The optimization of nuclear power plants operation modes in emergency situations
NASA Astrophysics Data System (ADS)
Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.
2018-01-01
An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
76 FR 55422 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
...; Donald C. Cook Nuclear Plant, Unit 1; Exemption 1.0 Background Indiana Michigan Power Company (the... C. Cook Nuclear Plant, Unit 1 (CNP-1). The license provides, among other things, that the facility... material different from Optimized ZIRLO\\TM\\. The licensee's requested exemption relates solely to the...
Plant maintenance and advanced reactors issue, 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
2004-09-15
The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.
The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China
NASA Astrophysics Data System (ADS)
Weng, Yuqing
Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Cormis, F.
1991-01-01
The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.
NASA Astrophysics Data System (ADS)
Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa
2010-04-01
This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, J.W.
1990-01-01
Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.
NASA Astrophysics Data System (ADS)
Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang
2016-03-01
At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, G.; Huempfner, P.
From the very beginning of nuclear power engineering in the Federal Republic of Germany (FRG), the main objective was to achieve a high degree of reliability for all safety systems, the nuclear steam supply systems, and the balance of plant. Major measures of a general nature included the following: (1) provision of the same redundancy for all parts of systems related to safety or availability; (2) introduction of appropriate quality assurance programs for design, development, manufacture, erection, testing, operation, and maintenance; and (3) optimization of design, not with the aim of reducing plant costs but in order to improve operationmore » and safety. A few examples are provided of improvements that Kraftwerk Union AG, as a supplier of turnkey nuclear power plants, has incorporated in its plants over the past years.« less
NASA Astrophysics Data System (ADS)
Qi, Pan; Shao, Wenbin; Liao, Shusheng
2016-02-01
For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard
Through this grant, the U.S. Department of Energy (DOE) will review several functional areas within a nuclear power plant, including fire protection, operations and operations support, refueling, training, procurement, maintenance, site engineering, and others. Several functional areas need to be examined since there appears to be no single staffing area or approach that alone has the potential for significant staff optimization at new nuclear power plants. Several of the functional areas will require a review of technology options such as automation, remote monitoring, fleet wide monitoring, new and specialized instrumentation, human factors engineering, risk informed analysis and PRAs, component andmore » system condition monitoring and reporting, just in time training, electronic and automated procedures, electronic tools for configuration management and license and design basis information, etc., that may be applied to support optimization. Additionally, the project will require a review key regulatory issues that affect staffing and could be optimized with additional technology input. Opportunities to further optimize staffing levels and staffing functions by selection of design attributes of physical systems and structures need also be identified. A goal of this project is to develop a prioritized assessment of the functional areas, and R&D actions needed for those functional areas, to provide the best optimization« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald D Dudenhoeffer; Burce P Hallbert
Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less
Making the optimal decision in selecting protective clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. Mark
2007-07-01
Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of employee dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered, including - Protection; - Personnel Contamination; - Cost; - Radwaste; - Comfort; - Convenience; - Logistics/Rad Material Considerations; - Reject Rate of Laundered Clothing; - Durability; - Security; - Personnel Safety includingmore » Heat Stress; - Disposition of Gloves and Booties. In addition, over the last several years there has been a trend of nuclear power plants either running trials or switching to Single Use Protective Clothing (SUPC) from traditional protective clothing. In some cases, after trial usage of SUPC, plants have chosen not to switch. In other cases after switching to SUPC for a period of time, some plants have chosen to switch back to laundering. Based on these observations, this paper reviews the 'real' drivers, issues, and interrelating factors regarding the selection and use of protective clothing throughout the nuclear industry. (authors)« less
Radiation Safety in Nuclear Medicine Procedures.
Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun
2017-03-01
Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.
Optimisation multi-objectif des systemes energetiques
NASA Astrophysics Data System (ADS)
Dipama, Jean
The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency. In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines. Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic optimization method which is very robust and widely used to solve problems usually difficult to handle by traditional methods. Genetic algorithms (GAs) have been used in previous research and proved to be efficient in optimizing heat exchangers networks (HEN) (Dipama et al., 2008). So, HEN have been synthesized to recover the maximum heat in an industrial process. The optimization problem formulated in the context of this work consists of a single objective, namely the maximization of energy recovery. The optimization algorithm developed in this thesis extends the ability of GAs by taking into account several objectives simultaneously. This algorithm provides an innovation in the method of finding optimal solutions, by using a technique which consist of partitioning the solutions space in the form of parallel grids called "watching corridors". These corridors permit to specify areas (the observation corridors) in which the most promising feasible solutions are found and used to guide the search towards optimal solutions. A measure of the progress of the search is incorporated into the optimization algorithm to make it self-adaptive through the use of appropriate genetic operators at each stage of optimization process. The proposed method allows a fast convergence and ensure a diversity of solutions. Moreover, this method gives the algorithm the ability to overcome difficulties associated with optimizing problems with complex Pareto front landscapes (e.g., discontinuity, disjunction, etc.). The multi-objective optimization algorithm has been first validated using numerical test problems found in the literature as well as energy systems optimization problems. Finally, the proposed optimization algorithm has been applied for the optimization of the secondary loop of Gentilly-2 nuclear power plant, and a set of solutions have been found which permit to make the power plant operate in optimal conditions. (Abstract shortened by UMI.)
Nuclear plants gain integrated information systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.
1994-10-01
With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less
Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants
Adalja, Amesh A.; Sell, Tara Kirk; Ravi, Sanjana J.; Minton, Katie; Morhard, Ryan
2015-01-01
Objectives Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Methods Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Results Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. Conclusions This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants. PMID:26692825
Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants.
Adalja, Amesh A; Sell, Tara Kirk; Ravi, Sanjana J; Minton, Katie; Morhard, Ryan
2014-12-01
Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants.
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, S.; Habicht, P.; Chexal, B.
1995-12-01
A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encounteredmore » can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities` (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program.« less
Using the principles of circadian physiology enhances shift schedule design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.J.; Moore-Ede, M.C.
1987-01-01
Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang
2006-08-01
Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for narrowing the set of scenarios that decision-makers need to consider in this relocation process.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitriyani, Dian; Su'ud, Zaki
2010-06-22
Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less
The Acceptance Strategy for Nuclear Power Plant In Indonesia
NASA Astrophysics Data System (ADS)
Suhaemi, Tjipta; Syaukat, Achmad
2010-06-01
THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.
Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System
NASA Astrophysics Data System (ADS)
Lee, Chang Jae; Yun, Jae Hee
2017-06-01
Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.
A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less
NASA Astrophysics Data System (ADS)
Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.
2014-02-01
The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.
The Acceptance Strategy for Nuclear Power Plant In Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhaemi, Tjipta; Syaukat, Achmad
2010-06-22
Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with internationalmore » politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R and D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.« less
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
2018-02-26
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabiti, C.; Epiney, A.; Talbot, P.
This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity costmore » and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tusheva, P.; Schaefer, F.; Kliem, S.
2012-07-01
The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safetymore » systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)« less
Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.
Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron
2012-02-01
Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
Nuclear micro-probe analysis of Arabidopsis thaliana leaves
NASA Astrophysics Data System (ADS)
Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.
2003-09-01
Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.
Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.
2013-10-01
Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.« less
Information Foraging in Nuclear Power Plant Control Rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.L. Boring
2011-09-01
nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators tomore » appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; Ronald Boring; Lew Hanes
2013-09-01
The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operatormore » performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to serve as a template for other utilities’ projects for control room modernization.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...
Radiation dose optimization in the decommissioning plan for Loviisa NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmberg, R.; Eurajoki, T.
1995-03-01
Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less
Modeling and simulation of CANDU reactor and its regulating system
NASA Astrophysics Data System (ADS)
Javidnia, Hooman
Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.
Genetic transformation protocols using zygotic embryos as explants: an overview.
Tahir, Muhammad; Waraich, Ejaz A; Stasolla, Claudio
2011-01-01
Genetic transformation of plants is an innovative research tool which has practical significance for the development of new and improved genotypes or cultivars. However, stable introduction of genes of interest into nuclear genomes depends on several factors such as the choice of target tissue, the method of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged in the literature which have been optimized for various plant species in terms of transformation methods and selection procedures for transformed plants. This article summarizes the recent advances in plant transformation using zygotic embryos as explants.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... proposed action may include issuing exemptions to nuclear power plant licensees for up to 40 nuclear power.... Fitzpatrick Nuclear Power Plant Joseph M. Farley Nuclear Plant, Units 1 and 2 Millstone Power Station, Unit... Palisades Nuclear Plant Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Perry Nuclear Power Plant...
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval@mail.ru; Kochetkov, A. V.; Glazova, E. G.
An algorithm and software for calculating the optimal operating regimes of the process water supply system at the Kalininskaya NPP are described. The parameters of the optimal regimes are determined for time varying meteorological conditions and condensation loads of the NPP. The optimal flow of the cooling water in the turbines is determined computationally; a regime map with the data on the optimal water consumption distribution between the coolers and displaying the regimes with an admissible heat load on the natural cooling lakes is composed. Optimizing the cooling system for a 4000-MW NPP will make it possible to conserve atmore » least 155,000 MW · h of electricity per year. The procedure developed can be used to optimize the process water supply systems of nuclear and thermal power plants.« less
NASA Astrophysics Data System (ADS)
Nur Krisna, Dwita; Su'ud, Zaki
2017-01-01
Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.
NASA Astrophysics Data System (ADS)
Valtseva, A. I.; Bibik, I. S.
2017-11-01
This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.
Guidelines for exposure assessment in health risk studies following a nuclear reactor accident.
Bouville, André; Linet, Martha S; Hatch, Maureen; Mabuchi, Kiyohiko; Simon, Steven L
2014-01-01
Worldwide concerns regarding health effects after the Chernobyl and Fukushima nuclear power plant accidents indicate a clear need to identify short- and long-term health impacts that might result from accidents in the future. Fundamental to addressing this problem are reliable and accurate radiation dose estimates for the affected populations. The available guidance for activities following nuclear accidents is limited with regard to strategies for dose assessment in health risk studies. Here we propose a comprehensive systematic approach to estimating radiation doses for the evaluation of health risks resulting from a nuclear power plant accident, reflected in a set of seven guidelines. Four major nuclear reactor accidents have occurred during the history of nuclear power production. The circumstances leading to these accidents were varied, as were the magnitude of the releases of radioactive materials, the pathways by which persons were exposed, the data collected afterward, and the lifestyle factors and dietary consumption that played an important role in the associated radiation exposure of the affected populations. Accidents involving nuclear reactors may occur in the future under a variety of conditions. The guidelines we recommend here are intended to facilitate obtaining reliable dose estimations for a range of different exposure conditions. We recognize that full implementation of the proposed approach may not always be feasible because of other priorities during the nuclear accident emergency and because of limited resources in manpower and equipment. The proposed approach can serve as a basis to optimize the value of radiation dose reconstruction following a nuclear reactor accident.
Approaches to achieve high-level heterologous protein production in plants.
Streatfield, Stephen J
2007-01-01
Plants offer an alternative to microbial fermentation and animal cell cultures for the production of recombinant proteins. For protein pharmaceuticals, plant systems are inherently safer than native and even recombinant animal sources. In addition, post-translational modifications, such as glycosylation, which cannot be achieved with bacterial fermentation, can be accomplished using plants. The main advantage foreseen for plant systems is reduced production costs. Plants should have a particular advantage for proteins produced in bulk, such as industrial enzymes, for which product pricing is low. In addition, edible plant tissues are well suited to the expression of vaccine antigens and pharmaceuticals for oral delivery. Three approaches have been followed to express recombinant proteins in plants: expression from the plant nuclear genome; expression from the plastid genome; and expression from plant tissues carrying recombinant plant viral sequences. The most important factor in moving plant-produced heterologous proteins from developmental research to commercial products is to ensure competitive production costs, and the best way to achieve this is to boost expression. Thus, considerable research effort has been made to increase the amount of recombinant protein produced in plants. This research includes molecular technologies to increase replication, to boost transcription, to direct transcription in tissues suited for protein accumulation, to stabilize transcripts, to optimize translation, to target proteins to subcellular locations optimal for their accumulation, and to engineer proteins to stabilize them. Other methods include plant breeding to increase transgene copy number and to utilize germplasm suited to protein accumulation. Large-scale commercialization of plant-produced recombinant proteins will require a combination of these technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to..., Environmental impact statement, Nuclear materials, Nuclear power plants and reactors, Reporting and... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...
NASA Astrophysics Data System (ADS)
Zagrebaev, A. M.; Ramazanov, R. N.; Lunegova, E. A.
2017-01-01
In this paper we consider the optimization problem minimize of the energy loss of nuclear power plants in case of partial in-core monitoring system failure. It is possible to continuation of reactor operation at reduced power or total replacement of the channel neutron measurements, requiring shutdown of the reactor and the stock of detectors. This article examines the reconstruction of the energy release in the core of a nuclear reactor on the basis of the indications of height sensors. The missing measurement information can be reconstructed by mathematical methods, and replacement of the failed sensors can be avoided. It is suggested that a set of ‘natural’ functions determined by means of statistical estimates obtained from archival data be constructed. The procedure proposed makes it possible to reconstruct the field even with a significant loss of measurement information. Improving the accuracy of the restoration of the neutron flux density in partial loss of measurement information to minimize the stock of necessary components and the associated losses.
Evaluation of optimal configuration of hybrid Life Support System for Space.
Bartsev, S I; Mezhevikin, V V; Okhonin, V A
2000-01-01
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.
Modelisation et optimisation des systemes energetiques a l'aide d'algorithmes evolutifs
NASA Astrophysics Data System (ADS)
Hounkonnou, Sessinou M. William
Optimization of thermal and nuclear plant has many economics advantages as well as environmentals. Therefore new operating points research and use of new tools to achieve those kind of optimization are the subject of many studies. In this momentum, this project is intended to optimize energetic systems precisely the secondary loop of Gentilly 2 nuclear plant using both the extraction of the high and low pressure turbine as well as the extraction of the mixture coming from the steam generator. A detailed thermodynamic model of the various equipment of the secondary loop such as the feed water heaters, the moisture separator-reheater, the dearator, the condenser and the turbine is carried out. We use Matlab software (version R2007b, 2007) with the library for the thermodynamic properties of water and steam (XSteam pour Matlab, Holmgren, 2006). A model of the secondary loop is than obtained thanks to the assembly of the different equipments. A simulation of the equipment and the complete cycle enabled us to release two objectifs functions knowing as the net output and the efficiency which evolve in an opposite way according to the variation of the extractions. Due to the complexity of the problem, we use a method based on the genetic algorithms for the optimization. More precisely we used a tool which was developed at the "Institut de genie nucleaire" named BEST (Boundary Exploration Search Technique) developed in VBA* (Visual BASIC for Application) for its ability to converge more quickly and to carry out a more exhaustive search at the border of the optimal solutions. The use of the DDE (Dynamic Data Exchange) enables us to link the simulator and the optimizer. The results obtained show us that they still exists several combinations of extractions which make it possible to obtain a better point of operation for the improvement of the performance of Gentilly 2 power station secondary loop. *Trademark of Microsoft
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...
Systems modeling and analysis for Saudi Arabian electric power requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mohawes, N.A.
This thesis addresses the long-range generation planning problem in Saudi Arabia up to the year 2000. The first part presents various models for electric energy consumption in the residential and industrial sectors. These models can be used by the decision makers for the purposes of policy analysis, evaluation, and forecasting. Forecasts of energy in each sector are obtained from two different models for each sector. These models are based on two forecasting techniques: (1) Hybrid econometric/time series model. The idea of adaptive smoothing was utilized to produce forecasts under several scenarios. (2) Box-Jenkins time series technique. Box-Jenkins models and forecastsmore » are developed for the monthly number of electric consumers and the monthly energy consumption per consumer. The results obtained indicate that high energy consumption is expected during the coming two decades which necessitate serious energy assessment and optimization. Optimization of a mix of energy sources was considered using the group multiattribute utility (MAU) function. The results of MAU for three classes of decision makers (managerial, technical, and consumers) are developed through personal interactions. The computer package WASP was also used to develop a tentative optimum plan. According to this plan, four heavy-water nuclear power plants (800 MW) and four light-water nuclear power plants (1200 MW) have to be introduced by the year 2000 in addition to sixteen oil-fired power plants (400 MW) and nine gas turbines (100 MW).« less
Innovative open air brayton combined cycle systems for the next generation nuclear power plants
NASA Astrophysics Data System (ADS)
Zohuri, Bahman
The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.
76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...
Optimizing the separation performance of a gas centrifuge
NASA Astrophysics Data System (ADS)
Wood, H. G.
1997-11-01
Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.
78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...
Plant DNA sequences from feces: potential means for assessing diets of wild primates.
Bradley, Brenda J; Stiller, Mathias; Doran-Sheehy, Diane M; Harris, Tara; Chapman, Colin A; Vigilant, Linda; Poinar, Hendrik
2007-06-01
Analyses of plant DNA in feces provides a promising, yet largely unexplored, means of documenting the diets of elusive primates. Here we demonstrate the promise and pitfalls of this approach using DNA extracted from fecal samples of wild western gorillas (Gorilla gorilla) and black and white colobus monkeys (Colobus guereza). From these DNA extracts we amplified, cloned, and sequenced small segments of chloroplast DNA (part of the rbcL gene) and plant nuclear DNA (ITS-2). The obtained sequences were compared to sequences generated from known plant samples and to those in GenBank to identify plant taxa in the feces. With further optimization, this method could provide a basic evaluation of minimum primate dietary diversity even when knowledge of local flora is limited. This approach may find application in studies characterizing the diets of poorly-known, unhabituated primate species or assaying consumer-resource relationships in an ecosystem. (c) 2007 Wiley-Liss, Inc.
78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...
77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...
76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...
78 FR 35989 - Tennessee Valley Authority; Watts Bar Nuclear Plant, Unit 2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Bar Nuclear Plant, Unit 2 AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental statement... Operation of Watts Bar Nuclear Plant (WBN), Unit 2'' (SFES). ADDRESSES: Please refer to Docket ID NRC-2008... option of issuing the operating license for Watts Bar Nuclear Plant, Unit 2. This recommendation is based...
Integrated assessment of water-power grid systems under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Zhou, Z.; Betrie, G.
2017-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.
Debate on the Chernobyl disaster: on the causes of Chernobyl overestimation.
Jargin, Sergei V
2012-01-01
After the Chernobyl accident, many publications appeared that overestimated its medical consequences. Some of them are discussed in this article. Among the motives for the overestimation were anti-nuclear sentiments, widespread among some adherents of the Green movement; however, their attitude has not been wrong: nuclear facilities should have been prevented from spreading to overpopulated countries governed by unstable regimes and regions where conflicts and terrorism cannot be excluded. The Chernobyl accident has hindered worldwide development of atomic industry. Today, there are no alternatives to nuclear power: nonrenewable fossil fuels will become more and more expensive, contributing to affluence in the oil-producing countries and poverty in the rest of the world. Worldwide introduction of nuclear energy will become possible only after a concentration of authority within an efficient international executive. This will enable construction of nuclear power plants in optimally suitable places, considering all sociopolitical, geographic, geologic, and other preconditions. In this way, accidents such as that in Japan in 2011 will be prevented.
Optimization of site layout for change of plant operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuwer, S.M.; Kasperski, E.; Joseph, T.D.
1995-12-31
Several of the Florida Power & Light operating fossil power plants have undergone significant site layout changes as well as changes in plant operation. The FPL Fort Lauderdale Plant was repowered in 1992 which consisted of using four (4) Westinghouse 501F Combustion Turbines rated at 158 Mw each, to repower two (2) existing steam turbines rates at 143 Mw each. In 1991, a physical security fence separation occurred between Turkey Point Plants`s fossil fueled Units 1&2, and its nuclear fueled Units 3&4. As a result of this separation, certain facilities common to both the nuclear side and fossil side ofmore » the plant required relocating. Also, the Sanford and Manatee Plants were evaluated for the use of a new fuel as an alternative source. Manatee Plant is currently in the licensing process for modifications to burn a new fuel, requiring expansion of backened clean-up equipment, with additional staff to operate this equipment. In order to address these plant changes, site development studies were prepared for each plant to determine the suitability of the existing ancillary facilities to support the operational changes, and to make recommendations for facility improvement if found inadequate. A standardized process was developed for all of the site studies. This proved to be a comprehensive process and approach, that gave FPL a successful result that all the various stake holders bought into. This process was objectively based, focused, and got us to where we need to be as quickly as possible. As a result, this paper details the outline and various methods developed to prepare a study following this process, that will ultimately provide the optimum site development plan for the changing plant operations.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...
Compositional Models of Glass/Melt Properties and their Use for Glass Formulation
Vienna, John D.; USA, Richland Washington
2014-12-18
Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less
González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M
2018-03-14
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.
Yoe, Hyun
2018-01-01
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system. PMID:29538351
Go Nuclear? What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...
76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S..., ``Qualification of Connection Assemblies for Nuclear Power Plants.'' This guide describes a method that the NRC... in nuclear power plants. The environmental qualification helps ensure that connection assemblies can...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...
Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Harada, Nobuhiro
2011-01-01
Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.
76 FR 66089 - Access Authorization Program for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0245] Access Authorization Program for Nuclear Power... Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to... Regulations (10 CFR), section 73.56, ``Personnel Access Authorization Requirements for Nuclear Power Plants...
U.S. Nuclear Weapons: Changes in Policy and Force Structure
2006-08-10
the Mound Plant , near Dayton OH; the Pinellas Plant , in Clearwater, FL; and the Pantex Plant near Amarillo, TX. These facilities were also operated...major nuclear weapons production facilities. These included the Rocky Flats Plant , outside Denver, CO; the Kansas City Plant , near Kansas City, MO...response to safety concerns. The Rocky Flats Plant , which produced the nuclear triggers, or “pits,” for nuclear weapons closed in 1989, in response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huijuan; Diao, Xiaoxu; Li, Boyuan
This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and softwaremore » faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.« less
Modelling of nuclear power plant decommissioning financing.
Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J
2015-06-01
Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Making the Optimal Decision in Selecting Protective Clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. Mark
2008-01-15
Protective Clothing plays a major role in the decommissioning and operation of nuclear facilities. Literally thousands of dress-outs occur over the life of a decommissioning project and during outages at operational plants. In order to make the optimal decision on which type of protective clothing is best suited for the decommissioning or maintenance and repair work on radioactive systems, a number of interrelating factors must be considered. This article discusses these factors as well as surveys of plants regarding their level of usage of single use protective clothing and should help individuals making decisions about protective clothing as it appliesmore » to their application. Individuals considering using SUPC should not jump to conclusions. The survey conducted clearly indicates that plants have different drivers. An evaluation should be performed to understand the facility's true drivers for selecting clothing. It is recommended that an interdisciplinary team be formed including representatives from budgets and cost, safety, radwaste, health physics, and key user groups to perform the analysis. The right questions need to be asked and answered by the company providing the clothing to formulate a proper perspective and conclusion. The conclusions and recommendations need to be shared with senior management so that the drivers, expected results, and associated costs are understood and endorsed. In the end, the individual making the recommendation should ask himself/herself: 'Is my decision emotional, or logical and economical?' 'Have I reached the optimal decision for my plant?'.« less
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...
75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.Y.
2013-07-01
In August 2008, the U.S. Department of Homeland Security (DHS) issued its final Protective Action Guide (PAG) for radiological dispersal device (RDD) and improvised nuclear device (IND) incidents. This document specifies protective actions for public health during the early and intermediate phases and cleanup guidance for the late phase of RDD or IND incidents, and it discusses approaches to implementing the necessary actions. However, while the PAG provides specific guidance for the early and intermediate phases, it prescribes no equivalent guidance for the late-phase cleanup actions. Instead, the PAG offers a general description of a complex process using a site-specificmore » optimization approach. This approach does not predetermine cleanup levels but approaches the problem from the factors that would bear on the final agreed-on cleanup levels. Based on this approach, the decision-making process involves multifaceted considerations including public health, the environment, and the economy, as well as socio-political factors. In an effort to fully define the process and approach to be used in optimizing late-phase recovery and site restoration following an RDD or IND incident, DHS has tasked the NCRP with preparing a comprehensive report addressing all aspects of the optimization process. Preparation of the NCRP report is a three-year (2010-2013) project assigned to a scientific committee, the Scientific Committee (SC) 5-1; the report was initially titled, Approach to Optimizing Decision Making for Late- Phase Recovery from Nuclear or Radiological Terrorism Incidents. Members of SC 5-1 represent a broad range of expertise, including homeland security, health physics, risk and decision analysis, economics, environmental remediation and radioactive waste management, and communication. In the wake of the Fukushima nuclear accident of 2011, and guided by a recent process led by the White House through a Principal Level Exercise (PLE), the optimization approach has since been expanded to include off-site contamination from major nuclear power plant accidents as well as other nuclear or radiological incidents. The expanded application under the current guidance has thus led to a broadened scope of the report, which is reflected in its new title, Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents. The NCRP report, which is due for publication in 2013, will substantiate the current DHS guidance by clarifying and elaborating on the processes required for the development and implementation of procedures for optimizing decision making for late-phase recovery, enabling the establishment of cleanup goals on a site-specific basis. The report will contain a series of topics addressing important issues related to the long-term recovery from nuclear or radiological incidents. Special topics relevant to supporting the optimization of the decision-making process will include cost-benefit analysis, radioactive waste management, risk communication, stakeholder interaction, risk assessment, and decontamination approaches and techniques. The committee also evaluated past nuclear and radiological incidents for their relevance to the report, including the emerging issues associated with the Fukushima nuclear accident. Thus, due to the commonality of the late-phase issues (such as the potential widespread contamination following an event), the majority of the information pertaining to the response in the late-phase decision-making period, including site-specific optimization framework and approach, could be used or adapted for use in case of similar situations that are not due to terrorism, such as those that would be caused by major nuclear facility accidents or radiological incidents. To ensure that the report and the NCRP recommendations are current and relevant to the effective implementation of federal guidance, SC 5-1 has actively coordinated with the agencies of interest and other relevant stakeholders throughout the duration of the project. The resulting report will be an important resource to guide those involved in late-phase recovery efforts following a nuclear or radiological incident. (authors)« less
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft Report for Comment AGENCY: Nuclear Regulatory Commission... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... CONTACT: Felix Gonzalez, Fire Research Branch, Division of Risk Analysis, Office of Nuclear Regulatory...
78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...
Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe
2016-03-10
In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.
NASA Astrophysics Data System (ADS)
Ilham, Muhammad; Su'ud, Zaki
2017-01-01
Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.
U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)
2010-01-01
Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.
Nuclear transmutation in steels
NASA Astrophysics Data System (ADS)
Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.
2009-05-01
The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County, NY. In accordance with 10 CFR...Patrick Nuclear Power Plant Power Authority of the State of New York, Docket No. 50-333,'' dated March...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... Activities at Nuclear Power Plants,'' published in May 2000. The document is redundant due to the inclusion... Risk Before Maintenance Activities at Nuclear Power Plants,'' published in May 2000. The requirements...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Testing at Nuclear Power Plants, Draft Report for Comment'' AGENCY: Nuclear Regulatory Commission. ACTION... Testing at Nuclear Power Plants, Draft Report for Comment,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...
10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...
10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear Power Plant Safeguards Contingency Plans C Appendix C to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND... sabotage relating to special nuclear material or nuclear facilities licensed under the Atomic Energy Act of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report NEI 06-11...(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment...
Vogel, H
2007-08-01
Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.
The intriguing plant nuclear lamina.
Ciska, Malgorzata; Moreno Díaz de la Espina, Susana
2014-01-01
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Multiple external hazards compound level 3 PSA methods research of nuclear power plant
NASA Astrophysics Data System (ADS)
Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina
2017-01-01
2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.
Analysis on capability of load following for nuclear power plants abroad and its enlightenment
NASA Astrophysics Data System (ADS)
Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua
2017-01-01
With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.
NASA Astrophysics Data System (ADS)
Severnini, Edson
2017-04-01
The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.
Effect of nuclear power on CO₂ emission from power plant sector in Iran.
Kargari, Nargess; Mastouri, Reza
2011-01-01
It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.
Thermal-hydraulic analysis capabilities and methods development at NYPA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
The operation of a nuclear power plant must be regularly supported by various thermal-hydraulic (T/H) analyses that may include final safety analysis report (FSAR) design basis calculations and licensing evaluations and conservative and best-estimate analyses. The development of in-house T/H capabilities provides the following advantages: (a) it leads to a better understanding of the plant design basis and operating characteristics; (b) methods developed can be used to optimize plant operations and enhance plant safety; (c) such a capability can be used for design reviews, checking vendor calculations, and evaluating proposed plant modifications; and (d) in-house capability reduces the cost ofmore » analysis. This paper gives an overview of the T/H capabilities and current methods development activity within the engineering department of the New York Power Authority (NYPA) and will focus specifically on reactor coolant system (RCS) transients and plant dynamic response for non-loss-of-coolant accident events. This paper describes NYPA experience in performing T/H analyses in support of pressurized water reactor plant operation.« less
ERIC Educational Resources Information Center
Novick, Sheldon
1974-01-01
Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…
A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; David Schwieder; Robert Nourgaliev
2012-09-01
During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, andmore » integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.« less
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
Risk in nuclear power plants due to natural hazard phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S.C.
1995-12-01
For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less
Nuclear Power Plants | RadTown USA | US EPA
2018-06-22
Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.
77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization Facilities... or asked to report: Nuclear Power Plant Licensees, Materials Security Licensees and those States... and interested in monitoring the safety status of nuclear power plants and radioactive materials. This...
Vázquez, José A; Ramos, Patrícia; Mirón, Jesús; Valcarcel, Jesus; Sotelo, Carmen G; Pérez-Martín, Ricardo I
2017-06-16
The waste generated from shrimp processing contains valuable materials such as protein, carotenoids, and chitin. The present study describes a process at pilot plant scale to recover chitin from the cephalothorax of Penaeus vannamei using mild conditions. The application of a sequential enzymatic-acid-alkaline treatment yields 30% chitin of comparable purity to commercial sources. Effluents from the process are rich in protein and astaxanthin, and represent inputs for further by-product recovery. As a last step, chitin is deacetylated to produce chitosan; the optimal conditions are established by applying a response surface methodology (RSM). Under these conditions, deacetylation reaches 92% as determined by Proton Nuclear Magnetic Resonance (¹H-NMR), and the molecular weight (Mw) of chitosan is estimated at 82 KDa by gel permeation chromatography (GPC). Chitin and chitosan microstructures are characterized by Scanning Electron Microscopy (SEM).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... integral part of NRC-approved fire protection programs. However, compensatory measures are not expected to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...
10 CFR 50.120 - Training and qualification of nuclear power plant personnel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...
10 CFR 50.120 - Training and qualification of nuclear power plant personnel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...
75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... date for all operating nuclear power plants, but noted that the Commission's regulations provide... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power...
76 FR 60939 - Metal Fatigue Analysis Performed by Computer Software
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Nuclear Power Plants,'' Revision 2, issued December 2010, which recommends that the effects of the reactor... design control in accordance with Appendix B, ``Quality Assurance Criteria for Nuclear Power Plants and... Nuclear Power Plants.'' Intent The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory...
JPRS Report, Proliferation Issues
1992-10-28
the Kozloduy Nuclear Power mentary Union for Social Democracy for the town of Plant . Igor Kareyev, the embassy’s economic counselor, Svishtov, comments...are working at the nuclear the Belene Nuclear Power Plant is halted." It is evident that plant . unless this issue is finally resolved, no one will make...long-term investments in the region of the projected nuclear Russian organizations are doing everything possible to power plant . It is true that
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter
2005-01-31
This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-255; NRC-2010-0127] Entergy Nuclear Operations, Inc., Palisades Nuclear Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... Operating License No. DPR-20, issued to Entergy Nuclear Operations, LLC (ENO) (the licensee), for operation...
75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The...
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
SUNrises on the International Plant Nucleus Consortium: SEB Salzburg 2012.
Graumann, Katja; Bass, Hank W; Parry, Geraint
2013-01-01
The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes-from nuclear, to cellular, to organismal. Its main components-the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.
SUNrises on the International Plant Nucleus Consortium
Graumann, Katja; Bass, Hank W.; Parry, Geraint
2013-01-01
The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
..., ``Configuration Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., Reviews, and Audits for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Documents Access and Management System (ADAMS): You may access publicly available documents online in the... Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants,'' issued for... Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Revision...
76 FR 53673 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
.... Ginna Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed....17(b): Amendment to 1765R4 KCPL-GMO NITSA NOA to be effective 6/1/ 2011. Filed Date: 08/19/2011...
75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power... nuclear power plants that were licensed before January 1, 1979, satisfy the requirements of 10 CFR Part 50...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... Code of Federal Regulations (10 CFR), Appendix R, ``Fire Protection Program for Nuclear Power...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County...
78 FR 16492 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
...-2181-017; ER10-2182-017. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et. al. Filed Date: 3/8/13. Accession Number: 20130308-5085...
78 FR 26348 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
...: Docket Numbers: ER10-2179-018; ER10-2181-018; ER10-2182-018. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 4/26/13...
78 FR 49742 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
...-2181-019; ER10-2182-019. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 8/8/13. Accession Number: 20130808-5137...
Safety Regulation of Nuclear Power Plant License Renewal
NASA Astrophysics Data System (ADS)
Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi
2018-01-01
China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..
NASA Astrophysics Data System (ADS)
Lingga, Marwan Mossa
A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.
Monitoring and management of tritium from the nuclear power plant effluent
NASA Astrophysics Data System (ADS)
Zhang, Qiaoe; Liu, Ting; Yang, Lili; Meng, De; Song, Dahu
2018-01-01
It is important to regulate tritium nuclides from the nuclear power plant effluent, the paper briefly analyzes the main source of tritium, and the regulatory requirements associated with tritium in our country and the United States. The monitoring methods of tritium from the nuclear power plant effluent are described, and the purpose to give some advice to our national nuclear power plant about the effluent of tritium monitoring and management.
Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)
NASA Astrophysics Data System (ADS)
Lizon-A-Lugrin, Laure
The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a mechanical power of 1200 MW. It is observed that in most cases the landscape of Pareto's front is mostly controlled only by few key parameters. These results may be very useful for future plant design engineers. Furthermore, some calculations for pipe sizing and temperature variation between coolant and fuel have been carried out to provide an idea on their order of magnitude.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... Plant Fire Modeling Application Guide (NPP FIRE MAG)'' is available electronically under ADAMS Accession...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... Cooperation with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization... inspections for the NRC. 6. Who will be required or asked to report: Nuclear Power Plant Licensees, Materials.... Abstract: States are involved and interested in monitoring the safety status of nuclear power plants and...
77 FR 55509 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
...; Donald C. Cook Nuclear Plant, Unit 2; Exemption 1.0 Background Indian Michigan Power Company (the... Donald C. Cook Nuclear Plant, Unit 2 (CNP-2). The license provides, among other things, that the facility is subject to all rules, regulations, and orders of the U.S Nuclear Regulatory Commission (NRC, or...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... nuclear power plants operating in the USA. II. Effective Date This MOU is effective December 30, 2009. III... requirements at commercial nuclear power plants operating in the United States of America (USA). The NRC's... digital assets at commercial nuclear power plants operating in the USA. This cooperation will ensure that...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4... Regulations (10 CFR), for the Comanche Peak Nuclear Power Plant (CPNPP), Units 3 and 4, Combined License (COL... Peak Nuclear Power Plant, Units 3 and 4,'' dated May 13, 2011. Agencies and Persons Consulted On March...
Problems and Delays Overshadow NRC's Initial Success in Improving Reactor Operators' Capabilities.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
The nuclear power plant accident at Three Mile Island raised many questions concerning the safety of nuclear power plant operations and the ability of nuclear plant reactor operators to respond to abnormal or accident conditions. In response, the Nuclear Regulatory Commission (NRC) developed a plan, which included short- and long-term actions to…
75 FR 77677 - Southern Nuclear Operating Company, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-366; NRC-2010-0345] Southern Nuclear Operating Company, Inc. Edwin I Hatch Nuclear Plant, Unit No. 2; Exemption 1.0 Background The Southern Nuclear...-5 which authorizes operation of the Edwin I. Hatch Nuclear Plant, Unit No. 2 (HNP-2). The license...
10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants
Code of Federal Regulations, 2014 CFR
2014-01-01
.... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...
10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants
Code of Federal Regulations, 2013 CFR
2013-01-01
.... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...
10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants
Code of Federal Regulations, 2012 CFR
2012-01-01
.... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...
10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants
Code of Federal Regulations, 2011 CFR
2011-01-01
.... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...
10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants
Code of Federal Regulations, 2010 CFR
2010-01-01
.... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...
76 FR 12295 - James Luehman; Denial of Petition for Rulemaking
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... retaliation for raising safety concerns. Union Electric Co. (Callaway Plant, Units 1&2), ALAB-527, 9 NRC 126... was decided by the Commission in the Tennessee Valley Authority (Watts Bar Nuclear Plant, Unit 1; Sequoyah Nuclear Plant, Units 1 and 2; Browns Ferry Nuclear Plant, Units 1, 2, and 3), CLI-04-24, 60 NRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek
2015-07-01
The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less
Microprocessor-based control systems application in nuclear power plant critical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, M.R.; Nowak, J.B.
Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less
75 FR 29785 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...
Health Risks of Nuclear Power.
ERIC Educational Resources Information Center
Cohen, Bernard L.
1978-01-01
Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)
Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.
ERIC Educational Resources Information Center
Whitelaw, Robert L.
The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
...] Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10, Rev. 1... the Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10... Agency (FEMA) issued FEMA-REP-10, Guide for the Evaluation of Alert and Notification Systems for Nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... NUCLEAR REGULATORY COMMISSION NORTHERN STATES POWER COMPANY [Docket Numbers 50-282 and 50-306; NRC-2009-0507] Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final Supplement 39 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding the License Renewal of Prairie Island...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S...,'' for Facility Operating License No. NPF-58, issued to FirstEnergy Nuclear Operating Company (FENOC, the...
Design optimization of an ironless inductive position sensor for the LHC collimators
NASA Astrophysics Data System (ADS)
Danisi, A.; Masi, A.; Losito, R.; Perriard, Y.
2013-09-01
The Ironless Inductive Position Sensor (I2PS) is an air-cored displacement sensor which has been conceived to be totally immune to external DC/slowly-varying magnetic fields. It can thus be used as a valid alternative to Linear Variable Differential Transformers (LVDTs), which can show a position error in magnetic environments. In addition, since it retains the excellent properties of LVDTs, the I2PS can be used in harsh environments, such as nuclear plants, plasma control and particle accelerators. This paper focuses on the design optimization of the sensor, considering the CERN LHC Collimators as application. In particular, the optimization comes after a complete review of the electromagnetic and thermal modeling of the sensor, as well as the proper choice of the reading technique. The design optimization stage is firmly based on these preliminary steps. Therefore, the paper summarises the sensor's complete development, from its modeling to its actual implementation. A set of experimental measurements demonstrates the sensor's performances to be those expected in the design phase.
Operate a Nuclear Power Plant.
ERIC Educational Resources Information Center
Frimpter, Bonnie J.; And Others
1983-01-01
Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)
75 FR 12533 - Combined Notice Of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-16
....; R.E. Ginna Nuclear Power Plant, LLC; Constellation Energy Commodities Group; Constellation Energy Commodities Group Maine; Raven Three, LLC; Raven Two, LLC; Raven One, LLC; Calvert Cliffs Nuclear Power Plant LLC. Description: Calvert Cliffs Nuclear Power Plant submits Substitute First Revised Sheet 1 et al...
[Risk communication in construction of new nuclear power plant].
He, Gui-Zhen; Lü, Yong-Long
2013-03-01
Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...
Kołacińska, Kamila; Chajduk, Ewelina; Dudek, Jakub; Samczyński, Zbigniew; Łokas, Edyta; Bojanowska-Czajka, Anna; Trojanowicz, Marek
2017-07-01
90 Sr is a widely determined radionuclide for environmental purposes, nuclear waste control, and can be also monitored in coolants in nuclear reactor plants. In the developed method, the ICP-MS detection was employed together with sample processing in sequential injection analysis (SIA) setup, equipped with a lab-on-valve with mechanized renewal of sorbent bed for solid-phase extraction. The optimized conditions of determination included preconcentration of 90 Sr on cation-exchange column and removal of different type of interferences using extraction Sr-resin. The limit of detection of the developed procedure depends essentially on the configuration of the employed ICP-MS spectrometer and on the available volume of the sample to be analyzed. For 1L initial sample volume, the method detection limit (MDL) value was evaluated as 2.9ppq (14.5BqL -1 ). The developed method was applied to analyze spiked river water samples, water reference materials, and also simulated and real samples of the nuclear reactor coolant. Copyright © 2016 Elsevier B.V. All rights reserved.
76 FR 59175 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
...) (Tentative) a. Southern Nuclear Operating Co. (Vogtle Electric Generating Plant, Units 3 and 4)--Appeal of LBP-10-21 (Tentative) b. Luminant Generation Company LLC (Comanche Peak Nuclear Power Plant, Units 3...) c. Progress Energy Florida, Inc. (Levy County Nuclear Power Plant, Units 1 and 2), Staff Petition...
ATMOSPHERIC RELEASES FROM STANDARDIZED NUCLEAR POWER PLANTS: A WIND TUNNEL STUDY
Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard design nuclear power plants. The main objective of the study was to compare the dispersion in the wake of the standardized nuclear power plants with that in a s...
The regulatory framework for safe decommissioning of nuclear power plants in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong
We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less
Economic and Market Challenges Facing the U.S. Nuclear Commercial Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szilard, Ronaldo; Sharpe, Phil; Kee, Edward
This report identifies underlying economic and electricity market factors that have led to early retirements of U.S. operating nuclear power plants, assesses the Gap between operating revenues and operating costs for selected nuclear power plants, and discusses a range of actions that might be taken to stop early retirement of operating nuclear power plants. The Kewaunee and Vermont Yankee nuclear power plants were retired early for economic and financial reasons. Early retirement has been announced or proposed for Clinton and Quad Cities in Illinois, Fitzpatrick and Ginna in New York, Fort Calhoun in Nebraska. Other nuclear power plants, including Palisades,more » Davis-Besse, Prairie Island, and Three Mile Island Unit 1, have been identified as facing financial stress that might lead to early retirement. The early retirement of operating nuclear power plants will mean the loss of a large amount of zero-emission electricity, inconsistent with the goal of reducing carbon emissions in the electricity sector. This report provides a high-level view of the major factors driving early retirement: • The U.S. market and private ownership approach to the electricity sector; • Low electricity market prices resulting from low natural gas prices, low demand growth, increased penetration of renewable generation, and negative electricity market prices; and • No compensation to nuclear power plants for public benefits including zero-emission electricity.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...
78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in... regulatory guide (DG), DG-1235, ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants...-251- 7495, email: [email protected] . Both of the Office of Nuclear Regulatory Research, U.S. Nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...
Psychology in nuclear power plants: an integrative approach to safety - general statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shikiar, R.
Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals withmore » the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety.« less
NASA Astrophysics Data System (ADS)
Wasko, Frank
Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic assessment review and then on to the stakeholder cost benefit analysis (if model qualifications are met) leading to a final plant retirement decision. This application via the model and guide, in turn, will lead electric utilities to explore system upgrade import opportunities and mitigation measures versus building new replacement generation facilities. United States nuclear reactors are licensed for 40 years with a 20 year extension available prior to the expiration date (EIA, 2013). Since late 2012, electric power companies have announced the early retirement of four uneconomical nuclear power plants while other studies have indicated that as many as 70 percent of United States nuclear power plants are potentially at risk for early retirement (Crooks, 2014 and Cooper, 2013). A high percentage of these aforementioned nuclear plants have operating licenses that will not expire until 2030 and beyond. Thus, for the most part, replacement power contingency planning has not been initiated for these plants or is still in preliminary stages. The recent nuclear plant retirements are the first since 1998 (EIA, 2013). Decisions to retire the plants involved concerns over maintenance and repair costs as well as declining profitability (EIA, 2013). In addition, the Energy Information Administration (2010-2012) released data that demonstrated that the worst 25 percent of United States nuclear plants are far more expensive to operate and generate electricity than new gas plants. It is equally important to understand and explain the economic and power replacement implications to both ratepayers and end-users. A SONGS case study analysis will review the economic, operational and political challenges that SCE faced leading to the retirement decision of SONGS. As preface to the case study, replacement steam generators (RSGs) were installed in Unit 2 in 2009 and in Unit 3 in 2010. In January 2012, while Unit 2 was down for routine maintenance, a small leak was discovered inside a steam generator in Unit 3. Because of the situation, both units remained shut down to evaluate the cause of the leakage and to make repairs. SCE submitted plans to the Nuclear Regulatory Commission (NRC) to re-start Unit 2 at reduced power. However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors (SCE SONGS Fact Sheets, 2012-2013). Finally, collaborative resource power replacement planning is needed more than ever as nuclear facilities in the United States are now being retired for economic related reasons (Crooks, 2014). This collaborative power replacement process and implementation must encompass all relevant stakeholders including state grid operators, ratepayers, shareholders and the electric utility company.
75 FR 2894 - Withdrawal of Regulatory Guide 1.148
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Valve Assemblies in Systems Important to Safety in Nuclear Power Plants.'' FOR FURTHER INFORMATION... for Active Valve Assemblies in Systems Important to Safety in Nuclear Power Plants.'' RG 1.148 was... qualifying active mechanical equipment used in nuclear power plants. The NRC is withdrawing RG 1.148 because...
76 FR 59748 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
.... Southern Nuclear Operating Co. (Vogtle Electric Generating Plant, Units 3 and 4)--Appeal of LBP-10-21 (Tentative). b. Luminant Generation Company LLC (Comanche Peak Nuclear Power Plant, Units 3 and 4... Florida, Inc. (Levy County Nuclear Power Plant, Units 1 and 2), Staff Petition for Review of LBP-10-20...
Nuclear Power Plants. Revised.
ERIC Educational Resources Information Center
Lyerly, Ray L.; Mitchell, Walter, III
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…
78 FR 48503 - Proposed Revision to Missiles Generated by Extreme Winds
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
...-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR..., ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants,'' and Interim Staff Guidance DC... and Hurricane Missiles for Nuclear Power Plants'' (ADAMS, Accession No. ML110940300), and Interim...
2012-01-01
Fukushima Daiichi Nuclear Power Plant cannot be regarded as a natural disaster .”12 the report stated that Fukushima was a man-made disaster that... disaster at the Fukushima Daiichi Nuclear Power Plant on March 11, 2012, was a stark reminder that the residual risk of a core meltdown is not so low as...resulting tsunami led to the meltdown of three nuclear reactors at the Fukushima Daiichi Nuclear Power Plant. In the
Oliver, J L; Marín, A; Martínez-Zapater, J M
1990-01-01
During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed. PMID:2308837
Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebak, Raul B.; Lou, Xiaoyuan
Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less
Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.
Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin
2016-02-01
There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Goudeau, V; Daniel, B; Dubot, D
2017-04-21
During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main advantage of a mobile laboratory is its portability; the shelter can be placed in the vicinity of nuclear facilities under decommissioning, or of contaminated sites with infrastructures unsuitable for the reception and treatment of radioactive samples. Radiological analysis can then be performed without the disadvantages of radioactive material transport. This paper describes how this solution allows a fast response and control of costs, with a high analytical capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
On-line condition monitoring applications in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastiemian, H. M.; Feltus, M. A.
2006-07-01
Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less
The plant cell nucleus: a true arena for the fight between plants and pathogens.
Deslandes, Laurent; Rivas, Susana
2011-01-01
Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.
The Italian experience on T/H best estimate codes: Achievements and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemberti, A.; D`Auria, F.; Fiorino, E.
1997-07-01
Themalhydraulic system codes are complex tools developed to simulate the power plants behavior during off-normal conditions. Among the objectives of the code calculations the evaluation of safety margins, the operator training, the optimization of the plant design and of the emergency operating procedures, are mostly considered in the field of the nuclear safety. The first generation of codes was developed in the United States at the end of `60s. Since that time, different research groups all over the world started the development of their own codes. At the beginning of the `80s, the second generation codes were proposed; these differmore » from the first generation codes owing to the number of balance equations solved (six instead of three), the sophistication of the constitutive models and of the adopted numerics. The capabilities of available computers have been fully exploited during the years. The authors then summarize some of the major steps in the process of developing, modifying, and advancing the capabilities of the codes. They touch on the fact that Italian, and for that matter non-American, researchers have not been intimately involved in much of this work. They then describe the application of these codes in Italy, even though there are no operating or under construction nuclear power plants at this time. Much of this effort is directed at the general question of plant safety in the face of transient type events.« less
Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes.
Reiter, Noushka; Lawrie, Ann C; Linde, Celeste C
2018-06-12
An understanding of mycorrhizal variation, orchid seed germination temperature and the effect of co-occurring plant species could be critical for optimizing conservation translocations of endangered plants with specialized mycorrhizal associations. Focusing on the orchid Thelymitra epipactoides, we isolated mycorrhizal fungi from ten plants within each of three sites; Shallow Sands Woodland (SSW), Damp Heathland (DH) and Coastal Heathland Scrub (CHS). Twenty-seven fungal isolates were tested for symbiotic germination under three 24 h temperature cycles: 12 °C for 16 h-16 °C for 8 h, 16 °C for 16 h-24 °C for 8 h or 27 °C constant. Fungi were sequenced using the internal transcribed spacer (ITS), nuclear large subunit 1 (nLSU1), nLSU2 and mitochondrial large rRNA gene (mtLSU). Orchids were grown to maturity and co-planted with each of ten associated plant species in a glasshouse experiment with tuber width measured at 12 months after co-planting. Two Tulasnella fungal lineages were isolated and identified by phylogenetic analyses, operational taxonomic unit 1 (OTU1) and 'T. asymmetrica'. Fungal lineages were specific to sites and did not co-occur. OTU1 (from the SSW site) germinated seed predominantly at 12-16 °C (typical of autumn-winter temperature) whereas 'T. asymmetrica' (from the DH and CHS sites) germinated seed across all three temperature ranges. There was no difference in the growth of adult orchids germinated with different OTUs. There was a significant reduction in tuber size of T. epipactoides when co-planted with six of the commonly co-occurring plant species. We found that orchid fungal lineages and their germination temperature can change with habitat, and established that translocation sites can be optimized with knowledge of co-occurring plant interactions. For conservation translocations, particularly under a changing climate, we recommend that plants should be grown with mycorrhizal fungi tailored to the recipient site.
Structural considerations for underground nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarne, Y.
The advantages and disadvantages of underground nuclear power plants are briefly reviewed. The impact of underground contruction on plant layout and structural design are discussed. Schedules and costs for construction are compared with those for conventional plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfister, A.; Goossen, C.; Coogler, K.
2012-07-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less
A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim
Rose, Annkatrin; Meier, Iris
2001-01-01
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-366; NRC-2010-0345] Southern Nuclear Operating Company Inc. Edwin I. Hatch Nuclear Plant, Unit No. 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of an exemption from Title 10 of the Code of Federal Regulations, ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 and 50-364; NRC-2009-0375] Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of Federal...
NRC antitrust licensing actions, 1978--1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, S.J.; Simpson, J.J.
NUREG-0447, Antitrust Review of Nuclear Power Plants, was published in May 1978 and includes a compilation and discussion of U.S. Nuclear Regulatory Commission (NRC) proceedings and activity involving the NRC`s competitive review program through February 1978, NUREG-0447 is an update of an earlier discussion of the NRC`s antitrust review of nuclear power plants, NR-AIG-001, The US Nuclear Regulatory Commission`s Antitrust Review of Nuclear Power Plants: The Conditioning of Licenses, which reviewed the Commission`s antitrust review function from its inception in December 1970 through April 1976. This report summarizes the support provided to NRC staff in updating the compilation of themore » NRC`s antitrust licensing review activities for commercial nuclear power plants that have occurred since February 1978. 4 refs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Canetta, D.; Capozza, A.; Iovino, G.
The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed.
Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant
NASA Astrophysics Data System (ADS)
Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.
2016-01-01
Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-09
The nuclear accident at the Three Mile Island power plant in Pennsylvania has dealt yet another setback to the beleaguered nuclear power industry. The plant accident, combined with a recent renewal of interest in the 1974 Karen Silkwood case, increased pressure from regulatory agencies concerning plant safety and waste disposal, and the release of the anti-nuclear film ''''The China Syndrome'' has made the nuclear power industry a source of public criticism and consternation. The fact that officials at the Three Mile Island facility were unsure of the causes and amounts of the radiation leaks further adds to the predicament ofmore » the nuclear industry. The situation was compounded by the formation of a hydrogen gas bubble with the potential to cause a massive explosion at the plant. The incident has sparked protest rallies by anti-nuclear groups. Possible radiation exposure danger levels are assessed. (2 diagrams, 1 map, 9 photos)« less
78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide... power plants. This RG is proposed Revision 1 of RG 1.73, ``Qualification Tests of Electric Valve...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... for Nuclear Power Plants,'' in support of NRC reviews of early site permit (ESP), standard design... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... License Applications for Nuclear Power Plants, (LWR Edition)'' (ML070630003) In addition, this ISG...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...
10 CFR 51.95 - Postconstruction environmental impact statements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined by the Commission, a supplement on the operation of a nuclear power plant will not include a... the storage of spent fuel for the nuclear power plant within the scope of the generic determination in... the renewal of an operating license or combined license for a nuclear power plant under parts 52 or 54...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Finding of No Significant Impact; Carolina Power and Light Company Shearon Harris Nuclear Power Plant... Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).'' Agencies...
State regulation of nuclear power and national energy policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, J.W.
1992-12-31
In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiologicalmore » injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.« less
Intelligent Modeling for Nuclear Power Plant Accident Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.
This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less
Intelligent Modeling for Nuclear Power Plant Accident Management
Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.; ...
2018-03-29
This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less
Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; Diego Mandelli; Cristian Rabiti
2013-11-01
The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less
NUCLEAR NONPROLIFERATION AND SAFETY: Challenges Facing the International Atomic Energy Agency.
1993-09-01
safeguards), and the Chernobyl nuclear power plant accident have focused greater attention on nuclear proliferation and the safety of nuclear power... Chernobyl , IAEA has placed increasing emphasis on assisting member states in improving the safety of nuclear power plants. Despite funding shortfalls...report language, GAO has incorporated their comments where appropriate. 2Nuclear Power Safety: Chernobyl Accident Prompted Worldwide Actions but
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-321 and 50-366; NRC-2010-0024] Southern Nuclear Operating Company, Inc., Edwin I. Hatch Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to Title 10 of the Code of...
Atmospheric emission of 137Cs82 from Beloyarsk nuclear power plant
NASA Astrophysics Data System (ADS)
Kolotkov, G. A.
2018-01-01
Citing Beloyarsk nuclear power plant (Russia) as an example, the problem of remote detection of radioactivity in the atmospheric pollution is examined. The comparative analysis of injected radionuclides into the atmosphere from the nuclear power plant with advanced fast neutron reactor is carried out. The main radionuclides throw out into the atmosphere from the nuclear power plant are beta-radionuclides. The secondary and tertiary spectra of beta-electrons decay for artificial radionuclide 137Cs82 is calculated, using Spencer-Fano’s equation. The averaged parameters of initial beta - electrons generated by 137Cs82 decay in the atmosphere is calculated.
Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size.
Franks, Peter J; Freckleton, Rob P; Beaulieu, Jeremy M; Leitch, Ilia J; Beerling, David J
2012-02-19
Tectonic processes drive megacycles of atmospheric carbon dioxide (CO(2)) concentration, c(a), that force large fluctuations in global climate. With a period of several hundred million years, these megacycles have been linked to the evolution of vascular plants, but adaptation at the subcellular scale has been difficult to determine because fossils typically do not preserve this information. Here we show, after accounting for evolutionary relatedness using phylogenetic comparative methods, that plant nuclear genome size (measured as the haploid DNA amount) and the size of stomatal guard cells are correlated across a broad taxonomic range of extant species. This phylogenetic regression was used to estimate the mean genome size of fossil plants from the size of fossil stomata. For the last 400 Myr, spanning almost the full evolutionary history of vascular plants, we found a significant correlation between fossil plant genome size and c(a), modelled independently using geochemical data. The correlation is consistent with selection for stomatal size and genome size by c(a) as plants adapted towards optimal leaf gas exchange under a changing CO(2) regime. Our findings point to the possibility that major episodes of change in c(a) throughout Earth history might have selected for changes in genome size, influencing plant diversification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy's 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... comment draft regulatory guide (DG) DG-1278, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93...
77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... (RG) 1.160, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93-01, ``Industry Guideline for...
77 FR 64501 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
.... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Nine Mile Point Nuclear..., LLC, Shooting Star Wind Project, LLC, Safe Harbor Water Power Corporation, PECO Energy Company...
76 FR 3837 - Nuclear Decommissioning Funds; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9512] RIN 1545-BF08 Nuclear... trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on...: Sec. 1.468A-6 Disposition of an interest in a nuclear power plant. * * * * * (e) * * * (3...
76 FR 62457 - Tennessee Valley Authority (Bellefonte Nuclear Plant, Unit 1)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... (Bellefonte Nuclear Plant, Unit 1) Order I. The Tennessee Valley Authority (TVA, or the applicant) is the... Nuclear Plant (BLN), Units 1 and 2, respectively. The CPs for CPPR-122 and CPPR-123 expire on October 1... option for future power generation at BLN Unit 1. In the letter dated April 25, 2011, TVA informed the...
ERIC Educational Resources Information Center
Peelle, Elizabeth
The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...
A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.
ERIC Educational Resources Information Center
Purdy, Bruce J.; And Others
In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…
10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...
10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...
10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...
10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...
75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... changes to the reactor, fuel, plant, structures, support structures, water, or land at the Turkey Point... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-250 and 50-251; NRC-2010-0212] Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental Assessment and Finding of No...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
..., combined-cycle plant; a combination of natural gas, wind, and wood-fired generation and conservation; a... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2009-0507] Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of Renewed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bignan, G.; Gonnier, C.; Lyoussi, A.
2015-07-01
Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...
2016-10-05
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
NASA Astrophysics Data System (ADS)
Kolotkov, Gennady A.; Penin, Sergei
2017-11-01
The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses, with clarifications... Electrical and Electronic Engineers (IEEE) Standard 828-2005, ``IEEE Standard for Software Configuration...
77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0293] Initial Test Programs for Water-Cooled Nuclear Power... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
.... CONSTELLATION ENERGY GROUP, INC. CALVERT CLIFFS NUCLEAR POWER PLANT, LLC. Calvert Cliffs Nuclear Power Plant... Corporation (Exelon), and Exelon Ventures Company, LLC (Exelon Ventures), and Constellation Energy Nuclear... Energy Nuclear Group, LLC, shall prepare an Annual Report regarding the status of foreign ownership...
77 FR 69449 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
.... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...
10 CFR 52.35 - Use of site for other purposes.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate, (Director) of... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... informs the Director that the holder no longer intends to use the site for a nuclear power plant, the...
10 CFR 52.35 - Use of site for other purposes.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate, (Director) of... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... informs the Director that the holder no longer intends to use the site for a nuclear power plant, the...
10 CFR 52.35 - Use of site for other purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate, (Director) of... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... informs the Director that the holder no longer intends to use the site for a nuclear power plant, the...
10 CFR 52.35 - Use of site for other purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate, (Director) of... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... informs the Director that the holder no longer intends to use the site for a nuclear power plant, the...
10 CFR 52.35 - Use of site for other purposes.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate, (Director) of... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS... informs the Director that the holder no longer intends to use the site for a nuclear power plant, the...
Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu
2012-01-01
Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. Design: A descriptive, cross-sectional design was adopted. Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Methods: Data were collected through self-administered questionnaires consisting of a socio-demographic sheet. Inferential statistics, t-test, ANOVA test and multivariate regression analysis were used to compare the differences between each subgroup and correlation analysis was conducted to understand the relationship between different factors and dependent variables. Results: Our investigation found that the level of awareness and acceptance of nuclear power was generally not high. Respondents' gender, age, marital status, residence, educational level, family income and the distance away from the nuclear power plant are important effect factors to the knowledge of and attitude to nuclear power. Conclusions: The public concerns about nuclear energy's impact are widespread. The level of awareness and acceptance of nuclear power needs to be improved urgently. PMID:22811610
Plant maintenance and plant life extension issue, 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovationmore » articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.A.
Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of themore » technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the designer and become a database of prescribed transients and component failures. The candidate control systems are tested, and their parameters optimized, for each of these stresses. Examples of high-level requirements are: response time less than xx seconds, or overshoot less than xx% ... etc. In mathematical terms, these types of requirements are defined as ''constraints,'' and there are standard mathematical methods to minimize an objective function subject to constraints. Since, in principle, any control design that satisfies all the above constraints is acceptable, the designer must also select an objective function that describes the ''goodness'' of the control design. Examples of objective functions are: minimize the number or amount of control motions, minimize an energy balance... etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.
Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less
Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H
2012-03-06
A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... Authority; Sequoyah Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant... licensee), for operation of the Sequoyah Nuclear Plant, Units 1 and 2 (SQN), located in Hamilton County... Reference staff by telephone at 1-800-397-4209 or 301-415-4737, or send an e-mail to [email protected
Appraisal of Scientific Resources for Emergency Management.
1983-09-01
water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack
Large-Scale Paraphrasing for Natural Language Understanding
2018-04-01
to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks
Experience with ALARA and ALARA procedures in a nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahamse, J.C.
1995-03-01
The nuclear power plant Borssele is a Siemens two-loop Pressurized Water Reactor having a capacity of 480 MWe and in operation since 1973. The nuclear power plant Borssle is located in the southwest of the Netherlands, near the Westerschelde River. In the first nine years of operation the radiation level in the primary system increased, reaching a maximum in 1983. The most important reason for this high radiation level was the cobalt content of the grid assemblies of the fuel elements. After resolving this problem, the radiation level decreased to a level comparable with that of other nuclear power plants.
Plant maintenance and plant life extension issue, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolfmore » Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spudeck, R.E.
1983-01-01
Two weeks prior to the Three Mile Island accident, March 15, 1979, the Nuclear Regulatory Commission ordered five operating nuclear plants shut down in order to reexamine safety standards in these plants. Reports in the popular and trade press during this time suggested that these events, particularly the accident at Three Mile Island, caused investors in the securities of electric utilities that had nuclear-generation facilities to revise their risk perceptions. This study was designed to examine the impact of both the Nuclear Regulatory Commission order and the accident at Three Mile Island on investor risk perceptions. Selected categories of electricmore » utilities were chosen to examine any differential risk effects resulting from these events. An asset pricing model devoid of many of the restrictive assumptions of more familiar models was used to model investor behavior. The findings suggest that the events described did cause investors to revise upward their perceptions of systematic risk regarding different categories of electric utilities. More specifically, those electric utilities that were operating nuclear plants in 1979 experienced the largest and most sustained increase in systematic risk. However, electric utilities that in 1979 had no operating nuclear plants, but had planned and committed funds for nuclear plants in the future, also experienced increases in systematic risk.« less
Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study
NASA Astrophysics Data System (ADS)
Caldararu, S.; Purves, D. W.; Smith, M. J.
2014-12-01
Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.
NASA Technical Reports Server (NTRS)
Wagner, L. J.
1977-01-01
The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.
An integrated computer-based procedure for teamwork in digital nuclear power plants.
Gao, Qin; Yu, Wenzhu; Jiang, Xiang; Song, Fei; Pan, Jiajie; Li, Zhizhong
2015-01-01
Computer-based procedures (CBPs) are expected to improve operator performance in nuclear power plants (NPPs), but they may reduce the openness of interaction between team members and harm teamwork consequently. To support teamwork in the main control room of an NPP, this study proposed a team-level integrated CBP that presents team members' operation status and execution histories to one another. Through a laboratory experiment, we compared the new integrated design and the existing individual CBP design. Sixty participants, randomly divided into twenty teams of three people each, were assigned to the two conditions to perform simulated emergency operating procedures. The results showed that compared with the existing CBP design, the integrated CBP reduced the effort of team communication and improved team transparency. The results suggest that this novel design is effective to optim team process, but its impact on the behavioural outcomes may be moderated by more factors, such as task duration. The study proposed and evaluated a team-level integrated computer-based procedure, which present team members' operation status and execution history to one another. The experimental results show that compared with the traditional procedure design, the integrated design reduces the effort of team communication and improves team transparency.
75 FR 16869 - Entergy Nuclear Operations, LLC; Palisades Nuclear Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... generic industry request to extend the rule's compliance date for all operating nuclear power plants, but..., to M. S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... exemption will not have a significant effect on the quality of the human environment [75 FR 14473; dated...
2010-05-27
small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…
Light Water Reactor Sustainability Program: Integrated Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less
Nuclear Security for Floating Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiba, James M.; Scherer, Carolynn P.
2015-10-13
Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Method for assigning sites to projected generic nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holter, G.M.; Purcell, W.L.; Shutz, M.E.
1986-07-01
Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Environmental Effect of Renewing the Operating License of a Nuclear Power Plant B Appendix B to Subpart A of Part 51 Energy NUCLEAR REGULATORY COMMISSION... near these plants could be of moderate significance in some situations. See § 51.53(c)(3)(ii)(A...
JPRS Report, Proliferation Issues
1991-08-08
from its processing plant at Valindaba, and fuel-fabrication plants at Valindaba and Pelindaba. where fuel rods for use at the Koeberg nuclear-power...construction of the fourth one. The pulsed reactor uses special elements of nuclear fuel The site of the proposed fourth nuclear power plant can enabling...chemical, and biological weapons, including delivery systems and the transfer of weapons-relevant technologies.] AFRICA SOUTH AFRICA Civilian Uses for
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.
2011-08-01
Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.
Nuclear Electric Vehicle Optimization Toolset (NEVOT)
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell
2004-01-01
The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.
Arai, Takaomi
2016-10-01
Radioactive emissions into the environment from the Fukushima Daiichi Nuclear Power Plant accident led to global contamination. Radionuclides such as 131 I, 134 Cs, and 137 Cs were further transported to North America and Europe. Thus, the Fukushima Daiichi Nuclear Power Plant accident is a global concern for both human health and the ecosystem because a number of countries ban or impose restrictions the import of Japanese products. In the present study, three-year (May 2011 to May 2014) fluctuations and accumulations of Cs, 134 Cs, and 137 Cs in two salmonid fish, white-spotted char and masu salmon were examined in Northeast Japan. The total Cs, 134 Cs, and 137 Cs levels in the fish gradually decreased throughout the three-year studied period after the Fukushima Daiichi Nuclear Power Plant accident; however, higher levels (more than 100 Bq kg -1 ) were still detected in the Fukushima prefecture and neighboring prefectures in Japan 3 years after the Fukushima Daiichi Nuclear Power Plant accident. Spatial radiocesium levels gradually decreased with increasing distance from the Fukushima Daiichi Nuclear Power Plant (Fukushima prefecture). The radiocesium levels facing the Pacific Ocean area were generally higher than those facing the Sea of Japan area. These results suggest that radionuclides from Fukushima Daiichi Nuclear Power Plant are still widely distributed and remain in the natural environment in Northeast Japan.
Optimal allocation in annual plants and its implications for drought response
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Smith, Matthew; Purves, Drew
2015-04-01
The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.
Nuclear Power Plant Technician
ERIC Educational Resources Information Center
Randall, George A.
1975-01-01
The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)
Porto, William F; Irazazabal, Luz; Alves, Eliane S F; Ribeiro, Suzana M; Matos, Carolina O; Pires, Állan S; Fensterseifer, Isabel C M; Miranda, Vivian J; Haney, Evan F; Humblot, Vincent; Torres, Marcelo D T; Hancock, Robert E W; Liao, Luciano M; Ladram, Ali; Lu, Timothy K; de la Fuente-Nunez, Cesar; Franco, Octavio L
2018-04-16
Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-302; NRC-2011-0301] Crystal River Unit 3 Nuclear... the Crystal River Unit 3 Nuclear Generating Plant (CR-3), located in Florida, Citrus County. The... notice (if that document is available in ADAMS) is provided the first time that a document is referenced...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to...
26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...
26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...
26 CFR 1.468A-6 - Disposition of an interest in a nuclear power plant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Disposition of an interest in a nuclear power...-6 Disposition of an interest in a nuclear power plant. (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear decommissioning fund (Fund...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... industry request to extend the rule's compliance date for all operating nuclear power plants, but noted... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... effect. The facility consists of two boiling-water reactors located in Appling County, Georgia. 2.0...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy... significant effect on the quality of the human environment (75 FR 73135, dated November 29, 2010). This...
75 FR 13327 - Tennessee Valley Authority; Browns Ferry Nuclear Plant, Units 1, 2, and 3; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... the rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy... the U.S. Nuclear Regulatory Commission (NRC, the Commission) now or hereafter in effect. The facility...
Data Base Analysis for Perceptions of Emergency Programs.
1984-02-01
greater anxiety re the nuclear issue is possible long term. Concern About Nuclear War The possibility of nuclear war is a salient issue for the general...role for nuclear plants more long term (into the next century). Apparently, the public hopes for improvements in technology to mitigate nuclear hazards...ticular. More than half (54%) of government officials currently believe that management of decommissioned plants is the most important long -term
Carter, J.C.; Armstrong, R.H.; Janicke, M.J.
1963-05-14
A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated onmore » such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.« less
Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Richard Thomas
2008-01-01
In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system.more » Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control include: (1) intelligence to confirm system performance and detect degraded or failed conditions, (2) optimization to minimize stress on SRPS components and efficiently react to operational events without compromising system integrity, (3) robustness to accommodate uncertainties and changing conditions, and (4) flexibility and adaptability to accommodate failures through reconfiguration among available control system elements or adjustment of control system strategies, algorithms, or parameters.« less
Economic Conditions and Factors Affecting New Nuclear Power Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examinemore » the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawn St. Germain; Ronald Farris; Heather Medeman
2013-09-01
This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S.more » will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.« less
The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo
As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission tomore » Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less
Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin
2009-08-01
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
Forecast for nuclear energy: Clear skies or stormy weather?
NASA Astrophysics Data System (ADS)
Ferguson, Charles D.
2018-01-01
During the last decade many people in the nuclear industry were forecasting a renaissance in construction of nuclear power plants, especially in light of the near-zero greenhouse gas emissions of nuclear power and the global need for such cleaner electricity sources. While the accident in March 2011 at the Fukushima Daiichi Nuclear Power Station in Japan resulted in dozens of reactor shutdowns in Japan and reconsideration of new nuclear power plants in several countries, other countries are continuing to build new plants but not at a fast enough rate yet to make a significant further reduction in greenhouse gas emissions. Even before this accident, the prospects for major growth in nuclear power were dim. To explicate the present situation and potential future scenarios for nuclear power, this paper examines the issue of who bears the financial risk especially during the construction phase, the roles of governments in financial interventions such as loan guarantees, tax credits, and prices on greenhouse gas emissions, the effects of regulated versus market-based utility systems, the competition with relatively cheap natural gas, the roles of various governments around the world in determining the use of nuclear power, the interdependent nature of the nuclear industry with companies both competing and cooperating with each other, and the issue of whether small modular reactors or advanced nuclear reactors could result in many more plants being constructed in the United States and worldwide.
The overview of nuclear energy situation in the World and Turkey
NASA Astrophysics Data System (ADS)
Kaplan, Yusuf Alper; Karagöz, Merve; Sayılmaz, Serhat
2017-09-01
The dependence on the energy and its use has increased in every country due to the increasing population and advanced technology. As a result of it, the reserves of fossil fuel have decreased, several energy crises have occurred from time to time and the alternative energy sources have been on the focus. One of these alternative energy sources is nuclear energy. The nuclear power plants, which were built in order to get nuclear energy, have attracted the attention thanks to some disadvantages such as its high cost and emission of radiation while they do not radiate harmful gases towards environment. The nuclear power plants that have already been and are planned to be constructed by a number of countries have become problematic because of the power plant accidents. On one hand, some countries have abandoned the nuclear power plants owing to the accidents mentioned above, on the other hand some other countries have continued to operate the nuclear power plants by claiming the necessity to meet the increasing demand on energy. It is seen that conflicts and problems experienced in the geography in which Turkey is located impacts the energy security of Turkey and it is understood that this situation may have a negative influence on national security of Turkey. Because of all these reasons, actualizing nuclear energy projects are important for Turkey which is dependent in respect of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
The Supreme Court rendered its decision in PG&E in April 1983. The decision involved a challenge by a nuclear utility to a California state moratorium on the construction of new commercial nuclear power plants until the State Energy Resources Conservation and Development Commission could determine that there is a demonstrated and federally approved solution for the permanent disposal of high-level nuclear waste. The moratorium was based not on a state concern with the radiological hazards associated with new nuclear plants but, ostensibly on a state concern with the economics of new nuclear plants. In particular, the state had concluded thatmore » a new nuclear plant, in the absence of a solution for the permanent disposal of the high-level nuclear waste it would generate, would be an uneconomical and uncertain source of electric power. The nuclear utility that challenged the moratorium argued that its prohibition to new nuclear plant construction was in fact based on a state concern with radiation hazards. However, the Court accepted California`s {open_quotes}avowed economic purpose{close_quotes} and declined to second-guess the basis for the moratorium. The Court rendered its decision in Silkwood in January 1984. The decision involved an action brought by the administrator of the estate for a deceased employee of a nuclear fuel facility regulated by the NRC. Brought under Oklahoma state common law of torts, the action was for damages for radiological injuries suffered as a result of alleged plutonium contamination. A jury returned a verdict for the administrator as well as an award of actual and punitive damages.« less
U.S. Nuclear Weapons: Changes in Policy and Force Structure
2008-01-23
Pinellas Plant , in Clearwater, FL; and the Pantex Plant near Amarillo, TX. These facilities were also operated by industrial contractors. Finally, the...These included the Rocky Flats Plant , outside Denver, CO; the Kansas City Plant , near Kansas City, MO; the Mound Plant , near Dayton OH; the...In 1988, DOE closed the nuclear reactors at Hanford and Savannah River, in response to safety concerns. The Rocky Flats Plant , which produced the
Poulet, Axel; Duc, Céline; Voisin, Maxime; Desset, Sophie; Tutois, Sylvie; Vanrobays, Emmanuel; Benoit, Matthias; Evans, David E; Probst, Aline V; Tatout, Christophe
2017-02-01
The linker of nucleoskeleton and cytoskeleton (LINC) complex is an evolutionarily well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data support its function in nuclear morphology and meiosis, its involvement in chromatin organisation has not been studied in plants. Here, 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the model plant Arabidopsis thaliana in which heterochromatin clusters in conspicuous chromatin domains called chromocentres. Chromocentres form a repressive chromatin environment contributing to transcriptional silencing of repeated sequences, a general mechanism needed for genome stability. Quantitative measurements of the 3D position of chromocentres indicate their close proximity to the nuclear periphery but that their position varies with nuclear volume and can be altered in specific mutants affecting the LINC complex. Finally, we propose that the plant LINC complex contributes to proper heterochromatin organisation and positioning at the nuclear periphery, since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences. © 2017. Published by The Company of Biologists Ltd.
Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.
Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan
2008-01-01
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
Japan-U.S. Relations: Issues for Congress
2014-09-24
disasters and meltdowns at the Fukushima Daiichi nuclear power plant. Public trust in the safety of nuclear power collapsed, and a vocal anti- nuclear ...to half a million Japanese were displaced. Damage to several reactors at the Fukushima Dai-ichi nuclear power plant complex led the government to...of Japan’s power generation capacity, and the 2006 “New National Energy Strategy” had set out a goal of significantly increasing Japan’s nuclear power
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0048] Proposed Generic Communication; Regulatory Issue... CFR) Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants,'' to satisfy the... inservice testing programs during the initial 120-month program interval following nuclear power plant...
10 CFR 810.7 - Generally authorized activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determined that the following activities are generally authorized, provided no sensitive nuclear technology... continuing programs, to enhance the operational safety of an existing civilian nuclear power plant in a... off-site population posed by a civilian nuclear power plant in such a country; provided the Department...
10 CFR 810.7 - Generally authorized activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined that the following activities are generally authorized, provided no sensitive nuclear technology... continuing programs, to enhance the operational safety of an existing civilian nuclear power plant in a... off-site population posed by a civilian nuclear power plant in such a country; provided the Department...
75 FR 20868 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.68.2... Water-Cooled Nuclear Power Plants.'' FOR FURTHER INFORMATION CONTACT: Mark P. Orr, Regulatory Guide... Shutdown Capability for Water-Cooled Nuclear Power Plants,'' was issued with a temporary identification as...
Apros-based Kola 1 nuclear power plant compact training simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porkholm, K.; Kontio, H.; Nurmilaukas, P.
1996-11-01
Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. Themore » delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.« less
Exergie /4th revised and enlarged edition/
NASA Astrophysics Data System (ADS)
Baloh, T.; Wittwer, E.
The theoretical concept of exergy is explained and its practical applications are discussed. Equilibrium and thermal equilibrium are reviewed as background, and exergy is considered as a reference point for solid-liquid, liquid-liquid, and liquid-gas systems. Exergetic calculations and their graphic depictions are covered. The concepts of enthalpy and entropy are reviewed in detail, including their applications to gas mixtures, solutions, and isolated substances. The exergy of gas mixtures, solutions, and isolated substances is discussed, including moist air, liquid water in water vapor, dry air, and saturation-limited solutions. Mollier exergy-enthalpy-entropy diagrams are presented for two-component systems, and exergy losses for throttling, isobaric mixing, and heat transfer are addressed. The relationship of exergy to various processes is covered, including chemical processes, combustion, and nuclear reactions. The optimization of evaporation plants through exergy is discussed. Calculative examples are presented for energy production and heating, industrial chemical processes, separation of liquid air, nuclear reactors, and others.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Code of Federal Regulations, 2010 CFR
2010-01-01
... could occur in a nuclear power plant. These sessions shall provide brigade members with experience in... A. Fire protection program. A fire protection program shall be established at each nuclear power... fires that could occur in the plant and in using the types of equipment available in the nuclear power...
Financing Strategies For A Nuclear Fuel Cycle Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Shropshire; Sharon Chandler
2006-07-01
To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due tomore » government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.« less
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K.; Bi, Jun; Liu, Yang
2013-01-01
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public’s attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies. PMID:24248341
Callen, Jessica; Homma, Toshimitsu
2017-06-01
What insights can the accident at the Fukushima Daiichi nuclear power plant provide in the reality of decision making on actions to protect the public during a severe reactor and spent fuel pool emergency? In order to answer this question, and with the goal of limiting the consequences of any future emergencies at a nuclear power plant due to severe conditions, this paper presents the main actions taken in response to the emergency in the form of a timeline. The focus of this paper is those insights concerning the progression of an accident due to severe conditions at a light water reactor nuclear power plant that must be understood in order to protect the public.
NASA Astrophysics Data System (ADS)
Wang, Difeng; Pan, Delu; Li, Ning
2009-07-01
The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.
NASA Astrophysics Data System (ADS)
Sugimoto, M.
2015-12-01
The 2004 Indian Ocean tsunami killed around 220,000 people and startled the world. North of Chennai (Madras), the Indian plant nearly affected by tsunami in 2004. The local residents really did not get any warning in India. "On December 26, the Madras Atomic Power Station looked like a desolate place with no power, no phones, no water, no security arrangement and no hindrance whatsoever for outsiders to enter any part of the plant," said S.P. Udaykumar of SACCER. Nuclear issues hide behind such big tsunami damaged. Few media reported outside India. As for US, San Francisco Chronicle reported scientists had to rethink about nuclear power plants by the 2004 tsunami in 11th July 2005. Few tsunami scientsts did not pay attention to nucler power plants nearly affected by tsunami in US. On the other hand, US government noticed the Indian plant nearly affected in 2004. US Goverment supported nucler disaster management in several countries. As for Japan, Japanese goverment mainly concentrated reconstrucation in affected areas and tsunami early warning system. I worked in Japanese embassy in Jakarta Indonesia at that time. I did not receive the information about the Indian plant nearly affected by tsunami and US supported nucler safety to the other coutries. The 2011 Tohoku earthquake and tsunami damaged society and nuclear power stations. The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in the largest release of radioactive material since the 1986 Chernobyl accident. Why did not Japanese tsunami scientists learn from warning signs from the nuclear plant in India by the 2004 Indian Ocean tsunami to the 2011 Fukushima accident? I would like to clarify the reason few tsunami scientist notice this point in my presentation.
Spiridonov, S I; Karpenko, E I; Sharpan, L A
2013-01-01
Approaches are described towards estimating the consequences of radioactive contamination of ecosystems by nuclear fuel cycle enterprises with the rationale for the optimal specification level for nuclear power plants (NPP) operating in the normal mode. Calculations are made based on the initial data of the IAEA project, INPRO ENV, dealing with the ranking of radionuclides escaping to the environment from the operating NPPs. Influence of various factors on rankings of radionuclides and pathways of public exposure is demon- strated. An important factor is the controlled radionuclide composition of atmospheric NPP releases. It has been found that variation in the dose coefficients for some radionuclides leads to significant changes not only in the ranking results but also in the estimates of total dose burdens. Invariability is shown of the estimation concerning the greatest contribution of the peroral route to the population dose of irradiation in the situation considered. A conclusion was drawn on the need of taking into consideration uncertainties of different factors when comparing effects on the environment from enterprises of conventional and innovative nuclear fuel cycles.
Fighting the Epidemic of Nuclear Plant Leaks.
ERIC Educational Resources Information Center
Udell, Richard A.
1983-01-01
The current epidemic of steam generator tube leaks alone should put to rest the rosy future once envisioned for nuclear power. It is impossible to regulate quality into a nuclear plant; it must be built and designed that way. The economic impact of the leaks is discussed. (RM)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... 2003-18, Supplement 2, ``Use of Nuclear Energy Institute (NEI) 99-01, Methodology for Development of... radiological emergency. Environmental Impacts of the Proposed Action The NRC has completed its environmental... environmental impacts are [[Page 61780
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T. J.
2014-02-01
The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well knownmore » based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.« less
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora
2017-12-01
During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.
10 CFR 50.54 - Conditions of licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...
10 CFR 50.54 - Conditions of licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...
Assuring Structural Integrity in Army Systems
1985-02-28
power plants are* I. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code , Section III - Rules for Construction of Nuclear...Power Plant Components; 2. ASNE Boiler and Pressure Vessel Code , Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components; and 3
Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, L
1985-09-01
An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, togethermore » with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.« less
Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.
Lumba, Shelley; Cutler, Sean; McCourt, Peter
2010-01-01
Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.
Caillaud, M-C; Wirthmueller, L; Fabro, G; Piquerez, S J M; Asai, S; Ishaque, N; Jones, J D G
2012-01-01
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria additional to their more characterized role of suppressing plant defense. Recent studies suggest that effectors may manipulate host transcription or other nuclear regulatory components for the benefit of pathogen development. However, the specific mechanisms by which these effectors promote susceptibility remain unclear. Of two recent screenings, we identified 15 nuclear-localized Hpa effectors (HaRxLs) that interact directly or indirectly with host nuclear components. When stably expressed in planta, nuclear HaRxLs cause diverse developmental phenotypes highlighting that nuclear effectors might interfere with fundamental plant regulatory mechanisms. Here, we report recent advances in understanding how a pathogen can manipulate nuclear processes in order to cause disease.
History of nuclear technology development in Japan
NASA Astrophysics Data System (ADS)
Yamashita, Kiyonobu
2015-04-01
Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.
History of nuclear technology development in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp; General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195
2015-04-29
Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg
2003-01-01
The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.
Cell fusion and nuclear fusion in plants.
Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya
2016-12-01
Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Gofuku, A.
2018-02-01
Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0192; Docket Nos. 50-244 and 72-67; License No. DPR-18; Docket No. 72-67; General License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant; R.E. Ginna Independent Spent Fuel Storage Installation; Order Approving...
26 CFR 1.468A-6T - Disposition of an interest in a nuclear power plant (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Disposition of an interest in a nuclear power... § 1.468A-6T Disposition of an interest in a nuclear power plant (temporary). (a) In general. This section describes the Federal income tax consequences of a transfer of the assets of a nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... recent public examples, including those documented in EA-12-240 and EA-12-230, and the impacts when there... and EA-12-230, and the impacts when there is a loss of integrity and trustworthiness. f. By the later...-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and...
Nuclear Power Now and in the Near Future
NASA Astrophysics Data System (ADS)
Burchill, William
2006-04-01
The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.
Nuclear power plants for mobile applications
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1972-01-01
Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.
[Chernobyl nuclear power plant accident and Tokaimura criticality accident].
Takada, Jun
2012-03-01
It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.
Nuclear Power from Fission Reactors. An Introduction.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
...: Draft Regulatory Guide DG-1237, ``Guidance on Making Changes to Emergency Plans for Nuclear Power Reactors,'' Interim Staff Guidance (ISG) NSIR/DPR-ISG-01, ``Emergency Planning for Nuclear Power Plants... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... TENNESSEE VALLEY AUTHORITY Final Supplemental Environmental Impact Statement, Single Nuclear Unit... Environmental Impact Statement for a Single Nuclear Unit at the Bellefonte Plant Site (final SEIS) on September... the ROD. TVA prepared the final SEIS to update the extensive environmental information and analyses...
77 FR 16543 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
...: Docket Numbers: ER10-2179-007; ER10-2181-007; ER10-2182-007. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description.... Applicants: Pioneer Trail Wind Farm, LLC. Description: Application for Authorization Under Section 203 of the...
78 FR 9903 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
...-2181-016; ER10-2182-016. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in... Wind Power, L.L.C., CR Clearing, LLC, Criterion Power Partners, LLC, Exelon Framingham, LLC, Exelon...
78 FR 70588 - STP Nuclear Operating Company; South Texas Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... efficiency; (8) wind power; (9) solar power; (10) hydroelectric power; (11) ocean wave and current energy... generic environmental impact statement for license renewal of nuclear plants; issuance. SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) has published the final, plant-specific...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
...) solar power; (9) wind power; (10) biomass waste; (11) hydroelectric power; (12) ocean wave and current... Nuclear Plants AGENCY: Nuclear Regulatory Commission. ACTION: Final Supplement 47 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants; issuance. SUMMARY: Notice is hereby given...
77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... LLC reactor coolant equipment for four constructing four plant May 14, 2012 pumps with motors, APR1400... Emirates. XR176 monitoring and plant in Braka. 110060011 control equipment, auxiliary equipment and... NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components...
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
Inomata, Y; Aoyama, M; Tsubono, T; Tsumune, D; Hirose, K
2016-01-01
Optimal interpolation (OI) analysis was used to investigate the oceanic distributions of (134)Cs and (137)Cs released from the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant (FNPP1) accident. From the end of March to early April 2011, extremely high activities were observed in the coastal surface seawater near the FNPP1. The high activities spread to a region near 165°E in the western North Pacific Ocean, with a latitudinal center of 40°N. Atmospheric deposition also caused high activities in the region between 180° and 130°W in the North Pacific Ocean. The inventory of FNPP1-released (134)Cs in the North Pacific Ocean was estimated to be 15.3 ± 2.6 PBq. About half of this activity (8.4 ± 2.6 PBq) was found in the coastal region near the FNPP1. After 6 April 2011, when major direct releases ceased, the FNPP1-released (134)Cs in the coastal region decreased exponentially with an apparent half-time of about 4.2 ± 0.5 days and declined to about 2 ± 0.4 PBq by the middle of May 2011. Taking into account that the (134)Cs/(137)Cs activity ratio was about 1 just after release and was extremely uniform during the first month after the accident, the amount of (137)Cs released by the FNPP1 accident increased the North Pacific inventory of (137)Cs due to bomb testing during the 1950s and early 1960s by 20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo
This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclearmore » industry.« less
Soil vulnerability for cesium transfer.
Vandenhove, Hildegarde; Sweeck, Lieve
2011-07-01
The recent events at the Fukushima Daiichi nuclear power plant in Japan have raised questions about the accumulation of radionuclides in soils and the possible impacts on agriculture surrounding nuclear power plants. This article summarizes the knowledge gained after the nuclear power plant accident in Chernobyl, Ukraine, on how soil parameters influence soil vulnerability for radiocesium bioavailability, discusses some potential agrochemical countermeasures, and presents some predictions of radiocesium crop concentrations for areas affected by the Fukushima accident. Copyright © 2011 SETAC.
10 CFR 50.54 - Conditions of licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... chapter. (a)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...
Economics of nuclear power and climate change mitigation policies.
Bauer, Nico; Brecha, Robert J; Luderer, Gunnar
2012-10-16
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.
Economics of nuclear power and climate change mitigation policies
Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar
2012-01-01
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963
Safety system augmentation at Russian nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.
1996-12-31
This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less
A program for preserving and advancing nuclear power in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1988-05-01
In the USA, utilities are very unlikely to begin ordering any new nuclear plants for use before the year 2000. Too many obstacles currently exist. On the other hand, long-term influences ultimately will force construction of more nuclear units. The problem is whether to do nothing now, and wait until economic forces dictate action, or begin meaningful preparations for the future. Approximately 100 nuclear plants currently are operating in the USA and another dozen will start up within the next few years. Completion of those plants will mark the end of new startups for more than a decade to come.more » Many nuclear facilities have already operated for 10 to 20 years, and in some cases longer. While the average operating lifetime of nuclear stations has yet to be determined, 30 to 50 years is usually assumed. Therefore, as plants age, decommissioning will be necessary and the number of operating units will steadily decline. Nuclear energy production will peak (after new startups) at approximately 20 percent of total national electricity production and, as decommissioning accelerates, will decline towards zero during the first few decades of the next century. All types of power plants age and must eventually be replaced. Furthermore, even taking into account modest growth and ever improving conservation, increasing demand will require the building of several hundred new electrical generating facilities during the next several decades. What types of generating plants will be built is not clear. Will coal satisfy all our needs? Most unlikely. Oil? Out of the question. Natural gas? A share. Hydro? Few new dams will be built. Passive energies, such as solar? A minor fraction. Do without nuclear power? Most unlikely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jun-hyung
University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less
Global radioxenon emission inventory based on nuclear power reactor reports.
Kalinowski, Martin B; Tuma, Matthias P
2009-01-01
Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.
Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-10-01
This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2more » and 3, the staff safety evaluations of those systems are included herein. 85 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, J. R.
The risks of nuclear power and radiation are described to place them in perspective with other potential hazards faced by the public on a day-to-day basis in our complex industrial society. Twenty articles on this general topic that have appeared in Nuclear Safety are reprinted, since they collectively form a valuable reference source. Topics covered include the effects of radiation, riskbenefit concepts, radiation risks relative to other risks, nuclear plant risks relative to fossil plant risks, licensing requirements, nuclear insurance, nuclear industry safety record, and public attitudes. (auth)
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
After Fukushima: managing the consequences of a radiological release.
Fitzgerald, Joe; Wollner, Samuel B; Adalja, Amesh A; Morhard, Ryan; Cicero, Anita; Inglesby, Thomas V
2012-06-01
Even amidst the devastation following the earthquake and tsunami in Japan that killed more than 20,000 people, it was the accident at the Fukushima Daiichi nuclear power plant that led the country's prime minister, Naoto Kan, to fear for "the very existence of the Japanese nation." While accidents that result in mass radiological releases have been rare throughout the operating histories of existing nuclear power plants, the growing number of plants worldwide increases the likelihood that such releases will occur again in the future. Nuclear power is an important source of energy in the U.S. and will be for the foreseeable future. Accidents far smaller in scale than the one in Fukushima could have major societal consequences. Given the extensive, ongoing Nuclear Regulatory Commission (NRC) and industry assessment of nuclear power plant safety and preparedness issues, the Center for Biosecurity of UPMC focused on offsite policies and plans intended to reduce radiation exposure to the public in the aftermath of an accident. This report provides an assessment of Japan's efforts at nuclear consequence management; identifies concerns with current U.S. policies and practices for "outside the fence" management of such an event in the U.S.; and makes recommendations for steps that can be taken to strengthen U.S. government, industry, and community response to large-scale accidents at nuclear power plants.
NASA Astrophysics Data System (ADS)
Lavrinenko, S. V.; Polikarpov, P. I.
2017-11-01
The nuclear industry is one of the most important and high-tech spheres of human activity in Russia. The main cause of accidents in the nuclear industry is the human factor. In this connection, the need to constantly analyze the system of training of specialists and its optimization in order to improve safety at nuclear industry enterprises. To do this, you must analyze the international experience in the field of training in the field of nuclear energy leading countries. Based on the analysis criteria have been formulated to optimize the educational process of training specialists for the nuclear power industry and test their effectiveness. The most effective and promising is the introduction of modern information technologies of training of students, such as real-time simulators, electronic educational resources, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproles, A.
1993-03-01
During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Alsomore » traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.« less
75 FR 880 - Sunshine Act; Notice of Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... County Nuclear Power Plant, Units 1 and 2), LBP-09-10 (Tentative) e. Detroit Edison Co. (Fermi Power Plant Independent Spent Fuel Storage Installation), LBP-09-20 (Aug. 21, 2009), Docket No. 72-72-EA..., Petition for Review of LBP-09-7 (Tentative) g. Tennessee Valley Authority (Bellefonte Nuclear Power Plant...
77 FR 66875 - Brunswick Steam Electric Plant, Units 1 and 2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-325 and 50-324; NRC-2012-0269] Brunswick Steam Electric Plant, Units 1 and 2 AGENCY: Nuclear Regulatory Commission. ACTION: Receipt of request for action... Electric Plant, Units 1 and 2 (Brunswick). The petition is included in the SUPPLEMENTARY INFORMATION...
Japan-U.S. Relations: Issues for Congress
2013-02-15
million Japanese were displaced. Damage to several reactors at the Fukushima Dai-ichi nuclear power plant complex led the government to declare a state of...the March 11, 2011, natural disasters and meltdowns at the Fukushima Daiichi nuclear power plant. Public trust in the safety of nuclear power...aircraft’s safety record may be connected to widespread distrust of the government stemming from the nuclear disaster at the Fukushima Daichi
Biomedical Lessons from the Chernobyl Nuclear Power Plant Accident
1990-10-01
Lessons From the Lt Col Doris Browne, MC Chernobyl Nuclear Power Plant Accident The Chernobyl nuclear accident afforded the treating physicians a...radiation accident posited on the skin and mucous mem- A Lt Col Dori Browne, MC, is Chief, Medicaloccurred at the Chernobyl nuclear branes from the molten...Conclusion ulcers of oral mucosa, which required irradiation. He also had persistent The consequences ot the Chernobyl sterile saline irrigation and
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. N Appendix N to Par...
76 FR 64960 - Federal Radiological Preparedness Coordinating Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Atomic Energy Agency Notification Following a Domestic Nuclear Power Plant Incident, and (5) Senior Official Exercise/ Principal Level Exercise SOE/PLE 3-10 Nuclear Power Plant Communications Update. The...
... serious harm. However, radiation emergencies, like a nuclear power plant accident, may expose you to larger, more ... did happen to women in the Chernobyl nuclear power plant accident in the Ukraine in 1986. If ...
New insights into the dynamics of plant cell nuclei and chromosomes.
Matsunaga, Sachihiro; Katagiri, Yohei; Nagashima, Yoshinobu; Sugiyama, Tomoya; Hasegawa, Junko; Hayashi, Kohma; Sakamoto, Takuya
2013-01-01
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics. © 2013, Elsevier Inc. All Rights Reserved.
26 CFR 1.468A-2T - Treatment of electing taxpayer (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... plant for the special transfer. A payment may not be made (or deemed made) to a nuclear decommissioning... construction of the nuclear power plant to which the nuclear decommissioning fund relates has commenced. (2) A.... (d) Treatment of distributions—(1) In general. Except as otherwise provided in paragraph (d)(2) of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1208 is proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software... revised regulatory guide (RG), revision 1 of RG 1.171, ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses American National Standards...
ERIC Educational Resources Information Center
1979
At the end of 1978, there were approximately 230 nuclear-fueled electric generating plants around the world; 72 of these were in the United States. Each plant requires an operations-and-maintenance workforce of 92 people, and attrition occurs at a rate of 8% per year. Requirements for a nuclear taskforce and job training, in view of current…
Questions and Answers About Nuclear Power Plants.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…
ERIC Educational Resources Information Center
Spada, Hans; And Others
1977-01-01
As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)
77 FR 73027 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
...-2179-013; ER10-2181-013; ER10-2182-013. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC. Description: Supplement to July 6, 2012...: Southwest Power Pool, Inc. Description: 2501 Waverly Wind Farm, LLC GIA to be effective 11/14/ 2012. Filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... generically extend the rule's compliance date for all operating nuclear power plants, but noted that the..., Nuclear Energy Institute). The licensee's request for an exemption is, therefore, consistent with the... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of a General Electric...
76 FR 24062 - Florida Power and Light Company, St. Lucie, Unit Nos. 1 and 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... (d) is again required. Regulatory Guide 5.73, Fatigue Management for Nuclear Power Plant Personnel, endorses the Nuclear Energy Institute (NEI) report NEI 06- 11, revision 1, ``Managing Personnel Fatigue at Nuclear Power Plants,'' with certain clarifications, additions and exceptions. The NRC staff has endorsed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... nuclear power plants, but noted that the Commission's regulations provide mechanisms for individual... from R. W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute). The licensee's request for an... or hereafter in effect. The facility consists of two pressurized-water reactors located in Goodhue...
75 FR 16201 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... power plants, but noted that the Commission's regulations provide mechanisms for individual licensees.... Borchardt (NRC) to M. S. Fertel (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for an.... Nuclear Regulatory Commission (NRC, the Commission) now or hereafter in effect. The facility consists of...
Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.
ERIC Educational Resources Information Center
Pollock, Cynthia
The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…
Nuclear power program and technology development in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Byung-Oke
1994-12-31
KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t asmore » easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.« less
NUA Activities at the Plant Nuclear Pore
Xu, Xianfeng Morgan; Rose, Annkatrin
2007-01-01
NUA (Nuclear Pore Anchor), the Arabidopsis homolog of Tpr (Translocated Promoter Region), is one of the few nuclear pore proteins conserved between animals, yeast and plants. In the May issue of Plant Cell, we report that null mutants of NUA show a pleiotropic, early flowering phenotype accompanied by changes in SUMo and RNA homeostasis. We have shown that the early flowering phenotype is caused by changed abundances of flowering time regulators involved in several pathways. Arabidopsis nua mutants phenocopy mutants lacking the ESD4 (EARlY IN ShoRT DAYS 4) SUMo protease, similar to mutants of their respective yeast homologs. however, in contrast to the comparable yeast mutants, ESD4 does not appear to be delocalized from the nuclear pore in nua mutants. Taken together, our experimental data suggests a role for NUA in controlling mRNA export from the nucleus as well as SUMo protease activity at the nuclear pore, comparable but not identical to its homologs in other eukaryotes. Furthermore, characterization of NUA illustrates a potential link at the nuclear pore between SUMo modification, RNA homeostasis and plant developmental control. PMID:19704557
What Are the Security Threats to Further Development of Nuclear Power Plants in the U.S.
2010-03-01
as-a-secure- fuel -alternative &catid=94:0409content&itemid=342. (accessed May 2009). Bush, President George W. “Expand the Circle of Development by...SECURITY THREATS TO FURTHER DEVELOPMENT OF NUCLEAR POWER PLANTS IN THE U.S.? by Tammie L. Nottestad March 2010 Thesis Advisor: Robert Looney...Master’s Thesis 4. TITLE AND SUBTITLE What Are the Security Threats to Further Development of Nuclear Power Plants in the U.S.? 6. AUTHOR(S
Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.
Formulating a Strategic Response Plan for a High-Risk Seismic Event in New York City
2013-03-01
65 Michael Daly, “Regulators Say Indian Point Nuclear Plant is Safe, but can Chernobyl -on-the- Hudson Happen?” Dailynews.com (March 15, 2011), http...www.nydailynews.com/new-york/regulators- indian-point-nuclear-plant-safe- chernobyl -on-the-hudson-happen-article-1.121117. 66 Ibid. 67 Ibid. 68...Michael Daly, “Regulators Say Indian Point Nuclear Plant is Safe, but can Chernobyl -on-the- Hudson Happen?” Dailynews.com (March 15, 2011), http
New research discovery may mean less radioactive contamination, safer nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, S.
Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.
PV integration into a CSP plant
NASA Astrophysics Data System (ADS)
Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos
2017-06-01
This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.
[Organization and delivery of therapeutic care in modern local wars and armed conflicts].
Khalimov, Iu Sh; Tkachuk, N A; Zhekalov, A N
2014-08-01
The system of providing therapeutic care within a united system of staged treatment of wounded and sick and evacuation was established during the Great Patriotic War of 1941-1945 and helped to return 90,6% of casualties to duty. In terms of local wars and armed conflicts the most important task of military field therapy is to improve the provision of therapeutic support through regional and territorial principles, echeloning of forces and facilities, optimization of allocation of medical institutions in accordance with their capabilities, evacuation routes, etc. The organization of therapeutic assistance should be guided primarily by the size and structure of sanitary losses. In modern local wars cannot exclude the occurrence of massive sanitary losses with limited use of weapons of mass destruction, as a result of failure (with a conventional weapon or as a result of sabotage) of nuclear power plants, chemical plants, and transport containers containing toxic chemicals.
Decision-theoretic methodology for reliability and risk allocation in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.
1985-01-01
This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Kozhevnikov, A. I.
2017-10-01
In recent years in most power systems all over the world, a trend towards the growing nonuniformity of energy consumption and generation schedules has been observed. The increase in the portion of renewable energy sources is one of the important challenges for many countries. The ill-predictable character of such energy sources necessitates a search for practical solutions. Presently, the most efficient method for compensating for nonuniform generation of the electric power by the renewable energy sources—predominantly by the wind and solar energy—is generation of power at conventional fossil-fuel-fired power stations. In Russia, this problem is caused by the increasing portion in the generating capacity structure of the nuclear power stations, which are most efficient when operating under basic conditions. Introduction of hydropower and pumped storage hydroelectric power plants and other energy-storage technologies does not cover the demand for load-following power capacities. Owing to a simple design, low construction costs, and a sufficiently high economic efficiency, gas turbine plants (GTPs) prove to be the most suitable for covering the nonuniform electric-demand schedules. However, when the gas turbines are operated under varying duty conditions, the lifetime of the primary thermostressed components is considerably reduced and, consequently, the repair costs increase. A method is proposed for determination of the total operating costs considering the deterioration of the gas turbine equipment under varying duty and start-stop conditions. A methodology for optimization of the loading modes for the gas turbine equipment is developed. The consideration of the lifetime component allows varying the optimal operating conditions and, in some cases, rejecting short-time stops of the gas turbine plants. The calculations performed in a wide range of varying fuel prices and capital investments per gas turbine equipment unit show that the economic effectiveness can be increased by 5-15% by varying the operating conditions and switching to the optimal operating modes. Consequently, irrespective of the fuel price, the application of the proposed method results in selection of the most beneficial operating conditions. Consideration of the lifetime expenditure included in the optimization criterion enables enhancement of the operating efficiency.
The trend of digital control system design for nuclear power plants in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S. H.; Jung, H. Y.; Yang, C. Y.
2006-07-01
Currently there are 20 nuclear power plants (NPPs) in operation, and 6 more units are under construction in Korea. The control systems of those NPPs have also been developed together with the technology advancement. Control systems started with On-Off control using the relay logic, had been evolved into Solid-State logic using TTL ICs, and applied with the micro-processors since the Yonggwang NPP Units 3 and 4 which started its construction in 1989. Multiplexers are also installed at the local plant areas to collect field input and to send output signals while communicating with the controllers located in the system cabinetsmore » near the main control room in order to reduce the field wiring cables. The design of the digital control system technology for the NPPs in Korea has been optimized to maximize the operability as well as the safety through the design, construction, start-up and operation experiences. Both Shin-Kori Units 1 and 2 and Shin-Wolsong Units 1 and 2 NPP projects under construction are being progressed at the same time. Digital Plant Control Systems of these projects have adopted multi-loop controllers, redundant loop configuration, and soft control system for the radwaste system. Programmable Logic Controller (PLC) and Distributed Control System (DCS) are applied with soft control system in Shin-Kori Units 3 and 4. This paper describes the evolvement of control system at the NPPs in Korea and the experience and design improvement through the observation of the latest failure of the digital control system. In addition, design concept and its trend of the digital control system being applied to the NPP in Korea are introduced. (authors)« less
Terrorism Risk Modeling for Intelligence Analysis and Infrastructure Protection
2007-01-01
comparatively high risk of CBRN attacks. Estimates of sabotage risk are highly dependent on proximity of nuclear power plants , chemical plants , or oil...and casinos, airports, nuclear power plants 3 Military, train and subway stations, stadiums, bridges and tunnels 4 Industrial facilities, oil and...airspace zones 8 Power plants , dams, railway networks levels. Collecting and incorporating such data for specific localities or industry sectors would
Peach Bottom and Vermont Yankee Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governmentsmore » provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.« less
Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.; Rowan, W.J.
1994-06-27
Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.
A Method of Trajectory Design for Manned Asteroids Exploration
NASA Astrophysics Data System (ADS)
Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.
2014-11-01
A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.
Design and implementation of a simple nuclear power plant simulator
NASA Astrophysics Data System (ADS)
Miller, William H.
1983-02-01
A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
2014-06-01
had reached over 500,000. Another important aspect of this disaster was the damage sustained by several Fukushima Daiichi Nuclear plant reactors.3...The damage, resulting from the constant battering of tsunami waves, affected the cooling systems of the nuclear plant and resulted in several ... Nuclear Regulatory Commission & DoE nuclear expertise to help with the emerging Fukushima crisis. All branches of the US armed forces actively
JPRS Report, Proliferation Issues
1992-05-27
6 MOROCCO Berrada on Proposed Nuclear Power Plant [ MAROC SOIR 22 Apr] 6 JPRS-TND-92-016 27 May 1992 2 CENTRAL EURASIA Proposals on...Proposed Nuclear Power Plant 92AF0789Z Casablanca MAROC SOIR in French 22 Apr 92 p 7 [Interview with Mekki Berrada Abdelhamid, nuclear engi...questions about the use of nuclear energy in our country, its growth, and the laws that regulate it. [ MAROC SOIR] Why was Sidi Boulbra chosen as
The U. S. nuclear industry; A changing complexion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpette, G
This article addresses the changes which have occurred in the U.S. nuclear industry as a response to the decline in the construction of new plants. The author focuses on the segments of the industry which chiefly design and produce nuclear power plants, the architect-engineers and the suppliers, and how they have become more service oriented in response to the construction decline. The movement toward diversification to non-nuclear industries is also discussed.
Regulatory Guidance for Lightning Protection in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Wilgen, John B; Ewing, Paul D
2006-01-01
Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less
Regulatory guidance for lightning protection in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.
2006-07-01
Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less
Systems definition space based power conversion systems: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.
SETS. Set Equation Transformation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, R.B.
1992-01-13
SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less
Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant
NASA Astrophysics Data System (ADS)
Ferguson, Thomas A.; Lu, Lixuan
2017-09-01
The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.
The Fukushima Nuclear Event and its Implications for Nuclear Power
NASA Astrophysics Data System (ADS)
Golay, Michael
2011-11-01
The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Reexamination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely; particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... environmentally unacceptable conditions. Following the events at the Fukushima (Japan) Daiichi Nuclear Power Plant... the Fukushima accident is unlikely to occur at any TVA plant. Nonetheless, the effort has resulted in... the Fukushima Dai-ichi Accident, concluded that continued operation and continued licensing activities...
76 FR 40943 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
..., Revision 3, ``Criteria for Use of Computers in Safety Systems of Nuclear Power Plants.'' FOR FURTHER..., ``Criteria for Use of Computers in Safety Systems of Nuclear Power Plants,'' was issued with a temporary... Fuel Reprocessing Plants,'' to 10 CFR part 50 with regard to the use of computers in safety systems of...
Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard-design nuclear power plants. The main objective of the study was to compare the dispersion in the wakes of the plants with that in a simulated atmospheric bound...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beversdorf, W.D.; Erickson, L.R.; Grant, I.
An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerancemore » to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.« less
NASA Astrophysics Data System (ADS)
Goldberg, Edward Michael
Public risk from unsafe nuclear power plant operations increases when plant workers are reluctant to raise issues and concerns. The effect of leader communication style on the safety-conscious work environment (SCWE) at domestic nuclear power plants was evaluated using a descriptive quantitative research study. A sample of 379 plant employees was surveyed to determine leader communication style elements that foster SCWE. The results reveal that leader communication style significantly affects a safety-conscious work environment. Specific attributes such as wit, articulation, self-disclosure, and social composure, confirmation, and experience, were proven to directly affect worker's likelihood to raise issues and concerns. The direct effect of leader, communication style on safe plant operations and the communication actions leaders can take to improve the safety of those operations is discussed.
Nuclear Power Plant Simulation Game.
ERIC Educational Resources Information Center
Weiss, Fran
1979-01-01
Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)
Mortality among workers with chronic radiation sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.
1996-07-01
This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, K.; Paramonov, D.
2002-07-01
IRIS (International Reactor Innovative and Secure) is a small to medium advanced light water cooled modular reactor being developed by an international consortium led by Westinghouse/BNFL. This reactor design is specifically aimed at utilities looking to install new (or replacement) nuclear capacity to match market demands, or at developing countries for their distributed power needs. To determine the optimal configuration for IRIS, analysis was undertaken to establish Generation Costs ($/MWh) and Internal Rate of Return (IRR %) to the Utility at alternative power ratings. This was then combined with global market projections for electricity demand out to 2030, segmented intomore » key geographical regions. Finally this information is brought together to form insights, conclusions and recommendations regarding the optimal design. The resultant analysis reveals a single module sized at 335 MWe, with a construction period of 3 years and a 60-year plant life. Individual modules can be installed in a staggered fashion (3 equivalent to 1005 MWe) or built in pairs (2 sets of twin units' equivalent to 1340 MWe). Uncertainty in Market Clearing Price for electricity, Annual Operating Costs and Construction Costs primarily influence lifetime Net Present Values (NPV) and hence IRR % for Utilities. Generation Costs in addition are also influenced by Fuel Costs, Plant Output, Plant Availability and Plant Capacity Factor. Therefore for a site based on 3 single modules, located in North America, Generations Costs of 28.5 $/MWh are required to achieve an IRR of 20%, a level which enables IRIS to compete with all other forms of electricity production. Plant size is critical to commercial success. Sustained (lifetime) high factors for Plant Output, Availability and Capacity Factor are required to achieve a competitive advantage. Modularity offers Utilities the option to match their investments with market conditions, adding additional capacity as and when the circumstances are right. Construction schedule needs to be controlled. There is a clear trade-off between reducing financing charges and optimising revenue streams. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... Rocks for Engineering Analysis and Design of Nuclear Power Plants.'' In this exemption request, the... the design of the wall. Hence, the staff concludes that, the resulting static and dynamic earth pressures will be bounded by the lateral earth pressures used in design. Bearing Capacity The applicant...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... Comanche Peak Nuclear Power Plant Units 3 and 4 Notice is hereby given that the U.S. Nuclear Regulatory... Combined Licenses (COLs) for Comanche Peak Nuclear Power Plant Units 3 and 4: Final Report.'' The site comprises approximately 7,950 acres in Hood and Somervell Counties, Texas on the [[Page 29279
Cows, Sirens, Iodine, and Public Education about the Risks of Nuclear Power Plants.
ERIC Educational Resources Information Center
Rosener, Judy B.; Russell, Sallie C.
1987-01-01
Discusses some of the activities of the California Task Force on Nuclear Emergency Response. Raises some issues that some feel should be addressed in the task force's report to the state legislature. Points out the need for further involvement by citizens and scientists in dealing with nuclear power plant safety. (TW)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos.: 50-445 and 50-446; License Nos.: NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and 2; Order Approving the Proposed Internal Restructuring and Indirect Transfer of License...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... generically extend the rule's compliance date for all operating nuclear power plants, but noted that the..., Nuclear Energy Institute). The licensee's request for an exemption is therefore consistent with the... of this exemption will not have a significant effect on the quality of the human environment (75 FR...
75 FR 12314 - Tennessee Valley Authority: Watts Bar Nuclear Plant, Units 1 and 2 Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... the rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy... exemption will not have a significant effect on the quality of the human environment (75 FR 3945, dated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of one pressurized-water...
Sudbrock, F; Schomäcker, K; Drzezga, A
2017-01-01
For planned and ongoing storage of liquid radioactive waste in a designated plant for a nuclear medicine therapy ward (decontamination system/decay system), detailed knowledge of basic parameters such as the amount of radioactivity and the necessary decay time in the plant is required. The design of the plant at the Department of Nuclear Medicine of the University of Cologne, built in 2001, was based on assumptions about the individual discharge of activity from patients, which we can now retrospectively validate. The decontamination factor of the plant is at present in the order of 10 -9 for 131 I. The annual discharges have been continuously reduced over the period of operation and are now in the region of a few kilobecquerels. This work emphasizes the high efficacy of the decontamination plant to reduce the amount of radioactivity released from the nuclear medicine ward into the environment to almost negligible levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Oxstrand, Johanna H.; Le Blanc, Katya L.
The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activitymore » is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.« less
Plant maintenance and plant life extension issue, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Spent fuel: myths and facts, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; Critical pipe replacement procedure, by Geoff Gilmore, Climax Portable Machine Tools Inc.; Improving maintenance performance, by Larry Meyer and Joe Giuffre, DC Cook Nuclear Plant, American Electric Power; Equipment deficiency intolerance index, by Douglas F. Helms, Tennessee Valley Authority; Plant profile: I and C modernization at Dukovany, by Josef Rosol, CEZ Dukovany NPP, Czech Republic; and, Report: new plant activities.
1984-10-01
SAFEGUARDS AT SIMILAR FACILTTIES ASEA -ATOM LEU FUEL FABRICATION PLANT IN VASTERAS, SWEDEN..................B-1 APPENDIX C - EFFECTS OF NONMEASUREMENT ERRORS...second visit was to the ASEA -ATOM’s fuel fabrication plant in Vasteras, Sweden. The safeguards specialists for those plants were interviewed by R...Facilities, ASEA -ATOM LEU Fuel Fabrication Plant in Vasteras, Sweden, by V. Andersson of ASEA -ATOM, Vasteras, Sweden and R. Nilson of Exxon Nuclear
The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.
Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S
2016-06-03
The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cyber security evaluation of II&C technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken
The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less
Computer program for afterheat temperature distribution for mobile nuclear power plant
NASA Technical Reports Server (NTRS)
Parker, W. G.; Vanbibber, L. E.
1972-01-01
ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.
Public perception of the nuclear area in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imeida, R.A. de; Lourdes Moreira, M. de
2013-07-01
In Brazil electricity production is proving increasingly important, the Brazilian government has recently launched the National Energy Plan, PNE-2030 which aims, among other objectives, to conclude construction of the Angra 3 plant and to deploy new nuclear power plants in the Northeast region. The Brazilian government wants to assess how the public has perceived its energy policy and what the public thinks about the nuclear issue. A public opinion survey was performed and sampling resulted in 127 respondents who were stratified by gender, age and educational level. The survey results show that although most respondents have post-graduate degrees, 64.6% aremore » not aware of, or had never heard of PNE-2030. While 72 respondents consider nuclear energy as an alternative source of clean energy, 84 respondents did not know where the next Brazilian nuclear power plant will be built. The nuclear regulator, CNEN, is seen by 45.7% of respondents as the body that has most credibility to talk about the safety of nuclear power plants and the media most used to obtain information about the nuclear area were newspapers and discussion forums, with 52 and 50 votes respectively. These results prove the need to implement communication plans with clear and concise goals for different segments of society, since the degree of understanding differs within each segment.« less
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
Greenberg, Michael R
2009-09-01
Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.
Economic optimization software applied to JFK airport heating and cooling plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, R.R.; McCoy, L.
This paper describes the on-line economic optimization routine developed by Enter Software, Inc. for application at the heating and cooling plant for the JFK International Airport near New York City. The objective of the economic optimization is to find the optimum plant configuration (which gas turbines to run, power levels of each gas turbine, duct firing levels, which auxiliary water heaters to run, which electric chillers to run, and which absorption chillers to run) which produces maximum net income at the plant as plant loads and the prices vary. The routines also include a planner which runs a series ofmore » optimizations over multiple plant configurations to simulate the varying plant operating conditions for the purpose of predicting the overall plant results over a period of time.« less
What becomes of nuclear risk assessment in light of radiation hormesis?
Cuttler, Jerry M
2006-08-25
A nuclear probabilistic risk or safety assessment (PRA or PSA) is a scientific calculation that uses assumptions and models to determine the likelihood of plant or fuel repository failures and the corresponding releases of radioactivity. Estimated radiation doses to the surrounding population are linked inappropriately to risks of cancer death and congenital malformations. Even though PRAs use very pessimistic assumptions, they demonstrate that nuclear power plants and fuel repositories are very safe compared with the health risks of other generating options or other risks that people readily accept. Because of the frightening negative images and the exaggerated safety and health concerns that are communicated, many people judge nuclear risks to be unacceptable and do not favour nuclear plants. Large-scale tests and experience with nuclear accidents demonstrate that even severe accidents expose the public to only low doses of radiation, and a century of research has demonstrated that such exposures are beneficial to health. A scientific basis for this phenomenon now exists. PRAs are valuable tools for improving plant designs, but if nuclear power is to play a significant role in meeting future energy needs, we must communicate its many real benefits and dispel the negative images formed by unscientific extrapolations of harmful effects at high doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth; Oxstrand, Johanna
The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritterbusch, Stanley; Golay, Michael; Duran, Felicia
2003-01-29
OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.
NASA Astrophysics Data System (ADS)
Trifonenkov, A. V.; Trifonenkov, V. P.
2017-01-01
This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... of 10 CFR 2.347 and 2.348 in their communications with Dr. Cao. It is so ordered. Dated at Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL; ASLBP No. 09-879-04-COL-BD01] Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...
NASA Astrophysics Data System (ADS)
Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László
2015-04-01
Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic-tree procedure. Earlier studies have shown that the potentially liquefiable layer at Paks Nuclear Power Plant is situated in relatively large depth. Therefore the applicability and adequacy of the methods at high overburden pressure is important. In case of existing facilities, the geotechnical data gained before construction aren't sufficient for the comprehensive liquefaction analysis. Performance of new geotechnical survey is limited. Consequently, the availability of the data has to be accounted while selection the analysis methods. Considerations have to be made for dealing with aleatory uncertainty related to the knowledge of the soil conditions. It is shown in the paper, a careful comparison and analysis of the results obtained by different methodologies provides the basis of the selection of practicable methods for the safety analysis of nuclear power plant for beyond design basis liquefaction hazard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi, Nima; McDaniel, Patrick; Vorobieff, Peter
The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typicalmore » 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.« less
Instrumentation and control upgrade plan for Browns Ferry nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belew, M.R.; Langley, D.T.; Torok, R.C.
1992-01-01
A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which systemmore » upgrades will be selected and implemented.« less
Radiological impact of airborne effluents of coal and nuclear plants.
McBride, J P; Moore, R E; Witherspoon, J P; Blanco, R E
1978-12-08
Radiation doses from airborne effluents of model coal-fired and nuclear power plants (1000 megawatts electric) are compared. Assuming a 1 percent ash release to the atmosphere (Environmental Protection Agency regulation) and 1 part per million of uranium and 2 parts per million of thorium in the coal (approximately the U.S. average), population doses from the coal plant are typically higher than those from pressurized-water or boiling-water reactors that meet government regulations. Higher radionuclide contents and ash releases are common and would result in increased doses from the coal plant. The study does not assess the impact of non-radiological pollutants or the total radiological impacts of a coal versus a nuclear economy.
Nuclear energy: current situation and prospects to 2020.
Ion, Sue
2007-04-15
For close to half a century nuclear fission has been providing reliable supplies of electricity to the UK, with virtually no emissions of carbon dioxide. Over that period, the UK nuclear industry has avoided the emission of over one and a half billion tonnes of CO2. Yet no nuclear plant has been built in the UK for over two decades even though many of the stations in our current fleet are now within a decade or so of the end of their lifetime. Without new plants being ordered soon, the UK's nuclear capacity will decline dramatically, from 23% today to 3% post-2020--just as considerations of supply security and climate change are becoming increasingly important. Elsewhere in the world, many countries such as China, India, Japan, South Korea, Finland and France are building new stations. Other countries such as the USA, South Africa, and some nations that currently do not have nuclear stations (such as Indonesia and Poland) are making preparations for future nuclear stations. Globally capacity factors for nuclear plants are higher than they have ever been, averaging around 85% and with the best stations achieving well over 90%. Lifetime can be 60 years. That the economics of such stations compete well with other technologies is well founded and easily verifiable--especially in the face of rising fossil fuel prices and the pricing in of costs for CO2 emissions--both of which stand to improve the economics of nuclear energy still further. Waste volumes arising from modern plants are just a fraction of those of some earlier stations, and the technologies are in place to deal with them safely and effectively. Following recent reviews and international developments, there is growing confidence that internationally available competitive designs of nuclear plant will provide part of the solution to the UK's long-term energy needs.
The American nuclear construction craftsmen: Will we be ready to build again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravo, R.
1990-01-01
The present state of nuclear plant maintenance and operations support reflects sexual, ethnic, and radical integration; continued educational advances; some computer literacy; mixed trades in maintenance; detailed training for maintenance and operations work in the operating plant; plant safety awareness and respect; need for top-quality, take the time to do it right mentality; and planning. With no new nuclear construction, what will be the specific talents, focus, and contributions that the craftsmen can be expected to bring to the project To be prepared to successfully manage the next generation of nuclear plant construction, the industry must be acutely aware ofmore » the needs of the labor pool. To be aware of the needs requires an intimate knowledge of the present state of the craft talent, the changed expectations of their contributions, and the effects of new technologies, materials, methods, and individuals that will be used to design and build.« less
Reclaiming Our Lives in the Wake of a Nuclear Plant Accident.
Ando, R
2016-04-01
Ryoko Ando lives and works in Iwaki-shi, which is located in the coastal area of Fukushima Prefecture. On 11 March 2011, Iwaki was hit by the Great East Japan Earthquake and tsunami. Then the nuclear plant accident at Fukushima No. 1 nuclear power plant, also located in the coastal area of Fukushima Prefecture, added to the woes of Iwaki residents. Although Iwaki-shi is outside of the ‘restricted area’ set up by the government in the 20 km radius around the nuclear power plant, some municipalities in Iwaki-shi lie within the 30 km radius zone. The residents of Iwaki were naturally concerned about the effects of radioactive contamination. On top of these, they had to confront a wide range of issues, including confusion and miscommunication, reputation risk and infrastructural constraints due to the influx of residents from the ‘restricted area’.
Nuclear power generation and fuel cycle report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less
NASA Astrophysics Data System (ADS)
Bertch, Timothy Creston
1998-12-01
Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release with a submerged commercial nuclear power plant. The two box models predict the most of the radio-ecological impact occurs during the first eight days after release. The most significant risk to humans is from consumption of biota. The reduction in impact to humans from a large radioactive release makes the concept worthy of further study.
Work-a-day world of NPRDS: what makes it tick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Nuclear Plant Reliability Data System (NPRDS) is a computer-based data bank of reliability information on safety-related nuclear-power-plant systems and components. Until January 1982, the system was administered by the American Nuclear Society 58.20 Subcommittee. The data base was maintained by Southwest Research Institute in San Antonio, Texas. In October 1982, it was decided that the Institute of Nuclear Power Operations (INPO) would maintain the data base on its own computer. The transition is currently in progress.
Emerging needs for mobile nuclear powerplants
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1972-01-01
Incentives for broadening the present role of civilian nuclear power to include mobile nuclear power plants that are compact, lightweight, and safe are examined. Specifically discussed is the growing importance of: (1) a new international cargo transportation capability, and (2) the capability for development of resources in previously remote regions of the earth including the oceans and the Arctic. This report surveys present and potential systems (vehicles, remote stations, and machines) that would both provide these capabilities and require enough power to justify using mobile nuclear reactor power plants.
Mobile robotics application in the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.L.; White, J.R.
1995-03-01
Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Somemore » of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.« less
Lessons from Fukushima for Improving the Safety of Nuclear Reactors
NASA Astrophysics Data System (ADS)
Lyman, Edwin
2012-02-01
The March 2011 accident at the Fukushima Daiichi nuclear power plant has revealed serious vulnerabilities in the design, operation and regulation of nuclear power plants. While some aspects of the accident were plant- and site-specific, others have implications that are broadly applicable to the current generation of nuclear plants in operation around the world. Although many of the details of the accident progression and public health consequences are still unclear, there are a number of lessons that can already be drawn. The accident demonstrated the need at nuclear plants for robust, highly reliable backup power sources capable of functioning for many days in the event of a complete loss of primary off-site and on-site electrical power. It highlighted the importance of detailed planning for severe accident management that realistically evaluates the capabilities of personnel to carry out mitigation operations under extremely hazardous conditions. It showed how emergency plans rooted in the assumption that only one reactor at a multi-unit site would be likely to experience a crisis fail miserably in the event of an accident affecting multiple reactor units simultaneously. It revealed that alternate water injection following a severe accident could be needed for weeks or months, generating large volumes of contaminated water that must be contained. And it reinforced the grim lesson of Chernobyl: that a nuclear reactor accident could lead to widespread radioactive contamination with profound implications for public health, the economy and the environment. While many nations have re-examined their policies regarding nuclear power safety in the months following the accident, it remains to be seen to what extent the world will take the lessons of Fukushima seriously and make meaningful changes in time to avert another, and potentially even worse, nuclear catastrophe.
77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-247 and 50-286; NRC-2008-0672] Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear Regulatory Commission... renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sari Izumo; Hideo Usui; Mitsuo Tachibana
Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less
Russia's nuclear elite on rampage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, L.
1993-04-01
In July 1992, the Russian Ministry of Nuclear Industry began pressing the Russian government to adopt a plan to build new nuclear power plants. In mid-January 1993 the government announced that it will build at least 30 new nuclear power plants, and that the second stage of the building program will include construction of three fast-breeder reactors. In this article, the author addresses the rationale behind this massive building program, despite the country's economic condition and public dread of another Chernobyl-type accident. The viewpoints of both the Russian Ministry of Nuclear Industry and opposing interests are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth Thomas
2012-02-01
Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth Thomas; Bruce Hallbert
2013-02-01
Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.« less