Towards a Conceptual Diagnostic Survey in Nuclear Physics
ERIC Educational Resources Information Center
Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa
2011-01-01
Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…
Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL
linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview
NASA Astrophysics Data System (ADS)
Weisenberger, Andrew G.
A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.
Evolving landscape of low-energy nuclear physics publications
Pritychenko, B.
2016-10-01
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Evolving landscape of low-energy nuclear physics publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970’s reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals ismore » higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. Lastly, the results of this study and implications are discussed and conclusions presented.« less
Physics through the 1990s: Nuclear physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.
NASA Technical Reports Server (NTRS)
Stubblefield, F. W. (Editor)
1987-01-01
Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
Nuclear winter - Physics and physical mechanisms
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.
1991-01-01
The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.
The contribution of Medical Physics to Nuclear Medicine: looking back - a physicist's perspective.
Hutton, Brian F
2014-12-01
This paper is the first in a series of invited perspectives by four pioneers of Nuclear Medicine imaging and physics. A medical physicist and a Nuclear Medicine clinical specialist each take a backward look and a forward look at the contributions of Medical Physics to Nuclear Medicine. Contributions of Medical Physics are presented from the early discovery of radioactivity, development of first imaging devices, computers and emission tomography to recent development of hybrid imaging. There is evidence of significant contribution of Medical Physics throughout the development of Nuclear Medicine.
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
Comprehensive Glossary of Nuclear Science
NASA Astrophysics Data System (ADS)
Langlands, Tracy; Stone, Craig; Meyer, Richard
2001-10-01
We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.
The contribution of medical physics to nuclear medicine: a physician's perspective.
Ell, Peter J
2014-12-01
This paper is the second in a series of invited perspectives by four pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine clinical specialist each take a backward look and a forward look at the contributions of physics to nuclear medicine. Here is a backward look from a nuclear medicine physician's perspective.
Physics Division progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
Teaching Nuclear Physics in a General Education Curriculum
NASA Astrophysics Data System (ADS)
Lesher, Shelly R.
2017-01-01
The general public is unaware how physics shapes the world. This is especially true for nuclear physics, where many people are scared of the words ``nuclear'' and ``radiation''. To combat these perceptions, the Physics Department at the University of Wisconsin - La Crosse teaches a general education class on nuclear weapons, energy, and policy in society. This includes the social, economic, cultural, and political aspects surrounding the development of nuclear weapons and their place in the world, especially in current events. This talk will discuss the course, how it has grown, and sample student responses.
Cloud physics laboratory project science and applications working group
NASA Technical Reports Server (NTRS)
Hung, R. J.
1977-01-01
The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Nuclear War and Science Teaching.
ERIC Educational Resources Information Center
Hobson, Art
1983-01-01
Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)
Science with radioactive beams: the alchemist's dream
NASA Astrophysics Data System (ADS)
Gelletly, W.
2001-05-01
Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.
PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)
NASA Astrophysics Data System (ADS)
Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique
2014-03-01
logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
2017-03-30
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
Physics Division annual review, 1 April 1980-31 March 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less
Technetium-99m: basic nuclear physics and chemical properties.
Castronovo, F P
1975-05-01
The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical Security Requirements 1.0... the ZNPS Physical Security Plan (PSP) for the protection of the nuclear material while in transit to... the new physical security requirements in 10 CFR 73.55. The December 2, 2010, letter included...
Nuclear Computational Low Energy Initiative (NUCLEI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Sanjay K.
This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less
Lattice QCD Calculations in Nuclear Physics towards the Exascale
NASA Astrophysics Data System (ADS)
Joo, Balint
2017-01-01
The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.
Mankoff, David A; Pryma, Daniel A
2014-12-01
Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.
Physics division annual report 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2008-02-28
This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less
NASA Astrophysics Data System (ADS)
Armantrout, Guy A.
1988-02-01
The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
ERIC Educational Resources Information Center
Morrison, Philip; And Others
Three papers on nuclear weapons and nuclear war, based on talks given by distinguished physicists during an American Physical Society-sponsored symposium, are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS"…
NASA Astrophysics Data System (ADS)
Carlson, Joe; Carpenter, Michael P.; Casten, Richard; Elster, Charlotte; Fallon, Paul; Gade, Alexandra; Gross, Carl; Hagen, Gaute; Hayes, Anna C.; Higinbotham, Douglas W.; Howell, Calvin R.; Horowitz, Charles J.; Jones, Kate L.; Kondev, Filip G.; Lapi, Suzanne; Macchiavelli, Augusto; McCutchen, Elizabeth A.; Natowitz, Joe; Nazarewicz, Witold; Papenbrock, Thomas; Reddy, Sanjay; Riley, Mark A.; Savage, Martin J.; Savard, Guy; Sherrill, Bradley M.; Sobotka, Lee G.; Stoyer, Mark A.; Betty Tsang, M.; Vetter, Kai; Wiedenhoever, Ingo; Wuosmaa, Alan H.; Yennello, Sherry
2017-05-01
Over the last decade, the Low-Energy Nuclear Physics (LENP) and Nuclear Astrophysics (NAP) communities have increasingly organized themselves in order to take a coherent approach to resolving the challenges they face. As a result, there is a high level of optimism in view of the unprecedented opportunities for substantial progress. In preparation of the 2015 US Nuclear Science Long Range Plan (LRP), the two American Physical Society Division of Nuclear Physics town meetings on LENP and NAP were held jointly on August 21-23, 2014, at Texas A&M, College Station, in Texas. These meetings were co-organized to take advantage of the strong synergy between the two fields. The present White Paper attempts to communicate the sense of great anticipation and enthusiasm that came out of these meetings. A unanimously endorsed set of joint resolutions condensed from the individual recommendations of the two town meetings were agreed upon. The present LENP White Paper discusses the above and summarizes in detail for each of the sub-fields within low-energy nuclear physics, the major accomplishments since the last LRP, the compelling near-term and long-term scientific opportunities plus the resources needed to achieve these goals, along with the scientific impact on, and interdisciplinary connections to, other fields.
Evaluating nuclear physics inputs in core-collapse supernova models
NASA Astrophysics Data System (ADS)
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
Intriguing Trends in Nuclear Physics Articles Authorship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.
A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.
75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...
Nuclear Physics of neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
2015-04-01
One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.
Contributions to the NUCLEI SciDAC-3 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogner, Scott; Nazarewicz, Witek
This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less
Physics Division progress report for period ending June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)
PREFACE: Nuclear Physics in Astrophysics III
NASA Astrophysics Data System (ADS)
Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.
2008-01-01
The Europhysics Conference `Nuclear Physics in Astrophysics III' (NPA3) took place from 26 31 March 2007 in Dresden, Germany, hosted by Forschungszentrum Dresden-Rossendorf. The present special issue of Journal of Physics G: Nuclear and Particle Physics contains all peer-reviewed contributions to the proceedings of this conference. NPA3 is the third conference in the Nuclear Physics in Astrophysics series of conferences devoted to the interplay between nuclear physics and astrophysics. The first and second editions of the series were held in 2002 and 2005 in Debrecen, Hungary. NPA3 has been organized under the auspices of the Nuclear Physics Board of the European Physical Society as its XXI Divisional Conference. The conference marks the 50th anniversary of the landmark paper B2FH published in 1957 by E M Burbidge, G R Burbidge, W A Fowler and F Hoyle. A public lecture by Claus Rolfs (Ruhr-Universität Bochum, Germany) commemorated the progress achieved since 1957. NPA3 aimed to bring together experimental and theoretical nuclear physicists, astrophysicists and astronomers to address the important part played by nuclear physics in current astrophysical problems. A total of 130 participants from 71 institutions in 26 countries attended the conference, presenting 33 invited and 38 contributed talks and 25 posters on six subject areas. The astrophysical motivation and the nuclear tools employed to address it are highlighted by the titles of the subject areas: Big Bang Nucleosynthesis Stellar Nucleosynthesis and Low Cross Section Measurement Explosive Nucleosynthesis and Nuclear Astrophysics with Photons Nuclei far from Stability and Radioactive Ion Beams Dense Matter in Neutron Stars and Relativistic Nuclear Collisions Neutrinos in Nuclear Astrophysics The presentations and discussions proved that Nuclear Astrophysics is a truly interdisciplinary subject. The remarkable progress in astronomical observations achieved in recent years is matched by advances in astrophysical modelling, and new theoretical approaches in nuclear physics are spurned by a wealth of new experimental data. It has been recognized by all participants that a joint effort by these disciplines is required in order to further our understanding of stars in all the phases of their lifespan and of the creation of energy and the chemical elements. The conference took place in the city of Dresden, in the geographical heart of Europe. Dresden is a traditional centre of culture and the fine arts, and its recently reconstructed Frauenkirche (Church of Our Lady) symbolizes the desire of Europeans to leave war and division behind them and revive their traditionally lively cultural and scientific exchange. Scientists from all parts of Europe attended NPA3, as well as participants from North America, Japan and the Near East. Especially encouraging was the great echo among young scientists whose devotion promises a bright future to the field. Fresh, dedicated and interdisciplinary efforts are indeed needed to solve some of the astrophysical puzzles presented at NPA3. New satellite observatories, unprecedented computing power, and new experimental facilities such as underground accelerator laboratories and radioactive ion beam facilities will contribute to these efforts. We look forward to hearing about these and other developments in the fourth conference of the Nuclear Physics in Astrophysics series (NPA4) which is to be held in Gran Sasso, Italy in 2009. The financial support of the hosting institution Forschungszentrum Dresden-Rossendorf, of the Free State of Saxony and of the European Physical Society has been essential in ensuring the success of the conference. We thank the Publisher and the staff of it Journal of Physics G: Nuclear and Particle Physics for the fruitful collaboration in preparing this issue. The conference website is located at http://www.fzd.de/npa3 Cover image of Dresden by C. Preußel, Forschungszentrum Dresden-Rossendorf Conference photograph Participants of the Nuclear Physics in Astrophysics III conference.
Status and Prospects of Hirfl Experiments on Nuclear Physics
NASA Astrophysics Data System (ADS)
Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
Hadronic and nuclear interactions in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less
Introduction to Nuclear Physics (4/4)
Goutte, D.
2018-05-04
The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.
76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in...
75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics.... Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November...
Nuclear Physics Research at ELI-NP
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2018-05-01
The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.
AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.
Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J
2015-09-08
The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.
AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training
Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.
2015-01-01
The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325
PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy
NASA Astrophysics Data System (ADS)
Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.
2014-07-01
This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello, L E Marcucci, S Rosati
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... may be addressed to: Dr. Marc Garland, Program Manager, Office of Nuclear Physics, Office of Science... Management Division, Office of Nuclear Physics, Office of Science, U.S. Department of Energy, Germantown..., Office of Nuclear Physics, Office of Science. [FR Doc. 2013-05444 Filed 3-7-13; 8:45 am] BILLING CODE...
IAEA support to medical physics in nuclear medicine.
Meghzifene, Ahmed; Sgouros, George
2013-05-01
Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients. Copyright © 2013 Elsevier Inc. All rights reserved.
76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... of Energy and National Science Foundation's Nuclear Physics Office. Status of the Isotopes Program... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing at: http://www...
Novel scintillators and silicon photomultipliers for nuclear physics and applications
NASA Astrophysics Data System (ADS)
Jenkins, David
2015-06-01
Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.
Nuclear Physics in High School: what are the previous knowledge?
NASA Astrophysics Data System (ADS)
Pombo, F. de O.
2017-11-01
Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.
Nuclear cartography: patterns in binding energies and subatomic structure
NASA Astrophysics Data System (ADS)
Simpson, E. C.; Shelley, M.
2017-11-01
Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements around us were formed in stars. One way of visualising these nuclear properties is through the nuclide chart, which maps all nuclides as a function of their proton and neutron numbers. Here we use the nuclide chart to illustrate various aspects of nuclear physics, and present 3D visualisations of it produced as part of the binding blocks project.
Real Time Conference 2016 Overview
NASA Astrophysics Data System (ADS)
Luchetta, Adriano
2017-06-01
This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.
NASA Astrophysics Data System (ADS)
2006-06-01
It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields. Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of PRAGMA Congressi, who took charge of all the administrative and accommodation procedures, is also acknowledged. The Local Organizing Committee (Pavia, January 2006)
American Nuclear Society 1994 student conference eastern region
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.
Thirty years from now: future physics contributions in nuclear medicine.
Bailey, Dale L
2014-12-01
This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure
ERIC Educational Resources Information Center
Simpson, E. C.; Shelley, M.
2017-01-01
Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…
75 FR 4879 - Juan E. Pérez Monté, M.D.; Confirmatory Order Modifying License (Effective Immediately)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... the Health Physics Society, and the Journal of Nuclear Medicine; and, 2. Dr. P[eacute]rez will also... national meetings of the Health Physics Society and the Society of Nuclear Medicine. If the request to make... following: Galenus (Puerto Rico), the Journal of the Health Physics Society, and the Journal of Nuclear...
Educational activities with a tandem accelerator
NASA Astrophysics Data System (ADS)
Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.
2018-05-01
Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.
Overview of Nuclear Physics Data: Databases, Web Applications and Teaching Tools
NASA Astrophysics Data System (ADS)
McCutchan, Elizabeth
2017-01-01
The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, and authoritative data for use in pure and applied areas of nuclear science and engineering. This is accomplished by compiling, evaluating, and disseminating extensive datasets. Our main products include the Evaluated Nuclear Structure File (ENSDF) containing information on nuclear structure and decay properties and the Evaluated Nuclear Data File (ENDF) containing information on neutron-induced reactions. The National Nuclear Data Center (NNDC), through the website www.nndc.bnl.gov, provides web-based retrieval systems for these and many other databases. In addition, the NNDC hosts several on-line physics tools, useful for calculating various quantities relating to basic nuclear physics. In this talk, I will first introduce the quantities which are evaluated and recommended in our databases. I will then outline the searching capabilities which allow one to quickly and efficiently retrieve data. Finally, I will demonstrate how the database searches and web applications can provide effective teaching tools concerning the structure of nuclei and how they interact. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)
NASA Astrophysics Data System (ADS)
Stoyanov, Chavdar; Dimitrova, Sevdalina
2014-09-01
The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in nuclear waste treatment. Nuclear methods for applications. A special session in honor of the late Mario Stoitsov, was also part of the program. Many colleagues of Mario from all over the world came to Varna to pay tribute to this prominent scientist and loyal friend. Several colleagues contributed to the organization of the School. We would like to thank them and especially the Scientific Secretary of the School Dr Elena Stefanova and the members of the Organizing Committee Dr Dimitar Tarpanov and Peter Zivkov for their cordiality and high level assistance. We are also grateful to Dr Jacek Dobaczewski, who reached out to the collaborators of Mario Stoitsov on behalf of the conference. Sofia, 20 March 2014 Co-chair persons of the Organizing Committee Prof Dr Sc Ch Stoyanov Prof Dr Sc S Dimitrova Details of the committees are available in the PDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, P.B.
1979-05-01
The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less
NASA Astrophysics Data System (ADS)
Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.
2013-02-01
This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to the status of the equation of state, hyperonic and quark matter and neutrino physics, as well as the applications of nuclear structure in astrophysics, were also on the School's agenda. There were many discussions and questions both during and after presentations. An open and friendly atmosphere characterized our School, although different opinions quite often divided the participants. Many discussions continued during coffee breaks and excursions organized in the beautiful surroundings. We hope that this proceedings volume will be useful for future reference to both young scientists and senior researchers working in various fields of nuclear physics. We cannot end without expressing our many thanks to the National Authority for Scientific Research and the Romanian Academy (Elias Foundation) for their financial support. We acknowledge the Horia Hulubei National Institute of Physics and Nuclear Engineering and Bioterra University for their important contribution in organizing the School. Guest Editors D S Delion, N V Zamfir, A R Raduta and F Gulminelli First Week International Summer School on Nuclear Physics: First Week Second Week International Summer School on Nuclear Physics: Second Week Sponsors Sponsor logoSponsor logoSponsor logoSponsor logoSponsor logo
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical security standards. 110.44 Section 110.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Review of License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient...
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...
VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2010-0340; NRC-2009-0163] RIN 3150-AI64 Physical..., ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This revised document sets forth means... physical protection of spent nuclear fuel (SNF) during transportation by road, rail, and water; and for...
78 FR 69139 - Physical Security-Design Certification and Operating Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...
Application of nuclear physics in medical physics and nuclear medicine
NASA Astrophysics Data System (ADS)
Hoehr, Cornelia
2016-09-01
Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.
Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos
NASA Astrophysics Data System (ADS)
Parsons, D. Kent
2017-09-01
Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, G.F.; Janssens, R.V.
1997-07-01
An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}
Rydberg phases of Hydrogen and low energy nuclear reactions
NASA Astrophysics Data System (ADS)
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
NASA Astrophysics Data System (ADS)
Vizgin, Vladimir P.
1999-12-01
This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-01
Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.
America COMPETES Act and the FY2010 Budget
2009-06-15
Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development...Spallation Neutron Source Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this...Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
Marie Curie: the Curie Institute in Senegal to Nuclear Physics
NASA Astrophysics Data System (ADS)
Gueye, Paul
Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.
White Paper on Nuclear Data Needs and Capabilities for Basic Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batchelder, J.; Kawano, T.; Kelley, J.
Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
List of Organizing Committees and Conference Programme
NASA Astrophysics Data System (ADS)
2012-03-01
Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.
Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.
The role of the health physicist in nuclear security.
Waller, Edward J; van Maanen, Jim
2015-04-01
Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.
The Role of the Health Physicist in Nuclear Security
Waller, Edward J.; van Maanen, Jim
2015-01-01
Abstract Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards. PMID:25706142
Nuclear physics experiments with low cost instrumentation
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz
2016-11-01
One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.
Hans Bethe, Powering the Stars, and Nuclear Physics
dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell
Goulding, F S; Stone, Y
1970-10-16
The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joe; Carpenter, Michael P.; Casten, Richard
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
Carlson, Joe; Carpenter, Michael P.; Casten, Richard; ...
2017-01-04
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
Nuclear astrophysics in the laboratory and in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.
Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )
Nuclear Physics Made Very, Very Easy
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1968-01-01
The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.
Rare Isotopes Physics in the Multimessenger Era
NASA Astrophysics Data System (ADS)
Schatz, Hendrik
2018-06-01
While these isotopes only exist for fractions of seconds, their properties shape the resulting cosmic distribution of elements and the astronomical observables including spectra, neutrinos, and gravitational waves. The long standing challenge in nuclear astrophysics of the production of the relevant isotopes in the laboratory is now overcome with a new generation of rare isotope accelerator facilities now coming online. One example is the FRIB facility under construction at Michigan State University for the US Department of Energy, Office of Science, Office of Nuclear Physics. These new capabilities in nuclear physics coincide with advances in astronomy directly related to the cosmic sites where these isotopes are created, in particular in time domain and gravitational wave astronomy. I will discuss the importance of rare isotope physics in interpreting multi-messenger observations and how advances in nuclear physics and astronomy when combined promise to lead us towards a comprehensive theory of the origin of the elements.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled reactor that was operated from... the safeguards contingency plan.'' Part 73 of 10 CFR, ``Physical Protection of Plant and Materials... physical protection system which will have capabilities for the protection of special nuclear material at...
ERIC Educational Resources Information Center
Haynes, Gail E.
1991-01-01
A third-semester physics course that covers the topics of atomic physics, the theory of relativity, and nuclear energy is described. Activities that include the phenomenon of radioactivity, field trips to a nuclear power plant, a simulation of a chain reaction, and comparing the size of atomic particles are presented. (KR)
NASA Astrophysics Data System (ADS)
Caruana, C. J.
2011-09-01
The objectives of EC project 'Guidelines on Medical Physics Expert' are to provide for improved implementation of the provisions relating to the Medical Physics Expert within Council Directive 97/43/EURATOM and the proposed recast Basic Safety Standards directive. This includes harmonisation of the mission statement for Medical Physics Services as well as the education and training of the MPE. It also includes detailed knowledge-skills-competence inventories for the Medical Physics Expert in each of Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy. This paper presents the proposed Qualification and Curriculum Frameworks and their application to the Medical Physics Expert in Nuclear Medicine.
The America COMPETES Act and the FY2009 Budget
2008-10-17
Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced...Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.20 The DOE Summer Institutes authorization in the act is $20 million in FY2009...corresponds to pre-existing High Energy Physics Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, P.H.
The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)
Learning to Embrace Nuclear Physics through Education
NASA Astrophysics Data System (ADS)
Avadanei, Camelia
2010-01-01
Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ("Radiation protection") defining norms and requirements for "assuring the radiological safety of the workers, population and environment," and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of specialists in the field. Facing new challenges, society becomes aware of the fact that education represents the real solution to escalade them. Nuclear physics plays an important role in ensuring energetic resources for the near future and in reducing greenhouse effects. On the other hand, especially nuclear physics will permit to solve the enigma of universe birth. As in any other field, development involves continuous education and knowledge upgrading for all categories carrying out nuclear activities. For radiation protection workers and specialists, periodically refreshment courses are mandatory, in compliance with the national and international specific requirements.
NRV web knowledge base on low-energy nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.
Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip
2008-03-01
This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerningmore » the physical protection for the transportation of nuclear fuel materials.« less
NASA Astrophysics Data System (ADS)
2014-12-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243
Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.
ERIC Educational Resources Information Center
American Nuclear Society, La Grange Park, IL.
This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…
Importance of Nuclear Physics to NASA's Space Missions
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.
Nuclear physics in particle therapy: a review
NASA Astrophysics Data System (ADS)
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Nuclear physics in particle therapy: a review.
Durante, Marco; Paganetti, Harald
2016-09-01
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Accelerating Innovation: How Nuclear Physics Benefits Us All
DOE R&D Accomplishments Database
2011-01-01
Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.
Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.
This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Grant; Keegan, E.; Young, E.
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Griffiths, Grant; Keegan, E.; Young, E.; ...
2018-01-06
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redondo, Antonio
2010-01-01
The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, ourmore » opinion of the overall status of the theme area, and challenges and issues.« less
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...
2016-12-28
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less
White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcones, Almudena; Escher, Jutta E.; Others, M.
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9more » - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.« less
White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics
NASA Astrophysics Data System (ADS)
Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael
2017-05-01
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.
Photoneutron Reaction Data for Nuclear Physics and Astrophysics
NASA Astrophysics Data System (ADS)
Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji
2018-05-01
We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).
NASA Astrophysics Data System (ADS)
Ubben, Malte; Heusler, Stefan
2018-07-01
Vibration modes in spherical geometry can be classified based on the number and position of nodal planes. However, the geometry of these planes is non-trivial and cannot be easily displayed in two dimensions. We present 3D-printed models of those vibration modes, enabling a haptic approach for understanding essential features of bound states in quantum physics and beyond. In particular, when applied to atomic physics, atomic orbitals are obtained in a natural manner. Applied to nuclear physics, the same patterns of vibration modes emerge as cornerstone for the nuclear shell model. These applications of the very same model in a range of more than 5 orders of magnitude in length scales leads to a general discussion of the applicability and limits of validity of physical models in general.
NASA Astrophysics Data System (ADS)
2014-05-01
A scientific session "Prospects of Studies in Neutrino Particle Physics and Astrophysics," of the Physical Sciences Division of the Russian Academy of Sciences (DPS RAS), devoted to the centenary of B M Pontecorvo, was held on 2-3 September 2014 at the JINR international conference hall (Dubna, Moscow region).The following reports were put on the session agenda as posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow; Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region; National Research Nuclear University MEPhI, Moscow) "Long-baseline neutrino accelerator experiments: results and prospects";(2) Spiering Ch (Deutsches Elektronen-Synchrotron (DESY), Germany) "Results obtained by ICECUBE and prospects of neutrino astronomy";(3) Barabash A S (Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "Double beta decay experiments: current status and prospects";(4) Bilenky S M (Joint Institute for Nuclear Research, Dubna, Moscow region; Technische Universitat M'unchen, Garching, Germany) "Bruno Pontecorvo and the neutrino";(5) Olshevskiy A G (Joint Institute for Nuclear Research, Dubna, Moscow region) "Reactor neutrino experiments: results and prospects";(6) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Low-energy neutrino research at the Baksan Neutrino Laboratory";(7) Gorbunov D S (Institute for Nuclear Research, RAS, Moscow): "Sterile neutrinos and their role in particle physics and cosmology";(8) Derbin A V (Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad region) "Solar neutrino experiments";(9) Rubakov V A (Institute for Nuclear Research, RAS, Moscow) "Prospects of studies in the field of neutrino particle physics and astrophysics." An article by V N Gavrin, close in essence to talk 6, was published in Usp. Fiz. Nauk 181 (9), 975 (2011) [Phys. Usp. 54 (9) 941 (2011)]. Articles by V A Rubakov, close in essence to talk 9, were published in Usp. Fiz. Nauk 182 (10) 1017 (2012); 181 (6) 655 (2011) [Phys. Usp. 55 (10) 949 (2012); 54 (6) 633 (2011)]. Articles based on talks 1-5, 7, and 8 are published below. • Long-baseline neutrino accelerator experiments: results and prospects, Yu G Kudenko Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 462-469 • High-energy neutrino astronomy: a glimpse of the promised land, Ch Spiering Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 470-481 • Double beta decay experiments: current status and prospects, A S Barabash Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 482-488 • Bruno Pontecorvo and the neutrino, S M Bilenky Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 489-496 • Reactor neutrino experiments: results and prospects, A G Olshevskiy Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 497-502 • Sterile neutrinos and their role in particle physics and cosmology, D S Gorbunov Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 503-511 • Solar neutrino experiments, A V Derbin Physics-Uspekhi, 2014, Volume 57, Number 5, Pages 512-524
Nuclear disarmament verification via resonant phenomena.
Hecla, Jake J; Danagoulian, Areg
2018-03-28
Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.
NASA Astrophysics Data System (ADS)
Freedman, Stuart
2011-10-01
Everybody knows that nuclear physics is the study the kind of matter found inside the atomic nucleus whether they it is at the center of atoms or the core of neutron stars. Nevertheless, nuclear physicists have made important discoveries about the neutrino. Figuring out where the neutrinos go in nuclear physics has challenged nuclear scientists, policy makers and those responsible for funding the enterprise. I will consider these and other challenges and how insightful scientific management has contributed the feast of wonderful discoveries about the neutrino.
Britain's nuclear secrets: inside Sellafield
NASA Astrophysics Data System (ADS)
Marino, Antigone
2017-11-01
Lying on the remote north west coast of England, Sellafield is one of the most secret places in UK, and even one of the most controversial nuclear fuel reprocessing and nuclear decommissioning sites in Britain. The film director Tim Usborne let us enter into the world's first nuclear power station, revealing Britain's attempts to harness the almost limitless power of the atom. It is precisely the simplicity and the scientific rigor used in the film to speak of nuclear, which led this documentary to win the Physics Prize supported by the European Physical Society at the European Science TV and New Media Festival and Awards 2016.
Nuclear Medicine Physics: The Basics. 7th ed.
Mihailidis, Dimitris
2012-10-01
Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.
Theoretical physics: Quarks fuse to release energy
NASA Astrophysics Data System (ADS)
Miller, Gerald A.
2017-11-01
In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. The discovery of an analogue of this process involving particles called quarks has implications for both nuclear and particle physics. See Letter p.89
The Wisdom of Sages: Nuclear Physics Education, Knowledge-Inquiry, and Wisdom-Inquiry
ERIC Educational Resources Information Center
Cottey, Alan
2012-01-01
This article addresses the difference between knowledge-inquiry and wisdom-inquiry in nuclear physics education. In the spirit of an earlier study of 57 senior-level textbooks for first-degree physics students, this work focuses here on a remarkable use of literary quotations in one such book. "Particles and Nuclei: an introduction to the physical…
Experimental Nuclear Physics Activity in Italy
NASA Astrophysics Data System (ADS)
Chiavassa, E.; de Marco, N.
2003-04-01
The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy
2013-03-01
To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
After Action Report - Kazakhstan NSDD July 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Caterina; Eppich, Gary; Kips, Ruth
On Monday 20 July, Caterina Fox, Ruth Kips and Kim Knight were invited to participate in Kazakhstan's nuclear material inventory management working group meeting coordinated by Alexander Vasilliev as nuclear forensics subject matter experts. The meeting included participants from Kazakhstan's nuclear regulatory agency (CAESC, the Committee on Atomic and Energetic Supervision and Control) and 3 institutes 1. Institute of Nuclear Physics, INP (Almaty), 2. National Nuclear Center, NNC (Kurchatov), and 3. Ulba Metallurgical Plant, UMP (Oskemen). CAESC requested attendance of an MC&A expert, an IT Specialist, and a Physical Security Specialist from each site. The general meeting concerned considerations formore » creating unified or compatible systems for nuclear material inventory management. NSDD representatives provided an overview of nuclear forensics and presented considerations for developments of inventory management that might be synergistic with future consideration of development of a National Nuclear Forensics Library to support nuclear forensics investigations.« less
PREFACE: XXXV Symposium on Nuclear Physics
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Bijker, R.
2012-09-01
Conference logo The XXXV Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 3-6 2012. Conceived in 1978 as a small meeting, over the years and thanks to the efforts of various organizing committees, the symposium has become a well known international conference on nuclear physics. To the best of our knowledge, the Mexican Symposium on Nuclear Physics represents the conference series with longest tradition in Latin America and one of the longest-running annual nuclear physics conferences in the world. The Symposium brings together leading scientists from all around the world, working in the fields of nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. Its main goal is to provide a relaxed environment where the exchange of ideas, discussion of new results and consolidation of scientific collaboration are encouraged. To celebrate the 35th edition of the symposium 53 colleagues attended from diverse countries including: Argentina, Australia, Canada, Japan, Saudi Arabia and USA. We were happy to have the active participation of Eli F Aguilera, Eduardo Andrade, Octavio Castaños, Alfonso Mondragón, Stuart Pittel and Andrés Sandoval who also participated in the first edition of the Symposium back in 1978. We were joined by old friends of Cocoyoc (Stuart Pittel, Osvaldo Civitarese, Piet Van Isacker, Jerry Draayer and Alfredo Galindo-Uribarri) as well as several first time visitors that we hope will come back to this scientific meeting in the forthcoming years. The scientific program consisted of 33 invited talks, proposed by the international advisory committee, which nicely covered the topics of the Symposium giving a balanced perspective between the experimental and the theoretical work that is currently underway in each line of research. Fifteen posters complemented the scientific sessions giving the opportunity for Mexican students to present their current research and interact with the visiting scientists. The present volume contains 21 research articles based on invited talks presented at the symposium. We cannot thank enough to all the authors for their enthusiastic contribution, to the anonymous referees for the time they devoted to the review process, which helped us to maintain the high standard of the Conference Proceedings. Finally we would like to thank the International Advisory Committee and the Sponsoring Organizations that made this event possible. E Padilla-Rodal and R Bijker Editors Conference photograph International Advisory Committee Osvaldo Civitarese, Universidad Nacional de La Plata, Argentina Jerry P Draayer, Louisiana State University, USA Alfredo Galindo-Uribarri, Oak Ridge National Laboratory, USA Paulo Gomes, Universidade Federal Fluminense, Brazil Piet Van Isacker, GANIL, France James J Kolata, University of Notre Dame, USA Reiner Krücken, TRIUMF, Canada Jorge López, The University of Texas at El Paso, USA Stuart Pittel, University of Delaware, USA W Michael Snow, Indiana University, USA Adam Szczepaniak, Indiana University, USA Michael Wiescher, University of Notre Dame, USA Organizing Committee Elizabeth Padilla-Rodal (Chair), Instituto de Ciencias Nucleares, UNAM, Mexico Roelof Bijker, Instituto de Ciencias Nucleares, UNAM, Mexico Sponsoring Organizations División de Física Nuclear, SMF Dirección General de Asuntos de Personal Académico, UNAM Centro Latino-Americano de Física Instituto de Ciencias Nucleares, UNAM Instituto de Física, UNAM Instituto Nacional de Investigaciones Nucleares
NASA Technical Reports Server (NTRS)
Biggerstaff, J. A. (Editor)
1985-01-01
Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.
Recent measurements for hadrontherapy and space radiation: nuclear physics
NASA Technical Reports Server (NTRS)
Miller, J.
2001-01-01
The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.
PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"
NASA Astrophysics Data System (ADS)
Yamada, Taiichi; Kanada-En'yo, Yoshiko
2014-12-01
The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP (Research Center for Nuclear Physics, Osaka University), CNS (Center for Nuclear Study, University of Tokyo), JICFuS (Joint Institute for Computational Fundamental Science), and RIKEN (Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research). This workshop was supported by Yokohama Convention & Visitors Bureau and Kanto Gakuin University. It remains to be announced that the next, the fourth in this series of SOTANCP workshops, SOTANCP4, will be held in Galveston, Texas, USA, in 2018.
MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
NASA Astrophysics Data System (ADS)
Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.
2016-06-01
We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.
Reactor physics teaching and research in the Swiss nuclear engineering master
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI
Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)
Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-03-15
The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.
The solid state physics programme at ISOLDE: recent developments and perspectives
NASA Astrophysics Data System (ADS)
Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.
2017-10-01
Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.
Beyond detection: nuclear physics with a webcam in an educational setting
NASA Astrophysics Data System (ADS)
Pallone, Arthur
2015-03-01
Nuclear physics affects our daily lives in such diverse fields from medicine to art. I believe three obstacles - limited time, lack of subject familiarity and thus comfort on the part of educators, and equipment expense - must be overcome to produce a nuclear-educated populace. Educators regularly use webcams to actively engage students in scientific discovery as evidenced by a literature search for the term webcam paired with topics such as astronomy, biology, and physics. Inspired by YouTube videos that demonstrate alpha particle detection by modified webcams, I searched for examples that go beyond simple detection with only one education-oriented result - the determination of the in-air range of alphas using a modified CCD camera. Custom-built, radiation-hardened CMOS detectors exist in high energy physics and for soft x-ray detection. Commercial CMOS cameras are used for direct imaging in electron microscopy. I demonstrate charged-particle spectrometry with a slightly modified CMOS-based webcam. When used with inexpensive sources of radiation and free software, the webcam charged-particle spectrometer presents educators with a simple, low-cost technique to include nuclear physics in science education.
NASA Astrophysics Data System (ADS)
Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.
2018-05-01
The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.
Nuclear Technology Series. Course l: Radiation Physics.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
Nuclear Technology Series. Course 12: Reactor Physics.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
SkyNet: A Modular Nuclear Reaction Network Library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-12-01
Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.
PREFACE: International Nuclear Physics Conference 2010 (INPC2010)
NASA Astrophysics Data System (ADS)
Dilling, Jens
2011-09-01
The International Nuclear Physics Conference 2010 (INPC 2010) was held from 4-9 July in Vancouver, Canada, hosted by TRIUMF, the Canadian National Laboratory for Particle and Nuclear Physics. The INPC is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union for Pure and Applied Physics) and held every three years. This year's conference was the 25th in the series and attracted over 750 delegates (150 graduate students) from 43 countries. The conference's hallmark is its breadth in nuclear physics; topics included structure, reactions, astrophysics, hadronic structure, hadrons in nuclei, hot and dense QCD, new accelerators and underground nuclear physics facilities, neutrinos and nuclei, and applications and interdisciplinary research. The conference started with a public lecture 'An Atom from Vancouver' by L Krauss (Arizona), who gave a broad perspective on how nuclear physics is key to a deeper understanding of how the Universe was formed and the birth, life, and death of stars. The conference opened its scientific plenary program with a talk by P Braun-Munzinger (GSI/EMMI Darmstadt) who highlighted the progress that has been made since the last conference in Tokyo 2007. The presentation showcased theoretical and experimental examples from around the world. All topics were well represented by plenary sessions and well attended afternoon parallel sessions where over 250 invited and contributed talks were presented, in addition to over 380 poster presentations. The poster sessions were among the liveliest, with high participation and animated discussions from graduate students and post-doctoral fellows. Many opportunities were found to connect to fellow nuclear physicists across the globe and, particularly for conferences like the INPC which span an entire field, many unexpected links exist, often leading to new discussions or collaborations. Among the scientific highlights were the presentations in the fields of Hot and Dense QCD reporting on experimental and theoretical progress at the RHIC facility. The Nuclear Reactions session provided highlights from the many new and exciting facilities including the RIKEN RIBF in Japan, and an outlook of what we can expect from FAIR (Germany) and FRIB (USA). The quest towards the 'Island of Stability' for the Superheavy Element community is still on, and new progress was reported with the identification of element 114. Impressive progress in the theoretical sector, in particular with ab-initio approaches, was presented as well. Applications of these methods and progress in the nucleon-nucleon interactions were presented in the Nuclear Structure session, where 3-body forces interactions are now considered state of the art. Predictions of such calculations can then be tested by experiments, as presented, for example, for ground state properties of exotic nuclei with laser experiments and ion trap measurements. In-beam or in-flight experiments pave the way to even more exotic isotopes where new magic numbers for the nuclear shell model are appearing. This will also prove relevant for Nuclear Astrophysics, where significant progress was achieved experimentally with new direct capture reaction measurements with rare beams and background suppressed facilities located in underground laboratories. Neutron star research and new modeling results of core-collapse supernovae were presented, which clearly indicated the need for neutrino interactions. Neutrinos also played a large role in other sessions such as the New Facilities and Instrumentation session where, among other new exciting projects, the deep underground facilities were presented. The first beam results from long-baseline oscillation experiments showed progress in this field, and double-beta decay experiments are nearing their first possible results, something that the community of nuclear physicists, but also others, are keenly waiting for. The Standard Model Tests and Fundamental Symmetries session is always one of the conference highlights. There, progress on Standard Model tests employing atomic nuclei or nuclear physics methods - which are used to probe complimentary sectors to large particle physics experiments, for example atomic and neutron EDM experiments - is reported. Recent progress was reported in the sector of nuclear beta decay as related to the testing of the CKM unitarity matrix, as well as the W-mass and the Weak Mixing Angle. The muon anomalous magnetic moment and its sensitivity for probing new physics and future experimental improvements are anticipated and showcase the activity in the field. The large oral and poster presentation program was extended to include special presentations by the IUPAP young scientist award winners. This prize is given out in the field of nuclear physics every three years during the INPC conference, and this year's winners were: Kenji Fukushima (Yukawa Institute for Theoretical Physics, Kyoto University), Peter Mueller (Argonne National Laboratory), and Lijuan Ruan (Brookhaven National Laboratory). These three scientists represent future excellence in nuclear physics in the fields of theoretical QCD, experimental techniques related to quark gluon plasma, and precision experiments in low energy nuclear halo physics. One keenly anticipated presentation, 'The Lamb shift in muonic hydrogen experiment', presented the results of the measurement of the proton rms charge radius. These results claimed a 5 sigma deviation from the established CODATA-value and in the future more tests will be needed to verify these findings. INPC 2010 made a special effort to attract many graduate students and post-doctoral fellows to the conference. This was achieved by a number of efforts, for example, TRIUMF combined its traditional summer school with the US National Science Foundation summer school for nuclear physics, and offered the school directly prior to the conference. This allowed the school to recruit some of the INPC delegates as lecturers, but also gave a broad overview of the field of nuclear physics before the conference. In addition INPC 2010 teamed up with the publishing house of Nuclear Physics A to provide awards to the best student oral presentation and the three top poster presentations at the conference. An international panel of judges together with members from the editorial board of Nuclear Physics A finally decided on the following award winners among a very strong field of applicants: P Finlay (Guelph, Canada), oral presentation; Y J Kim (Indiana, USA), E Rand (Guelph, Canada), and T Brunner (Munich, Germany) for posters. A treat of a different kind was in store for delegates at the conference banquet at the Museum of Anthropology. Olivia Fermi, the granddaughter of nuclear physics 'royalty' Enrico Fermi, was among the guests and shared in the after-dinner speech some anecdotes from her life growing up in the Fermi household. This, together with the unique setting of the museum of First Nations' artefacts and art pieces and overlooking the Pacific Ocean and the skyline of Vancouver, was a perfect fit for a very special conference. The field of nuclear physics clearly presented itself in a healthy and dynamic state, with many young people eagerly anticipating the advent of new experiments, theory, and facilities. At the end of the conference IUPAP announced the selection of the host of the next INPC conference: it will be held in 2013 in Florence, Italy. On behalf of the Local Organizing Committee we would like to acknowledge the great work of the Program Committee and the Session Chairs, who were responsible for the excellent selection and execution of the Parallel Session Program, the International Advisory Program and the work for the Plenary Session selections, and the judges for the Student Awards. Moreover, we would like to acknowledge the support of TRIUMF as the host and main organizer of the conference. Additional support was provided by the Canadian Institute for Nuclear Physics and the International Union for Pure and Applied Physics (IUPAP). Very grateful acknowledgments go to the many volunteers and student helpers who ensured the frictionless and seamless execution of a very fruitful and exciting conference. We wish the organizers of the next INPC in Florence the best of luck and we hope to see you there. On behalf of the Local Organizing Committee Jens Dilling (Chair of INPC 2010)
The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclearmore » Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.« less
The Dark Side of Nuclear Arms Education.
ERIC Educational Resources Information Center
Jungerman, Nancy K.; Jungerman, John A.
1985-01-01
Outlines a course (offered jointly by physics and applied science departments) which focuses on basic physics and nuclear war effects. Due to the emotional impact of issues discussed in the course, faculty implemented a plan which included the use of counseling professionals. (DH)
Modern hadron spectroscopy: a bridge between nuclear and particle physics.
NASA Astrophysics Data System (ADS)
Szczepaniak, A. P.
2018-05-01
In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschall, Olivia C.
2016-07-18
The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczepaniak, Adam P.
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Modern hadron spectroscopy: a bridge between nuclear and particle physics
Szczepaniak, Adam P.
2018-05-01
Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.
Nuclear Physics Laboratory 1979 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelberger, E.G.
1979-07-01
Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)
Nuclear Structure Aspects in Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael Scott
2006-12-01
Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less
NP2010: An Assessment and Outlook for Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, James
This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principalmore » conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.« less
The Structure of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our conclusions should be more reliably extended to AGN as a class.
NASA Astrophysics Data System (ADS)
Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders
2009-08-01
The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.
Beyond detection: nuclear physics with a webcam in an educational setting
NASA Astrophysics Data System (ADS)
Pallone, A.; Barnes, P.
2016-09-01
Basic understanding of nuclear science enhances our daily-life experience in many areas, such as the environment, medicine, electric power generation, and even politics. Yet typical school curricula do not provide for experiments that explore the topic. We present a means by which educators can use the ubiquitous webcam and inexpensive sources of radiation to lead their students in a quantitative exploration of radioactivity, radiation, and the applications of nuclear physics.
NASA Technical Reports Server (NTRS)
Boytos, Matthew A.; Norbury, John W.
1992-01-01
The authors of this paper have provided a set of ready-to-run FORTRAN programs that should be useful in the field of theoretical nuclear physics. The purpose of this document is to provide a simple synopsis of the programs and their use. A separate section is devoted to each program set and includes: abstract; files; compiling, linking, and running; obtaining results; and a tutorial.
Proceedings of the nineteenth LAMPF Users Group meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradbury, J.N.
1986-02-01
Separate abstracts were prepared for eight invited talks on various aspects of nuclear and particle physics as well as status reports on LAMPF and discussions of upgrade options. Also included in these proceedings are the minutes of the working groups for: energetic pion channel and spectrometer; high resolution spectrometer; high energy pion channel; neutron facilities; low-energy pion work; nucleon physics laboratory; stopped muon physics; solid state physics and material science; nuclear chemistry; and computing facilities. Recent LAMPF proposals are also briefly summarized. (LEW)
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari
2009-07-01
Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
ERIC Educational Resources Information Center
Roth, Laura M.; O'Fallon, Nancy M.
This booklet presents information about career opportunities for women in physics. Included are summaries of research areas in physics (optical physics, solid-state physics, materials science, nuclear physics, high-energy physics, astrophysics, cryogenics, plasma physics, biophysics, atmospheric physics) and differences between theory and…
Binding blocks: building the Universe one nucleus at a time
NASA Astrophysics Data System (ADS)
Diget, C. Aa; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.; Binding Blocks Collaboration
2017-03-01
We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using \\text{LEG}{{\\text{O}}\\circledR} bricks5. The activity, binding blocks, demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26 000 \\text{LEG}{{\\text{O}}\\circledR} bricks. It integrates A-Level and GCSE curricula across areas of nuclear physics, astrophysics, and chemistry, including: nuclear decays (through the colours in the chart); nuclear binding energy (through tower heights); production of chemical elements in the cosmos; fusion processes in stars and fusion energy on Earth; as well as links to medical physics, particularly diagnostics and radiotherapy.
Physics and Its Multiple Roles in the International Atomic Energy Agency
NASA Astrophysics Data System (ADS)
Massey, Charles D.
2017-01-01
The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.
Digital Electronics for Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team
2015-10-01
Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.
Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-11-01
The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)
Physics in the Confrontation of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Toevs, James
2011-03-01
Had the detonations on 9/11 involved nuclear explosives rather than jet fuel the number of deaths and the costs would have been multiplied by 100 or 1,000. This talk will briefly describe the nuclear threat and then focus on the technologies, both extant and evolving, for the detection and interdiction of clandestine trafficking of nuclear weapons and nuclear and radiological material. The methods vary from passive detection of heat, gamma radiation, neutrons, or other signatures from nuclear material, through radiological approaches to examine contents of vehicles and cargo containers, to active interrogation concepts that are under development. All of these methods have major physics components ranging from simple gamma ray detection as learned in a senior undergraduate lab to the latest ideas in muon production and acceleration.
SCIENTIFIC AND RESEARCH INSTITUTIONS IN HUNGARY: I. NUCLEAR SCIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacha, E.
1959-05-22
Scientific and research institutions in Hungary engaged in research in the field of nuclear science are discussed. Brief descriptions are included of the Central Research Institute of Physics, the Institute of Nuclear Research the Joliot-Curie Central Research Institute of Radiobiology, and the Physics Laboratory of the Otvos Lorand Radium and X-Ray Institute. The recently completed experimental reactor at Budapest and isotope research laboratories are described. Plans for an atomic power plant are discussed. Uranium deposits in Hungary are also discussed. A list of recent publications in the field of nuclear science is included. (C.W)
Neurocognitive and Physical Abilities Assessments Twelve Years After the Chernobyl Nuclear Accident
2001-03-01
Chernobyl , Ukraine was conducted. In this report are findings from 1995 to 1998. Participants were volunteers who resided in Ukraine during and since...the Chernobyl Nuclear Power Plant accident. A translated subset of the Automated Neuropsychological Assessment Metrics battery and the Gamache Physical
Chinese-English Nuclear and Physics Dictionary.
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The Nuclear and Physics Dictionary is one of a series of Chinese-English technical dictionaries prepared by the Foreign Technology Division, United States Air Force Systems Command. The purpose of this dictionary is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical…
Laboratory for Nuclear Science. High Energy Physics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milner, Richard
High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less
NASA Astrophysics Data System (ADS)
Fortunato, Lorenzo
2018-03-01
In this contribution I will review some of the researches that are currently being pursued in Padova (mainly within the In:Theory and Strength projects), focusing on the interdisciplinary applications of nuclear theory to several other branches of physics, with the aim of contributing to show the centrality of nuclear theory in the Italian scientific scenario and the prominence of this fertile field in fostering new physics. In particular, I will talk about: i) the recent solution of the long-standing “electron screening puzzle” that settles a fundamental controversy in nuclear astrophysics between the outcome of lab experiments on earth and nuclear reactions happening in stars; the application of algebraic methods to very diverse systems such as: ii) the supramolecular complex H2@C60, i.e. a diatomic hydrogen molecule caged in a fullerene and iii) to the spectrum of hypernuclei, i.e. systems made of a Lambda particles trapped in (heavy) nuclei.
78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... Science Foundation's Nuclear Physics Office's The 2013 ONP Comparative Research Review Presentation of the... Foundation on scientific priorities within the field of basic nuclear science research. Tentative Agenda...
75 FR 13598 - Advisory Committee on the Medical Uses of Isotopes; Renewal Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
...-scientific disciplines including nuclear medicine; nuclear cardiology; radiation therapy; medical physics; nuclear pharmacy; State medical regulation; patient's rights and care; health care administration; and...
Federal Research and Development Funding: FY2017
2016-06-24
facilities and equipment; does not include physical assets for R&D such as R&D equipment and facilities or routine product testing, quality control...multiagency R&D initiative to advance understanding and control of matter at the nanoscale, where the physical , chemical, and biological properties of...nuclear programs that dated back to the Manhattan Project. Today, DOE conducts basic scientific research in areas ranging from nuclear physics to the
NASA Astrophysics Data System (ADS)
Amme, Robert C.
2009-05-01
The developing nuclear power renaissance, coupled with related environmental consequences, is forcing a re-examination of the manner in which nuclear science and technology is (or is not) being taught in the United States. The 20-year hiatus of the nuclear power industry has been a decided factor in the relatively stagnant growth of nuclear physics and nuclear technology instruction, from middle school to graduate education. Furthermore, the general public remains fairly ignorant of the various features of nuclear power, at best having been briefly exposed to the subject only in a middle-school course in Physical Science. Essential to this renaissance is the capacity to deal with the regulatory environment and safety standards that must be addressed prior to new plant certification. Regrettably, too few individuals who are trained in environmental science are adequately prepared in the basic concepts of nuclear physics to deal with such issues as radioactive waste storage and transportation, biological effects of ionizing radiation, geological repositories, nuclear fuel reprocessing, etc. which are of great concern to the Nuclear Regulatory Commission. We are developing a master's degree, to be taught online, in the area of environmental impact assessment as it relates to these and other issues. To accommodate the need for laboratory exercises, we have adopted the virtual world developed by Linden Laboratory entitled Second Life; it is here that the student, as an avatar, will gain knowledge of the nature of ionizing radiation, radioactive half-lives, gamma and beta ray spectroscopy, neutron activation, and radiation shielding, using virtual apparatus and virtual radiation sources. Additionally, a virtual Generation III+ power reactor has been constructed on an adjoining Second Life island (entitled Science School II) which provides the visitor with a realistic impression of its inner workings. This presentation will provide the details of this construct and how it is incorporated into the distance learning curriculum.
Understanding r-process Nucleosynthesis through Nuclear Data
NASA Astrophysics Data System (ADS)
Surman, Rebecca
2018-06-01
The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.
Production of Synthetic Nuclear Melt Glass
Molgaard, Joshua J.; Auxier, John D.; Giminaro, Andrew V.; Oldham, Colton J.; Gill, Jonathan; Hall, Howard L.
2016-01-01
Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720
New applications of renormalization group methods in nuclear physics.
Furnstahl, R J; Hebeler, K
2013-12-01
We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.
From the Dawn of Nuclear Physics to the First Atomic Bombs
NASA Astrophysics Data System (ADS)
Woolbright, Stephen; Schumacher, Jacob; Michonova-Alexova, Ekaterina
2014-03-01
This work gives a fresh look at the major discoveries leading to nuclear fission within the historical perspective. The focus is on the main contributors to the discoveries in nuclear physics, leading to the idea of fission and its application to the creation of the atomic bombs used at the end of the World War II. The present work is a more complete review on the history of the nuclear physics discoveries and their application to the atomic bomb. In addition to the traditional approach to the topic, focusing mainly on the fundamental physics discoveries in Europe and on the Manhattan Project in the United States, the nuclear research in Japan is also emphasized. Along with that, a review of the existing credible scholar publications, providing evidence for possible atomic bomb research in Japan, is provided. Proper credit is given to the women physicists, whose contributions had not always been recognized. Considering the historical and political situation at the time of the scientific discoveries, thought-provoking questions about decision-making, morality, and responsibility are also addressed. The work refers to the contributions of over 20 Nobel Prize winners. EM-A is grateful to Prof. Walter Grunden and to Prof. Emeritus Shadahiko Kano, Prof. Emeritus Monitori Hoshi for sharing their own notes, documents, and references, and to CCCU for sponsoring her participation in the 2013 Nuclear Weapons Seminar in Japan.
, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator structure of baryonic matter in the universe - the matter that makes up stars, planets and human life itself
Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.
ERIC Educational Resources Information Center
Williams, G. J.
These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…
Nuclear Physics Research Activity Today in the World and in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepine-Szily, Alinka
2009-06-03
The international effort in Nuclear Physics is described, including informations on working force, its evolution, budgets, existing, new and projected facilities. The main goals of this research and its recent achievements are also presented. The specific informations on Brazil are also highlighted in the presentation.
A Vision of Nuclear and Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Hugh E.
2016-08-01
This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.
ERIC Educational Resources Information Center
Reader, Mark
1979-01-01
Author believes that the nuclear fuel cycle is damaging to our health, physical system, ecosystem, and social system. He recommends reversing the trend toward nuclear power and solving the energy crisis by creating a global society able to live in balance with its physical environment. Journal available from 7 Harwood Drive, Amherst, New York…
10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...
10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...
Nuclear science and society: social inclusion through scientific education
NASA Astrophysics Data System (ADS)
Levy, Denise S.
2017-11-01
This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.
Growing the Nuclear Workforce Through Outreach
NASA Astrophysics Data System (ADS)
Kilburn, Micha
2015-10-01
Many students don't encounter physics in the classroom until college or the end of high school. Most college students never encounter nuclear physics in the classroom. In order to grow the nuclear science workforce, students need to be aware of the field much earlier in the education. However, teaching teens about nuclear science can be a daunting task at the outset. I will present and describe successful outreach curricula and programs that can be duplicated by any college, university or laboratory. These include workshops for boy scouts and girl scouts as well as teaching nuclear science with magnetic marbles. I will also present some results from assessments of JINA-CEE's more intensive programs aimed at recruiting youth to the field. JINA-CEE
Nuclear power industry: Tendencies in the world and Ukraine
NASA Astrophysics Data System (ADS)
Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.
2007-11-01
This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of "nonstandard" fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine's total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter ("Sarkofag") covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station's fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.
Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.
Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter
2017-07-07
The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.
Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects
Bernstein, Adam; Baldwin, George; Boyer, Brian; ...
2010-12-10
Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less
Nuclear security applications of antineutrino detectors : current capabilities and future prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, A.; Goodman, M.; Baldwin, G.
2010-12-10
Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less
NASA Astrophysics Data System (ADS)
Voronchev, V. T.; Kukulin, V. I.
2000-12-01
A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydrogen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B, and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is considered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of low-energy D+6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear-structure factors leads to an additional enhancement of the rate parameters <σv> for the ( d, pt) and ( d, nτ) channels by 10-40%. The possibility of using nuclear reactions that lead to photon emission as a means for determining the ion temperature of a thermonuclear plasma is discussed.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors
NASA Astrophysics Data System (ADS)
Carré, Frank
2014-09-01
Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.
Enhancing the interaction between nuclear experiment and theory through information and statistics
Ireland, D. G.; Nazarewicz, W.
2015-02-05
This Focus Issue draws from a range of topics within nuclear physics, from studies of individual nucleons to the heaviest of nuclei. The unifying theme, however, is to illustrate the extent to which uncertainty is a key quantity, and to showcase applications of the latest computational methodologies. It is our assertion that a paradigm shift is needed in nuclear physics to enhance the coupling between theory and experiment, and we hope that this collection of articles is a good start.
[Experimental nuclear physics]. Annual report 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1988-05-01
This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.
[Experimental nuclear physics]. Annual report 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1989-04-01
This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.
Helicity and nuclear β decay correlations
NASA Astrophysics Data System (ADS)
Hong, Ran; Sternberg, Matthew G.; Garcia, Alejandro
2017-01-01
We present simple derivations of nuclear β-decay correlations with an emphasis on the special role of helicity. This topic provides a good opportunity to teach students about helicity and chirality in particle physics with exercises that use simple aspects of quantum mechanics. In addition, this paper serves as an introduction to nuclear β-decay correlations from both a theoretical and experimental perspective. This article can be used to introduce students to ongoing experiments searching for hints of new physics in the low-energy precision frontier.
On the physical interpretation of the nuclear molecular orbital energy.
Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés
2017-06-07
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; d'Errico, Francesco
2016-01-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications. PMID:27649477
A physical zero-knowledge object-comparison system for nuclear warhead verification.
Philippe, Sébastien; Goldston, Robert J; Glaser, Alexander; d'Errico, Francesco
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
NASA Astrophysics Data System (ADS)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; D'Errico, Francesco
2016-09-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; ...
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
A physical zero-knowledge object-comparison system for nuclear warhead verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Minutes of the third annual meeting of the Panel on Reference Nuclear Data. [BNL, October 5, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, T.W.; Stewart, L.; Coyne, J.J.
1979-05-01
The major activities of the meeting were as follows: welcome; organization, approval of minutes of the second meeting, and approval of agenda; review of nuclear data compilation and evaluation efforts (national and international efforts, master data files, publications); summary of 1977 panel meeting; definition of reference nuclear data; discussion of specific data needs and possible data center contributions (reactor physics, medicine and biology, controlled thermonuclear reactors and astrophysics); establishment of current interest and future direction of the panel; adjournment. Recommendations and action items are listed. Tables on nuclear data needs in applied physics, medicine and biology, and controlled thermonuclear reactorsmore » and astrophysics are presented. Appendixes include membership lists of various committees, summaries of publication activities, survey results, correspondence, and portions of the documents Proceedings of the Magnetic Fusion Energy Blanket and Shield Workshop and National Needs for Critically Evaluated Physical and Chemical Data. (RWR)« less
Nuclear Physics with 10 PW laser beams at Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2014-05-01
The field of the uncharted territory of high-intensity laser interaction with matter is confronted with new exotic phenomena and, consequently, opens new research perspectives. The intense laser beams interacting with a gas or solid target generate beams of electrons, protons and ions. These beams can induce nuclear reactions. Electrons also generate ions high-energy photons via bremsstrahlung processes which can also induce nuclear reactions. In this context a new research domain began to form in the last decade or so, namely nuclear physics with high power lasers. The observation of high brilliance proton beams of tens of MeV energy from solid targets has stimulated an intense research activity. The laser-driven particle beams have to compete with conventional nuclear accelerator-generated beams. The ultimate goal is aiming at applications of the laser produced beams in research, technology and medicine. The mechanism responsible for ion acceleration are currently subject of intensive research in many laboratories in the world. The existing results, experimental and theoretical, and their perspectives are reviewed in this article in the context of IZEST and the scientific program of ELI-NP.
Power counting and Wilsonian renormalization in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Nuclear Technology: Making Informed Decisions.
ERIC Educational Resources Information Center
Altshuler, Kenneth
1989-01-01
Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…
On-line computer system for use with low- energy nuclear physics experiments is reported
NASA Technical Reports Server (NTRS)
Gemmell, D. S.
1969-01-01
Computer program handles data from low-energy nuclear physics experiments which utilize the ND-160 pulse-height analyzer and the PHYLIS computing system. The program allows experimenters to choose from about 50 different basic data-handling functions and to prescribe the order in which these functions will be performed.
ERIC Educational Resources Information Center
Duggan, Jerome L.; And Others
The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…
ERIC Educational Resources Information Center
Malkawi, Salaheddin; Al-Araidah, Omar
2013-01-01
Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…
Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...
2013-07-02
A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less
Ion traps for precision experiments at rare-isotope-beam facilities
NASA Astrophysics Data System (ADS)
Kwiatkowski, Anna
2016-09-01
Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.
NASA Technical Reports Server (NTRS)
1986-01-01
The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.
MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software
NASA Astrophysics Data System (ADS)
Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph
1995-06-01
The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.
Current Status of Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Bertulani, Carlos A.; Hussein, Mahir S.
2015-12-01
In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.
Physics in the Twentieth Century
ERIC Educational Resources Information Center
Weisskopf, Victor F.
1970-01-01
Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…
NNDC Stand: Activities and Services of the National Nuclear Data Center
NASA Astrophysics Data System (ADS)
Pritychenko, B.; Arcilla, R.; Burrows, T. W.; Dunford, C. L.; Herman, M. W.; McLane, V.; Obložinský, P.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.
2005-05-01
The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described.
NASA Astrophysics Data System (ADS)
Seitz, B.; Campos Rivera, N.; Gray, R.; Powell, A.; Thomson, F.
2018-01-01
Radiation, radiation detection and radiation protection are topics in physics and its applications which generate a wide interest in the public. This interest is either generated through medical procedures, applications of nuclear energy or nuclear accidents. The technical nature of these topics usually means that they are not well covered in the normal education stream, opening many opportunities to engage with schools and the general public to showcase the latest developments and their applications. The detection of radiation is at the very heart of understanding radiation, its fascination and associated fears. The outreach group of the nuclear physics group at the University of Glasgow demonstrates a number of successful outreach activities centred around radiation detection and described in this paper, focusing on activities delivered to a variety of audiences and related to applied nuclear physics work within our group. These concentrate on the application of novel sensor technologies for nuclear decommissioning, medical imaging modalities and the monitoring of environmental radioactivity. The paper will provide some necessary background material as well as practical instructions for some of the activities developed.
The Four Lives of a Nuclear Accelerator
NASA Astrophysics Data System (ADS)
Wiescher, Michael
2017-06-01
Electrostatic accelerators have emerged as a major tool in research and industry in the second half of the twentieth century. In particular in low energy nuclear physics they have been essential for addressing a number of critical research questions from nuclear structure to nuclear astrophysics. This article describes this development on the example of a single machine which has been used for nearly sixty years at the forefront of scientific research in nuclear physics. The article summarizes the concept of electrostatic accelerators and outlines how this accelerator developed from a bare support function to an independent research tool that has been utilized in different research environments and institutions and now looks forward to a new life as part of the experiment CASPAR at the 4,850" level of the Sanford Underground Research Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrylyuk, V. I.; Scherbachenko, A. M.; Bazavov, D. A.
2001-01-01
The George Kuzmycz Training Center for Physical Protection, Control and Accounting (GKTC) was established in 1998 in a collaborative endeavor of the State Nuclear Regulatory Administration of Ukraine, the Ukrainian Academy of Sciences, and the U.S. Department of Energy. Located at the Institute for Nuclear Research in Kyiv, the GKTC provides theoretical and practical training in physical protection, control, and accounting techniques and systems that are employed to reduce the risk of unauthorized use, theft, or diversion of weapons-usable nuclear material. Participants in GKTC workshops and courses include nuclear facility specialists as well as officials of the State's regulatory authorities.more » Recently, the training scope has been broadened to include students from other nations in the region.« less
PREFACE: XXXIII Symposium on Nuclear Physics
NASA Astrophysics Data System (ADS)
Barrón-Palos, Libertad; Bijker, Roelof; Fossion, Ruben; Lizcano, David
2010-04-01
The attached PDF gives a full listing of contributors and organisation members. In the present volume of Journal of Physics: Conference Series we publish the proceedings of the "XXXIII Symposium on Nuclear Physics", that was held from January 5-8, 2010 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings contain the plenary talks that were presented during the conference. The abstracts of all contributions, plenary talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 33rd in a row. This year's meeting was dedicated to the memory of Marcos Moshinsky, who passed away on April 1, 2009. Dr. Moshinsky was the most distinguished pioneer and promoter of nuclear physics in Mexico and Latin America and holds the record of 31 (out of 32) participations at the Symposium. In the inaugural session, Alejandro Frank (ICN-UNAM), Peter Hess (ICN-UNAM) and Jorge Flores (IF-UNAM) spoke in his honor and recalled the virtues that characterized him as a teacher, scientist, founder of schools and academic institutions, colleague and friend. His generosity, excellence and honesty were emphasized as the personal qualities that characterized both his personal and academic life. moshinksky_photo "Marcos Moshinsky (1921-2009)" The scientific program consisted of 26 invited talks and 20 posters on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure and reactions to radioactive beams, nuclear astrophysics, hadronic physics, fundamental symmetries, ultrarelativistic heavy ions, cosmic rays and quantum chaos. The high quality of the talks, the prestige of the speakers and the broad spectrum of subjects covered in the meeting, shows that nuclear physics is a very active area at the frontier of scientific research which establishes bridges between many different disciplines. One of the exciting new areas in nuclear physics is that of radioactive beams. It provides a powerful tool not only to study exotic nuclei close to the proton and neutron drip lines to obtain important information about the nature of the nucleon-nucleon interaction in stable and unstable nuclei, but also to address questions of fundamental importance in nuclear astrophysics as well as in various applications like mass spectroscopy, the production of radioactive isotopes and medical applications (Galindo-Uribarri). There was a presentation on the FRIB project which is currently under construction in the USA and its relevance for nuclear astrophysics and the limits of stability (Sherrill and Schatz) In the session on nuclear structure, there were several talks on the nucleon-nucleon interaction in nuclei close to the proton and neutron drip lines, like neutron-proton pairing in nuclei with an equal number of protons and neutrons (Pittel), and studies of stable and unstable neutron-rich nuclei near the closed shells N = 82 and N = 50 using (d, p) transfer reactions and Coulomb excitation by means of radioactive beams (Cizewski and Padilla-Rodal). There were several talks on the importance of reaction rates for the excitation of spin-isospin resonances (Sakai), massive star evolution (Klapp) and nuclear synthesis and stellar evolution (Rolfs). In another presentation, the importance of rare isotopes for astrophysical processes was highlighted (Schatz). In addition, there were discussions about the importance of the Pauli exclusion principle and phase transitions in nuclear cluster models (Cseh and Hess) and an analysis of elastic scattering close to the Coulomb barrier in the framework of the optical model (Gómez-Camacho). Another important area is that of hadronic physics, the study of nucleons as composite systems of strongly interacting quarks and gluons. This field is situated on the borderline between nuclear and particle physics and presents a formidable challenge since the scale of the energies involved prohibits the use of the methods of perturbative QCD. In the session on hadronic physics, there were talks on chiral symmetry in non-perturbative QCD (Bietenholz), the structure of the nucleon in an unquenched quark model (Bijker), quark and meson degrees of freedom in Deeply Virtual Compton Scattering (Szczepaniak) and studies of hadronic structure by means of neutrino-induced pion production (Mariano). At ultrarelativistic energies, one can study the phase transition between hadronic matter and a new state of nuclear matter, the quark-gluon plasma. The Organizing Committee is proud to mention that the Cocoyoc 2010 meeting was one of first international conferences where the first scientific resuls from LHC were presented by the ALICE collaboration on proton-proton collisions at an energy of 900 GeV (Paic). In the session on cosmic rays, there was a talk on the origin of ultra high-energy cosmic rays (100 EeV = 1020 eV) as observed by the Pierre Auger Observatory (Medina-Tanco). Furthermore, there was a presentation of the project NuMoon which proposes to use the Moon's surface to detect cosmic rays that are out of the range of the Auger Observatory (Scholten). In addition, there was a review of the advances of the Mexican project HAWC, an observatory under construction in the Sierra Negra of Puebla (Sandoval) to study some of the most violentphenomena in the Universe through the detection of gamma rays with energies between hundreds of GeV and hundreds of TeV. At the other extreme of the energy scale is the field of the study of fundamental symmetries with novel experiments with ultra-cold neutrons. In this session, there were proposals by the NPDGamma collaboration (Gillis) and the abBA collaboration (Barr´on-Palos) to use polarized neutrons to study the weak hadronic interaction and neutron beta-decay, respectively. In another talk, there was a discussion on the measurement of the electric dipole moment of the neutron which is of fundamental importance to the standard model (Crawford). Finally, there was a session dedicated to quantum chaos where various proposals were discussed to identify chaotic behaviour in quantum systems, such as spectral fluctuations, time series and 1/f noise (Molina). Applications were presented to many-body systems in nuclear physics (Stránský) and the dripping-laser system as a quantum realization of the dripping faucet, one of the paradigms of classical chaos (Fossion). Many of the participants spent the free afternoon in the "magic village" of Tepoztlán to visit the arts and crafts market, the church, the convent or just to enjoy the good food. The most daring persons climbed the nearby cliff Tepozteco and the pyramid built on top of it to contemplate the spectacular view over the valley. As always, some of the participants of the conference prolonged their stay in Mexico to establish, to develop or to consolidate their collaborations with the local nuclear physics community. At the annual reunion of the Nuclear Physics Division which was held during the meeting, there was a long discussion on the future of the Symposium and, more generally, of the field of nuclear physics in Mexico and Latin America. Libertad Barr´on Palos, Roelof Bijker, Ruben Fossion and David Lizcano were re-elected as members of the Local Organizing Committee of the next Symposium which will be held at the Hacienda Cocoyoc from January 4-7, 2011, but now with Libertad as Chair. Libertad Barrón-Palos Roelof Bijker Ruben Fossion David Lizcano conference photo_photo
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
Nuclear Science Outreach in the World Year of Physics
NASA Astrophysics Data System (ADS)
McMahan, Margaret
2006-04-01
The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.
Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence
Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao
2014-01-01
Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
NASA Astrophysics Data System (ADS)
Yamada, T.
2014-12-01
Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the related fields such as nuclear astrophysics, hypernuclear physics, hadron physics, and condensate matter physics so on. In fact, in this workshop, we also discuss the clustering aspects in the related fields. Thus, I expect in this workshop we can grasp the present status of the nuclear cluster physics and demonstrate its perspective in near future. This workshop is sponsored by several institutes and organizations. In particular, I would express our thanks for financial supports to Research Center for Nuclear Physics (RCNP), Osaka University, Center for Nuclear Study (CNS), University of Tokyo, Joint Institute for Computational Fundamental Science (JICFuS), and RIKEN Nishina Center for Accelerator- Based Science. They are cohosting this workshop. I would like also to appreciate my University, Kanto Gakuin University, who offers this nice place for one week and helps us to hold this workshop smoothly and conveniently. Today, the president of my University, Prof. Kuku, is here to present a welcome address. Thank you very much. Finally, with many of the participants leading this field both in theory and in experiment, we wish this workshop offers an opportunity to simulate communications not only during the workshop but also in the future. In addition, we hope you enjoy exploring city of Yokohama and the area around, as well as scientific discussions. Thank you very much for your attention.
An ion accelerator for undergraduate research and teaching
NASA Astrophysics Data System (ADS)
Monce, Michael
1997-04-01
We have recently upgraded our 400kV, single beam line ion accelerator to a 1MV, multiple beam line machine. This upgrade has greatly expanded the opportunities for student involvement in the laboratory. We will describe four areas of work in which students now participate. The first is the continuing research being conducted in excitations produced in ion-molecule collisions, which recently involved the use of digital imaging. The second area of research now opened up by the new accelerator involves PIXE. We are currently beginning a cross disciplinary study of archaeological specimens using PIXE and involving students from both anthropology and physics. Finally, two beam lines from the accelerator will be used for basic work in nuclear physics: Rutherford scattering and nuclear resonances. These two nuclear physics experiments will be integrated into our sophomore-junior level, year-long course in experimental physics.
Experimental Physical Sciences Vitae 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances
Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.
How to Stimulate Students' Interest in Nuclear Physics?
ERIC Educational Resources Information Center
Elbanowska-Ciemuchowska, Stefania; Giembicka, Magdalena Anna
2011-01-01
Teaching nuclear physics in secondary schools offers us a unique possibility to increase our students' awareness of the influence that modern science and its achievements have on the everyday life of contemporary people. Students gain an opportunity to learn in what ways the outcome of laboratory research is put to use in such fields as medicine,…
ERIC Educational Resources Information Center
American Inst. of Physics, New York, NY.
Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…
Physics Division annual review, 1 April 1975--31 March 1976. [ANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, G. T.
1976-01-01
An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)
Millikan Award Lecture, 2006: Physics For All
NASA Astrophysics Data System (ADS)
Hobson, Art
2006-12-01
We physics teachers must broaden our focus from physics for physicists and other scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is that "[w]ithout a scientifically literate population, the outlook for a better world is not promising." Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, nuclear physics, the standard model of particles and interactions, and quantum fields. Many science writers have shown that this description is possible. It should emphasize the scientific process and include such societal topics as global warming, nuclear weapons, and pseudoscience, because citizens need to vote intelligently on such issues.
Carried by History: Cesar Lattes, Nuclear Emulsions, and the Discovery of the Pi-meson
NASA Astrophysics Data System (ADS)
Vieira, Cássio Leite; Videira, Antonio Augusto Passos
2014-03-01
We analyze the role played by the Brazilian physicist Cesar Lattes (1924-2005) in the historical development of the nuclear emulsion technique and in the co-discovery of the pion. His works influenced and gave impetus to the development of experimental physics in Brazil, the foundation of a national center dedicated to physics research, the beginnings of Brazilian "Big Science," and the inauguration of a long-lasting collaboration between Brazil and Japan in the field of comic ray physics.
Fifty years of accelerator based physics at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, John W.
1999-04-26
The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.
Physics in 1981 plus and minus 50.
ERIC Educational Resources Information Center
Ramsey, Norman F.
1981-01-01
Examines the state of physics in 1931, the predicted and actual states of physics in 1981, and predictions for 2031. Focuses on general conditions such as economy, energy (fossil, solar, nuclear fission, fusion), physics research, and physics publications. (JN)
Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle
ERIC Educational Resources Information Center
Settle, Frank A.
2009-01-01
The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…
Australian Students' Views on Nuclear Issues: Does Teaching Alter Prior Beliefs?
ERIC Educational Resources Information Center
Cooper, Sarina; Yeo, Shelley; Zadnik, Marjan
2003-01-01
We have investigated the conceptual understandings of seventy-eight 16-year-old Australian high school students' and their knowledge about several issues related to nuclear energy. As a result of their study of the physics topic Nuclear Technology, the students learned more about applications of nuclear technology, had better though still…
NASA Astrophysics Data System (ADS)
Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor
2017-09-01
The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.
NASA Astrophysics Data System (ADS)
Kiku, H.
2014-12-01
Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology etc. Therefore, I am very happy that the excellent scientists of nuclear physics over 120 visit to our university for discussing the latest results and scope in nuclear physics, and enjoy our facilities and City of Yokohama. I believe that this conference will transmit the forefront of the nuclear physics from Yokohama to the world. Finally, I hope this international workshop will be successful and fruitful, and all you have nice days in Yokohama. Thank you very much for your attention.
National Center for Nuclear Security: The Nuclear Forensics Project (F2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingensmith, A. L.
These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barash, D.P.
Addressing the history, physics, biology, economics, politics, psychology, and ethics of nuclear armaments, the author provides a survey of diverse facets of the nuclear controversy. The study encompasses such key areas as nuclear hardware and technology; the short- and long-term effects of nuclear weapons; strategic doctrine, deterrence and defense policy; the arms race, arms control, and nuclear proliferation; and the economic impact, psychology, and ethics of nuclear armaments. A ''Policy Issues'' section, presenting both the advocate and opponent sides of the debate, is included with each chapter.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Nuclear Weapons R&D Organiziations in Nine Nations
2009-03-16
Sorek (alternative transliteration: Soreq) south of Tel Aviv and at the larger Center for Nuclear Research in the Negev south of Dimona. According to...Utilization Institute; (7) Neutron Physics Institute; (8) Reactor Design Institute; (9) Nuclear Electromagnetics Institute; (10) Radiation Protection
Nuclear Weapons R&D Organizations in Nine Nations
2009-03-16
Sorek (alternative transliteration: Soreq) south of Tel Aviv and at the larger Center for Nuclear Research in the Negev south of Dimona. According to...Utilization Institute; (7) Neutron Physics Institute; (8) Reactor Design Institute; (9) Nuclear Electromagnetics Institute; (10) Radiation Protection
NASA Astrophysics Data System (ADS)
Buttery, N. E.
2008-03-01
Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.
[The concept of nuclear physics].
Ducassou, D
1995-03-15
Understanding of the biological effects of radioactivity on living matter requires some basic notions of nuclear physics. The interreactions between living matter and ionising rays, emitted by natural or artificial radioelements, are responsible for such effects. These radioelements are characterised by the period, the nature and the energy of the rays they emit; they constitute the source of radiation whose effects generally depend on their activity.
Radiological Protection in Medicine; OCHRONA RADIOLOGICZNA W MEDYCYNIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
A handbook is presented for the application of nuclear phenomena and techniques to medical diagnostics and treatment. A large portion is devoted to fundamental nuclear chemistry and physics, paying special attention to tracer techniques. In addition to principles of dosimetry the government regulations applicable to medical exposures are described together with a survey of the fleld of health physics. (TTT)
A Simple Example of Radioactive Dating
ERIC Educational Resources Information Center
Brown, Todd
2014-01-01
Although nuclear half-life is vital to physics and physical science, and to sensitive societal issues from nuclear waste to the age of the Earth, a true lab on half-life is almost never done at the college or high school level. Seldom are students able to use radioactivity to actually date when an object came into being, as is done in this…
Code of Federal Regulations, 2012 CFR
2012-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2014 CFR
2014-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2011 CFR
2011-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2013 CFR
2013-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Standard Review Plan, Section 13.6.2, Revision 1 on Physical Security--Design Certification AGENCY: Nuclear... comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.6.2 on ``Physical Security...
Measuring Radon in Air, Soil and Water: An Introduction to Nuclear Physics for Schools
ERIC Educational Resources Information Center
Johansson, K. E.; Nilsson, Ch.; Wachtmeister, S.
2007-01-01
With the radon measurement activities at Stockholm House of Science, nuclear and experimental physics is introduced in a way that attracts the attention and interest of the students. These projects give the students the opportunity to use mobile detectors, either in their school, in the House of Science or in their homes. During 2006, 34 radon…
The heavy particle hazard, what physical data are needed?
NASA Technical Reports Server (NTRS)
Curtis, S. B.; Wilkinson, M. C.
1972-01-01
The physical data required to evaluate the radiation hazard from heavy galactic cosmic rays to astronauts on extended missions are discussed. The spectral characteristics, nuclear interaction parameters, and track structure of particles are emphasized. The data on the lower energy portion of the differential spectrum of the iron group and nuclear fragmentation in tissue and aluminum are tested, and results are shown.
A journey into medical physics as viewed by a physicist
NASA Astrophysics Data System (ADS)
Gueye, Paul
2007-03-01
The world of physics is usually linked to a large variety of subjects spanning from astrophysics, nuclear/high energy physics, materials and optical sciences, plasma physics etc. Lesser is known about the exciting world of medical physics that includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. These physicists are typically based in hospital departments of radiation oncology or radiology, and provide technical support for patient diagnosis and treatment in a clinical environment. This talk will focus on providing a bridge between selected areas of physics and their medical applications. The journey will first start from our understanding of high energy beam production and transport beamlines for external beam treatment of diseases (e.g., electron, gamma, X-ray and proton machines) as they relate to accelerator physics. We will then embrace the world of nuclear/high energy physics where detectors development provide a unique tool for understanding low energy beam distribution emitted from radioactive sources used in Brachytherapy treatment modality. Because the ultimate goal of radiation based therapy is its killing power on tumor cells, the next topic will be microdosimetry where responses of biological systems can be studied via electromagnetic systems. Finally, the impact on the imaging world will be embraced using tools heavily used in plasma physics, fluid mechanics and Monte Carlo simulations. These various scientific areas provide unique opportunities for faculty and students at universities, as well as for staff from research centers and laboratories to contribute in this field. We will conclude with the educational training related to medical physics programs.
Physics Opportunity with an Electron-Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Patrizia
2016-12-01
Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less
NASA Astrophysics Data System (ADS)
2015-02-01
The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the shell model. Then, as usual, the program of the meeting consisted of general talks and more specialized contributions, which covered five main topics: i) From nuclear forces to nuclear structure; ii) Exploring nuclear structure toward the drip line; iii) Role of the shell model in the study of exotic nuclei; iv) Nuclear structure aspects outside the shell model; and v) Special topics. The main conclusions were drawn in two keynote talks given by Amand Faessler and Franco Iachello. The Conference had about 90 participants from some 20 countries [please see the list of participants]. This is well in line with the tradition of these meetings, as is the fact that more than 50% of the present participants attended one or more of the previous Seminars. We received 58 manuscripts out of the 73 invited papers and contributions presented at the Seminar. All of these have been peer reviewed and are collected in this volume. We would like to thank all the colleagues who have acted as referees to assess the suitability of the various articles for publication in the Journal of Physics: Conference Series. We are confident that the high quality of both invited and contributed papers contained in these Proceedings will be appreciated by the nuclear physics community. We gratefully acknowledge the members of the Advisory Committee for their valuable cooperation in preparing the scientific program as well as the financial support of the Istituto Nazionale di Fisica Nucleare, the University of Naples Federico II, and the Dipartimento di Fisica who helped make the Seminar possible. Angela Gargano Luigi Coraggio Nunzio Itaco Editors
A Training Manual for Nuclear Medicine Technologists.
ERIC Educational Resources Information Center
Simmons, Guy H.; Alexander, George W.
This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)
Code of Federal Regulations, 2010 CFR
2010-01-01
... material are synonymous: Category I is a formula quantity of strategic special nuclear material; Category II is special nuclear material of moderate strategic significance or irradiated fuel; and Category III is special nuclear material of low strategic significance. (Verbatim from Annex I to the...
Psychosocial Aspects of Nuclear Developments. Task Force Report 20.
ERIC Educational Resources Information Center
American Psychiatric Association, Washington, DC.
This is the report of a task force formed to bring psychological understanding to bear on the various aspects of the development of nuclear arms and nuclear energy and the threat they pose to human physical, mental, and emotional health. The first of seven articles considers the sociopsychological aspects of the nuclear arms race. Other articles…
SkyNet: Modular nuclear reaction network library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-10-01
The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.
ERIC Educational Resources Information Center
Laughlin, John S.
1983-01-01
Traces the development of basic radiation physics that underlies much of today's medical physics and looks separately at the historical development of two major subfields of medical physics: radiation therapy and nuclear medicine. Indicates that radiation physics has made important contributions to solving biomedical problems in medical…
ERIC Educational Resources Information Center
Ambler, Ernest
1976-01-01
This historical survey describes the contributions made to the field of physics by the National Bureau of Standards since its inception in 1901. Four broad areas are emphasized: nuclear physics, thermal physics (including cryogenics), spectroscopy and fundamental constants. (BT)
Materials for Active Engagement in Nuclear and Particle Physics Courses
NASA Astrophysics Data System (ADS)
Loats, Jeff; Schwarz, Cindy; Krane, Ken
2013-04-01
Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.
Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments
NASA Astrophysics Data System (ADS)
Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.
2010-02-01
This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.
Chemistry Division. Quarterly progress report for period ending June 30, 1949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1949-09-14
Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less
LMSC PUBLISHED CONTRIBUTIONS, 1966 IMPRINTS: A CITATION BIBLIOGRAPHY,
PHYSICS, BIBLIOGRAPHIES), (*AERONAUTICS, BIBLIOGRAPHIES), (*ASTRONAUTICS, BIBLIOGRAPHIES), (* MATERIALS , BIBLIOGRAPHIES), (*ELECTRONICS...BIBLIOGRAPHIES), (*ENGINEERING, BIBLIOGRAPHIES), ASTROPHYSICS, NUCLEAR PHYSICS, MECHANICS, METALLURGY, CERAMIC MATERIALS , SOLID STATE PHYSICS, INFORMATION RETRIEVAL, PROPULSION SYSTEMS, BIONICS, REPORTS
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-10-15
and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information
Strange Particles and Heavy Ion Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassalleck, Bernd; Fields, Douglas
This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less
Physics Leads to Free Elections in the Nuclear Age.
NASA Astrophysics Data System (ADS)
Synek, Miroslav
2001-10-01
------------- Complex historical development on our planet, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental missiles, conceivably controllable through a computerized "push-button". Whenever this technology falls under the control of an irresponsible, miscalculating, or, insane dictator, with sufficiently powerful means of a huge, mass-produced, nuclear-missile built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. Therefore, it is a historical urgency that this technology be under the control by a government of the people, by the people and for the people, based on a sufficiently reliable system of free elections, in any country on our planet, wherever and whenever a total nuclear holocaust could originate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Wallace, R. K.; Ireland, J. R.
2010-09-01
This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles G; Wallace, Richard K; Ireland, John R
2009-01-01
This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
Essential Ingredients in Core-collapse Supernovae
Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...
2014-03-27
Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less
NASA Astrophysics Data System (ADS)
Geramita, Matthew
2008-04-01
In 1924, Katherine Chamberlain became the first woman to receive a doctorate in physics from the University of Michigan. As one of the first women in the world to earn a doctorate in physics, Katherine reached a level prominence in the scientific community that few women had achieved. As a scientist, Katherine studied the outer energy levels of various elements using x-ray spectroscopy at the University of Michigan. In her thesis, she showed the potential for x-rays to reduce highly oxidized compounds and in 1925 won the Ellen Richards Prize for the world's best scientific paper by a woman. As an educator, she taught an introduction to photography course for thirty-five years in the hopes of creating new ways to inspire a love for physics in her students. As a community leader, she worked with The United World Federalists and The Michigan Memorial Phoenix Project to find peaceful uses for nuclear energy. Looking at these aspects of Chamberlain's life offers a unique perspective on the physics community of the 1920's, physics education, and the nuclear panic that followed WWII.
Publications of LASL research, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A.K.
1975-05-01
This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less
Physics Teachers' Views on Their Initial Teacher Education
ERIC Educational Resources Information Center
Buabeng, Isaac; Conner, Lindsey; Winter, David
2016-01-01
This paper explores New Zealand (NZ) physics teachers' and physics educators' views about Initial Teacher Education (ITE). Perspectives of physics teachers nationally indicated that in general, teachers considered themselves not well-prepared in some content areas including electronics, modern physics, and atomic and nuclear physics. This may be…
NuSTEC1 White Paper: Status and challenges of neutrino-nucleus scattering
NASA Astrophysics Data System (ADS)
Alvarez-Ruso, L.; Sajjad Athar, M.; Barbaro, M. B.; Cherdack, D.; Christy, M. E.; Coloma, P.; Donnelly, T. W.; Dytman, S.; de Gouvêa, A.; Hill, R. J.; Huber, P.; Jachowicz, N.; Katori, T.; Kronfeld, A. S.; Mahn, K.; Martini, M.; Morfín, J. G.; Nieves, J.; Perdue, G. N.; Petti, R.; Richards, D. G.; Sánchez, F.; Sato, T.; Sobczyk, J. T.; Zeller, G. P.
2018-05-01
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez-Ruso, L.; et al.
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments requires a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Papermore » we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.« less
Element Genesis - Solving the Mystery (Video Presentation)
NASA Astrophysics Data System (ADS)
Mochizuki, Yuko
2001-10-01
Our institute (RIKEN) produced a video on nucleosynthesis. Its new English version is presented. Y. M., I. Tanihata, Y. Yano, and R. Boyd are science editors for this. Time length of the video is 30 minutes. The primary characteristic of this video is that we have employed a number of 2-D and 3-Dimensional visualizations and animations based on an updated understanding of nuclear physics and astrophysics. One of the emphasized points is that microscopic physics (i.e., nuclear physics) and macroscopic physics (i.e., astrophysics) are strongly connected. It contains explanation on the chart of the nuclides, nuclear burning in the sun, big-bang nucleosynthesis, stellar nucleosynthesis, ``beta-stability valley", the s-process, the r-process, production of an RI beam, etc., and professors D. Arnett, T. Kajino, K. Langanke, K. Sato, C. Sneden, I. Tanihata, and F.-K. Thielemann appear as interviewees. Our prime target is college freshmen. We hope that this video would be useful for education both in the fields of astrophysics and nuclear physics at universities and even at high schools. Our institute is accordingly developing a distribution system of this video and it will be available soon at the cost price (please visit our web site for details: http://www.rarf.riken.go.jp/video). The Japanese version was awarded the prize of the Minister of Education, Culture, Sports, Science, and Technology of Japan 2001.
PREFACE: 12th Conference on ''Theoretical Nuclear Physics in Italy''
NASA Astrophysics Data System (ADS)
Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.
2009-07-01
These Proceedings contain the invited and contributed papers presented at the 12th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 8-10 October 2008. As usual, the meeting was held at il Palazzone, a 16th century castle owned by the Scuola Normale Superiore di Pisa. The aim of this biennal conference is to bring together Italian theorists working in various fields of Nuclear Physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to promote collaborations between different groups. There were about 50 participants at the conference, coming from 14 Italian Universities (Cagliari, Catania, Ferrara, Firenze, Genova, Lecce, Milano, Napoli, Padova, Pavia, Pisa, Roma, Trento, Trieste). The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on six main topics: Few-Nucleon Systems, Nuclear Matter and Nuclear Dynamics, Nuclear Astrophysics, Structure of Hadrons and Hadronic Matter, Nuclear Structure, Nuclear Physics with Electroweak Probes. Winfried Leidemann, Maria Colonna, Marcello Lissia, Elena Santopinto, Silvia Lenzi and Omar Benhar took the burden of giving general talks on these topics and reviewing the research activities of the various Italian groups. In addition, 19 contributed papers were presented, most of them by young participants. In the last session of the Conference there were two invited talks related to experimental activities of great current interest. Gianfranco Prete from the Laboratori Nazionali di Legnaro spoke about the Italian radioactive ion beam facility SPES and the status of the European project EURISOL, while Nicola Colonna from the INFN, Bari, gave an overview of the perspectives of development of fourth-generation nuclear reactors. We would like to thank the authors of the general reports for their hard work in reviewing the main achievements in the various fields as well as our experimental colleagues for having kindly agreed to talk to an audience consisting only of theoretical physicists. I Bombaci, A Covello, L E Marcucci and S Rosati
77 FR 27208 - Renewal of Threat Reduction Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... national defense, geopolitical and national security affairs, weapons of mass destruction, nuclear physics... Defense (Nuclear, Chemical and Biological Defense Programs), independent advice and recommendations on: a. Reducing the threat to the United States, its military forces, and its allies and partners posed by nuclear...
78 FR 40444 - Amendment of the Threat Reduction Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
..., geopolitical and national security affairs, WMD, nuclear physics, chemistry, and biology. The Committee members... the Assistant Secretary of Defense for Nuclear, Chemical and Biological Defense Programs (ASD(NCB..., and its allies and partners posed by nuclear, biological, chemical, conventional, and special weapons...
Nuclear-spin-independent short-range three-body physics in ultracold atoms.
Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev
2010-09-03
We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.
Reaching for the Horizon: The 2015 NSAC Long Range Plan
NASA Astrophysics Data System (ADS)
Geesaman, Donald
2015-10-01
In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Verification Study of Buoyancy-Driven Turbulent Nuclear Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Buoyancy-driven turbulent nuclear combustion determines the rate of nuclear burning during the deflagration phase (i.e., the ordinary nuclear flame phase) of Type 1a supernovae, and hence the amount of nuclear energy released during this phase. It therefore determines the amount the white dwarf star expands prior to initiation of a detonation wave, and so the amount of radioactive nickel and thus the peak luminosity of the explosion. However, this key physical process is not fully understood. To better understand this process, the Flash Center has conducted an extensive series of large-scale 3D simulations of buoyancy-driven turbulent nuclear combustion for threemore » different physical situations. This movie shows the results for some of these simulations. Credits: Science: Ray Bair, Katherine Riley, Argonne National Laboratory; Anshu Dubey, Don Lamb, Dongwook Lee, University of Chicago; Robert Fisher, University of Massachusetts at Dartmouth and Dean Townsley, University of Alabama Visualization: Jonathan Gallagher, University of Chicago; Randy Hudson, John Norris and Michael E. Papka, Argonne National Laboratory/University of Chicago« less
Final Progress Report for Award DE-FG07-05ID14637.pdf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Dixon
2012-03-09
2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less
East Europe Report, Scientific Affairs, No. 776.
1983-05-11
Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Standard Review Plan Section 13.6.3, Revision 1 on Physical Security--Early Site Permit AGENCY: Nuclear... comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants,'' on a proposed Revision 1 to Standard Review Plan (SRP), Section 13.6.3 on ``Physical Security...
Research program in nuclear and solid state physics
NASA Technical Reports Server (NTRS)
Stronach, C. E.
1973-01-01
The spectra of prompt gamma rays emitted following nuclear pion absorption were studied to determine the states of excited daughter nuclei, and the branching ratios for these states. Studies discussed include the negative pion absorption of C-12, S-32, and N-14; and the positive pion absorption on 0-16. Abstracts of papers submitted to the conference of the American Physical Society are included.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
The Neutron's Discovery - 80 Years on
NASA Astrophysics Data System (ADS)
Rogers, John D.
A brief review is given of selected highlights in scientific developments from the birth of modern nuclear physics at the end of the 19th century to the discovery of the neutron in 1932. This is followed by some important milestones in neutron and reactor physics that have led to our current understanding and implementation of nuclear technologies. The beginnings can be traced back to the discovery of X-rays by Roentgen, the identification of natural radioactivity by Becquerel and the discovery of the electron by Thomson, towards the end of the 19th Century. Rutherford was a key figure in experimental physics who determined the structure of the atom and who inspired his students at McGill, Manchester and Cambridge Universities (many of whom would become Nobel laureates) in the pursuit of their physics research. One of Rutherford's students, James Chadwick, had studied the work carried out by Bothe and Becker on alpha particle-induced disintegration of light elements which had led to their observation of high energy penetrating radiation that neither they nor the Joliot-Curies could identify. Chadwick knew that the only possible explanation was the emission of a neutron in the nuclear reaction. He carried out tests in the Cavendish Laboratory and submitted his now classical paper identifying the neutron to the periodical Nature in 1932. The discovery of the neutron and of nuclear fission in 1939 opened up new areas for scientific investigation, in, for example, astrophysics, geology, neutron and nuclear physics. The prospects for nuclear power in particular appeared to be unlimited and both civil and military applications have been actively pursued. Many new experimental facilities have been designed and built to provide intense sources of neutrons for research purposes. Work carried out in such centres is included in the programme of the 7th International Topical Meeting on Neutron Radiography, an important forum for discussion of the latest research work of this ever-growing scientific community.
New Results on Short-Range Correlations in Nuclei
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...
2017-10-12
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
New Results on Short-Range Correlations in Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
Outage management and health physics issue, 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2009-05-15
The focus of the May-June issue is on outage management and health physics. Major articles include the following: Planning and scheduling to minimize refueling outage, by Pat McKenna, AmerenUE; Prioritizing safety, quality and schedule, by Tom Sharkey, Dominion; Benchmarking to high standards, by Margie Jepson, Energy Nuclear; Benchmarking against U.S. standards, by Magnox North, United Kingdom; Enabling suppliers for new build activity, by Marcus Harrington, GE Hitachi Nuclear Energy; Identifying, cultivating and qualifying suppliers, by Thomas E. Silva, AREVA NP; Creating new U.S. jobs, by Francois Martineau, Areva NP. Industry innovation articles include: MSL Acoustic source load reduction, by Amirmore » Shahkarami, Exelon Nuclear; Dual Methodology NDE of CRDM nozzles, by Michael Stark, Dominion Nuclear; and Electronic circuit board testing, by James Amundsen, FirstEnergy Nuclear Operating Company. The plant profile article is titled The future is now, by Julia Milstead, Progress Energy Service Company, LLC.« less
Imagine a universe with 85% down quarks: Mentoring for inclusive excellence in nuclear science
NASA Astrophysics Data System (ADS)
Yennello, Sherry J.
2017-09-01
If nature created six down quarks for every up quark the world might be a bit more strange. The US population is made up of over 50% women. Hispanic Americans and African Americans make up over 30% of the US population. The processes by which we foster curiosity, educate our youth, encourage people into science, recruit and retain people into physics and welcome them as members of our nuclear physics community results in a much different demographic in the membership of the DNP. Enabling the development of an identity as a scientist or nuclear scientist is a crucial part of mentoring young people to successful careers in nuclear science. Research experiences for students can play a critical role in that identity development. Since 2004, over 170 students have explored nuclear science through the Research Experiences for Undergraduates program Texas A&M University Cyclotron Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Cognata, M., E-mail: lacognata@lns.infn.it; Kiss, G. G.; Mukhamedzhanov, A. M.
2015-10-15
Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization tomore » direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.« less
PREFACE: XV Chilean Physics Symposium, 2006
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Moreno, José; Ávila, Ricardo; Cubillos, Karla
2008-02-01
The Chilean Physics Symposium is the main gathering of Physics in Chile, and its organization is one of the central activities of the Chilean Physical Society (Sociedad Chilena de Física, SOCHIFI). The Symposium assembles the largest number of Chilean and foreign physicists resident in the country. Recent advances in the various research areas in Physics are presented, by researchers from Universities and national research centres. At the same time this is an occasion for the participation of Physics students from both the pre- and post-graduate programs. The Symposium has gathered continuously every two years, since 1978. The organization of the XV symposium was in charge of the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission, and it took place on 15-17 November 2006, at La Reina Nuclear Studies Centre, in the city of Santiago, Chile. During this symposium the relation of research in Physics with education and with the productive sector in the country was also analysed. During the Symposium, 121 abstracts were submitted, from 255 authors. All authors were invited to submit articles for publication in the Symposium Proceedings. The articles received were reviewed by the Symposium Scientific Committee and by invited peers. The criteria for review focussed on the demand for a consistent piece of research, and a clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, 52 articles are presented in this issue. We would like to express our appreciation to their authors. Finally, my personal apology is in order regarding my delay in publishing these proceedings. A sequence of personal and professional highly demanding circumstances have been in the way. I would like to thank Journal of Physics: Conference Series for providing very fast publication of the proceedings, having published them online less than 4 weeks after my initial contact with the journal. Leopoldo Soto President, Chilean Physical Society Head of Plasma Department, Chilean Nuclear Energy Commission Editors: Leopoldo Soto, José Moreno, Ricardo Ávila, Karla Cubillos Scientific Committee Physicists from various research institutions, specialty areas, and regions of the country were invited by the Board of SOCHIFI to join the Symposium Scientific Committee, which was formed by: Julio Yánez, Universidad de Antofagasta Sergio del Campo, Pontificia Universidad Católica de Valparaíso Patricio Vargas, Universidad Técnica Federico Santa María Rodrigo Soto, Universidad de Chile Ulrich Volkmann, Pontificia Universidad Católica de Chile Víctor Muñoz, Universidad de Chile Rodrigo Aros, Universidad Andrés Bello Leopoldo Soto (Chairman), Comisión Chilena de Energía Nuclear Luis Huerta, Universidad de Talca Patricio Salgado, Universidad de Concepción Luis Roa, Universidad de Concepción Asticio Vargas, Universidad de la Frontera, Temuco Cristian Martínez, Centro de Estudios Científicos, Valdivia Organizing Commitee Leopoldo Soto (Chairman), Comisión Chilena de Energía Nuclear Erik Herrera, Comisión Chilena de Energía Nuclear José Moreno, Comisión Chilena de Energía Nuclear Andrea Rozas, Comisión Chilena de Energía Nuclear Rodrigo Aros, Universidad Andrés Bello Gonzalo Gutiérrez, Universidad de Chile Executive Board, Chilean Physical Society April 2006 - April 2008 Leopoldo Soto, President Joel Saavedra, Secretary Rodrigo Aros: Treasurer Rodolfo Figueroa: Director Luis Huerta: Director Conference photograph
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...
Three-Dimensional Nuclear Chart--Understanding Nuclear Physics and Nucleosynthesis in Stars
ERIC Educational Resources Information Center
Koura, Hiroyuki
2014-01-01
Three-dimensional (3D) nuclear charts were created using toy blocks, which represent the atomic masses per nucleon number and the total half-lives for each nucleus in the entire region of the nuclear mass. The bulk properties of the nuclei can be easily understood by using these charts. Subsequently, these charts were used in outreach activities…
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false U.S. Nuclear Regulatory Commission Offices and Classified Mailing Addresses A Appendix A to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. A Appendix A to Part 73—U.S. Nuclear Regulatory Commission...
Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy
NASA Astrophysics Data System (ADS)
Tonev, D.; Goutev, N.; Georgiev, L. S.
2016-06-01
An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.
NASA Astrophysics Data System (ADS)
Ripani, M.
2015-08-01
The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Tindale, W B; Thorley, P J; Nunan, T O; Lewington, V; Shields, R A; Williams, N R
2003-01-01
Guidelines for the provision of physics support to nuclear medicine were published in 1999 by a joint working group of the British Institute of Radiology, the British Nuclear Medicine Society, and the Institute of Physics and Engineering in Medicine. Following publication of the guidelines, a survey was conducted by the working group to gather data on the actual level of physicist support in UK hospitals of different types and on the activities undertaken by physicists. The data were collected in the 12 months following the publication of guidelines and cover different hospital models and seven UK regions. The results provide evidence that many of the smaller units - small teaching hospitals and, particularly, small district general hospitals - have insufficient physics support. Although, on average, there is good agreement between the guidelines and the survey data for medium and large district general hospitals, there is wide variation in the level of physics provision between hospitals delivering apparently similar services. This emphasizes the need for national guidelines, against which institutions may be bench-marked and which may be used as a recommendation for the staffing levels necessary to ensure services are delivered safely and standards are not compromised. The complexity and variety of workload is an important factor in determining the level of physics support. As services develop, it is vital that this aspect is recognized to ensure that appropriate resources are available for the required physics input, even if any new service represents only a modest clinical throughput in terms of patient numbers.
10 CFR 73.20 - General performance objective and requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General performance objective and requirements. 73.20 Section 73.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS... special nuclear material; takes delivery of formula quantities of strategic special nuclear material free...
10 CFR 73.20 - General performance objective and requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General performance objective and requirements. 73.20 Section 73.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS... special nuclear material; takes delivery of formula quantities of strategic special nuclear material free...
10 CFR 73.20 - General performance objective and requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General performance objective and requirements. 73.20 Section 73.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS... special nuclear material; takes delivery of formula quantities of strategic special nuclear material free...
10 CFR 73.20 - General performance objective and requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General performance objective and requirements. 73.20 Section 73.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS... special nuclear material; takes delivery of formula quantities of strategic special nuclear material free...
Resource Letter PSNAC-1: Physics and society: Nuclear arms control
NASA Astrophysics Data System (ADS)
Glaser, Alexander; Mian, Zia
2008-01-01
This Resource Letter provides a guide to the literature on nuclear arms control for the nonspecialist. Journal articles and books are cited for the following topics: nuclear weapons, fissile materials, nonproliferation, missiles and missile defenses, verification, disarmament, and the role of scientists in arms control.
Operation CASTLE. Operation Plan Number 3-53. March - May 1954,
Nuclear radiation, *Nuclear explosions, *Radiation dosage, *Test methods, *Military operations, *Military planning, Radiobiology, Missions, Marshall Islands , Eniwetok Atoll, Bikini Atoll, Atmospheric physics, Low level, Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.
1996-12-31
During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groppi, Flavia; Manenti, Simone; Gini, Luigi
In Italy the 'nuclear issue' was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to ourmore » exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.« less
Position sensitivity in large spectroscopic LaBr3:Ce crystals for Doppler broadening correction
NASA Astrophysics Data System (ADS)
Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.
2016-12-01
The position sensitivity of a large LaBr3:Ce crystal was investigated with the aim of correcting for the Doppler broadening in nuclear physics experiments. The crystal was cylindrical, 3 in×3 in (7.62 cm x 7.62 cm) and with diffusive surfaces as typically used in nuclear physics basic research to measure medium or high energy gamma rays (0.5 MeV
Physical protection philosophy and techniques in Sweden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufva, B.
1988-01-01
The circumstances for the protection of nuclear power plants are special in Sweden. A very important factor is that armed guards at the facilities are alien to the Swedish society. They do not use them. The Swedish concept of physical protection accepts that the aggressor will get into the facility. With this in mind, the Swedish Nuclear Power Inspectorate (SKI) has established the policy that administrative, technical, and organizational measures will be directed toward preventing an aggressor from damaging the reactor, even if he has occupied the facility. In addition, the best conditions possible shall be established for the operatormore » and the police to reoccupy the plant. The author believes this policy is different from that of many other countries. Therefore, he focusses on the Swedish philosophy and techniques for the physical protection of nuclear power plants.« less
Physics division annual report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, K., ed.
2001-10-04
This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as themore » highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter impacts the structure of nuclei and extended the exquisite sensitivity of the Atom-Trap-Trace-Analysis technique to new species and applications. All of this progress was built on advances in nuclear theory, which the Division pursues at the quark, hadron, and nuclear collective degrees of freedom levels. These are just a few of the highlights in the Division's research program. The results reflect the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.
Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure,more » interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.« less
10 CFR 73.40 - Physical protection: General requirements at fixed sites.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical protection: General requirements at fixed sites. 73.40 Section 73.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.40 Physical protection: General...
10 CFR 73.40 - Physical protection: General requirements at fixed sites.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical protection: General requirements at fixed sites. 73.40 Section 73.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.40 Physical protection: General...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
10 CFR 73.40 - Physical protection: General requirements at fixed sites.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical protection: General requirements at fixed sites. 73.40 Section 73.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.40 Physical protection: General...
10 CFR 73.50 - Requirements for physical protection of licensed activities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Requirements for physical protection of licensed activities. 73.50 Section 73.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.50 Requirements for physical...
10 CFR 73.50 - Requirements for physical protection of licensed activities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Requirements for physical protection of licensed activities. 73.50 Section 73.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.50 Requirements for physical...
10 CFR 73.40 - Physical protection: General requirements at fixed sites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical protection: General requirements at fixed sites. 73.40 Section 73.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.40 Physical protection: General...
10 CFR 110.44 - Physical security standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical security standards. 110.44 Section 110.44 Energy... License Applications § 110.44 Physical security standards. (a) Physical security measures in recipient... publication INFCIRC/225/Rev. 4 (corrected), June 1999, “The Physical Protection of Nuclear Material and...
Soldiers’ Psychological Responses to Tactical Nuclear Warfare
1992-02-01
530. Greene , T.L. (1987). Description of a nuclear battlefield. In R.H. Young & B.H. Drum (Edo.), Proceedings of the Defense Nuclear Agency Symposium...ATTN: DEPT OF BEHAVOR SCI & LEADERSHIP ATTN: PMS/PMA-423 ATTN: DEPT OF PHYSICS COL J G CAMPBELL ATTN: SCIENCE RESEARCH LAB OPERATIONAL TEST & EVALUATION
Low Energy Nuclear Reactions: A Millennium Status Report
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2000-03-01
This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V.M.
1995-10-01
The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less
The first dozen years of the history of ITEP Theoretical Physics Laboratory
NASA Astrophysics Data System (ADS)
Ioffe, B. L.
2013-01-01
The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.
Current status and prospects of nuclear physics research based on tracking techniques
NASA Astrophysics Data System (ADS)
Alekseev, V. A.; Alexandrov, A. B.; Bagulya, A. V.; Chernyavskiy, M. M.; Goncharova, L. A.; Gorbunov, S. A.; Kalinina, G. V.; Konovalova, N. S.; Okatyeva, N. M.; Pavlova, T. A.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymirov, M. S.; Volkov, A. E.
2017-01-01
Results of nuclear physics research made using track detectors are briefly reviewed. Advantages and prospects of the track detection technique in particle physics, neutrino physics, astrophysics and other fields are discussed on the example of the results of the search for direct origination of tau neutrino in a muon neutrino beam within the framework of the international experiment OPERA (Oscillation Project with Emulsion-tRacking Apparatus) and works on search for superheavy nuclei in nature on base of their tracks in meteoritic olivine crystals. The spectra of superheavy elements in galactic cosmic rays are presented. Prospects of using the track detection technique in fundamental and applied research are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker-Loud, Andre
2014-11-01
Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.
Post detonation nuclear forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jay
2014-05-09
The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.
Message From the Editor for Contributions to the 2012 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Schmeling, Sascha Marc
2013-10-01
The papers in this special issue were originally presented at the 18th IEEE-NPSS Real Time Conference (RT2012) on Computing Applications in Nuclear and Plasma Sciences, held in Berkeley, California, USA, in June 2012. These contributions come from a broad range of fields of application, including Astrophysics, Medical Imaging, Nuclear and Plasma Physics, Particle Accelerators, and Particle Physics Experiments.
New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.
Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S
2005-01-01
The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.
10 CFR 60.162 - Physical requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical requirements. 60.162 Section 60.162 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Training and Certification of Personnel § 60.162 Physical requirements. The physical condition and...
10 CFR 60.162 - Physical requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical requirements. 60.162 Section 60.162 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Training and Certification of Personnel § 60.162 Physical requirements. The physical condition and...
10 CFR 60.162 - Physical requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical requirements. 60.162 Section 60.162 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Training and Certification of Personnel § 60.162 Physical requirements. The physical condition and...
10 CFR 60.162 - Physical requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical requirements. 60.162 Section 60.162 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Training and Certification of Personnel § 60.162 Physical requirements. The physical condition and...
QUARTERLY PROGRESS REPORT NO. 83,
Topics included are: microwave spectroscopy; radio astronomy; solid-state microwave electronics; optical and infrared spectroscopy; physical electronics and surface physics; physical acoustics; plasma physics; gaseous electronics; plasmas and controlled nuclear fusion ; energy conversion research; statistical communication theory; linguistics; cognitive information processing; communications biophysics; neurophysiology; computation research.
The concept of physical surface in nuclear matter
NASA Astrophysics Data System (ADS)
Mazilu, Nicolae; Agop, Maricel
2015-02-01
The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.
Contemporary Aspects of Atomic Physics
ERIC Educational Resources Information Center
Knott, R. G. A.
1972-01-01
The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Accelerator Based Tools of Stockpile Stewardship
NASA Astrophysics Data System (ADS)
Seestrom, Susan
2017-01-01
The Manhattan Project had to solve difficult challenges in physics and materials science. During the cold war a large nuclear stockpile was developed. In both cases, the approach was largely empirical. Today that stockpile must be certified without nuclear testing, a task that becomes more difficult as the stockpile ages. I will discuss the role of modern accelerator based experiments, such as x-ray radiography, proton radiography, neutron and nuclear physics experiments, in stockpile stewardship. These new tools provide data of exceptional sensitivity and are answering questions about the stockpile, improving our scientific understanding, and providing validation for the computer simulations that are relied upon to certify todays' stockpile.
Progress report on nuclear spectroscopic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativisticmore » heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.
2012-08-29
We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papenbrock, Thomas
FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.
Large-x connections of nuclear and high-energy physics
Accardi, Alberto
2013-11-20
I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.
physics, astrophysics, and statistical mechanics. Lawrence Livermore [National Laboratory] physicist Mort towering figures of 20th-century physics. ... Although his early training was in chemical physics and spectroscopy, Teller has made substantial contributions to such diverse fields as nuclear physics, plasma
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... the Standard Review Plan (SRP), concerning the physical security reviews of design certification... NRC staff with the physical security review of applications for design certifications, incorporate... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Proposed Revision to Physical Security--Standard...
10 CFR 72.194 - Physical requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical requirements. 72.194 Section 72.194 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Certification of Personnel § 72.194 Physical requirements. The physical condition and the general health of...
10 CFR 72.194 - Physical requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical requirements. 72.194 Section 72.194 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Certification of Personnel § 72.194 Physical requirements. The physical condition and the general health of...
10 CFR 72.194 - Physical requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical requirements. 72.194 Section 72.194 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Certification of Personnel § 72.194 Physical requirements. The physical condition and the general health of...
10 CFR 72.194 - Physical requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical requirements. 72.194 Section 72.194 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Certification of Personnel § 72.194 Physical requirements. The physical condition and the general health of...
NASA Technical Reports Server (NTRS)
1978-01-01
Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.
Physics in perspective. Volume 2, part A: The core subfields of physics
NASA Technical Reports Server (NTRS)
1972-01-01
Panel reports to the Survey Committee are presented to provide detailed technical background and documentation for committee findings, and to indicate the vitality and strength of the subfields of physics. Included are the core subfields of acoustics, optics, condensed matter, plasmas and fluids, atomic molecular and electron physics, nuclear physics, and elementary particle physics.
Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca; White, Larz
2010-11-01
The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.
Publications of LASL research, 1972--1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, L.
1977-04-01
This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less
Genomic biomarkers and clinical outcomes of physical activity.
Izzotti, Alberto
2011-07-01
Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms. © 2011 New York Academy of Sciences.
Principles of Guided Missiles and Nuclear Weapons.
ERIC Educational Resources Information Center
Naval Personnel Program Support Activity, Washington, DC.
Fundamentals of missile and nuclear weapons systems are presented in this book which is primarily prepared as the second text of a three-volume series for students of the Navy Reserve Officers' Training Corps and the Officer Candidate School. Following an introduction to guided missiles and nuclear physics, basic principles and theories are…
10 CFR 37.77 - Advance notification of shipment of category 1 quantities of radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Policy, Office of Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington... 10 Energy 1 2014-01-01 2014-01-01 false Advance notification of shipment of category 1 quantities of radioactive material. 37.77 Section 37.77 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL PROTECTION...
Code of Federal Regulations, 2010 CFR
2010-07-01
... participated onsite in the atmospheric detonation of a nuclear device. ... requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13... presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13... presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear... participated onsite in the atmospheric detonation of a nuclear device. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13... presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear... participated onsite in the atmospheric detonation of a nuclear device. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13... presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear... participated onsite in the atmospheric detonation of a nuclear device. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13... presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear... participated onsite in the atmospheric detonation of a nuclear device. ...
38 CFR 3.311 - Claims based on exposure to ionizing radiation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... body in the field of health physics, nuclear medicine or radiology and if based on analysis of the... follows: (i) Atmospheric nuclear weapons test participation claims. In claims based upon participation in atmospheric nuclear testing, dose data will in all cases be requested from the appropriate office of the...
38 CFR 3.311 - Claims based on exposure to ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... body in the field of health physics, nuclear medicine or radiology and if based on analysis of the... follows: (i) Atmospheric nuclear weapons test participation claims. In claims based upon participation in atmospheric nuclear testing, dose data will in all cases be requested from the appropriate office of the...
38 CFR 3.311 - Claims based on exposure to ionizing radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... body in the field of health physics, nuclear medicine or radiology and if based on analysis of the... follows: (i) Atmospheric nuclear weapons test participation claims. In claims based upon participation in atmospheric nuclear testing, dose data will in all cases be requested from the appropriate office of the...
ERIC Educational Resources Information Center
Spada, Hans; And Others
1977-01-01
As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
KHARZEEV,D.
1999-04-20
The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.
Sources of Nuclear Fuel, Understanding the Atom Series.
ERIC Educational Resources Information Center
Singleton, Arthur L., Jr.
A brief outline of the historical landmarks in nuclear physics leading to the use of nuclear energy for peaceful purposes introduces this illustrated booklet. The distribution of known sources of uranium ores is mapped and some details about the geology of each geographical area given. Methods of prospective, mining, milling, refining, and fuel…
2016-02-12
not be subject to International Atomic Energy Agency ( IAEA ) safeguards have the potential to produce 280...PNRA states that Pakistan follows IAEA physical protection standards. Proliferation A fundamental aspect of nuclear security is ensuring that...related to the design and fabrication of a nuclear explosive device,” according to the IAEA (Implementation of the NPT Safeguards Agreement in the
Strongly-Interacting Fermi Gases in Reduced Dimensions
2015-11-16
one spin state is surrounded by a particle- hole cloud of the other 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12...explained in part by a polaron model, in which an atom of one spin state is surrounded by a particle- hole cloud of the other spin state. However, a...superconductivity), nuclear physics (nuclear matter), high-energy physics (effective theories of the strong interactions), astrophysics (compact stellar objects
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; ...
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Radon Laboratory: A Proposal for Scientific Culture Dissemination Among Young Students in Italy
NASA Astrophysics Data System (ADS)
Groppi, Flavia; Bazzocchi, Anna; Manenti, Simone; Gini, Luigi; Bonardi, Mauro L.
2009-08-01
In Italy the "nuclear issue" was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to our exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.
Neutrino Physics with Nuclear Reactors: An Overview
NASA Astrophysics Data System (ADS)
Ochoa-Ricoux, J. P.
Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.
Enrico Fermi - And the Revolutions of Modern Physics
NASA Astrophysics Data System (ADS)
Cooper, Dan
1999-02-01
In 1938, at the age of 37, Enrico Fermi was awarded the Nobel Prize in Physics. That same year he emigrated from Italy to the United States and, in the course of his experiments, discovered nuclear fission--a process which forms the basis of nuclear power and atomic bombs. Soon the brilliant physicist was involved in the top secret race to produce the deadliest weapon on Earth. He created the first self-sustaining chain reaction, devised new methods for purifying plutonium, and eventually participated in the first atomic test. This compelling biography traces Fermis education in Italy, his meteoric career in the scientific world, his escape from fascism to America, and the ingenious experiments he devised and conducted at the University of Rome, Columbia University, and the Los Alamos laboratory. The book also presents a mini-course in quantum and nuclear physics in an accessible, fast-paced narrative that invokes all the dizzying passion of Fermis brilliant discoveries.
Nuclear quadrupole resonance detection of explosives: an overview
NASA Astrophysics Data System (ADS)
Miller, Joel B.
2011-06-01
Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres, V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Pryanikov, D. S.; Semak, A. A.; Stavinsky, A. V.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimansky, S. S.
2017-11-01
A two-arm spectrometer FLUKTON for investigations in the field of relativistic nuclear physics at U70 energies is proposed to be constructed on base of the existing detector SPIN (IHEP, Protvino). The main objective is to obtain new data on clusters of cold superdense nuclear matter. Interaction of a high intensity proton beam with nuclear targets and an ion beam with liquid hydrogen and nuclear targets will be studied.
Copper Doping of Zinc Oxide by Nuclear Transmutation
2014-03-27
Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-10-07
Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 99...prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel reliability... nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral Michael
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Particle Physics Primer: Explaining the Standard Model of Matter.
ERIC Educational Resources Information Center
Vondracek, Mark
2002-01-01
Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)
Multi-sensor radiation detection, imaging, and fusion
NASA Astrophysics Data System (ADS)
Vetter, Kai
2016-01-01
Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.
Stockpile Stewardship at Los Alamos(U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, Robert B.
2012-06-29
Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overviewmore » of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.« less
Outage management and health physics issue, 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2007-05-15
The focus of the May-June issue is on outage management and health physics. Major articles/reports in this issue include: India: a potential commercial opportunity, a U.S. Department of Commerce Report, by Joe Neuhoff and Justin Rathke; The changing climate for nuclear energy, by Skip Bowman, Nuclear Energy Insitute; Selecting protective clothing, by J. Mark Price, Southern California Edison; and Succssful refurbishment outage, by Sudesh K. Gambhir, Omaha Public Power District. Industry innovation articles in this issue are: Containment radiation monitoring spiking, by Michael W. Lantz and Robert Routolo, Arizona Public Service Company; Improved outage performance, by Michael Powell and Troymore » Wilfong, Arizona Public Service Company, Palo Verde Nuclear Generating Station; Stop repacking valves and achieve leak-free performance, by Kenneth Hart, PPL Susquehanna LLC; and Head assembly upgrade package, by Timothy Petit, Dominion Nuclear.« less
Dynamic interaction between actin and nesprin2 maintain the cell nucleus in a prestressed state
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Shivashankar, G. V.
2016-12-01
Mechanical coupling between the nucleus and the cytoskeleton is indispensable for direct force transduction from the extra cellular matrix (ECM) to the chromatin. Although this physical coupling has been shown to be crucial for nuclear positioning and its function, the quantification of nuclear-cytoskeleton interaction has been lacking. In this paper, using various quantitative fluorescence spectroscopy techniques, we investigate the nature of this connection. High-resolution 3D imaging shows that nesprin2G forms short linear structures along actin stress fibers (ASFs) in the apical region of the nucleus. Fluorescence recovery after photobleaching (FRAP) revealed that the alignment of nesprin2G becomes heterogeneous when cell shape is engineered from elongated rectangular shape to square using micropatterned substrates. Further, fluorescence cross-correlation spectroscopy (FCCS) revealed that actin interacts transiently with outer nuclear membrane protein nesprin2G with a time scale of 12 ms. In addition, fluorescence resonance energy transfer (FRET) experiments show that the apical ASFs and nesprin2G are in close physical proximity. This interaction is spatially heterogeneous with high FRET along the ASFs. Lastly, we show that the disruption of actin to nuclear connection by over-expression of Dominant Negative Klarsicht, ANC-1, Syne Homology (DNKASH) leads to an increase in nuclear height. These results not only reveal the characteristics of actin-nesprin2G interaction and its significance in regulating nuclear morphology, but also validate the utility of quantitative fluorescence techniques in deciphering physical connections that are essential for mechanotransduction.
Nuclear Physics in a biological context
NASA Astrophysics Data System (ADS)
Discher, Dennis
2012-02-01
A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).
Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes
NASA Astrophysics Data System (ADS)
Piro, Markus Hans Alexander
Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system components at each iterative step, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification. In particular, computational expense is reduced and the rate of convergence is enhanced. Furthermore, the software has demonstrated the ability to solve systems involving as many as 118 component elements. An early version of the code has already been integrated into the Advanced Multi-Physics (AMP) code under development by the Oak Ridge National Laboratory, Los Alamos National Laboratory, Idaho National Laboratory and Argonne National Laboratory. Keywords: Engineering, Nuclear -- 0552, Engineering, Material Science -- 0794, Chemistry, Mathematics -- 0405, Computer Science -- 0984
PREFACE: NUBA Conference Series 1: Nuclear Physics and Astrophysics
NASA Astrophysics Data System (ADS)
Boztosun, I.; Balantekin, A. B.; Kucuk, Y.
2015-04-01
The international conference series ''NUBA Conference Series 1: Nuclear Physics and Astrophysics'' was held on September 14-21 2014 in Antalya-Turkey. Akdeniz University hosted the conference and the Adrasan Training and Application Centre was chosen as a suitable venue to bring together scientists from all over the world as well as from different parts of Turkey. The conference was supported by the Scientific and Technological Research Council of Turkey (TÜBìTAK) and Akdeniz University Nuclear Sciences Application and Research Center (NUBA). Based on the highly positive remarks received from the participants both during and after the conference, we believe that the event has proven to be a fulfilling experience for all those who took part. The conference provided an opportunity for the participants to share their ideas and experiences in addition to exploring possibilities for future collaborations. Participants of the conference focused on: • Nuclear Structure and Interactions • Nuclear Reactions, • Photonuclear Reactions and Spectroscopy • Nuclear and Particle Astrophysics • Nuclear Processes in Early Universe • Nuclear Applications • New Facilities and Instrumentation Participants included a number of distinguished invited speakers. There was significant interest from the international nuclear physics community and numerous abstracts and papers were submitted. The scientific committee conducted a careful and rigorous selection process, as a result of which 75 contributions were accepted. Of those, 65 of them were given as oral and 10 as poster presentations. The superb quality of the papers ensured fruitful discussion sessions. We thank all the participants for their efforts and also for promptly sending in their papers for publication. This issue of the Journal of Physics: Conference Series was peer-reviewed by expert referees and we also thank them for peer-reviewing the papers. The national and international advisory committee also deserve appreciation for their involvement in the shaping of the conference programme. The local organizing committee, Mesut Karakoç, Haris Djapo, Fatih Ozmen and Deniz Kaya worked diligently and ensured that the programme ran smoothly. We sincerely thank them all. Our final thanks go to IOP for publishing the proceedings in a most timely and meticulous manner. We hope to see the participants again in Turkey, in the second conference of this series.
Exploring for oil with nuclear physics
NASA Astrophysics Data System (ADS)
Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa
2017-09-01
Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.
The Impact of the Nuclear Equation of State in Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration
2005-12-01
One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less
XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin
2017-01-01
The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.
PREFACE: 50 years in science: Alejandro Szanto de Toledo (2045-2015)
NASA Astrophysics Data System (ADS)
2015-07-01
During the XXXVII RTFNB 2014, we had the pleasure to organize a tribute to Professor Alejandro Szanto de Toledo to commemorate his 50 years of dedication to nuclear physics. Named ''Alexfest'', it gathered friends and very prominent physicists from around the world that came to Brazil specially to render a tribute to Alex, as many friends and colleagues called him. During the whole afternoon, the invited speakers presented some of the physics topics and important contributions that Alex gave to the field of nuclear physics during his five decades of intense work. Alex is the responsible for several landmarks in the Brazilian nuclear science, especially in the Institute of Physics of the University of Sao Paulo (IFUSP), where he spent almost his entire career. He started his professional life in the IFUSP Van de Graaf Laboratory, under Oscar Sala's supervision as an undergraduate student. His talent allowed him to give significant contributions to the machine operation since the beginning of his internship in the laboratory. He soon became the responsible for the development, construction and implementation of an ion source for the new Pelletron accelerator, project coordinated by Oscar Sala as well. This was a huge responsibility for a young master degree student. His PhD thesis was about nuclear fusion, a topic that he mastered during his career. His international reputation allowed him to become a visiting researcher at several laboratories in the US, France, Japan, Russia and Germany. Not satisfied with the challenges that his career was imposing to him, Alex pioneered the creation of a high-energy nuclear physics group in Brazil, becoming member of the STAR (Solenoidal Tracker At Rhic) collaboration in 1995, one of the two major experiments of the RHIC accelerator (Relativistic heavy Ion Collider), located in the Brookhaven National Laboratory, USA. Later on, in 2006, he also led his group to become part of the LHC (Large Hadron Collider) experiment ALICE (A Large Ion Collider Experiment). Besides all his scientific contribution to the Brazilian nuclear physics, Alex was also an enthusiastic supporter of the Brazilian science in general. He was director of the Institute of Physics from of University of Sao Paulo and twice head of the Nuclear Physics Department of the same Institute. He was also member of the Deliberative Council of the Brazilian National Funding Agency (CNPq), the High Council of State of Sao Paulo Funding Agency (FAPESP), the Brazilian Academy of Sciences (ABS) and the Sao Paulo Academy of Sciences (ACIESP). Just 5 months after this tribute, Alex passed away. He left many friends and admirers around the world thanks to his remarkable enthusiasm for physics and for people. He was a tireless fighter for the progress of science in our Country, never hesitating even in the most difficult times. His strength and integrity were the pillars that support everyone that had the privilege to share life moments with him. Alex will be greatly missed as a friend and as a scientist. The Organizing Committee
New Concepts and Fermilab Facilities for Antimatter Research
NASA Astrophysics Data System (ADS)
Jackson, Gerald
2008-04-01
There has long been significant interest in continuing antimatter research at the Fermi National Accelerator Laboratory. Beam kinetic energies ranging from 10 GeV all the way down to the eV scale and below are of interest. There are three physics missions currently being developed: the continuation of charmonium physics utilizing an internal target; atomic physics with in-flight generated antihydrogen atoms; and deceleration to thermal energies and paasage of antiprotons through a grating system to determine their gravitation acceleration. Non-physics missions include the study of medical applications, tests of deep-space propulsion concepts, low-risk testing of nuclear fuel elements, and active interrogation for smuggled nuclear materials in support of homeland security. This paper reviews recent beam physics and accelerator technology innovations in the development of methods and new Fermilab facilities for the above missions.
NASA Astrophysics Data System (ADS)
Hobson, Art
2004-05-01
Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).
10 CFR 73.50 - Requirements for physical protection of licensed activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of licensed activities. 73.50 Section 73.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... suspicious activity or to the breaching of any physical barrier. (4) An isolation zone shall be maintained...
Prospects for Physics in the 1990's Surveyed.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1986-01-01
A National Academy of Science report ("Physics Through the 1990's") says that American physics has been a highly diversified and productive enterprise, but continued excellence cannot be taken for granted. Progress in six subfields (elementary particle, nuclear, condensed-matter, atomic/molecular, plasma/fluid, and gravitation/cosmology physics)…
10 CFR 39.37 - Physical inventory.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Physical inventory. 39.37 Section 39.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.37 Physical inventory. Each licensee shall conduct a semi-annual physical inventory to account for all licensed material...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 39.37 - Physical inventory.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Physical inventory. 39.37 Section 39.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.37 Physical inventory. Each licensee shall conduct a semi-annual physical inventory to account for all licensed material...
10 CFR 39.37 - Physical inventory.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Physical inventory. 39.37 Section 39.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.37 Physical inventory. Each licensee shall conduct a semi-annual physical inventory to account for all licensed material...
10 CFR 39.37 - Physical inventory.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Physical inventory. 39.37 Section 39.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.37 Physical inventory. Each licensee shall conduct a semi-annual physical inventory to account for all licensed material...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 72.180 - Physical protection plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical protection plan. 72.180 Section 72.180 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Physical Protection § 72.180 Physical protection plan. The licensee shall establish, maintain, and follow a detailed...
10 CFR 39.37 - Physical inventory.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Physical inventory. 39.37 Section 39.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.37 Physical inventory. Each licensee shall conduct a semi-annual physical inventory to account for all licensed material...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.
2012-05-09
Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couplesmore » to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.« less
Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, T.D.; Williams, A.R.
1995-06-01
The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less
Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae
2018-06-28
The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these new probes will be discussed with a special focus on day-one experiments and associated novel instrumentation. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr
2011-10-01
The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed trainingmore » needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.« less
NASA Astrophysics Data System (ADS)
Del McDaniel, Floyd; Doyle, Barney L.
Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).
NASA Astrophysics Data System (ADS)
Del McDaniel, Floyd; Doyle, Barney L.
Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry's physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).
Nuclear Data Needs for Generation IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
Rullhusen, Peter
2006-04-01
Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].
An Overview of the History of Cluster Conferences
NASA Astrophysics Data System (ADS)
Horiuchi, H.
2017-06-01
An overview is given on the historical development of the cluster conference series which started at Bohum in 1969. I start with the discussion of the philosophy of Karl Wildermuth and then I make a review on the main subjects and topics in cluster conferences. Since the cluster dynamics is a main nuclear dynamics together with the mean-field dynamics, we see that development of the cluster conference has been along with the rises of many new subjects in nuclear physics itself. Examples of them include superheavy nuclei, nuclear astrophysics, neutron-rich nuclei, cluster-gas states and ab initio calculations. Finally I discuss that more activities in and attention to cluster physics are seen in recent days.
Nuclear Physics Activities in Asia and ANPhA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, H.
2011-05-06
On 18 July 2009 the Asian Nuclear Physics Association (ANPhA) has been officially launched in Beijing by the representatives from China, Korea, Japan and Vietnam. Since then Australia, India, Mongolia and Taiwan have joined to ANPhA and now the member country/region has increased to eight. Some activities and features on ANPhA are introduced. In addition, pleasant collaboration with Professor Arima by the author in regard to the Gamow-Teller quenching problem is also briefly mentioned.
Coupled-cluster computations of atomic nuclei
NASA Astrophysics Data System (ADS)
Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.
2014-09-01
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.
Some nuclear physics aspects of BBN
NASA Astrophysics Data System (ADS)
Coc, Alain
2017-09-01
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.
Radiation and Health: A Workshop for Science Educators
NASA Astrophysics Data System (ADS)
Krieger, Kenneth
2010-03-01
This workshop covers nuclear science and technology topics suitable for science teachers to use in grade 4-12 classes. Subjects included are Fundamentals of Radiation, Exposure to natural and man- made Radiation, Cellular Biology and Radiation Effects, Radioactive Waste Management, Health Physics and Radiation Physics, and Career possibilities in Nuclear Technology. Schools of participants will receive a working Geiger Counter. Workshop presenter is a TEA-approved CPE Provider. Limited to 20 participants - 3 hours - Cost 2.00
["Living with the bomb" - Carl Friedrich von Weizsäcker's path from physics to politics].
Walker, Mark
2014-01-01
Carl Friedrich von Weizsäcker spanned a spectrum from physics to politics, with philosophy in-between. This chapter surveys the most controversial part of his career, including his work on nuclear weapons and participation in cultural propaganda during the Second World War, his subsequent active political engagement during the postwar Federal German Republic, in particular the role of nuclear weapons, and his participation in myths surrounding Hitler's Bomb".
Physical Constraints on Seismic Waves from Chemical and Nuclear Explosions
1992-04-22
AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE , MASSACHUSETTS 01731-5000 92-23124 9 2 8 1 9 5 9 IIII!I!I l1!j lIII ii SPONSORED BY Defense Advanced...in good agreement with seismic yield esti- improve the detection capabilities of new systems. Given mates [Sykes and Ekstrom, 1989]. (1990) reports...nuclear ,eismology. physical model for spall; (4) Determination of energy balance in Many questions still remain, particularly those associated with the
Tools for the Future of Nuclear Physics
NASA Astrophysics Data System (ADS)
Geesaman, Donald
2014-03-01
The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-02-04
Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008...measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel...strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral
10 CFR 110.42 - Export licensing criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... research on or development of any nuclear explosive device. (3) Adequate physical security measures will be... to exports of high-enriched uranium to be used as a fuel or target in a nuclear research or test... can be used in the reactor. (iii) A fuel or target “can be used” in a nuclear research or test reactor...
I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar
dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic
Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neudecker, Denise
2015-06-17
Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.
Actinide targets for fundamental research in nuclear physics
NASA Astrophysics Data System (ADS)
Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.
2018-05-01
Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.
NASA Astrophysics Data System (ADS)
Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.
2018-06-01
The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.
Bright perspectives for nuclear photonics
NASA Astrophysics Data System (ADS)
Thirolf, P. G.; Habs, D.
2014-05-01
With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.
Contemporary Physics Education Project - CPEP
Fundamental Particles Plasma Physics & Fusion History & Fate of the Universe Nuclear current understanding of the fundamental nature of matter and energy, incorporating the major research
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2014-10-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.
Engaging undergraduate students in hadron physics research and instrumentation
NASA Astrophysics Data System (ADS)
Horn, Tanja
2017-09-01
Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program in hadronic physics, and her current and former students who have been participating in more recent CEU events. Supported in part by NSF Grants PHY1714133, PHY1306227 and PHY1306418.
PEOPLE IN PHYSICS: Interview with Roger Blin-Stoyle
NASA Astrophysics Data System (ADS)
Cornwall, conducted by Malcolm
1996-01-01
Roger Blin-Stoyle FRS is Emeritus Professor of Physics at the University of Sussex. He founded the School of Physical Sciences there in the 1960s and has served as Pro-Vice Chancellor. His physics career included important work in nuclear physics. He was president of the Institute of Physics in 1990-2 and has served on numerous eminent committees including the School Curriculum Development Committee.
NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability
NASA Astrophysics Data System (ADS)
Gade, A.; Sherrill, B. M.
2016-05-01
The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.
The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.« less
NASA Astrophysics Data System (ADS)
Rich, Grayson Currie
The COHERENT Collaboration has produced the first-ever observation, with a significance of 6.7sigma, of a process consistent with coherent, elastic neutrino-nucleus scattering (CEnuNS) as first predicted and described by D.Z. Freedman in 1974. Physics of the CEnuNS process are presented along with its relationship to future measurements in the arenas of nuclear physics, fundamental particle physics, and astroparticle physics, where the newly-observed interaction presents a viable tool for investigations into numerous outstanding questions about the nature of the universe. To enable the CEnuNS observation with a 14.6-kg CsI[Na] detector, new measurements of the response of CsI[Na] to low-energy nuclear recoils, which is the only mechanism by which CEnuNS is detectable, were carried out at Triangle Universities Nuclear Laboratory; these measurements are detailed and an effective nuclear-recoil quenching factor of 8.78 +/- 1.66% is established for CsI[Na] in the recoil-energy range of 5-30 keV, based on new and literature data. Following separate analyses of the CEnuNS-search data by groups at the University of Chicago and the Moscow Engineering and Physics Institute, information from simulations, calculations, and ancillary measurements were used to inform statistical analyses of the collected data. Based on input from the Chicago analysis, the number of CEnuNS events expected from the Standard Model is 173 +/- 48; interpretation as a simple counting experiment finds 136 +/- 31 CEnuNS counts in the data, while a two-dimensional, profile likelihood fit yields 134 +/- 22 CEnuNS counts. Details of the simulations, calculations, and supporting measurements are discussed, in addition to the statistical procedures. Finally, potential improvements to the CsI[Na]-based CEnuNS measurement are presented along with future possibilities for COHERENT Collaboration, including new CEnuNS detectors and measurement of the neutrino-induced neutron spallation process.
A Personal Perspective on Triangle Universities Nuclear Laboratory Development
NASA Astrophysics Data System (ADS)
Clegg, Thomas B.
2011-10-01
Nuclear physics research in NC began seriously in 1950 when Henry Newson and his colleagues at Duke attracted support for a 4 MeV Van de Graaff accelerator with which they grew their doctoral training program. The lab's scientific achievements also grew, including the discovery in 1966 of fine structure of nuclear analog states. By then UNC and NC State had attracted Eugen Merzbacher and Worth Seagondollar who, with Newson, brought more faculty to work at an enlarged three-university, cooperative lab. Launched at Duke in 1967 with a 30 MeV Cyclograff accelerator, and subsequently equipped with a polarized H and D ion source and polarized H and ^3He targets, an extensive program in light-ion and neutron physics ensued. Faculty interest in electromagnetic interactions led to development since 2001 of TUNL's HIγS facility to produce intense 1-100 MeV polarized photon beams with small energy spread. Photonuclear reaction studies there today are producing results of unmatched quality. These 60 years of nuclear physics research have produced ˜250 doctoral graduates, many of whom have gone on to very distinguished careers. A personal perspective on these activities will be presented.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav
2008-01-01
The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material controlmore » and accounting (MC&A) system upgrades and the preliminary results from a pilot program on the MC&A system performance testing that was recently conducted at one technical area.« less
Low Energy Nuclear Reactions: Status at the Beginning of the New Millenium
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2001-03-01
This talk will summarize some of the more convincing recent experiments that show that ^4He,^3He (including impossible to explain changes in the ^4He/^3He isotopic ratio), nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. But progress is being made. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available
The Physical Sciences. Report of the National Science Board Submitted to the Congress.
ERIC Educational Resources Information Center
Handler, Philip
Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…