Sample records for nuclear physics technical

  1. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...

  2. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  3. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Grant; Keegan, E.; Young, E.

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  4. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE PAGES

    Griffiths, Grant; Keegan, E.; Young, E.; ...

    2018-01-06

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, P.H.

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  6. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr

    2011-10-01

    The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed trainingmore » needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.« less

  9. Chinese-English Nuclear and Physics Dictionary.

    ERIC Educational Resources Information Center

    Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

    The Nuclear and Physics Dictionary is one of a series of Chinese-English technical dictionaries prepared by the Foreign Technology Division, United States Air Force Systems Command. The purpose of this dictionary is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical…

  10. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less

  11. XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin

    2017-01-01

    The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.

  12. Reviews of the Comprehensive Nuclear-Test-Ban Treaty and U.S. security

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    2017-11-01

    Reviews of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by the National Academy of Sciences concluded that the United States has the technical expertise and physical means to i) maintain a safe, secure and reliable nuclear-weapons stockpile without nuclear-explosion testing, and ii) effectively monitor global compliance once the Treaty enters into force. Moreover, the CTBT is judged to help constrain proliferation of nuclear-weapons technology, so it is considered favorable to U.S. security. Review of developments since the studies were published, in 2002 and 2012, show that the study conclusions remain valid and that technical capabilities are better than anticipated.

  13. IAEA support to medical physics in nuclear medicine.

    PubMed

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  15. Physics in perspective. Volume 2, part A: The core subfields of physics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Panel reports to the Survey Committee are presented to provide detailed technical background and documentation for committee findings, and to indicate the vitality and strength of the subfields of physics. Included are the core subfields of acoustics, optics, condensed matter, plasmas and fluids, atomic molecular and electron physics, nuclear physics, and elementary particle physics.

  16. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-10-15

    and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information

  17. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  18. Post detonation nuclear forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jay

    2014-05-09

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  19. Lessons Learned in Over a Decade of Technical Support for U.S. Nuclear Cyber Security Programmes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Landine, Guy P.; Craig, Philip A.

    Pacific Northwest National Laboratory’s (PNNL) nuclear cyber security team has been providing technical support to the U.S. Nuclear Regulatory Commission (NRC) since 2002. This team has provided cyber security technical experties in conducting cyber security inspections, developing of regulatory rules and guidance, reviewing facility cyber security plans, developing inspection guidance, and developing and teaching NRC inspectors how to conduct cyber security assessments. The extensive experience the PNNL team has gathered has allowed them to compile a lenghty list of recommendations on how to improve cyber security programs and conduct assessments. A selected set of recommendations are presented, including the needmore » to: integrate an array of defenisve strategies into a facility’s cyber security program, coordinate physical and cyber security activities, train phycial security forces to resist a cyber-enabled physical attack, improve estimates of the consequences of a cyber attack, properly resource cyber security assessments, appropropriately account for insider threats, routinely monitor security devices for potential attacks, supplement compliance-based requirements with risk-based decision making, and introduce the concept of resilience into cyber security programs.« less

  20. System configuration management plan for 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, G.F. Jr.

    1994-10-11

    The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less

  1. Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-11-01

    The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)

  2. Science Serves Society.

    ERIC Educational Resources Information Center

    Sneed, G. C.

    This book discusses how some of the topics taught in a conventional physics course have been used to solve interesting technical problems in industry, medicine, agriculture, transportation, and other areas of society. The topics include heat, optics, magnetism and electricity, nuclear physics, and sound. (MLH)

  3. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  4. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  5. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, T.

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less

  6. Cooperative global security programs modeling & simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briand, Daniel

    2010-05-01

    The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reducemore » weapons of mass destruction and terrorism threats through international technical cooperation.« less

  7. Ionospheric Irregularity Physics Modelling.

    DTIC Science & Technology

    1982-02-09

    NUMBERS Washington, DC 20375 62715H; 47-0889-0-2 II CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE Defense Nuclear Agency February 9, 1982 Washington... CONTROL TECHNICAL CENTER COMMANDER PE TAGON RM SF 685 FIELD COMMAND WASHINGTON, D.C. 20301 DEFENSE NUCLEAR AGENCY OICY ATTN C-650 KIRTLAND, AFR, NM...BUILDINICG KIRTLAND AFB, NM 87115 1400 WILSON BLVD. OICY ATTN DOCUMENT CONTROL ARLINGTON, 11A. 22209 OICY ATTN NUCLEAR MONITORING RESEARCH JOINT CHIEFS OF

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  9. U.S. Department of Energy facilities needed to advance nuclear power.

    PubMed

    Ahearne, John F

    2011-01-01

    This talk is based upon a November 2008 report by the U.S. Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC). The report has two parts, a policy section and a technology section. Here extensive material from the Technical Subcommittee section of the NEAC report is used. Copyright © 2010 Health Physics Society

  10. Millikan Award Lecture, 2006: Physics For All

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2006-12-01

    We physics teachers must broaden our focus from physics for physicists and other scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is that "[w]ithout a scientifically literate population, the outlook for a better world is not promising." Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, nuclear physics, the standard model of particles and interactions, and quantum fields. Many science writers have shown that this description is possible. It should emphasize the scientific process and include such societal topics as global warming, nuclear weapons, and pseudoscience, because citizens need to vote intelligently on such issues.

  11. Technical Review of the Domestic Nuclear Detection Office Transformational and Applied Research Directorate’s Research and Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavietes, Anthony; Trebes, James; Borchers, Robert

    2013-01-01

    At the request of the Domestic Nuclear Detection Office (DNDO), a Review Committee comprised of representatives from the American Physical Society (APS) Panel on Public Affairs (POPA) and the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS) performed a technical review of the DNDO Transformational and Applied Research Directorate (TARD) research and development program. TARD’s principal objective is to address gaps in the Global Nuclear Detection Architecture (GNDA) through improvements in the performance, cost, and operational burden of detectors and systems. The charge to the Review Committee was to investigate the existing TARD research andmore » development plan and portfolio, recommend changes to the existing plan, and recommend possible new R&D areas and opportunities. The Review Committee has several recommendations.« less

  12. Mobilization and Defense Management Technical Reports Series. Military Health Professional Needs for Mobilization.

    DTIC Science & Technology

    1983-05-01

    Specialist 880 Respiratory Specialist 506 Psychiatric Specialist 248 Orthopedic Specialist 379 Orthotic Specialist 35 Physical Therapist 200... Therapist 4 Physical Therapist 2 Hospital Dietician 26 Nuclear Medicine Service Officer 3 Entomologist 7 Physiologist 3 Podiatrist 17 Psychologist 6...requirements, working conditions, physical requirements, skill levels, etc. with the civilian health professional manpower pool. The first phase of this effort

  13. Radiation Sensors for Medical, Industrial and Environmental Applications: How to Engage with Schools and the General Public

    ERIC Educational Resources Information Center

    Seitz, B.; Rivera, N. Campos; Gray, R.; Power, A.; Thomson, F.

    2018-01-01

    Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, andmore » technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.« less

  15. Russian Contract Procurement Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J G

    2010-03-29

    This contract supports the enhancement of physical protection or nuclear material control and accounting systems at institutes or enterprises of the newly independent states under the material protection control and accounting (MPC&A) program. The contract is entered into pursuant to the MPC&A Program, a gratuitous technical assistance program, in accordance with the bilateral Agreements between the Russian Federation and the United States of America concerning the Safe and Secure Transportation, Storage and Destruction of Weapons and the Prevention of Weapons Proliferation of June 1992, as extended and amended by Protocol signed of June 1999, Agreement between the Government of themore » Russian Federation regarding Cooperation in the Area of Nuclear Materials Physical Protection, Control and Accounting of October 1999 and the Russian Federation law of May 1999 on the taxation exemption of gratuitous technical assistance with Russian Federation under registration No.DOE001000.« less

  16. Physical protection philosophy and techniques in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufva, B.

    1988-01-01

    The circumstances for the protection of nuclear power plants are special in Sweden. A very important factor is that armed guards at the facilities are alien to the Swedish society. They do not use them. The Swedish concept of physical protection accepts that the aggressor will get into the facility. With this in mind, the Swedish Nuclear Power Inspectorate (SKI) has established the policy that administrative, technical, and organizational measures will be directed toward preventing an aggressor from damaging the reactor, even if he has occupied the facility. In addition, the best conditions possible shall be established for the operatormore » and the police to reoccupy the plant. The author believes this policy is different from that of many other countries. Therefore, he focusses on the Swedish philosophy and techniques for the physical protection of nuclear power plants.« less

  17. Physics and Its Multiple Roles in the International Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  18. Understanding the cause of an unreadable nuclear medicine image: a case of unexpected results with 123I whole-body scintigraphy.

    PubMed

    Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo

    2014-12-01

    When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Insider Threat Mitigation Workshop Instructional Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt theft of nuclear materials. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat.

  20. Multi-sensor radiation detection, imaging, and fusion

    NASA Astrophysics Data System (ADS)

    Vetter, Kai

    2016-01-01

    Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.

  1. Radiation sensors for medical, industrial and environmental applications: how to engage with schools and the general public

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Campos Rivera, N.; Gray, R.; Powell, A.; Thomson, F.

    2018-01-01

    Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the normal education stream, opening many opportunities to engage with schools and the general public to showcase the latest developments and their applications. The detection of radiation is at the very heart of understanding radiation, its fascination and associated fears. The outreach group of the nuclear physics group at the University of Glasgow demonstrates a number of successful outreach activities centred around radiation detection and described in this paper, focusing on activities delivered to a variety of audiences and related to applied nuclear physics work within our group. These concentrate on the application of novel sensor technologies for nuclear decommissioning, medical imaging modalities and the monitoring of environmental radioactivity. The paper will provide some necessary background material as well as practical instructions for some of the activities developed.

  2. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  3. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  4. Material Control and Accounting (MC&A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) VNIIEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material controlmore » and accounting (MC&A) system upgrades and the preliminary results from a pilot program on the MC&A system performance testing that was recently conducted at one technical area.« less

  5. Proceedings of the 5. joint Russian-American computational mathematics conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    These proceedings contain a record of the talks presented and papers submitted by participants. The conference participants represented three institutions from the United States, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and two from Russia, Russian Federal Nuclear Center--All Russian Research Institute of Experimental Physics (RFNC-VNIIEF/Arzamas-16), and Russian Federal Nuclear Center--All Russian Research Institute of Technical Physics (RFNC-VNIITF/Chelyabinsk-70). The presentations and papers cover a wide range of applications from radiation transport to materials. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. PREFACE: 7th International Conference on Quantum Theory and Symmetries (QTS7)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Pošta, Severin; Schnabl, Martin; Šnobl, Libor

    2012-02-01

    The Seventh International Conference Quantum Theory and Symmetries (QTS7), organized by the Departments of Mathematics and Physics, Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague, the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research and the Institute of Physics at the Academy of Sciences of the Czech Republic, belongs to a successful series of conferences which began at Goslar, Germany in 1999. More recent QTS conferences were held in Poland, Bulgaria, USA and Spain. QTS7 gathered around 300 scientists from all over the world. 136 of the plenary lectures and contributions presented at QTS7 are published in this issue of Journal of Physics: Conference Series. We acknowledge support from the Commission for co-operation with JINR Dubna and grant LA-08002 from the Ministry of Education of the Czech Republic. Čestmír Burdík Chairman Local Organizing Committee

  7. Exploring for oil with nuclear physics

    NASA Astrophysics Data System (ADS)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  8. 76 FR 3678 - Board Meeting: February 16, 2011-Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Activities Related to Managing Spent Nuclear...-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will...

  9. Jefferson Proving Ground, South of the Fining Line, Final Remedial Investigation/Feasibility Study, Resource Management Plan

    DTIC Science & Technology

    1993-01-01

    and various DOD sites. I From 1984 to 1987, Mr. Pincock was a Certified Radiation and Chemistry Technician for United Nuclear Industries. He performed...in 1983, Mr. Pincock assisted the senior technical staff in radiation protection as a Junior Health Physics Technician at the Nuclear Support Services...SCOPE OF PROGRAM This plan contains a description of the personnel and procedures for managing the Remedial Investigation/Feasibility Study (RI/FS) at

  10. Strange Particles and Heavy Ion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassalleck, Bernd; Fields, Douglas

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less

  11. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, Edward R.

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  12. The Colombian nuclear scenario: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Martinez, Isabel

    2016-07-01

    In Colombia, the absence of nuclear-oriented policies based on technical knowledge, the closing of the Nuclear Affairs Institute (1956-1998), the association of the word "nuclear" with weapons, plus the country's last six decades of internal conflict and narcotraffic have discourage the technical, social and environmental nuclear advance. However, there are technical, social and economic national challenges that could be faced by the present nuclear technical capacities.

  13. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  14. 76 FR 24065 - Board Workshop: June 6-7, 2011-Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...

  15. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  16. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...

  17. Technical status of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Grenard, P.

    2009-04-01

    The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.

  18. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations.

    PubMed

    Monteiro Gil, Octávia; Vaz, Pedro; Romm, Horst; De Angelis, Cinzia; Antunes, Ana Catarina; Barquinero, Joan-Francesc; Beinke, Christina; Bortolin, Emanuela; Burbidge, Christopher Ian; Cucu, Alexandra; Della Monaca, Sara; Domene, Mercedes Moreno; Fattibene, Paola; Gregoire, Eric; Hadjidekova, Valeria; Kulka, Ulrike; Lindholm, Carita; Meschini, Roberta; M'Kacher, Radhia; Moquet, Jayne; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Montoro Pastor, Alegria; Popescu, Irina-Anca; Quattrini, Maria Cristina; Ricoul, Michelle; Rothkamm, Kai; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Trompier, François; Vral, Anne

    2017-01-01

    To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems. A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties. The survey focused on several main areas: laboratory's general information, country and staff involved in biological and physical dosimetry; retrospective assays used, the number of assays available per laboratory and other information related to biodosimetry and emergency preparedness. Following technical intercomparisons amongst RENEB members, an update of the survey was performed one year later concerning the staff and the available assays. The analysis of RENEB questionnaires allowed a detailed assessment of existing capacity of the RENEB network to respond to nuclear and radiological emergencies. This highlighted the key importance of international cooperation in order to guarantee an effective and timely response in the event of radiological or nuclear accidents involving a considerable number of casualties. The deployment of the scientific and technical capabilities existing within the RENEB network members seems mandatory, to help other countries with less or no capacity for biological or physical dosimetry, or countries overwhelmed in case of a radiological or nuclear accident involving a large number of individuals.

  19. Seismic assessment of Technical Area V (TA-V).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medrano, Carlos S.

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less

  20. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-03-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  1. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  2. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  3. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  4. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  5. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Moshe

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less

  6. Extreme Light Infrastructure - Nuclear Physics Eli-Np Project

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-06-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  7. Summary of Technical Meeting To Compare US/French Approaches for Physical Protection Test Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Thomas Kimball; Martinez, Ruben; Thomas, Gerald

    In September 2015, representatives of the US Department of Energy/National Nuclear Security Administration, including test bed professionals from Sandia National Laboratories, and representatives of the French Alternative Energies and Atomic Energy Commission participated in a one-week workshop to share best practices in design, organization, operations, utilization, improvement, and performance testing of physical protection test beds. The intended workshop outcomes were to (1) share methods of improving respective test bed methodologies and programs and (2) prepare recommendations for standards regarding creating and operating testing facilities for nations new to nuclear operations. At the workshop, the French and American subject matter expertsmore » compared best practices as developed at their respective test bed sites; discussed access delay test bed considerations; and presented the limitations/ constraints of physical protection test beds.« less

  8. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbun, R.

    Review of NMP-NCS-930087, {open_quotes}Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, {close_quotes} was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1,more » and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion.« less

  9. Plasma Physics Network Newsletter, No. 3

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.

  10. Leo Szilard Lectureship Award: Science Matters - Technical Dimensions of Arms Control and Non-Proliferation Agreements

    NASA Astrophysics Data System (ADS)

    Timbie, James

    2017-01-01

    Agreements to reduce nuclear arms and prevent proliferation of nuclear weapons are technical as well as political documents. They must be both technically sound and politically acceptable. This presentation illustrates technical aspects of arms control and non-proliferation agreements, with examples from SALT I, INF, the HEU Agreement, START, and the Iran nuclear negotiations, drawing on 44 years of personal experience in the negotiation of these agreements. The lecture is designed to convey an appreciation of the role that individuals with technical training can play in diplomatic efforts to reduce nuclear forces and prevent nuclear proliferation.

  11. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  12. 76 FR 47613 - Board Meeting: September 13-14, 2011-Salt Lake City, UT; the U.S. Nuclear Waste Technical Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...

  13. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter

    2005-01-31

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

  14. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  15. A journey into medical physics as viewed by a physicist

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2007-03-01

    The world of physics is usually linked to a large variety of subjects spanning from astrophysics, nuclear/high energy physics, materials and optical sciences, plasma physics etc. Lesser is known about the exciting world of medical physics that includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. These physicists are typically based in hospital departments of radiation oncology or radiology, and provide technical support for patient diagnosis and treatment in a clinical environment. This talk will focus on providing a bridge between selected areas of physics and their medical applications. The journey will first start from our understanding of high energy beam production and transport beamlines for external beam treatment of diseases (e.g., electron, gamma, X-ray and proton machines) as they relate to accelerator physics. We will then embrace the world of nuclear/high energy physics where detectors development provide a unique tool for understanding low energy beam distribution emitted from radioactive sources used in Brachytherapy treatment modality. Because the ultimate goal of radiation based therapy is its killing power on tumor cells, the next topic will be microdosimetry where responses of biological systems can be studied via electromagnetic systems. Finally, the impact on the imaging world will be embraced using tools heavily used in plasma physics, fluid mechanics and Monte Carlo simulations. These various scientific areas provide unique opportunities for faculty and students at universities, as well as for staff from research centers and laboratories to contribute in this field. We will conclude with the educational training related to medical physics programs.

  16. A didactic proposal about Rutherford backscattering spectrometry with theoretic, experimental, simulation and application activities

    NASA Astrophysics Data System (ADS)

    Corni, Federico; Michelini, Marisa

    2018-01-01

    Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.

  17. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    NASA Astrophysics Data System (ADS)

    2013-05-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012.The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) "On the threshold of a peta era"; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Scientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute"; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) "Major stages of the Soviet Atomic Project"; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) "History of the Astronomy history ". Papers written on the basis of the reports are published below. • On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486-492 • Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493-502 • Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502-509 • History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509-530

  18. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...

  19. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...

  20. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel

    The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less

  1. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  2. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciencesmore » Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.« less

  3. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  4. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  5. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  6. Nuclear and radiological emergencies: Building capacity in medical physics to support response.

    PubMed

    Berris, Theocharis; Nüsslin, Fridtjof; Meghzifene, Ahmed; Ansari, Armin; Herrera-Reyes, Eduardo; Dainiak, Nicholas; Akashi, Makoto; Gilley, Debbie; Ohtsuru, Akira

    2017-10-01

    Medical physicists represent a valuable asset at the disposal of a structured and planned response to nuclear or radiological emergencies (NREs), especially in the hospital environment. The recognition of this fact led the International Atomic Energy Agency (IAEA) and the International Organization for Medical Physics (IOMP) to start a fruitful collaboration aiming to improve education and training of medical physicists so that they may support response efforts in case of NREs. Existing shortcomings in specific technical areas were identified through international consultations supported by the IAEA and led to the development of a project aiming at preparing a specific and standardized training package for medical physicists in support to NREs. The Project was funded through extra-budgetary contribution from Japan within the IAEA Nuclear Safety Action Plan. This paper presents the work accomplished through that project and describes the current steps and future direction for enabling medical physicists to better support response to NREs. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  7. Ionizing radiations, underground world and nuclear tests in Algeria

    NASA Astrophysics Data System (ADS)

    Chama, Allel

    2010-05-01

    Today, the exposure to ionizing radiations, is still a real great physical hazard in the world at various levels until the nuclear tests which led to a rich and lawful debate, and needs the installation of preventive rules through technical and medical aspects during the use of the radioactive sources, (theradioprotection). Concerning the occupational health, the pathology of the ionizing radiations is repaired under occupational disease. Our interest is to highlight this physical hazard, which represents an important chapter of the occupational pathology in its effects and prevention of the workers exposed in Algeria. The second aim of the paper is to highlight the historical aspect of the risk of ionizing radiations and consequences causes by the French nuclear tests in In Eker (underground galleries of the mountain of Hoggar in the south of Algeria in 1961), whose effects present a great damage on the health of the Algerian captive, and "workers", indigenous population and environment until now. This event deserves its place as much as that of Hiroshima and Nagasaki (1945).

  8. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  9. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  10. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.B.; Klein, A.

    1977-02-23

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication.

  11. THE AIMS AND ACTIVITIES OF THE INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NICHOLS,A.L.; TULI, J.K.

    International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via variousmore » media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics.« less

  12. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-09

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.

  14. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abriola, D.; Tuli, J.

    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of themore » IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).« less

  15. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    PubMed

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. 78 FR 63251 - Board Meeting; November 20, 2013 in Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; November 20, 2013 in Washington, DC The U.S. Nuclear Waste Technical Review Board will meet to discuss DOE SNF and HLW management research and... Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting...

  17. 76 FR 77270 - Board Meeting; January 9, 2012, Arlington, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; January 9, 2012, Arlington, VA The U.S. Nuclear Waste Technical Review Board will meet to discuss integration efforts undertaken by DOE-NE and DOE... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Arlington...

  18. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  19. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  20. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Export of technical data relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED....20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  1. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.B.; Passiakos, M.

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  2. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields. Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of PRAGMA Congressi, who took charge of all the administrative and accommodation procedures, is also acknowledged. The Local Organizing Committee (Pavia, January 2006)

  3. Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pregenzer, Arian Leigh

    2011-12-01

    The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunitiesmore » for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.« less

  4. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been mademore » clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.« less

  5. A review and overview of nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less

  6. Advanced Insider Threat Mitigation Workshop Instructional Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Philip; Larsen, Robert; O'Brien, Mike

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing theirmore » effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.« less

  7. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1993-10-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  8. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  9. Resource Letter MP-2: The Manhattan project and related nuclear research

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2011-02-01

    This Resource Letter is a supplement to my earlier Resource Letter MP-1 and provides further sources on the Manhattan Project and related nuclear research. Books and journal articles are cited for the following topics: General works, technical works, biographical and autobiographical works, foreign wartime programs and allied intelligence, technical papers of historical interest, and postwar policy and technical developments. I also give a list of videos and websites dealing with the Manhattan Project, nuclear weapons, and nuclear issues.

  10. Nuclear Forensics and Attribution: A National Laboratory Perspective

    NASA Astrophysics Data System (ADS)

    Hall, Howard L.

    2008-04-01

    Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.

  11. A Physicist's Journey In The Nuclear Power World

    NASA Astrophysics Data System (ADS)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  12. Physics Literacy for All Students

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-03-01

    Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''

  13. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  14. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  15. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  16. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  17. Physics division. Progress report for period ending September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Divisionmore » have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.« less

  18. Disclinations in Carbon-Carbon Composites.

    DTIC Science & Technology

    1983-09-01

    8i-C-0641 U LASIFIED F/6G ii/4 N I uuuuullu ..D un n ." =25 1321. MICROCOP EOUINTSLHR NATONL = BUR A FSADRS16- UNCLASSI FI ED SECURITY CLASIrICA’sJM...Applications nuclear carbon carbon fiber intercalation compounds biocarbons and potential uses - Fundamentals physics chemistry technology The technical...Graphite intercalation compounds : old and new University of Munich problems in the chemist’s view West Germany L. S. Singer Carbon fibers from mesophase

  19. Resource Letter MP-1: The Manhattan Project and related nuclear research

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2005-09-01

    This Resource Letter provides a guide to literature on the Manhattan Project and related nuclear research. Books and journal articles are cited for the following topics: general works, technical works, biographical and autobiographical works, the German nuclear program, and technical papers of historical interest. A list of videos and websites dealing with the Manhattan Project, nuclear weapons, and nuclear issues is also given.

  20. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernander, O.; Haga, I.; Segerberg, F.

    BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less

  2. Health Physics Positions Data Base: Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Borges, T.; Stafford, R.S.

    1994-02-01

    The Health Physics Positions (HPPOS) Data Base of the Nuclear Regulatory Commission (NRC) is a collection of NRC staff positions on a wide range of topics involving radiation protection (health physics). It consists of 328 documents in the form of letters, memoranda, and excerpts from technical reports. The HPPOS Data Base was developed by the NRC Headquarters and Regional Offices to help ensure uniformity in inspections, enforcement, and licensing actions. Staff members of the Oak Ridge National Laboratory (ORNL) have assisted the NRC staff in summarizing the documents during the preparation of this NUREG report. These summaries are also beingmore » made available as a {open_quotes}stand alone{close_quotes} software package for IBM and IBM-compatible personal computers. The software package for this report is called HPPOS Version 2.0. A variety of indexing schemes were used to increase the usefulness of the NUREG report and its associated software. The software package and the summaries in the report are written in the context of the {open_quotes}new{close_quotes} 10 CFR Part 20 ({section}{section}20.1001--20.2401). The purpose of this NUREG report is to allow interested individuals to familiarize themselves with the contents of the HPPOS Data Base and with the basis of many NRC decisions and regulations. The HPPOS summaries and original documents are intended to serve as a source of information for radiation protection programs at nuclear research and power reactors, nuclear medicine, and other industries that either process or use nuclear materials.« less

  3. Extreme Light Infrastructure - Nuclear Physics pillar (ELI-NP) : new horizons in physics with high power lasers and brilliant gamma beams.

    PubMed

    Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae

    2018-06-28

    The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these new probes will be discussed with a special focus on day-one experiments and associated novel instrumentation. © 2018 IOP Publishing Ltd.

  4. Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces

    NASA Astrophysics Data System (ADS)

    Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume

    2016-09-01

    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  5. Evaluation of the automatic optical authentication technologies for control systems of objects

    NASA Astrophysics Data System (ADS)

    Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.

    2000-03-01

    The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.

  6. Climate and smoke: an appraisal of nuclear winter.

    PubMed

    Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C

    1990-01-12

    The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.

  7. Calculating the Vulnerability of Synthetic Polymers to Autoignition during Nuclear Flash.

    DTIC Science & Technology

    1985-03-01

    Lawrence Livermore National Laboratory P.O. Box 808 2561C Livermore, California 94550 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE~March...34Low Emissivity and Solar Control Coatings on Architectural Glass," Proc. SPIE 37, 324 (1982). 10. R. C. Weast, Ed., Handbook of Chemistry and Physics...Attn: Michael Frankel Chief of Engineers Washington, D.C. 20305 Department of the Army Attn: DAEN-RDZ-A Command and Control Technical Center Washington

  8. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  9. International Data on Radiological Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. Themore » database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.« less

  10. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  11. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  12. ANNUAL REPORT, JULY 1, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-02-01

    This annual report of Brookhaven National Laboratory describes its program and activities for the fiscal year 1958. The progress and trends of the research program are presented along with a description of the operational, service, and administrative activities of the Laboratory. The scientific and technical details of the many research and development activities are covered more fully in scientific and technical periodicals and in the quarterly scientific progress reports and other scientiflc reports of the Laboratory. A list of all publications for July 1, 1957 to June 30, 1958, is given. Status and progress are given in fields of physics,more » accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medical research. (For preceding period see BNL-462.) (W.D.M.)« less

  13. Energy Experiments for STEM Students

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2011-03-01

    Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.

  14. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  15. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  16. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  17. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED... LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  18. 37 CFR 5.20 - Export of technical data relating to sensitive nuclear technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relating to sensitive nuclear technology. 5.20 Section 5.20 Patents, Trademarks, and Copyrights UNITED... LICENSES TO EXPORT AND FILE APPLICATIONS IN FOREIGN COUNTRIES Licenses for Foreign Exporting and Filing § 5.20 Export of technical data relating to sensitive nuclear technology. Under regulations (10 CFR 810.7...

  19. Nuclear Propulsion Technical Interchange Meeting, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Nuclear Propulsion Technical Interchange Meeting (NP-TIM-92) was sponsored and hosted by the Nuclear Propulsion Office at the NASA Lewis Research Center. The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are a compilation of the presentations given at the meeting (many of the papers are presented in outline or viewgraph form). Volume 1 covers the introductory presentations and the system concepts and technology developments related to nuclear thermal propulsion.

  20. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franusich, Michael D.

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less

  1. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, J. M.; Marsden, O.; Reilly, D.

    Abstract The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise.

  2. Physical layer simulation study for the coexistence of WLAN standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlader, M. K.; Keiger, C.; Ewing, P. D.

    This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less

  3. Some Pecularities of Solidification of the Almandine Impact Melt

    NASA Astrophysics Data System (ADS)

    Feldman, V. I.; Kozlov, E. A.; Zhugin, Yu. N.

    1996-03-01

    SOME PECULIARITIES OF SOLIDIFICATION OF THE ALMANDINE IMPACT MELT. Feldman V.I. Moscow State University, Geological Faculty, Department of Petrology, 119899, Moscow, Russia. Kozlov E.A., Zhugin Yu.N. Russian Federal nuclear Center - Research Institute of Technical Physics, P.O.Box 245, 456770, Snezhinsk, Russia. The aim of these investigations is a description of the experiments and the first results of a loading of the garnet sand by spherical converging shock waves. These experiments show that impact liquid have by solidification three stage of liquid immiscibility.

  4. Effect of Longitudinal Grooves on Survivability of Cylindrical Steel Projectiles Fired against Simulated Concrete Targets

    DTIC Science & Technology

    1982-11-01

    Support Group, Nellis Air Force Base (0O) 1 Defense Nuclear Agency ( Shok Physics Directorate) 12 Defense Technical Information Center 1 Department of...descrid l this report wa cmditd in support of th cow- troled fragnentation studies for Mad tafset peatato warmed This effort was supported by the Naval Air ...mimi am. Mr. H. Be=die, AIR -350, was the cogu rant NAVAIR Technolog d. This report has ben review for techni accuracy by John Pearson, Deton- atlon

  5. How does PET/MR work? Basic physics for physicians.

    PubMed

    Delso, Gaspar; Ter Voert, Edwin; Veit-Haibach, Patrick

    2015-08-01

    The aim of this article is to provide Radiologists and Nuclear Medicine physicians the basic information required to understand how PET/MR scanners work, what are their limitations and how to evaluate their performance. It will cover the operational principles of standalone PET and MR imaging, as well as the technical challenges of creating a hybrid system and how they have been solved in the now commercially available scanners. Guidelines will be provided to interpret the main performance figures of hybrid PET/MR systems.

  6. Relations between phytoplankton growth rates and nutrient dynamics in Lake Norman, North Carolina. Technical report series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M.S.

    A baseline study of phytoplankton production and nutrient dynamics was conducted on Lake Norman, NC, a 13000-ha, warm-monomictic reservoir, prior to the initiation of thermal inputs from an 1180-MW nuclear electric generation facility. The objective of the study was to identify the major physical, chemical and biological processes controlling nutrient dynamics in Lake Norman, with specific reference to the impact of phytoplankton production on the cycling of carbon, nitrogen and phosphorus.

  7. NMR at very low fields.

    PubMed

    Trahms, Lutz; Burghoff, Martin

    2010-10-01

    Although nuclear magnetic resonance in low fields around or below the Earth's magnetic field is almost as old as nuclear magnetic resonance itself, the recent years have experienced a revival of this technique that is opposed to the common trend towards higher and higher fields. The background of this development is the expectation that the low-field domain may open a new window for the study of molecular structure and dynamics. Here, we will give an overview on the specific features in the low-field domain, both from the technical and from the physical point of view. In addition, we present a short passage on the option of magnetic resonance imaging in fields of the micro-Tesla range. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Careers in Medical Physics and the American Association of Physicists in Medicine

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  9. Nuclear Forensics International Technical Working Group (ITWG): a collaboration of scientists, law enforcement officials, and regulators working to combat nuclear terrorism and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.

    Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official Nuclear Forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with nearly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI) (Figure 1). Besidesmore » providing a network of nuclear forensics laboratories that are able to assist the global community during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. Past efforts to advance nuclear forensic science have also included scenarios that asked laboratories to adapt conventional forensics methods (e.g. DNA, fingerprints, tool marks, and document comparisons) for collecting and preserving evidence comingled with radioactive materials.« less

  10. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  11. Medical Physicists and AAPM

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  12. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  13. Plasma Physics Network Newsletter, no. 5

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  14. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  15. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{submore » eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.« less

  16. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windsor, Lindsay K.; Kessler, Carol E.

    An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next stepsmore » for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.« less

  17. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  18. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  19. Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silber, Herbert B.

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio ismore » needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.« less

  20. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Mei, G.T.

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.

  1. Department of Energy Actions Necessary to Improve DOE’s Training Program

    DTIC Science & Technology

    1999-02-01

    assessments, the Department has completed analyses and implemented training programs for the defense nuclear facilities technical workforce and...certification standards, such as those examined by the Defense Nuclear Facilities Safety Board in its reviews of Department operations, impose... nuclear facilities will have their technical skills assessed and will receive continuing training to maintain certain necessary skills. Page 17 GAO/RCED

  2. Insider Threat - Material Control and Accountability Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur bymore » an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.« less

  3. Teaching ``The Physics of Energy'' at MIT

    NASA Astrophysics Data System (ADS)

    Jaffe, Robert

    2009-05-01

    New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.

  4. 10 CFR 72.28 - Contents of application: Applicant's technical qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Applicant's technical qualifications. 72.28 Section 72.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

  5. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays ofmore » strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.« less

  6. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  7. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  8. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  9. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  10. DE-NE0008277_PROTEUS final technical report 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas

    This project details re-evaluations of experiments of gas-cooled fast reactor (GCFR) core designs performed in the 1970s at the PROTEUS reactor and create a series of International Reactor Physics Experiment Evaluation Project (IRPhEP) benchmarks. Currently there are no gas-cooled fast reactor (GCFR) experiments available in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). These experiments are excellent candidates for reanalysis and development of multiple benchmarks because these experiments provide high-quality integral nuclear data relevant to the validation and refinement of thorium, neptunium, uranium, plutonium, iron, and graphite cross sections. It would be cost prohibitive to reproduce suchmore » a comprehensive suite of experimental data to support any future GCFR endeavors.« less

  11. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  12. Contributions to Integral Nuclear Data in ICSBEP and IRPhEP since ND 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Briggs, J. Blair; Gulliford, Jim

    2016-09-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the international nuclear data community at ND2013. Since ND2013, integral benchmark data that are available for nuclear data testing has continued to increase. The status of the international benchmark efforts and the latest contributions to integral nuclear data for testing is discussed. Select benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2013 are highlighted. The 2015 edition of the ICSBEP Handbook now contains 567 evaluations with benchmark specifications for 4,874more » critical, near-critical, or subcritical configurations, 31 criticality alarm placement/shielding configuration with multiple dose points apiece, and 207 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. The 2015 edition of the IRPhEP Handbook contains data from 143 different experimental series that were performed at 50 different nuclear facilities. Currently 139 of the 143 evaluations are published as approved benchmarks with the remaining four evaluations published in draft format only. Measurements found in the IRPhEP Handbook include criticality, buckling and extrapolation length, spectral characteristics, reactivity effects, reactivity coefficients, kinetics, reaction-rate distributions, power distributions, isotopic compositions, and/or other miscellaneous types of measurements for various types of reactor systems. Annual technical review meetings for both projects were held in April 2016; additional approved benchmark evaluations will be included in the 2016 editions of these handbooks.« less

  13. Nuclear-safety institution in France: emergence and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallet, B.M.

    1986-01-01

    This research work examines the social construction of the nuclear-safety institution in France, and the concurrent increased focus on the nuclear-risk issue. Emphasis on risk and safety, as primarily technical issues, can partly be seen as a strategy. Employed by power elites in the nuclear technostructure, this diverts emphasis away from controversial and normative questions regarding the political and social consequences of technology to questions of technology that appear to be absolute to the technology itself. Nuclear safety, which started from a preoccupation with risk related to the nuclear energy research and development process, is examined using the analytic conceptmore » of field. As a social arena patterned to achieve specific tasks, this field is dominated by a body of state engineers recognized to have high-level scientific and administrative competences. It is structured by procedures and administrative hierarchies as well as by technical rules, norms, and standards. These are formalized and rationalized through technical, economic, political, and social needs; over time; they consolidate the field into an institution. The study documents the nuclear-safety institution as an integral part of the nuclear technostructure, which has historically used the specificity of its expertise as a buffer against outside interference.« less

  14. 10 CFR 72.26 - Contents of application: Technical specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  15. 10 CFR 72.26 - Contents of application: Technical specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application: Technical specifications. 72.26 Section 72.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  16. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  17. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  18. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  19. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  20. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency betweenmore » the two units, to the extent practicable.« less

  1. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.

  2. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less

  3. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  4. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  5. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  6. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  7. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  8. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  9. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  10. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  11. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  12. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  13. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  14. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  15. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  16. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  17. 10 CFR 52.80 - Contents of applications; additional technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 52.80 Section 52.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.80 Contents of applications; additional technical... the circumstances associated with the loss of large areas of the plant due to explosions or fire as...

  18. 10 CFR 52.80 - Contents of applications; additional technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 52.80 Section 52.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.80 Contents of applications; additional technical... the circumstances associated with the loss of large areas of the plant due to explosions or fire as...

  19. 10 CFR 52.80 - Contents of applications; additional technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... 52.80 Section 52.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.80 Contents of applications; additional technical... the circumstances associated with the loss of large areas of the plant due to explosions or fire as...

  20. 10 CFR 52.80 - Contents of applications; additional technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 52.80 Section 52.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.80 Contents of applications; additional technical... the circumstances associated with the loss of large areas of the plant due to explosions or fire as...

  1. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less

  3. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  4. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  5. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  6. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  7. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  8. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  9. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  10. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  11. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  12. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  13. 10 CFR 1304.103 - Privacy Act inquiries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... writing may be sent to: Privacy Act Officer, U.S. Nuclear Waste Technical Review Board, 2300 Clarendon... NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.103 Privacy Act inquiries. (a) Requests... contains a record pertaining to him or her may file a request in person or in writing, via the internet, or...

  14. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, W.S.

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  15. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  16. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  17. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  18. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  19. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  20. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official nuclear forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with roughly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI). Besides providing amore » network of nuclear forensics laboratories that are able to assist law enforcement during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. The ITWG recently completed its fourth CMX in the 20 year history of the organization. This was also the largest materials exercise to date, with participating laboratories from 16 countries or organizations. Three samples of low enriched uranium were shipped to these laboratories as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. An objective review of the State Of Practice and Art of international nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  1. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    PubMed

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  5. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  6. Nuclear Technology Series. Course 27: Metrology.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. 10 CFR 76.87 - Technical safety requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Technical safety requirements. 76.87 Section 76.87 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.87 Technical safety requirements. (a) The Corporation shall establish technical safety requirements. In...

  8. 10 CFR 76.87 - Technical safety requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Technical safety requirements. 76.87 Section 76.87 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.87 Technical safety requirements. (a) The Corporation shall establish technical safety requirements. In...

  9. 10 CFR 76.87 - Technical safety requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Technical safety requirements. 76.87 Section 76.87 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.87 Technical safety requirements. (a) The Corporation shall establish technical safety requirements. In...

  10. 10 CFR 76.87 - Technical safety requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Technical safety requirements. 76.87 Section 76.87 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.87 Technical safety requirements. (a) The Corporation shall establish technical safety requirements. In...

  11. 10 CFR 76.87 - Technical safety requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Technical safety requirements. 76.87 Section 76.87 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.87 Technical safety requirements. (a) The Corporation shall establish technical safety requirements. In...

  12. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 19: Radiation Shielding.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 8: Reactor Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 17: Radiation Protection II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 18: Radiological Emergencies.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 2: Radiation Protection I.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 28: Welding Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 30: Mechanical Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Nuclear Technology Series. Course 31: Quality-Assurance Practices.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  6. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Status of the Siberian synchrotron radiation center

    NASA Astrophysics Data System (ADS)

    Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.

    2005-05-01

    Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.

  10. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  11. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, T.E.; Magleby, E.H.

    1985-09-06

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably completemore » and consistent with the review guidelines.« less

  12. The Importance of International Technical Nuclear Forensics to Deter Illicit Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D K

    2007-01-30

    Illicit trafficking of nuclear materials is a transboundary problem that requires a cooperative approach involving international nuclear forensics to ensure all states understand the threat posed by nuclear smuggling as well as a means to best deter the movement of nuclear contraband. To achieve the objectives, all cases involving illicit trafficking of nuclear and radiological materials must be vigorously pursued and prosecuted when appropriate. The importance of outreach and formal government-to-government relationships with partner nations affected by nuclear trafficking cannot be under-estimated. States that are situated on smuggling routes may be well motivated to counter nuclear crimes to bolster theirmore » own border and transportation security as well as strengthen their economic and political viability. National law enforcement and atomic energy agencies in these states are aggressively pursuing a comprehensive strategy to counter nuclear smuggling through increasing reliance on technical nuclear forensics. As part of these activities, it is essential that these organizations be given adequate orientation to the best practices in this emerging discipline including the categorization of interdicted nuclear material, collection of traditional and nuclear forensic evidence, data analysis using optimized analytical protocols, and how to best fuse forensics information with reliable case input to best develop a law enforcement or national security response. The purpose of formalized USG relationship is to establish an institutional framework for collaboration in international forensics, improve standards of forensics practice, conduct joint exercises, and pursue case-work that benefits international security objectives. Just as outreach and formalized relationships are important to cultivate international nuclear forensics, linking nuclear forensics to ongoing national assistance in border and transpiration security, including port of entry of entry monitoring, nuclear safeguards, and emerging civilian nuclear power initiatives including the Global Nuclear Energy Partnership are crucial components of a successful nuclear detection and security architecture. Once illicit shipments of nuclear material are discovered at a border, the immediate next question will be the nature and the source of the material, as well as the identity of the individual(s) involved in the transfer as well as their motivations. The Nuclear Smuggling International Technical Working Group (ITWG) is a forum for the first responder, law enforcement, policy, and diplomatic community to partner with nuclear forensics experts worldwide to identify requirements and develop technical solutions in common. The ITWG was charted in 1996 and since that time approximately 30 member states and organizations have participated in 11 annual international meetings. The ITWG also works closely with the IAEA to provide countries with support for forensic analyses. Priorities include the development of common protocols for the collection of nuclear forensic evidence and laboratory investigations, organization of forensic round-robin analytical exercises and technical forensic assistance to requesting nations. To promote the science of nuclear forensics within the ITWG the Nuclear Forensics Laboratory Group was organized in 2004. A Model Action Plan for nuclear forensics was developed by the ITWG and published as an IAEA Nuclear security Series document to guide member states in their own forensics investigations. Through outreach, formalized partnerships, common approaches and security architectures, and international working groups, nuclear forensics provides an important contribution to promoting nuclear security and accountability.« less

  13. Towards a Conceptual Diagnostic Survey in Nuclear Physics

    ERIC Educational Resources Information Center

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…

  14. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Technical analyses. 61.13 Section 61.13 Energy NUCLEAR....13 Technical analyses. The specific technical information must also include the following analyses... air, soil, groundwater, surface water, plant uptake, and exhumation by burrowing animals. The analyses...

  15. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must: (1) Develop technical safety requirements that are derived from the documented safety analysis... 10 Energy 4 2010-01-01 2010-01-01 false Technical safety requirements. 830.205 Section 830.205 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical...

  16. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must: (1) Develop technical safety requirements that are derived from the documented safety analysis... 10 Energy 4 2011-01-01 2011-01-01 false Technical safety requirements. 830.205 Section 830.205 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical...

  17. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov Websites

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino

  18. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Nuclear Technology Series. Course 11: Radiation Detection and Measurement.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  20. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2011-0182 when contacting the NRC about...

  6. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 3: Principles of Process Instrumentation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    NASA Astrophysics Data System (ADS)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  10. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  11. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  12. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  13. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  14. Applications of nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  15. 24 CFR 902.68 - Technical review of results of PHAS physical condition indicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... physical condition indicator. 902.68 Section 902.68 Housing and Urban Development REGULATIONS RELATING TO... review of results of PHAS physical condition indicator. (a) Request for technical reviews. This section describes the process for requesting and granting technical reviews of physical inspection results. (1) For...

  16. 24 CFR 902.68 - Technical review of results of PHAS physical condition indicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... physical condition indicator. 902.68 Section 902.68 Housing and Urban Development REGULATIONS RELATING TO... review of results of PHAS physical condition indicator. (a) Request for technical reviews. This section describes the process for requesting and granting technical reviews of physical inspection results. (1) For...

  17. 24 CFR 902.68 - Technical review of results of PHAS physical condition indicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... physical condition indicator. 902.68 Section 902.68 Housing and Urban Development REGULATIONS RELATING TO... review of results of PHAS physical condition indicator. (a) Request for technical reviews. This section describes the process for requesting and granting technical reviews of physical inspection results. (1) For...

  18. Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty

    NASA Astrophysics Data System (ADS)

    Garwin, Richard L.

    2003-04-01

    The National Academy of Sciences recently published a detailed study of technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. Excluding political factors, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk and ensuing discussion will elaborate on the study. The principal conclusion of the report, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons.

  19. Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty

    NASA Astrophysics Data System (ADS)

    2003-03-01

    The National Academy of Sciences recently completed a detailed study of the technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. While political factors were excluded, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk will elaborate on the study. The primary conclusion, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons."

  20. Nuclear Technology Series. Course 14: Introduction to Quality Assurance/Quality Control.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Nuclear Technology Series. Course 6: Instrumentation and Control of Reactors and Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  3. Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.

    A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.

  4. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bily, T.

    Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less

  6. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-03-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  7. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  8. Department of Energy: Office of Scientific and Technical Information

    NASA Technical Reports Server (NTRS)

    Grissom, Catherine

    1994-01-01

    The international acquisitions functions and activities of the Office of Scientific and Technical Information (OSTI) are described. There are four mechanisms for obtaining foreign information related to energy and nuclear science: The Energy Technology Data Exchange consisting of 14 member countries and 2 associate members; the International Nuclear Information System consisting of 86 countries and 17 international organizations; the Nuclear Energy Agency's 19 member countries provide reports for departmental scientists' use; bilateral agreements with countries such as Germany, the Nordic Consortium, and Australia result in records of foreign research in progress.

  9. Investigating surety methodologies for cognitive systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudell, Thomas P.; Peercy, David Eugene; Mills, Kristy

    2006-11-01

    Advances in cognitive science provide a foundation for new tools that promise to advance human capabilities with significant positive impacts. As with any new technology breakthrough, associated technical and non-technical risks are involved. Sandia has mitigated both technical and non-technical risks by applying advanced surety methodologies in such areas as nuclear weapons, nuclear reactor safety, nuclear materials transport, and energy systems. In order to apply surety to the development of cognitive systems, we must understand the concepts and principles that characterize the certainty of a system's operation as well as the risk areas of cognitive sciences. This SAND report documentsmore » a preliminary spectrum of risks involved with cognitive sciences, and identifies some surety methodologies that can be applied to potentially mitigate such risks. Some potential areas for further study are recommended. In particular, a recommendation is made to develop a cognitive systems epistemology framework for more detailed study of these risk areas and applications of surety methods and techniques.« less

  10. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less

  11. 78 FR 77606 - Security Requirements for Facilities Storing Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... regulatory basis; availability of responses to public comments. SUMMARY: The U.S. Nuclear Regulatory... to Carol Gallagher; telephone: 301-287- 3422; email: [email protected] . For technical... Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...

  12. Report Card on Nuclear Power

    ERIC Educational Resources Information Center

    Novick, Sheldon

    1974-01-01

    Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…

  13. Scientific impacts on nuclear strategic policy: Dangers and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeny S.M. Jr.

    1988-12-15

    Nuclear weapons have revolutionized warfare, making a mutual capability for assured destruction a fact of life and mutual assured deterrence the underlying nuclear strategy of the superpowers. The program to find a technical solution to the threat of nuclear weapons by creating an impervious defense is fatally flawed by failure to consider responses available to a sophisticated adversary at much lower cost. Responses could involve: exploiting vulnerabilities; increased firepower; technical innovation; and circumvention. Efforts to achieve strategic defense would in fact increase risk of nuclear war by stimulating the nuclear arms race since history demonstrates neither side will allow itsmore » deterrent force to be seriously degraded. Defenses would increase instability in times of a crisis. Science has also reduced the risk of nuclear war by making possible improved control and safety of nuclear forces and predictability of US/Soviet relations, verifiability of arms control agreements, and survivable strategic systems. Science can be a tool for good or evil; mankind must be its masters not its slaves.« less

  14. Scientific impacts on nuclear strategic policy: Dangers and opportunities

    NASA Astrophysics Data System (ADS)

    Keeny, Spurgeon M.

    1988-12-01

    Nuclear weapons have revolutionized warfare, making a mutual capability for assured destruction a fact of life and mutual assured deterrence the underlying nuclear strategy of the superpowers. The program to find a technical solution to the threat of nuclear weapons by creating an impervious defense is fatally flawed by failure to consider responses available to a sophisticated adversary at much lower cost. Responses could involve: exploiting vulnerabilities; increased firepower; technical innovation; and circumvention. Efforts to achieve strategic defense would in fact increase risk of nuclear war by stimulating the nuclear arms race since history demonstrates neither side will allow its deterrent force to be seriously degraded. Defenses would increase instability in times of a crisis. Science has also reduced the risk of nuclear war by making possible improved control and safety of nuclear forces and predictability of US/Soviet relations, verifiability of arms control agreements, and survivable strategic systems. Science can be a tool for good or evil; mankind must be its masters not its slaves.

  15. Review of the technical bases of 40 CFR Part 190.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, John E.; McMahon, Kevin A.; Siegel, Malcolm Dean

    2010-07-01

    The dose limits for emissions from the nuclear fuel cycle were established by the Environmental Protection Agency in 40 CFR Part 190 in 1977. These limits were based on assumptions regarding the growth of nuclear power and the technical capabilities of decontamination systems as well as the then-current knowledge of atmospheric dispersion and the biological effects of ionizing radiation. In the more than thirty years since the adoption of the limits, much has changed with respect to the scale of nuclear energy deployment in the United States and the scientific knowledge associated with modeling health effects from radioactivity release. Sandiamore » National Laboratories conducted a study to examine and understand the methodologies and technical bases of 40 CFR 190 and also to determine if the conclusions of the earlier work would be different today given the current projected growth of nuclear power and the advances in scientific understanding. This report documents the results of that work.« less

  16. Evolving landscape of low-energy nuclear physics publications

    DOE PAGES

    Pritychenko, B.

    2016-10-01

    Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less

  17. Evolving landscape of low-energy nuclear physics publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B.

    Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less

  18. A Roadmap of Innovative Nuclear Energy System

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  19. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  20. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Environmental and Occupational Health Sciences Institute, Piscataway, NJ; Gochfeld, Michael

    2012-07-01

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider themore » protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)« less

  1. Resource Letter MP-3: The Manhattan Project and Related Nuclear Research

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-10-01

    This Resource Letter is a supplement to the earlier Resource Letters MP-1 and MP-2, and provides further sources on the Manhattan Project and related research. Books, review papers, journal articles, videos, and websites are cited for the following topics: general works, technical works, biographical and autobiographical works, foreign wartime nuclear programs and related allied intelligence, the use of the bombs against Hiroshima and Nagasaki, technical papers of historical interest, postwar policy and technical developments, and educational materials. Together, these three Resource Letters describe nearly 400 sources of information on the Manhattan Project.

  2. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less

  3. Regulatory guidance for lightning protection in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.

    2006-07-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less

  4. The Science Training Program for Young Italian Physicists and Engineers at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone

    2015-03-12

    Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilabmore » HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.« less

  5. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular postgraduate training for physicians working in NM. Educational programs are comprehensive, covering both diagnostics and current forms of radioisotope therapy. They are aimed not only at physicians specialized/specializing in NM, but also at other medical professionals employed in radionuclide departments as well as physicians of other specialties.

  6. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.

    1999-03-15

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation,more » isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.« less

  7. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...

  8. Challenges of deploying nuclear energy for power generation in Malaysia

    NASA Astrophysics Data System (ADS)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  9. Design and Technical Study of Neutrino Detector Spacecraft

    NASA Technical Reports Server (NTRS)

    Solomey, Niclolas

    2017-01-01

    A neutrino detector is proposed to be developed for use on a space probe in close orbit of the Sun. The detector will also be protected from radiation by a tungsten shield Sun shade, active veto array and passive cosmic shielding. With the intensity of solar neutrinos substantially greater in a close solar orbit than on the Earth only a small 250 kg detector is needed. It is expected that this detector and space probe studying the core of the Sun, its nuclear furnace and particle physics basic properties will bring new knowledge beyond what is currently possible for Earth bound solar neutrino detectors.

  10. Angular distribution of electrons from powerful accelerators

    NASA Astrophysics Data System (ADS)

    Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.

    2007-07-01

    A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ≈0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.

  11. An Overview of GRETINA and its Physics Program

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Augusto

    2016-09-01

    GRETINA, a first implementation of a gamma-ray tracking array, combines unparalleled position resolution, large Ge efficiency, and good P/T to provide a powerful tool for in-beam gamma-ray spectroscopy. The commissioning in 2012 demonstrated the technical feasibility and unique capabilities of a gamma-ray tracking array, and successful physics campaigns have followed at NSCL/MSU(2013/14) and ATLAS/ANL (2014/15). New and exciting physic results have been shown in a broad range of topics, clearly confirming the expectations of excellent performance in both high- and Coulomb barrier-energy environments, and in multiple configurations. GRETINA is again operating at NSCL for a second campaign coupled to the S800 spectrometer. Following a brief status report of the array, I will present some selected highlights from the science campaigns, complementing the latest results to be discussed in this mini-symposium. Future plans, with an emphasis on the development and construction of the full 4 π GRETA, will also be discussed. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231.

  12. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  13. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.

  14. A Figure of Merit: Quantifying the Probability of a Nuclear Reactor Accident.

    PubMed

    Wellock, Thomas R

    In recent decades, probabilistic risk assessment (PRA) has become an essential tool in risk analysis and management in many industries and government agencies. The origins of PRA date to the 1975 publication of the U.S. Nuclear Regulatory Commission's (NRC) Reactor Safety Study led by MIT professor Norman Rasmussen. The "Rasmussen Report" inspired considerable political and scholarly disputes over the motives behind it and the value of its methods and numerical estimates of risk. The Report's controversies have overshadowed the deeper technical origins of risk assessment. Nuclear experts had long sought to express risk in a "figure of merit" to verify the safety of weapons and, later, civilian reactors. By the 1970s, technical advances in PRA gave the methodology the potential to serve political ends, too. The Report, it was hoped, would prove nuclear power's safety to a growing chorus of critics. Subsequent attacks on the Report's methods and numerical estimates damaged the NRC's credibility. PRA's fortunes revived when the 1979 Three Mile Island accident demonstrated PRA's potential for improving the safety of nuclear power and other technical systems. Nevertheless, the Report's controversies endure in mistrust of PRA and its experts.

  15. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  16. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  17. Physics through the 1990s: Nuclear physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.

  18. Technical Bases to Aid in the Decision of Conducting Full Power Ground Nuclear Tests for Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-02-01

    The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.

  19. Physics Division annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in researchmore » at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less

  20. 10 CFR 52.158 - Contents of application; additional technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Contents of application; additional technical information... APPROVALS FOR NUCLEAR POWER PLANTS Manufacturing Licenses § 52.158 Contents of application; additional technical information. The application must contain: (a)(1) Inspections, tests, analyses, and acceptance...

  1. Geotechnical support and topical studies for nuclear waste geologic repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technicalmore » and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''« less

  2. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yapuncich, F.; Ross, A.; Clark, R.H.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less

  3. RADIOLOGICAL SEALED SOURCE LIBRARY: A NUCLEAR FORENSICS TOOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canaday, Jodi; Chamberlain, David; Finck, Martha

    If a terrorist were to obtain and possibly detonate a device that contained radiological material, radiological forensic analysis of the material and source capsule could provide law enforcement with valuable clues about the origin of the radiological material; this information could then provide further leads on where the material and sealed source was obtained, and the loss of control point. This information could potentially be utilized for attribution and prosecution. Analyses of nuclear forensic signatures for radiological materials are generally understood to include isotopic ratios, trace element concentrations, the time since irradiation or purification, and morphology. Radiological forensic signatures formore » sealed sources provide additional information that leverages information on the physical design and chemical composition of the source capsule and containers, physical markings indicative of an owner or manufacturer. Argonne National Laboratory (Argonne), in collaboration with Idaho National Laboratory (INL), has been working since 2003 to understand signatures that could be used to identify specific source manufacturers. These signatures include the materials from which the capsule is constructed, dimensions, weld details, elemental composition, and isotopic abundances of the radioactive material. These signatures have been compiled in a library known as the Argonne/INL Radiological Sealed Source Library. Data collected for the library has included open-source information from vendor catalogs and web pages; discussions with source manufacturers and touring of production facilities (both protected through non-disclosure agreements); technical publications; and government registries such as the U.S. Nuclear Regulatory Commission’s Sealed Source and Device Registry.« less

  4. Scholarship for Nuclear Communications and Methods for Evaluation of Nuclear Project Acceptability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golay, Michael

    This project aims to go beyond effective communication in understanding how to design nuclear enterprise projects that will gain stakeholder acceptability. Much of what we are studying is generally applicable to controversial projects, and we expect our results to be of broad value beyond the nuclear arena. Acceptability is more than effective communication; it also requires varying degrees of engagement with a disparate number of stakeholder groups. In the nuclear enterprise, previous attempts have been well designed physically (i.e., technologically sound), but have floundered by being insensitive concerning acceptance. Though effective communication is a necessary, but insufficient, condition for suchmore » success, there is a lack of scholarship regarding how to gain stakeholder acceptance for new controversial projects, including nuclear ones. Our work is building a model for use in assessing the performance of a project in the area of acceptability. In the nuclear-social nexus, gaining acceptance requires a clear understanding of factors regarded as being important by the many stakeholders that are common to new nuclear project (many of whom hold an effective veto power). Projects tend to become socially controversial when public beliefs, expert opinion and decision-maker understanding are misaligned. As such, stakeholder acceptance is hypothesized as both an ongoing process and an initial project design parameter comprised of complex, social, cognitive and technical components. Controversial projects may be defined as aspects of modern technologies that some people question, or are cautious about. They could range from genetic modifications, biological hazards, effects of chemical agents, nuclear radiation or hydraulic fracturing operations. We intend that our work will result in a model likely to be valuable for refining project design and implementation to increase the knowledge needed for successful management of stakeholder relationships.« less

  5. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  6. 24 CFR 902.68 - Technical review of results of PHAS physical condition indicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Technical review of results of PHAS physical condition indicator. 902.68 Section 902.68 Housing and Urban Development REGULATIONS RELATING TO... review of results of PHAS physical condition indicator. (a) Request for technical reviews. This section...

  7. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less

  8. Chemical, Biological, Radiological, and Nuclear Consequence Management

    EPA Pesticide Factsheets

    The Chemical, Biological, Radiological, and Nuclear CMAD provides scientific support and technical expertise for decontamination of buildings, building contents, public infrastructure, agriculture, and associated environmental media.

  9. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  10. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  11. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  12. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  13. 41 CFR 109-43.307-52 - Nuclear-related or proliferation-sensitive personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Nuclear-related or... Excess § 109-43.307-52 Nuclear-related or proliferation-sensitive personal property. (a) Recognizing that property disposal officials will not have the technical knowledge to identify nuclear-related and...

  14. 77 FR 27814 - Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... NUCLEAR REGULATORY COMMISSION [Project No. 753; NRC-2012-0019] Model Safety Evaluation for Plant... Regulatory Commission (NRC) is announcing the availability of the model safety evaluation (SE) for plant... the Improved Standard Technical Specification (ISTS), NUREG-1431, ``Standard Technical Specifications...

  15. 10 CFR 52.80 - Contents of applications; additional technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; additional technical information... APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.80 Contents of applications; additional technical information. The application must contain: (a) The proposed inspections, tests, and analyses, including those...

  16. Security during the Construction of New Nuclear Power Plants: Technical Basis for Access Authorization and Fitness-For-Duty Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Kristi M.; Baker, Kathryn A.

    A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.

  17. The Role of the Russian Methodological and Training Center in providing Nondestructive Assay Technical Assistance to Russian Enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, Sergey; Bezhunov, Gennady; Ryazanov, Boris

    The Russian Methodological and Training center (RMTC) was initially created to provide not only personnel training in the areas of nuclear material control and accounting (MC&A), but also methodological and technical assistance to the Russian government and nuclear facilities. The goal of the assistance was to promote enhancement of Russian MC&A infrastructure and modernize the MC&A systems at individual enterprises and facilities.

  18. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  19. Physics division annual report 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less

  20. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mets, Mindy

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades.more » Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)« less

  1. 77 FR 14007 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...

  2. 78 FR 23684 - Personnel Access Authorization Requirements for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Nuclear Energy Institute (NEI or the petitioner) on January 25, 2013. The petition was docketed by the NRC... affecting the nuclear energy industry, including the regulatory aspects of generic operational and technical... 22, 2013 / Proposed Rules#0;#0; [[Page 23684

  3. The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program

    NASA Astrophysics Data System (ADS)

    Franks, J.

    2015-12-01

    The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.

  4. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  5. Nuclear security and radiological preparedness for the olympic games, athens 2004: lessons learned for organizing major public events.

    PubMed

    Kamenopoulou, Vassiliki; Dimitriou, Panayiotis; Hourdakis, Constantine J; Maltezos, Antonios; Matikas, Theodore; Potiriadis, Constantinos; Camarinopoulos, Leonidas

    2006-10-01

    In light of the exceptional circumstances that arose from hosting the Olympic Games in Athens in 2004 and from recent terrorist events internationally, Greece attributes the highest priority to security issues. According to its statutory role, the Greek Atomic Energy Commission is responsible for emergency preparedness and response in case of nuclear and radiological events, and advises the Government on the measures and interventions necessary to protect the public. In this context, the Commission participated in the Nuclear, Radiological, Biological, and Chemical Threat National Emergency Plan, specially developed for the Olympic Games, and coordinated by the Olympic Games Security Division. The objective of this paper is to share the experience gained during the organization of the Olympic Games and to present the nuclear security program implemented prior to, during, and beyond the Games, in order to prevent, detect, assess, and respond to the threat of nuclear terrorism. This program adopted a multi-area coverage of nuclear security, including physical protection of nuclear and radiological facilities, prevention of smuggling of radioactive materials through borders, prevention of dispersion of these materials into the Olympic venues, enhancement of emergency preparedness and response to radiological events, upgrading of the technical infrastructure, establishment of new procedures for assessing the threat and responding to radiological incidents, and training personnel belonging to several organizations involved in the National Emergency Response Plan. Finally, the close cooperation of Greek Authorities with the International Atomic Energy Agency and the U.S. Department of Energy, under the coordination of the Greek Atomic Energy Commission, is also discussed.

  6. Nuclear winter - Physics and physical mechanisms

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.

    1991-01-01

    The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.

  7. The contribution of Medical Physics to Nuclear Medicine: looking back - a physicist's perspective.

    PubMed

    Hutton, Brian F

    2014-12-01

    This paper is the first in a series of invited perspectives by four pioneers of Nuclear Medicine imaging and physics. A medical physicist and a Nuclear Medicine clinical specialist each take a backward look and a forward look at the contributions of Medical Physics to Nuclear Medicine. Contributions of Medical Physics are presented from the early discovery of radioactivity, development of first imaging devices, computers and emission tomography to recent development of hybrid imaging. There is evidence of significant contribution of Medical Physics throughout the development of Nuclear Medicine.

  8. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  9. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  10. Implanting a Discipline: The Academic Trajectory of Nuclear Engineering in the USA and UK

    ERIC Educational Resources Information Center

    Johnston, Sean F.

    2009-01-01

    The nuclear engineer emerged as a new form of recognised technical professional between 1940 and the early 1960s as nuclear fission, the chain reaction and their applications were explored. The institutionalization of nuclear engineering--channelled into new national laboratories and corporate design offices during the decade after the war, and…

  11. Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…

  12. An Atlas of Nuclear Energy. A Non-Technical World Portrait of Commercial Nuclear Energy.

    ERIC Educational Resources Information Center

    Ball, John M.

    This atlas is a nontechnical presentation of the geography and history of world commercial nuclear power with particular emphasis on the United States. Neither pro- nor antinuclear, it presents commercial nuclear power data in a series of specially prepared, easily read maps, tables, and text. The first section (United States) includes information…

  13. 10 CFR 50.36 - Technical specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear reactors are limits upon important process variables that are found to be necessary to reasonably... Commission terminates the license for the reactor, except for nuclear power reactors licensed under § 50.21(b... for nuclear reactors are settings for automatic protective devices related to those variables having...

  14. 10 CFR 50.36 - Technical specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear reactors are limits upon important process variables that are found to be necessary to reasonably... Commission terminates the license for the reactor, except for nuclear power reactors licensed under § 50.21(b... for nuclear reactors are settings for automatic protective devices related to those variables having...

  15. 10 CFR 50.36 - Technical specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear reactors are limits upon important process variables that are found to be necessary to reasonably... Commission terminates the license for the reactor, except for nuclear power reactors licensed under § 50.21(b... for nuclear reactors are settings for automatic protective devices related to those variables having...

  16. Nuclear Education and Training Programs of Potential Interest to Utilities.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    This compilation of education and training programs related to nuclear applications in electric power generation covers programs conducted by nuclear reactor vendors, public utilities, universities, technical institutes, and community colleges, which were available in December 1968. Several training-program consultant services are also included.…

  17. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  18. Deployment of the DosiKit System Under Operational Conditions: Experience From a French Defense National Nuclear Exercise.

    PubMed

    Entine, F; Bensimon Etzol, J; Bettencourt, C; Dondey, M; Michel, X; Gagna, G; Gellie, G; Corre, Y; Ugolin, N; Chevillard, S; Amabile, J-C

    2018-07-01

    Estimation of the dose received by accidentally irradiated victims is based on a tripod: clinical, biological, and physical dosimetry. The DosiKit system is an operational and mobile biodosimetry device allowing the measurement of external irradiation directly on the site of a radiological accident. This tool is based on capillary blood sample and hair follicle collection. The aim is to obtain a whole-body and local-surface dose assessment. This paper is about the technical evaluation of the DosiKit; the analytical process and scientific validation are briefly described. The Toulon exercise scenario was based on a major accident involving the reactor of a nuclear attack submarine. The design of the scenario made it impossible for several players (firefighters, medical team) to leave the area for a long time, and they were potentially exposed to high dose rates. The DosiKit system was fully integrated into a deployable radiological emergency laboratory, and the response to operational needs was very satisfactory.

  19. Zirconium and Yttrium (p, d) Surrogate Nuclear Reactions: Measurement and determination of gamma-ray probabilities: Experimental Physics Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J. T.; Hughes, R. O.; Escher, J. E.

    This technical report documents the surrogate reaction method and experimental results used to determine the desired neutron induced cross sections of 87Y(n,g) and the known 90Zr(n,g) cross section. This experiment was performed at the STARLiTeR apparatus located at Texas A&M Cyclotron Institute using the K150 Cyclotron which produced a 28.56 MeV proton beam. The proton beam impinged on Y and Zr targets to produce the nuclear reactions 89Y(p,d) 88Y and 92Zr(p,d) 91Zr. Both particle singles data and particle-gamma ray coincident data were measured during the experiment. This data was used to determine the γ-ray probability as a function of energymore » for these reactions. The results for the γ-ray probabilities as a function of energy for both these nuclei are documented here. For completeness, extensive tabulated and graphical results are provided in the appendices.« less

  20. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  1. Reformation of Regulatory Technical Standards for Nuclear Power Generation Equipments in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikio Kurihara; Masahiro Aoki; Yu Maruyama

    2006-07-01

    Comprehensive reformation of the regulatory system has been introduced in Japan in order to apply recent technical progress in a timely manner. 'The Technical Standards for Nuclear Power Generation Equipments', known as the Ordinance No.622) of the Ministry of International Trade and Industry, which is used for detailed design, construction and operating stage of Nuclear Power Plants, was being modified to performance specifications with the consensus codes and standards being used as prescriptive specifications, in order to facilitate prompt review of the Ordinance with response to technological innovation. The activities on modification were performed by the Nuclear and Industrial Safetymore » Agency (NISA), the regulatory body in Japan, with support of the Japan Nuclear Energy Safety Organization (JNES), a technical support organization. The revised Ordinance No.62 was issued on July 1, 2005 and is enforced from January 1 2006. During the period from the issuance to the enforcement, JNES carried out to prepare enforceable regulatory guide which complies with each provisions of the Ordinance No.62, and also made technical assessment to endorse the applicability of consensus codes and standards, in response to NISA's request. Some consensus codes and standards were re-assessed since they were already used in regulatory review of the construction plan submitted by licensee. Other consensus codes and standards were newly assessed for endorsement. In case that proper consensus code or standards were not prepared, details of regulatory requirements were described in the regulatory guide as immediate measures. At the same time, appropriate standards developing bodies were requested to prepare those consensus code or standards. Supplementary note which provides background information on the modification, applicable examples etc. was prepared for convenience to the users of the Ordinance No. 62. This paper shows the activities on modification and the results, following the NISA's presentation at ICONE-13 that introduced the framework of the performance specifications and the modification process of the Ordinance NO. 62. (authors)« less

  2. 76 FR 50276 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... revised the application of Risk- Managed Technical Specifications to Technical Specification 3.7.7, ``Control Room Makeup and Cleanup Filtration System.'' The purpose of the change was to correct a misapplication of the Configuration Risk Management Program that is currently allowed by the Technical...

  3. The contribution of medical physics to nuclear medicine: a physician's perspective.

    PubMed

    Ell, Peter J

    2014-12-01

    This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.

  4. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  5. Assessing the Risk of Inadvertent Nuclear War Between India and Pakistan

    DTIC Science & Technology

    2002-12-01

    stories/review.htm>. 5 avoided partly as a result of this. Hundreds of nuclear weapons tests were conducted, proving the technical capability of...sites in Cuba. The results of such an attack could have been disastrous, putting conventional systems in direct contact with nuclear systems, and... nuclear weapons and their delivery systems. Finally, India and Pakistan’s nuclear doctrines are compared. These comparisons yield important results

  6. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  7. Hybrid propulsion systems for space exploration missions

    NASA Technical Reports Server (NTRS)

    Darooka, D. K.

    1991-01-01

    Combinations of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP), and chemical propulsion are discussed. Technical details are given in viewgraph form. The characteristics of each configuration are discussed, particularly thrust characteristics.

  8. Nuclear Disarmament.

    ERIC Educational Resources Information Center

    Johnson, Christopher

    1982-01-01

    Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)

  9. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  10. Nuclear Propulsion Technical Interchange Meeting, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are an accumulation of the presentations provided at the meeting along with annotations provided by authors. The proceedings cover system concepts, technology development, and system modeling for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The test facilities required for the development of the nuclear propulsion systems are also discussed.

  11. 78 FR 59073 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... AGENCY: Nuclear Regulatory Commission. ACTION: License amendment application; issuance. SUMMARY: The U.S...: 301-287- 3422; email: [email protected] . For technical questions, contact the individual(s...: Chris Allen, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission...

  12. Talk About Nuclear Power

    ERIC Educational Resources Information Center

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  13. Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications

    NASA Astrophysics Data System (ADS)

    Kim, K.; Bushart, S.

    2009-12-01

    A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power plant sites. One of these remediation technologies is monitored natural attenuation (MNA), which has been widely used in other industries for the remediation of contaminants in soil and groundwater. Monitored natural attenuation (MNA) is a non-intervention, but not a no-action, groundwater and soil remediation approach that involves monitoring the dilution, dispersion, and decay of contaminants to meet remediation objectives. MNA has been commonly applied at sites where soil and groundwater have been contaminated by volatile organic compounds. This method has also been applied to remediation of radiological contamination at U.S. DOE facilities and decommissioning nuclear power plant sites. The EPRI published report (1016764) provides guidance for implementing MNA at nuclear power plants for remediation of radiological contaminants in groundwater and soil. The goal of the EPRI Groundwater Protection program is to bring together experience and technologies - both from within the nuclear industry and other industries - to support the industry’s commitment to environmental stewardship. Results from the program are being published in an extensive series of reports and software, and are being communicated to members in an annual EPRI Groundwater Protection technical exchange workshop.

  14. 2015 Stewardship Science Academic Programs Annual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Terri; Mischo, Millicent

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago tomore » engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.« less

  15. Teaching Nuclear Physics in a General Education Curriculum

    NASA Astrophysics Data System (ADS)

    Lesher, Shelly R.

    2017-01-01

    The general public is unaware how physics shapes the world. This is especially true for nuclear physics, where many people are scared of the words ``nuclear'' and ``radiation''. To combat these perceptions, the Physics Department at the University of Wisconsin - La Crosse teaches a general education class on nuclear weapons, energy, and policy in society. This includes the social, economic, cultural, and political aspects surrounding the development of nuclear weapons and their place in the world, especially in current events. This talk will discuss the course, how it has grown, and sample student responses.

  16. Fitness for duty in the nuclear industry: Update of the technical issues 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, N.; Grant, T.

    The purpose of this report is to provide an update of information on the technical issues surrounding the creation, implementation, and maintenance of fitness-for-duty (FFD) policies and programs. It has been prepared as a resource for Nuclear Regulatory Commission (NRC) and nuclear power plant personnel who deal with FFD programs. It contains a general overview and update on the technical issues that the NRC considered prior to the publication of its original FFD rule and the revisions to that rule (presented in earlier NUREG/CRs). It also includes chapters that address issues about which there is growing concern and/or about whichmore » there have been substantial changes since NUREG/CR-5784 was published. Although this report is intended to support the NRC`s rule making on fitness for duty, the conclusions of the authors of this report are their own and do not necessarily represent the opinions of the NRC.« less

  17. Audit of nuclear medicine scientific and technical standards.

    PubMed

    Jarritt, Peter H; Perkins, Alan C; Woods, Sandra D

    2004-08-01

    The British Nuclear Medicine Society has developed a process for the service-specific organizational audit of nuclear medicine departments. This process identified the need for a scheme suitable for the audit of the scientific and technical standards of a department providing such a service. This document has evolved following audit visits of a number of UK departments. It is intended to be used as a written document to facilitate the audit procedure and may be used for both external and self-audit purposes. Scientific and technical standards have been derived from a number of sources, including regulatory documents, notes for guidance and peer-reviewed publications. The audit scheme is presented as a series of questions with responses graded according to legal and safety obligations (A), good practice (B) and desirable aspects of service delivery (C). This document should be regarded as part of an audit framework and should be kept under review as the process evolves to meet the future demands of this high-technology-based clinical service.

  18. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  19. 78 FR 3921 - Proposed Models for Plant-Specific Adoption of Technical Specifications Task Force Traveler TSTF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Specifications Combustion Engineering Plants.'' Specifically, the proposed change revises various TSs to add a... Technical Details TSTF-426, Revision 5, is applicable to all Combustion Engineering- designed nuclear power...

  20. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  1. Nuclear chemistry. Annual report, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.

    1975-07-01

    The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

  2. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  3. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of themore » effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.« less

  4. Technical Assistance for Arts Facilities: A Sourcebook. A Report.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    This booklet is a directory of sources of technical assistance on problems relating to physical facilities for arts organizations. Wherever possible, agencies and organizations are described in their own words. Technical assistance in the area of physical facilities encompasses planning, financing, acquiring, renovating, designing, and maintaining…

  5. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  6. U.S.-Latin American Nuclear Relations: From Commitment to Defiance

    DTIC Science & Technology

    2012-09-01

    domestic legislation to increase the levels of   3   nuclear transparency and accountability by relying extensively on technical and scientific...which some say was influenced by environmental groups), President Bachelet delayed the decision to build a nuclear power until 2010, when Sebastian...currently engaged in nuclear trafficking, the risk is there. According to Alex Sánchez, in 2008, Colombian security forces discovered that the

  7. Industrial Hardening: 1982 Technical Status Report.

    DTIC Science & Technology

    1983-05-01

    for nuclear disaster ; establish additional contacts with industry to foster development of emergency preparedness, in general, and nuclear disaster preparedness...versatility for the situation following a nuclear disaster ). Recent governmat installations of such units have been made on an experimental basis...that industry could use to carry on vital functions now, in an emergency situation, and in event of a nuclear disaster . At its simplest, the

  8. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE PAGES

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    2016-09-16

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  9. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  10. International nuclear fuel cycle fact book. [Contains glossary of organizations, facilities, technical and other terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less

  11. 75 FR 33366 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of Application for Amendment to Facility... Operating License No. DPR-16 for the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. The proposed amendment would have revised the Technical Specifications to...

  12. North Korea’s Nuclear Weapons: Technical Issues

    DTIC Science & Technology

    2009-07-01

    news.bbc.co.uk/2/hi/asia-pacific/6216385.stm. 20 Warren Strobel , “North Korean nuclear documents challenge CIA assertions,” McClatchyNewspapers, May 28, 2008...78 “N. Korea ‘Slowing Disablement of Nuclear Facilities,” Chosun Ilbo, January 29, 2008. 79 Lee Chi-dong, “N Korea Complains

  13. Thermonuclear land of plenty

    NASA Astrophysics Data System (ADS)

    Gasior, P.

    2014-11-01

    Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.

  14. 76 FR 28101 - Notice of Availability of NUREG-1950: ``Disposition of Public Comments and Technical Bases for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ....'' This document is a knowledge management transfer document associated with Revision 2 of NUREG-1801... Review of License Renewal Applications for Nuclear Power Plants.'' The technical changes that were made...

  15. Regulatory and technical reports (abstract index journal): Annual compilation for 1996, Volume 21, No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, M.A.

    1997-04-01

    This compilation is the annual cumulation of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors.

  16. Science with radioactive beams: the alchemist's dream

    NASA Astrophysics Data System (ADS)

    Gelletly, W.

    2001-05-01

    Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.

  17. Progress and challenges in the development of physically-based numerical models for prediction of flow and contaminant dispersion in the urban environment

    NASA Astrophysics Data System (ADS)

    Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.

    2006-06-01

    The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.

  18. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    NASA Astrophysics Data System (ADS)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  19. A New Look to Nuclear Data

    DOE PAGES

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    2017-03-30

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  20. A New Look to Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  1. Nuclear Warheads: The Reliable Replacement Warhead program and the Life Extension Program

    DTIC Science & Technology

    2007-12-03

    eliminate the need for ESD controls.”67 CRS-22 68 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight...public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov...about/index.html]. 69 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, September 14, 2006. 70

  2. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2006-12-13

    Defense Nuclear Facilities Safety Board was created by Congress 1988 "as an independent oversight organization within the Executive Branch charged... nuclear facilities ." U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. involving CHE and plutonium...approach, if successful, would “reduce or eliminate the need for ESD controls.”42 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities

  3. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-04-04

    Information provided by Pantex Plant, Sept. 19, 2006. 50 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent...protection of public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http...www.dnfsb.gov/about/index.html]. 51 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, Sept. 14, 2006

  4. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-07-16

    The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight organization within the Executive Branch charged... nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. beginning, addressed safety...approach, if successful, would “reduce or eliminate the need for ESD controls.”55 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities Safety

  5. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  6. 77 FR 39899 - Technical Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ..., Nuclear material, Oil and gas exploration--well logging, Reporting and recordkeeping requirements... recordkeeping requirements, Source material, Uranium. 10 CFR Part 50 Antitrust, Classified information, Criminal... measures, Special nuclear material, Uranium enrichment by gaseous diffusion. 10 CFR Part 81 Administrative...

  7. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandummore » of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.« less

  8. Technical Training Workshop on International Safeguards: An Introduction to Safeguards for Emerging Nuclear States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazar, Sarah L.; Gastelum, Zoe N.; Olson, Jarrod

    2009-10-06

    The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) hosted a workshop from May 4-22, 2009, on the fundamental elements of international safeguards. Entitled "A Technical Training Workshop on International Safeguards," the workshop introduced post-graduate students from Malaysia, Vietnam, Indonesia, Thailand, Morocco, Egypt, Algeria and Tunisia to the fundamental issues and best practices associated with international safeguards and encouraged them to explore potential career paths in safeguards. Workshops like these strengthen the international safeguards regime by promoting the development of a "safeguards culture" among young nuclear professionals within nascent nuclear countries. While this concept of safeguards culture is sometimes hardmore » to define and even harder to measure, this paper will demonstrate that the promotion of safeguards cultures through workshops like these justifies the investment of U.S. taxpayer dollars.« less

  9. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  10. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  11. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  12. Supplement to a Methodology for Succession Planning for Technical Experts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Bernadette Lugue; Cain, Ronald A.; Agreda, Carla L.

    This report complements A Methodology for Succession Planning for Technical Experts (Ron Cain, Shaheen Dewji, Carla Agreda, Bernadette Kirk, July 2017), which describes a draft methodology for identifying and evaluating the loss of key technical skills at nuclear operations facilities. This report targets the methodology for identifying critical skills, and the methodology is tested through interviews with selected subject matter experts.

  13. Applicability of existing C3 (command, control and communications) vulnerability and hardness analyses to sentry system issues. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.C.

    1983-01-13

    This report is a compilation of abstracts resulting from a literature search of reports relevant to Sentry Ballistic missile system C3 vulnerability and hardness. Primary sources consulted were the DOD Nuclear Information Analysis Center (DASIAC) and the Defense Technical Information Center (DTIC). Approximately 175 reports were reviewed and abstracted, including several related to computer programs for estimating nuclear effects on electromagnetic propagation. The reports surveyed were ranked in terms of their importance for Sentry C3 VandH issues.

  14. 78 FR 79017 - Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical Security Requirements 1.0... the ZNPS Physical Security Plan (PSP) for the protection of the nuclear material while in transit to... the new physical security requirements in 10 CFR 73.55. The December 2, 2010, letter included...

  15. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  16. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights COPYRIGHT... COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a copy...

  17. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights COPYRIGHT... COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a copy...

  18. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less

  19. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  20. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  1. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  2. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  3. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  4. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  5. TECHNICAL SUPPORT FOR RADIOLOGICAL EMERGENCY PROTECTION ACTION RECOMMENDATIONS

    EPA Science Inventory

    RPD staff provide techical support for other EPA offices, other Federal departments and agencies and to state and local governments in preparing for and responding to radiological and nuclear emergencies under the National Response Framework's Nuclear/Radiological Incident Annex....

  6. 75 FR 54390 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... with the implementation of Nuclear Energy Institute (NEI) 04-10, ``Risk-Informed Technical... approved NEI 04-10, Rev. 1 in accordance with the TS SFCP. NEI [Nuclear Energy Institute] 04-10, Rev. 1...

  7. Training and technical assistance for compliance with beverage and physical activity components of New York City's regulations for early child care centers.

    PubMed

    Kakietek, Jakub; Dunn, Lillian; O'Dell, Sarah Abood; Jernigan, Jan; Kettel Khan, Laura

    2014-10-16

    In 2006, the New York City Department of Health and Mental Hygiene (DOHMH) passed regulations for child care centers that established standards for beverages provided to children and set a minimum amount of time for daily physical activity. DOHMH offered several types of training and technical assistance to support compliance with the regulations. This article analyzes the association between training and technical assistance provided and compliance with the regulations in a sample of 174 group child care centers. Compliance was measured by using a site inventory of beverages stored on premises and a survey of centers' teachers regarding the amount of physical activity provided. Training and technical assistance measures were based on the DOHMH records of training and technical assistance provided to the centers in the sample and on a survey of center directors. Ordinal logistic regression was used to assess the association between training and technical assistance measures and compliance with the regulations. Measures of training related to physical activity the center received: the number of staff members who participated in Sport, Play and Active Recreation for Kids (SPARK) and other training programs in which a center participated were associated with better compliance with the physical activity regulations. Neither training nor technical assistance were associated with compliance with the regulations related to beverages. Increased compliance with regulations pertaining to physical activity was not related to compliance with beverage regulations. Future trainings should be targeted to the specific regulation requirements to increase compliance.

  8. Factors influencing physical and technical variability in the English Premier League.

    PubMed

    Bush, Michael D; Archer, David T; Hogg, Robert; Bradley, Paul S

    2015-10-01

    To investigate match-to-match variability of physical and technical performances in English Premier League players and quantify the influence of positional and contextual factors. Match data (N = 451) were collected using a multicamera computerized tracking system across multiple seasons (2005-06 to 2012-13). The coefficient of variation (CV) was calculated from match to match for physical and technical performances in selected positions across different match contexts (location, standard, and result). Wide midfielders demonstrated the greatest CVs for total distance (4.9% ± 5.9%) and central midfielders the smallest (3.6% ± 2.0%); nevertheless, all positions exhibited CVs <5% (P > .05, effect size [ES] 0.1-0.3). Central defenders demonstrated the greatest CVs and wide midfielders the lowest for both high-intensity running (20.2% ± 8.8% and 13.7% ± 7.7%, P < .05, ES 0.4-0.8) and sprint distance (32.3% ± 13.8% and 22.6% ± 11.2%, P < .05, ES 0.5-0.8). Technical indicators such as tackles (83.7% ± 42.3%), possessions won (47.2% ± 27.9%), and interceptions (59.1% ± 37.3%) illustrated substantial variability for attackers compared with all other positions (P < .05, ES 0.4-1.1). Central defenders demonstrated large variability for the number of times tackled per match (144.9% ± 58.3%) and passes attempted and received compared with other positions (39.2% ± 17.5% and 46.9% ± 20.2%, P < .001, ES 0.6-1.8). Contextual factors had limited impact on the variability of physical and technical parameters. The data demonstrate that technical parameters varied more from match to match than physical parameters. Defensive players (fullbacks and central defenders) displayed higher CVs for offensive technical variables, while attacking players (attackers and wide midfielders) exhibited higher CVs for defensive technical variables. Physical and technical performances are variable per se regardless of context.

  9. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  10. The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.

    PubMed

    Mankoff, David A; Pryma, Daniel A

    2014-12-01

    Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.

  11. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on (18)F-FDG PET-CT for radiotherapy treatment planning.

    PubMed

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.

  12. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on 18F-FDG PET-CT for radiotherapy treatment planning

    PubMed Central

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032

  13. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  14. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  15. Technical Steps to Support Nuclear Arsenal Downsizing: A Report by the APS Panel on Public Affairs

    DTIC Science & Technology

    2010-02-01

    play a critical role in advancing the US plan to balance deter- rence with downsizing the US nuclear arsenal. In particular, S&T are essential to enable...nuclear-armed nations must be assured that they will continue to be able to meet those critical security needs. While individual nuclear-armed...steps are essential to progress towards the eventual elimination of nuclear arsenals. Science and technology (S&T) will play a critical role in

  16. Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, M D

    1996-01-01

    This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  17. Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    1994-01-01

    This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  18. Physics division annual report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less

  19. 1987 Nuclear Science Symposium, 34th, and 1987 Symposium on Nuclear Power Systems, 19th, San Francisco, CA, Oct. 21-23, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Armantrout, Guy A.

    1988-02-01

    The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.

  20. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    PubMed

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  1. 10 CFR 961.11 - Text of the contract.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...

  2. 10 CFR 961.11 - Text of the contract.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...

  3. Temporal Changes in Technical and Physical Performances During a Small-Sided Game in Elite Youth Soccer Players

    PubMed Central

    Moreira, Alexandre; Saldanha Aoki, Marcelo; Carling, Chris; Alan Rodrigues Lopes, Rafael; Felipe Schultz de Arruda, Ademir; Lima, Marcelo; Cesar Correa, Umberto; Bradley, Paul S

    2016-01-01

    Background There have been claims that small-sided games (SSG) may generate an appropriate environment to develop youth players’ technical performance associated to game-related problem solving. However, the temporal change in technical performance parameters of youth players during SSG is still unknown. Objectives The aim of this study was to examine temporal changes in technical and physical performances during a small-sided game (SSG) in elite soccer players. Methods Sixty elite youth players (age 14.8 ± 0.2 yr; stature 177 ± 5 cm; body mass 66.2 ± 4.7 kg) completed a 5 v 5 SSG using two repetitions of 8 minutes interspersed by 3 minutes of passive recovery. To evaluate temporal changes in performance, the data were analysed across 4 minutes quarters. Physical performance parameters included the total distance covered (TDC), the frequency of sprints (>18 km•h-1), accelerations and decelerations (> 2.0 m•s-2 and - 2.0 m•s-2), metabolic power (W•kg-1), training impulse (TRIMP), TDC: TRIMP, number of impacts, and body load. Technical performance parameters included goal attempts, total number of tackles, tackles and interceptions, total number of passes, and passes effectiveness. Results All physical performance parameters decreased from the first to the last quarter with notable declines in TDC, metabolic power and the frequency of sprints, accelerations and decelerations (P < 0.05; moderate to very large ES: 1.08 - 3.30). However, technical performance parameters did not vary across quarters (P > 0.05; trivial ES for 1st v 4th quarters: 0.15 - 0.33). Conclusions The data demonstrate that technical performance is maintained despite substantial declines in physical performance during a SSG in elite youth players. This finding may have implications for designing SSG’s for elite youth players to ensure physical, technical and tactical capabilities are optimized. Modifications in player number, pitch dimensions, rules, coach encouragement, for instance, should be included taking into account the main aim of a given session and then focused on overloading physical or technical elements. PMID:28144411

  4. Temporal Changes in Technical and Physical Performances During a Small-Sided Game in Elite Youth Soccer Players.

    PubMed

    Moreira, Alexandre; Saldanha Aoki, Marcelo; Carling, Chris; Alan Rodrigues Lopes, Rafael; Felipe Schultz de Arruda, Ademir; Lima, Marcelo; Cesar Correa, Umberto; Bradley, Paul S

    2016-12-01

    There have been claims that small-sided games (SSG) may generate an appropriate environment to develop youth players' technical performance associated to game-related problem solving. However, the temporal change in technical performance parameters of youth players during SSG is still unknown. The aim of this study was to examine temporal changes in technical and physical performances during a small-sided game (SSG) in elite soccer players. Sixty elite youth players (age 14.8 ± 0.2 yr; stature 177 ± 5 cm; body mass 66.2 ± 4.7 kg) completed a 5 v 5 SSG using two repetitions of 8 minutes interspersed by 3 minutes of passive recovery. To evaluate temporal changes in performance, the data were analysed across 4 minutes quarters. Physical performance parameters included the total distance covered (TDC), the frequency of sprints (>18 km•h -1 ), accelerations and decelerations (> 2.0 m•s -2 and - 2.0 m•s -2 ), metabolic power (W•kg -1 ), training impulse (TRIMP), TDC: TRIMP, number of impacts, and body load. Technical performance parameters included goal attempts, total number of tackles, tackles and interceptions, total number of passes, and passes effectiveness. All physical performance parameters decreased from the first to the last quarter with notable declines in TDC, metabolic power and the frequency of sprints, accelerations and decelerations (P < 0.05; moderate to very large ES: 1.08 - 3.30). However, technical performance parameters did not vary across quarters (P > 0.05; trivial ES for 1st v 4th quarters: 0.15 - 0.33). The data demonstrate that technical performance is maintained despite substantial declines in physical performance during a SSG in elite youth players. This finding may have implications for designing SSG's for elite youth players to ensure physical, technical and tactical capabilities are optimized. Modifications in player number, pitch dimensions, rules, coach encouragement, for instance, should be included taking into account the main aim of a given session and then focused on overloading physical or technical elements.

  5. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-06-30

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4. The analysis of the effect of cracks on the acceleration of the calcium leaching process of cement-based materials has been pursued. During the last period (Technical Progress Report No 3), we have introduced a modeling accounting for the high diffusivity of fractures in comparison with the weak solid material diffusivity. It has been shown through dimensional and asymptotic analysis that small fractures do not significantly accelerate the material aging process. This important result for the overall structural aging kinetics of containment structure has beenmore » developed in a paper submitted to the international journal ''Transport in Porous Media''.« less

  6. ATF Neutron Irradiation Program Technical Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less

  7. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  8. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  9. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  10. 37 CFR Appendix A to Part 202 - Technical Guidelines Regarding Sound Physical Condition

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regarding Sound Physical Condition A Appendix A to Part 202 Patents, Trademarks, and Copyrights U.S... CLAIMS TO COPYRIGHT Pt. 202, App. A Appendix A to Part 202—Technical Guidelines Regarding Sound Physical Condition To be considered a copy “of sound physical condition” within the meaning of 37 CFR 202.22(d)(5), a...

  11. Physics of Musical Instruments Minicourse, Career Oriented Pre-Technical Physics. Preliminary Edition.

    ERIC Educational Resources Information Center

    Bullock, Bob; And Others

    This minicourse was prepared for use with secondary physics students in the Dallas Independent School District and is one option in a physics program which provides for the selection of topics on the basis of student career needs and interests. This minicourse was aimed at providing students with a knowledge of the technical descriptions of music,…

  12. Unified Technical Concepts. Physics for Technicians.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary programs. This UTC classroom textbook, consisting of 14 chapters, deals with physics for technicians. Addressed in the individual chapters of the guide are the following topics: force, work, rate, momentum, resistance, power, potential and…

  13. Implications of the ’Nuclear Winter’ Thesis.

    DTIC Science & Technology

    1985-06-24

    not provide significant relief by warming the planet o ozone depletion would increase exposure to ultraviolet light ( UV -B) Technical Uncertainties in...pgs. 37. - ------------ "When Light is Put Away, Ecological Effects of Nuclear War," The Counterfeit Ark: Crisis Relocation for Nuclear War, 1984, 13...Mary, "Biologists Paint an Icy Picture . . ., Washington Post, November 1, 1983, 1 pg. 56. McWilliams, Rita, "Hill Told Money Won’t Buy Nuclear

  14. Architecture for nuclear energy in the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthu, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

    1999-02-21

    Global and regional scenarios for future energy demand have been assessed from the perspectives of nuclear materials management. From these the authors propose creation of a nuclear fuel cycle architecture which maximizes inherent protection of plutonium and other nuclear materials. The concept also provides technical and institutional flexibility for transition into other fuel cycle systems, particularly those involving breeder reactors. The system, its implementation timeline, and overall impact are described in the paper.

  15. 10 CFR Appendix A to Part 5 - List of Federal Financial Assistance Administered by the Nuclear Regulatory Commission to Which...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... locations. (c) Technical training courses. Agreements for financial assistance to State and local officials, without full-cost recovery to attend training on nuclear material licensing, inspection and emergency...

  16. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  17. Sandia National Laboratories: Employee & Retiree Resources: Technical

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Nuclear Weapons and Nuclear War. Papers Based on a Symposium of the Forum on Physics and Society of the American Physical Society, (Washington, D.C., April 1982).

    ERIC Educational Resources Information Center

    Morrison, Philip; And Others

    Three papers on nuclear weapons and nuclear war, based on talks given by distinguished physicists during an American Physical Society-sponsored symposium, are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS"…

  19. White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

    NASA Astrophysics Data System (ADS)

    Carlson, Joe; Carpenter, Michael P.; Casten, Richard; Elster, Charlotte; Fallon, Paul; Gade, Alexandra; Gross, Carl; Hagen, Gaute; Hayes, Anna C.; Higinbotham, Douglas W.; Howell, Calvin R.; Horowitz, Charles J.; Jones, Kate L.; Kondev, Filip G.; Lapi, Suzanne; Macchiavelli, Augusto; McCutchen, Elizabeth A.; Natowitz, Joe; Nazarewicz, Witold; Papenbrock, Thomas; Reddy, Sanjay; Riley, Mark A.; Savage, Martin J.; Savard, Guy; Sherrill, Bradley M.; Sobotka, Lee G.; Stoyer, Mark A.; Betty Tsang, M.; Vetter, Kai; Wiedenhoever, Ingo; Wuosmaa, Alan H.; Yennello, Sherry

    2017-05-01

    Over the last decade, the Low-Energy Nuclear Physics (LENP) and Nuclear Astrophysics (NAP) communities have increasingly organized themselves in order to take a coherent approach to resolving the challenges they face. As a result, there is a high level of optimism in view of the unprecedented opportunities for substantial progress. In preparation of the 2015 US Nuclear Science Long Range Plan (LRP), the two American Physical Society Division of Nuclear Physics town meetings on LENP and NAP were held jointly on August 21-23, 2014, at Texas A&M, College Station, in Texas. These meetings were co-organized to take advantage of the strong synergy between the two fields. The present White Paper attempts to communicate the sense of great anticipation and enthusiasm that came out of these meetings. A unanimously endorsed set of joint resolutions condensed from the individual recommendations of the two town meetings were agreed upon. The present LENP White Paper discusses the above and summarizes in detail for each of the sub-fields within low-energy nuclear physics, the major accomplishments since the last LRP, the compelling near-term and long-term scientific opportunities plus the resources needed to achieve these goals, along with the scientific impact on, and interdisciplinary connections to, other fields.

  20. Evaluating nuclear physics inputs in core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  1. Succession planning for technical experts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Bernadette Lugue; Cain, Ronald A.; Dewji, Shaheen A.

    This report describes a methodology for identifying, evaluating, and mitigating the loss of key technical skills at nuclear operations facilities. The methodology can be adapted for application within regulatory authorities and research and development organizations, and can be directly applied by international engagement partners of the Department of Energy’s National Nuclear Security Administration (NNSA). The resultant product will be of direct benefit to two types of NNSA missions: (1) domestic human capital development programs tasked to provide focused technical expertise to succeed an aging nuclear operations workforce, and (2) international safeguards programs charged with maintaining operational safeguards for developing/existing nuclearmore » power program in nations where minimal available resources must be used effectively. This report considers succession planning and the critical skills necessary to meet an institution’s goals and mission. Closely tied to succession planning are knowledge management and mentorship. In considering succession planning, critical skill sets are identified and are greatly dependent on the subject matter expert in question. This report also provides examples of critical skills that are job specific.« less

  2. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases weremore » based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.« less

  3. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  4. Progress in Decommissioning of Ignalina NPP Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancius, Darius; Krenevicius, Rimantas; Kutas, Saulius

    2002-07-01

    The aim of the paper is to present the Lithuanian legal framework regarding the nuclear safety in Decommissioning and Waste Management, and the progress in the Decommissioning Programme of the unit 1 of Ignalina Nuclear Power Plant (INPP). INPP is the only nuclear plant in Lithuania. It comprises two RBMK-1500 reactors. After Lithuania has restored its independence, responsibility for Ignalina NPP was transferred to the Republic of Lithuania. To ensure the control of the Nuclear Safety in Lithuania, The State Nuclear Power Safety Inspectorate (VATESI) was created on 18 October 1991, by a resolution of the Lithuanian Government. Significant workmore » has been performed over the last decade, aiming at upgrading the safety level of the Ignalina NPP with reference to the International standards. On 5 October 1999 the Seimas (Parliament) adopted the National Energy Strategy: It has been decided that unit 1 of Ignalina NPP will be closed down before 2005, The conditions and precise final date of the decommissioning of Unit 2 will be stated in the updated National Energy strategy in 2004. On 20-21 June 2000, the International Donors' Conference for the Decommissioning of Ignalina NPP took place in Vilnius. More than 200 Millions Euro were pledged of which 165 M funded directly from the European Union's budget, as financial support to the Decommissioning projects. The Decommissioning Program encompasses legal, organizational, financial and technical means including the social and economical impacts in the region of Ignalina. The Program is financed from International Support Fund, State budget, National Decommissioning Fund of Ignalina NPP and other funds. Decommissioning of Ignalina NPP is subject to VATESI license according to the Law on Nuclear Energy. The Government established the licensing procedure in the so-called 'Procedure for licensing of Nuclear Activities'; and the document 'General Requirements for Decommissioning of the Ignalina NPP' has been issued by VATESI. A very important issue is the technical support to VATESI and the Lithuanian TSO's (Technical Support Organisations) in their activities within the licensing process related to the Decommissioning of INPP. This includes regulatory assistance in the preparation of decommissioning and radioactive waste management regulatory documents, and technical assistance in the review of the safety case presented by the operator. The Institute for Radioprotection and Nuclear Safety (IRSN, France) and the French Nuclear Safety Authority (DSIN) as well as Swedish International Project (SIP) are providing their support to VATESI in these areas. (authors)« less

  5. Intriguing Trends in Nuclear Physics Articles Authorship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B.

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  6. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard; Bostelmann, F.

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less

  7. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  8. 78 FR 33863 - Relationship Between General Design Criteria and Technical Specification Operability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0179] Relationship Between General Design Criteria and...) 2013-05, ``NRC Position on the Relationship Between General Design Criteria and Technical Specification Operability.'' This RIS clarifies the NRC staff's position on the relationship between the general design...

  9. PRA in Design: Increasing Confidence in Pre-Operational Assessments of Risks (Results of a Joint NASA/NRC Workshop)

    NASA Technical Reports Server (NTRS)

    Youngblood, Robert; Dezfuli, Homayoon; Siu, Nathan

    2010-01-01

    In late 2009, the National Aeronautics and Space Administration (NASA) and the U.S. Nuclear Regulatory Commission (NRC) jointly organized a workshop to discuss technical issues associated with application of risk assessments to early phases of system design. The workshop, which was coordinated by the Idaho National Laboratory, involved invited presentations from a number of PRA experts in the aerospace and nuclear fields and subsequent discussion to address the following questions: (a) What technical issues limit decision-makers' confidence in PRA results, especially at a pre-operational phase of the system life cycle? (b) What is being done to address these issues'? (c) What more can be done ? The workshop resulted in participant observations and suggestions on several technical issues, including the pursuit of non-traditional approaches to risk assessment and the verification and validation of risk models. The workshop participants also identified several important non-technical issues, including risk communication with decision makers, and the integration of PRA into the overall design process.

  10. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  11. Industrial Hardening: 1981 Technical Status-Report.

    DTIC Science & Technology

    1982-09-01

    preparedness for nuclear disaster ), establish additional industry contacts (through which to test and evaluate the new inputs and refinements), and...handling and control of toxic (and hazardous) materials in a nuclear disaster situation are desirable. In line with our strategy to seek overlapping...earthquake preparedness that apply to a nuclear disaster requires an analysis that is less direct than comparing ground shock. Earthquake-generated

  12. 76 FR 17162 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Notice of Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... that included the no-action alternative. The factors considered in the record of decision can be found... for an Additional 20-Year Period; Record of Decision Notice is hereby given that the U.S. Nuclear... renewed license and its technical specifications. The notice also serves as the record of decision for the...

  13. Scientific and Technical Manpower Requirements of Selected Segments of the Atomic Energy Field. Final Report.

    ERIC Educational Resources Information Center

    Voight, Keith L.

    The primary purpose of the study was to develop a supply/demand ratio for nuclear degree scientists and engineers from July 1969 through 1973. The need by private industry and electric utilities for scientists and engineers with degrees in disciplines other than nuclear science or engineering, as well as for technicians, nuclear reactor operators,…

  14. Physics Division progress report for period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  15. Stockpile stewardship past, present, and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marvin L., E-mail: mladams@tamu.edu

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less

  16. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  17. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, R.G.; Meier, C.A.

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  18. Rudolf Mössbauer in Munich

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Kienle, P.

    Mössbauer and one of the authors (PK) started in 1949 studying physics at the Technische Hochschule München (THM), which was still under reconstruction from the war damages. It offered two directions for studying physics: "Physik A" and "Physik B." I took courses in "Physik A," which meant Technical Physics; Mössbauer studied "Physik B," which was General Physics. Actually, the lectures of both directions were not too different up to the forth semester, followed by a "pre-diploma" examination, which Mössbauer passed in 1952. I as "Physik A" student had besides the various physics, chemistry, and mathematics courses, in addition lectures in Technical Electricity, Technical Mechanics, Technical Thermodynamics, and later Measurement Engineering offered by very famous professors, such as W.O. Schumann, L. Föppl, W. Nußelt, and H. Piloty. Our physics teachers were G. Joos (Experimental physics), G. Hettner (Theoretical Physics), and W. Meissner (Technical Physics); in mathematics, we enjoyed lectures by J. Lense and R. Sauer, and interesting chemistry lectures by W. Hieber. Thus we received a high-class classical education, but quantum mechanics was not a compulsory subject. Mössbauer complained about this deficiency when he realized that the effect he found was a quantum mechanical phenomenon. Quantum mechanics was offered as an optional subject by Prof. Fick and Prof. Haug. Mössbauer just missed to take these advanced lectures, although he was highly talented in mathematics and received even a tutoring position in the mathematics institute of Prof. R. Sauer, while I worked in engineering projects and had extensive industrial training.

  19. Basic Machines - The "Nuts and Bolts" of Technical Physics Minicourse, Career Oriented Pre-Technical Physics. Preliminary Edition.

    ERIC Educational Resources Information Center

    Bullock, Bob; And Others

    This minicourse was prepared for use with secondary physics students in the Dallas Independent School District and is one option in a physics program which provides for the selection of topics on the basis of student career needs and interests. This minicourse was aimed at two levels in the study of basic machines. The "light" level…

  20. Guide to radioactive waste management literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less

  1. PREFACE: Nuclear Physics in Astrophysics III

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.

    2008-01-01

    The Europhysics Conference `Nuclear Physics in Astrophysics III' (NPA3) took place from 26 31 March 2007 in Dresden, Germany, hosted by Forschungszentrum Dresden-Rossendorf. The present special issue of Journal of Physics G: Nuclear and Particle Physics contains all peer-reviewed contributions to the proceedings of this conference. NPA3 is the third conference in the Nuclear Physics in Astrophysics series of conferences devoted to the interplay between nuclear physics and astrophysics. The first and second editions of the series were held in 2002 and 2005 in Debrecen, Hungary. NPA3 has been organized under the auspices of the Nuclear Physics Board of the European Physical Society as its XXI Divisional Conference. The conference marks the 50th anniversary of the landmark paper B2FH published in 1957 by E M Burbidge, G R Burbidge, W A Fowler and F Hoyle. A public lecture by Claus Rolfs (Ruhr-Universität Bochum, Germany) commemorated the progress achieved since 1957. NPA3 aimed to bring together experimental and theoretical nuclear physicists, astrophysicists and astronomers to address the important part played by nuclear physics in current astrophysical problems. A total of 130 participants from 71 institutions in 26 countries attended the conference, presenting 33 invited and 38 contributed talks and 25 posters on six subject areas. The astrophysical motivation and the nuclear tools employed to address it are highlighted by the titles of the subject areas: Big Bang Nucleosynthesis Stellar Nucleosynthesis and Low Cross Section Measurement Explosive Nucleosynthesis and Nuclear Astrophysics with Photons Nuclei far from Stability and Radioactive Ion Beams Dense Matter in Neutron Stars and Relativistic Nuclear Collisions Neutrinos in Nuclear Astrophysics The presentations and discussions proved that Nuclear Astrophysics is a truly interdisciplinary subject. The remarkable progress in astronomical observations achieved in recent years is matched by advances in astrophysical modelling, and new theoretical approaches in nuclear physics are spurned by a wealth of new experimental data. It has been recognized by all participants that a joint effort by these disciplines is required in order to further our understanding of stars in all the phases of their lifespan and of the creation of energy and the chemical elements. The conference took place in the city of Dresden, in the geographical heart of Europe. Dresden is a traditional centre of culture and the fine arts, and its recently reconstructed Frauenkirche (Church of Our Lady) symbolizes the desire of Europeans to leave war and division behind them and revive their traditionally lively cultural and scientific exchange. Scientists from all parts of Europe attended NPA3, as well as participants from North America, Japan and the Near East. Especially encouraging was the great echo among young scientists whose devotion promises a bright future to the field. Fresh, dedicated and interdisciplinary efforts are indeed needed to solve some of the astrophysical puzzles presented at NPA3. New satellite observatories, unprecedented computing power, and new experimental facilities such as underground accelerator laboratories and radioactive ion beam facilities will contribute to these efforts. We look forward to hearing about these and other developments in the fourth conference of the Nuclear Physics in Astrophysics series (NPA4) which is to be held in Gran Sasso, Italy in 2009. The financial support of the hosting institution Forschungszentrum Dresden-Rossendorf, of the Free State of Saxony and of the European Physical Society has been essential in ensuring the success of the conference. We thank the Publisher and the staff of it Journal of Physics G: Nuclear and Particle Physics for the fruitful collaboration in preparing this issue. The conference website is located at http://www.fzd.de/npa3 Cover image of Dresden by C. Preußel, Forschungszentrum Dresden-Rossendorf Conference photograph Participants of the Nuclear Physics in Astrophysics III conference.

  2. Status and Prospects of Hirfl Experiments on Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.

    HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.

  3. 76 FR 4726 - General Motors Company Formerly Known as General Motors Corporation Technical Center Including On...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... and General Physics Corporation Excluding Workers of the Global Purchasing and Supply Chain Division... plants. The company reports that workers leased from General Physics Corporation were employed on-site at..., Technical Center. The Department has determined that on-site workers from General Physics Corporation were...

  4. REACTOR PHYSICS QUARTERLY REPORT JANUARY, FEBRUARY, MARCH 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, L. C.; Clayton, E. D.; Heineman, R. E.

    1970-05-01

    The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter.

  5. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. Themore » CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.« less

  6. Computational physics and applied mathematics capability review June 8-10, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. Themore » CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics. Theme 3: Monte Carlo - Monte Carlo was invented at Los Alamos. This theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology. Theme 4: Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling. Theme 5: Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling. Theme 6: Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The Laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1,2, 3, and 6. Because these reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other five themes). Yearly written status reports will be provided to the CPAM Committee Chair during off-cycle years.« less

  7. On the future of civilian plutonium: An assessment of technological impediments to nuclear terrorism and proliferation

    NASA Astrophysics Data System (ADS)

    Avedon, Roger Edmond

    This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation. The opportunity cost of such events is prohibitively difficult to assess. Instead, recent nonproliferation efforts and long term funding of organizations with nonproliferation objectives suggest a willingness-to-pay to avoid breaches in nuclear security. The cancellation of the Integral Fast Reactor in 1994 is analyzed using the methodology developed in the dissertation.

  8. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  9. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  10. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  11. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  12. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New Nuclear Emergency Prognosis system in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology incorporate the dose assessment methods of IAEA, WHO, and USNRC. The dose assessment result will express on the GIS (GIS (Geographic Information System) to provide to the local- governments and the central government. Acknowledgements This research has been supported by the Nuclear Safety and Security Commission [Reference No.1305020-0315-SB110

  14. Hadronic and nuclear interactions in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less

  15. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, Jerry; Dion, Heather; LaMont, Stephen

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  16. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE PAGES

    Davydov, Jerry; Dion, Heather; LaMont, Stephen; ...

    2015-12-16

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  17. History of Nuclear Weapons Design and Production

    NASA Astrophysics Data System (ADS)

    Oelrich, Ivan

    2007-04-01

    The nuclear build-up of the United States and the Soviet Union during the Cold War is often portrayed as an arms race. Some part was indeed a bilateral competition, but much was the result of automatic application of technical advances as they became available, without careful consideration of strategic implications. Thus, the history of nuclear weapon design is partly designers responding to stated military needs and partly the world responding to constant innovations in nuclear capability. Today, plans for a new nuclear warhead are motivated primarily by the desire to maintain a nuclear design and production capability for the foreseeable future.

  18. Introduction to Nuclear Physics (4/4)

    ScienceCinema

    Goutte, D.

    2018-05-04

    The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.

  19. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in...

  20. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics.... Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November...

Top