our daily-life experience in many areas, such as the environment, medicine, electric power generation, and even politics. Yet typical school curricula do not provide for experiments that explore the topic. We present a means by which educators can use the ubiquitous webcam and inexpensive sources of radiation to lead their students in a quantitative exploration of radioactivity, radiation, and the applications of nuclear physics.
NASA Technical Reports Server (NTRS)
Boytos, Matthew A.; Norbury, John W.
1992-01-01
The authors of this paper have provided a set of ready-to-run FORTRAN programs that should be useful in the field of theoretical nuclear physics. The purpose of this document is to provide a simple synopsis of the programs and their use. A separate section is devoted to each program set and includes: abstract; files; compiling, linking, and running; obtaining results; and a tutorial.
Proceedings of the nineteenth LAMPF Users Group meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradbury, J.N.
1986-02-01
Separate abstracts were prepared for eight invited talks on various aspects of nuclear and particle physics as well as status reports on LAMPF and discussions of upgrade options. Also included in these proceedings are the minutes of the working groups for: energetic pion channel and spectrometer; high resolution spectrometer; high energy pion channel; neutron facilities; low-energy pion work; nucleon physics laboratory; stopped muon physics; solid state physics and material science; nuclear chemistry; and computing facilities. Recent LAMPF proposals are also briefly summarized. (LEW)
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari
2009-07-01
Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less
A model of early formation of uranium molecular oxides in laser-ablated plasmas
NASA Astrophysics Data System (ADS)
Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike
2017-10-01
An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.
Neutron-antineutron oscillations in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.; Gal, A.; Richard, J.M.
1983-03-01
We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
Westerdale, S.; Xu, J.; Shields, E.; ...
2017-08-03
We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
ERIC Educational Resources Information Center
Roth, Laura M.; O'Fallon, Nancy M.
This booklet presents information about career opportunities for women in physics. Included are summaries of research areas in physics (optical physics, solid-state physics, materials science, nuclear physics, high-energy physics, astrophysics, cryogenics, plasma physics, biophysics, atmospheric physics) and differences between theory and…
Binding blocks: building the Universe one nucleus at a time
NASA Astrophysics Data System (ADS)
Diget, C. Aa; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.; Binding Blocks Collaboration
2017-03-01
We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using \\text{LEG}{{\\text{O}}\\circledR} bricks5. The activity, binding blocks, demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26 000 \\text{LEG}{{\\text{O}}\\circledR} bricks. It integrates A-Level and GCSE curricula across areas of nuclear physics, astrophysics, and chemistry, including: nuclear decays (through the colours in the chart); nuclear binding energy (through tower heights); production of chemical elements in the cosmos; fusion processes in stars and fusion energy on Earth; as well as links to medical physics, particularly diagnostics and radiotherapy.
Physics and Its Multiple Roles in the International Atomic Energy Agency
NASA Astrophysics Data System (ADS)
Massey, Charles D.
2017-01-01
The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.
Digital Electronics for Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team
2015-10-01
Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.
Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-11-01
The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)
Detecting terrorist nuclear weapons at sea: The 10th door problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, D R
2008-09-15
While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platformsmore » that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.« less
Ligare, Martin
2016-05-01
Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.
Physics in the Confrontation of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Toevs, James
2011-03-01
Had the detonations on 9/11 involved nuclear explosives rather than jet fuel the number of deaths and the costs would have been multiplied by 100 or 1,000. This talk will briefly describe the nuclear threat and then focus on the technologies, both extant and evolving, for the detection and interdiction of clandestine trafficking of nuclear weapons and nuclear and radiological material. The methods vary from passive detection of heat, gamma radiation, neutrons, or other signatures from nuclear material, through radiological approaches to examine contents of vehicles and cargo containers, to active interrogation concepts that are under development. All of these methods have major physics components ranging from simple gamma ray detection as learned in a senior undergraduate lab to the latest ideas in muon production and acceleration.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
Efficient solution of the simplified P N equations
Hamilton, Steven P.; Evans, Thomas M.
2014-12-23
We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.
Puzzling out the proton radius puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihovilovič, M.; Merkel, H.; Weber, A.
2016-01-22
The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius,more » are described.« less
Free-boundary PIES Calculations
NASA Astrophysics Data System (ADS)
Monticello, D. A.; Reiman, A. H.; Arndt, S. C.; Merkel, P. K.
1998-11-01
A new formulation of the free boundary problem for general three-dimensional configurations has been formulated for the PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986). code. The new formulation is more flexible and is faster that the original formulation described in Merkel et al(Merkel, P., Johnson, J. L., Monticello, D.A., et al., Proceedings of the Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research paper IAEA-CN-60 | D-P-II-10) (1994) . These advantages will be described and first results of the application of this new algorithm to W7-X and NCSX (National Compact Stellarator Experiment) configurations will be presented.
ANALYSIS OF DEUTERON STRIPPING EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amado, R.D.
1959-05-01
Deuteron stripping experiments analyzed according to the theory of Butter are a nearly unique source of information on the orbital angular momentum and single-particle widths of nuclear bound states. A number of problems in the Butter theory remain. Chew and Low show that in reactions in which there is a contribution from thc exchange of a single particles there can appear isolated poles in the normalized Born approximation to the cross section and that the residue at these poles can be related to quantities of physical interest. Stripping is such a reactions and the Butter theory is the renormalized Bornmore » approximation. (A.C.)« less
SCIENTIFIC AND RESEARCH INSTITUTIONS IN HUNGARY: I. NUCLEAR SCIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacha, E.
1959-05-22
Scientific and research institutions in Hungary engaged in research in the field of nuclear science are discussed. Brief descriptions are included of the Central Research Institute of Physics, the Institute of Nuclear Research the Joliot-Curie Central Research Institute of Radiobiology, and the Physics Laboratory of the Otvos Lorand Radium and X-Ray Institute. The recently completed experimental reactor at Budapest and isotope research laboratories are described. Plans for an atomic power plant are discussed. Uranium deposits in Hungary are also discussed. A list of recent publications in the field of nuclear science is included. (C.W)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard; Bostelmann, F.
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less
[Carl Friedrich von Weizsäcker: nuclear disarmament and the search for freedom].
Neuneck, Götz
2014-01-01
Carl Friedrich von Weizsäcker's comprehensive contributions to nuclear disarmament and arms control, as well as his peace policy impulses are to be understood primarily in the context of his family origin, his comprehensive thinking and the historical circumstances of the emerging nuclear age. They have a scientific, political and a strong philosophical-moral component. Beside the factual problems (nuclear energy, military strategy) he was interested in political power issues and their ambivalence and perception. His actual work is not only based on general academic knowledge, but also serve the immediate political influence on a scientific basis. Weizsäcker was not committed to nuclear disarmament or arms control per se, but about creating a lasting peace policy in the nuclear age. The paper discusses in chronological order of Weizsäcker's work within the policy field peace and disarmament. Family origin, study and work on the nuclear programme by Nazi-Germany laid the foundations for his later career. As a young physicist, he was directly involved in the political and ethical dilemma of the military and civilian use of nuclear energy. After the war, in Göttingen and Hamburg the reflections of the Nazi phase and the discussion of ways out of the dangers of the Cold War followed. The Max-Planck Institute in Starnberg dealt with the science-based treatment of global world problems, including the dangers of nuclear proliferation. Finally, Weizsäcker initiated a Peace Council in 1985. He urged both the perception of the moral responsibility of scientists as well as an ethics of the scientific-technological age. According to him, a general and profound change in the consciousness of humankind is needed to solve the existing power problems and the problem of war.
The Fukushima nuclear disaster is ongoing.
Marks, Andrew R
2016-07-01
The 5th anniversary of the Fukushima disaster and the 30th anniversary of the Chernobyl disaster, the two most catastrophic nuclear accidents in history, both occurred recently. Images of Chernobyl are replete with the international sign of radioactive contamination (a circle with three broad spokes radiating outward in a yellow sign). In contrast, ongoing decontamination efforts at Fukushima lack international warnings about radioactivity. Decontamination workers at Fukushima appear to be poorly protected against radiation. It is almost as if the effort is to make the Fukushima problem disappear. A more useful response would be to openly acknowledge the monumental problems inherent in managing a nuclear plant disaster. Lessons from Chernobyl are the best predictors of what the Fukushima region of Japan is coping with in terms of health and environmental problems following a nuclear catastrophe.
Neurocognitive and Physical Abilities Assessments Twelve Years After the Chernobyl Nuclear Accident
2001-03-01
Chernobyl , Ukraine was conducted. In this report are findings from 1995 to 1998. Participants were volunteers who resided in Ukraine during and since...the Chernobyl Nuclear Power Plant accident. A translated subset of the Automated Neuropsychological Assessment Metrics battery and the Gamache Physical
Chinese-English Nuclear and Physics Dictionary.
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The Nuclear and Physics Dictionary is one of a series of Chinese-English technical dictionaries prepared by the Foreign Technology Division, United States Air Force Systems Command. The purpose of this dictionary is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical…
Laboratory for Nuclear Science. High Energy Physics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milner, Richard
High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less
NASA Astrophysics Data System (ADS)
Fortunato, Lorenzo
2018-03-01
In this contribution I will review some of the researches that are currently being pursued in Padova (mainly within the In:Theory and Strength projects), focusing on the interdisciplinary applications of nuclear theory to several other branches of physics, with the aim of contributing to show the centrality of nuclear theory in the Italian scientific scenario and the prominence of this fertile field in fostering new physics. In particular, I will talk about: i) the recent solution of the long-standing “electron screening puzzle” that settles a fundamental controversy in nuclear astrophysics between the outcome of lab experiments on earth and nuclear reactions happening in stars; the application of algebraic methods to very diverse systems such as: ii) the supramolecular complex H2@C60, i.e. a diatomic hydrogen molecule caged in a fullerene and iii) to the spectrum of hypernuclei, i.e. systems made of a Lambda particles trapped in (heavy) nuclei.
NASA Astrophysics Data System (ADS)
Gauderis, Tjerk
2014-02-01
This paper addresses the question of how scientists determine which type of hypothesis is most suitable for tackling a particular problem by examining the historical case of the anomalous β spectrum in early nuclear physics (1927-1934), a puzzle that occasioned the most diverse hypotheses amongst physicists at the time. It is shown that such determinations are most often implicitly informed by scientists' individual perspectives on the structural relations between the various elements of the theory and the problem at hand. In addition to this main result, it is suggested that Wolfgang Pauli's neutrino idea may well have been an adaptation of Ernst Rutherford's original and older neutron idea, which would provide evidence that the adaptation of older ideas is a more common practice than is often thought.
Nuclear medicine in urology and nephrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Reilly, P.H.; Shields, R.A.; Testa, H.J.
This edition on radionuclide techniques in urology and nephrology reflects the many advances since 1979. Emphasis has been given to diuretic renography and studies of urinary reflux. A new chapter discusses the diagnosis of lower urinary tract problems. The editors have divided the book into three sections. The first part presents a description of the techniques and their interpretation. Renography, renal scanning, clearance studies, and bone scanning are covered. The second section gives an in-depth discussion of the application of these techniques to obstructive uropathy, urologic tumors, renal transplantation, trauma, and lower urinary tract, pediatric, and nephrologic problems. The lastmore » part of the book deals with basic principles. It expands on the relevant theoretical and technical aspects not covered in detail in part 1. In this last portion of the book the editors have grouped together the chapters on physics, instrumentation, radiopharmaceuticals, and radiation dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.
2015-02-21
Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less
Regularization of the double period method for experimental data processing
NASA Astrophysics Data System (ADS)
Belov, A. A.; Kalitkin, N. N.
2017-11-01
In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.