Science.gov

Sample records for nuclear polarization applied

  1. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  2. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  3. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  4. Optical nuclear spin polarization in quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2016-10-01

    Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).

  5. Dynamic nuclear polarization polarizer for sterile use intent.

    PubMed

    Ardenkjaer-Larsen, Jan H; Leach, Andrew M; Clarke, Neil; Urbahn, John; Anderson, Denise; Skloss, Timothy W

    2011-10-01

    A novel polarizer based on the dissolution-dynamic nuclear polarization (DNP) method has been designed, built and tested. The polarizer differs from those previously described by being designed with sterile use intent and being compatible with clinical use. The main features are: (1) an integral, disposable fluid path containing all pharmaceuticals constituting a sterile barrier, (2) a closed-cycle cryogenic system designed to eliminate consumption of liquid cryogens and (3) multi-sample polarization to increase throughput. The fluid path consists of a vial with the agent to be polarized, a pair of concentric inlet and outlet tubes connected to a syringe with dissolution medium and a receiver, respectively. The fluid path can operate at up to 400 K and 2.0 MPa and generates volumes as high as 100 mL. An inline filter removes the amount of electron paramagnetic agent in the final product by more than 100-fold in the case of [1-(13)C]pyruvate. The system uses a sorption pump in conjunction with a conventional cryocooler. The system operates through cycles of pumping to low temperature and regeneration of the sorption pump. The magnet accommodates four samples at the same time. A temperature of less than 1 K was achieved for 68 h (no sample heat loads) with a liquid helium volume of 2.4 L. The regeneration of the liquid helium could be achieved in less than 10 h, and the transition to cold (< 1.2 K) was achieved in less than 90 min. A solid state polarization of 36 ± 4% for [1-(13)C]pyruvic acid was obtained with only 10 mW of microwave power. The loading of a sample adds less than 50 J of heat to the helium bath by introducing the sample over 15 min. The heat load imposed on the helium bath during dissolution was less than 70 J. The measured liquid state polarization was 18 ± 2%.

  6. Microtesla MRI with dynamic nuclear polarization

    PubMed Central

    Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.

    2010-01-01

    Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by two-four orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 microtesla, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5 –5.7 mT field using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as high as −95 for protons and as high as −200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by the low-temperature dissolution DNP

  7. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  8. Theory of dynamic nuclear polarization and feedback in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Barnes, Edwin

    2014-04-01

    An electron confined in a quantum dot interacts with its local nuclear spin environment through the hyperfine contact interaction. This interaction combined with external control and relaxation or measurement of the electron spin allows for the generation of dynamic nuclear polarization. The quantum nature of the nuclear bath, along with the interplay of coherent external fields and incoherent dynamics in these systems renders a wealth of intriguing phenomena seen in recent experiments such as electron Zeeman frequency focusing, hysteresis, and line dragging. We develop in detail a fully quantum, self-consistent theory that can be applied to such experiments and that moreover has predictive power. Our theory uses the operator sum representation formalism in order to incorporate the incoherent dynamics caused by the additional, Markovian bath, which in self-assembled dots is the vacuum field responsible for electron-hole optical recombination. The beauty of this formalism is that it reduces the complexity of the problem by encoding the joint dynamics of the external coherent and incoherent driving in an effective dynamical map that only acts on the electron spin subspace. This, together with the separation of time scales in the problem, allows for a tractable and analytically solvable formalism. The key role of entanglement between the electron spin and the nuclear spins in the formation of dynamic nuclear polarization naturally follows from our solution. We demonstrate the theory in detail for an optical pulsed experiment and present an in-depth discussion and physical explanation of our results.

  9. Polarization model applied to Uranian radio emission

    NASA Astrophysics Data System (ADS)

    Sawyer, C. B.; Neal, K. L.; Warwick, J. W.

    1991-04-01

    The total power and the degree of circular polarization as measured by the Planetary Radio Astronomy experiments on the Voyager spacecraft are modeled. For a source near the electron cyclotron frequency, the degree of circular polarization is determined by the angle between the wave vector and the field. It is shown that the observed strong circular polarization of Uranian smooth low-frequency (SLF) can be modeled as emission that is beamed along the direction of the magnetic field in a filled cone. The main observational constraints of SLF emission from Uranus are met by conjugate sources at about 21 deg from the magnetic equator.

  10. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  11. Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K.

    PubMed

    Vuichoud, Basile; Canet, Estel; Milani, Jonas; Bornet, Aurélien; Baudouin, David; Veyre, Laurent; Gajan, David; Emsley, Lyndon; Lesage, Anne; Copéret, Christophe; Thieuleux, Chloé; Bodenhausen, Geoffrey; Koptyug, Igor; Jannin, Sami

    2016-08-18

    We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.

  12. LETTER TO THE EDITOR: Polarization enhancement in &vec{d}(\\vec{p},\\vec{n})^{2};He reaction: nuclear teleportation

    NASA Astrophysics Data System (ADS)

    Hamieh, S.

    2004-02-01

    I show that an experimental technique used in nuclear physics may be successfully applied to quantum teleportation (QT) of spin states of massive matter. A new non-local physical effect, the 'quantum-teleportation effect', is discovered for the nuclear polarization measurement. Enhancement of the neutron polarization is expected in the proposed experiment for QT that discriminates only one of the Bell states.

  13. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  14. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  15. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  16. Dynamic Nuclear Polarization of β-Cyclodextrin Macromolecules.

    PubMed

    Caracciolo, Filippo; Carretta, Pietro; Filibian, Marta; Melone, Lucio

    2017-03-30

    (1)H dynamic nuclear polarization and nuclear spin-lattice relaxation rates have been studied in amorphous complexes of β-cyclodextrins doped with different concentrations of the TEMPO radical. Nuclear polarization increased up to 10% in the optimal case, with a behavior of the buildup rate (1/TPOL) and of the nuclear spin-lattice relaxation rate (1/T1n) consistent with a thermal mixing regime. The temperature dependence of 1/T1n and its increase with the radical concentration indicate a relaxation process arising from the modulation of the electron-nucleus coupling by the glassy dynamics. The high-temperature relaxation is driven by molecular motions, and 1/T1n was studied at room temperature in liquid solutions for dilution levels close to the ones typically used for in vivo studies.

  17. Nuclear polarization corrections to the μ4He+ Lamb shift.

    PubMed

    Ji, C; Nevo Dinur, N; Bacca, S; Barnea, N

    2013-10-04

    Stimulated by the proton radius conundrum, measurements of the Lamb shift in various light muonic atoms are planned at PSI. The aim is to extract the rms charge radius with high precision, limited by the uncertainty in the nuclear polarization corrections. We present an ab initio calculation of the nuclear polarization for μ(4)He(+) leading to an energy correction in the 2S-2P transitions of δ(pol)(A)=-2.47 meV ±6%. We use two different state-of-the-art nuclear Hamiltonians and utilize the Lorentz integral transform with hyperspherical harmonics expansion as few-body methods. We take into account the leading multipole contributions, plus Coulomb, relativistic, and finite-nucleon-size corrections. Our main source of uncertainty is the nuclear Hamiltonian, which currently limits the attainable accuracy. Our predictions considerably reduce the uncertainty with respect to previous estimates and should be instrumental to the μ(4)He(+) experiment planned for 2013.

  18. Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments

    NASA Astrophysics Data System (ADS)

    Buntkowsky, Gerd; Ivanov, Konstantin L.; Zimmermann, Herbert; Vieth, Hans-Martin

    2017-03-01

    Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.

  19. Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments.

    PubMed

    Buntkowsky, Gerd; Ivanov, Konstantin L; Zimmermann, Herbert; Vieth, Hans-Martin

    2017-03-21

    Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.

  20. Apparatus and method for polarizing polarizable nuclear species

    DOEpatents

    Hersman, F. William; Leuschner, Mark; Carberry, Jeannette

    2005-09-27

    The present invention is a polarizing process involving a number of steps. The first step requires moving a flowing mixture of gas, the gas at least containing a polarizable nuclear species and vapor of at least one alkali metal, with a transport velocity that is not negligible when compared with the natural velocity of diffusive transport. The second step is propagating laser light in a direction, preferably at least partially through a polarizing cell. The next step is directing the flowing gas along a direction generally opposite to the direction of laser light propagating. The next step is containing the flowing gas mixture in the polarizing cell. The final step is immersing the polarizing cell in a magnetic field. These steps can be initiated in any order, although the flowing gas, the propagating laser and the magnetic field immersion must be concurrently active for polarization to occur.

  1. Mechanism of dynamic nuclear polarization in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Inati, S. J.; Griffin, R. G.

    2001-03-01

    Solid-state NMR signal enhancements of about two orders of magnitude (100-400) have been observed in dynamic nuclear polarization (DNP) experiments performed at high magnetic field (5 T) and low temperature (10 K) using the nitroxide radical 4-amino TEMPO as the source of electron polarization. Since the breadth of the 4-amino TEMPO EPR spectrum is large compared to the nuclear Larmor frequency, it has been assumed that thermal mixing (TM) is the dominate mechanism by which polarization is transferred from electron to nuclear spins. However, theoretical explanations of TM generally assume a homogeneously broadened EPR line and, since the 4-amino TEMPO line at 5 T is inhomogeneously broadened, they do not explain the observed DNP enhancements. Accordingly, we have developed a treatment of DNP that explicitly uses electron-electron cross-relaxation to mediate electron-nuclear polarization transfer. The process proceeds via spin flip-flops between pairs of electronic spin packets whose Zeeman temperatures differ from one another. To confirm the essential features of the model we have studied the field dependence of electron-electron double resonance (ELDOR) data and DNP enhancement data. Both are well simulated using a simple model of electron cross-relaxation in the inhomogeneously broadened 4-amino TEMPO EPR line.

  2. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  3. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics

    PubMed Central

    Hu, Kan-Nian; Debelouchina, Galia T.; Smith, Albert A.; Griffin, Robert G.

    2011-01-01

    Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer—the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron–nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω0I, where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ωM = ω0S ± ω0I, where ωM, ω0S and ω0I are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω0I > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω0S1−ω0S2=ω0I and ωM∼ω0S1 orω0S2, where ω0S1 and ω0S2 are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the

  4. Hyperpolarization of nitrogen-15 nuclei by cross polarization and dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Melzi, Roberto; Jannin, Sami; Bodenhausen, Geoffrey

    2017-01-01

    Dynamic Nuclear Polarization (DNP) is often achieved by the direct transfer of polarization from electrons to nuclei such as 13C, induced by microwave saturation of the wings of narrow EPR lines of radicals like trityl. In the indirect approach on the other hand, DNP is used to transfer the polarization from the electrons of radicals such as nitroxides that have broad EPR lines to nuclear spins I = 1H, followed by cross-polarization (CP) from I = 1H to S = 13C or other nuclei with low gyromagnetic ratios. This approach is particularly attractive for S = 15N, since direct DNP yields modest polarizations P(15N) < 4% with build-up times that can be as long as τDNP(15N) > 2 h. In this paper, we show that CP from 1H to 15N at 1.2 K can yield P(15N) = 25% with τCP-DNP(15N) = 10-15 min. After rapid dissolution and transfer to a solution-state NMR spectrometer, a polarization P(15N) = 20% was observed at 300 K. The longitudinal relaxation times in solution can be as long as T1(15N) > 800 s in favorable cases.

  5. Magnetic-field cycling instrumentation for dynamic nuclear polarization-nuclear magnetic resonance using photoexcited triplets.

    PubMed

    Kagawa, Akinori; Negoro, Makoto; Takeda, Kazuyuki; Kitagawa, Masahiro

    2009-04-01

    To advance static solid-state NMR with hyperpolarized nuclear spins, a system has been developed enabling dynamic nuclear polarization (DNP) using electron spins in the photoexcited triplet state with X-band microwave apparatus, followed by static solid-state nuclear magnetic resonance (NMR) experiments using the polarized nuclear-spin system with a goniometer. In order to perform the DNP and NMR procedures in different magnetic fields, the DNP system and the NMR system are spatially separated, between which the sample can be shuttled while its orientation is controlled in a reproducible fashion. We demonstrate that the system developed in this work is operational for solid-state NMR with hyperpolarized nuclear-spin systems in static organic materials, and also discuss the application of our system.

  6. Spin coherence effects in the electron—nuclear polarization transfer process

    NASA Astrophysics Data System (ADS)

    Macho, V.; Stehlik, D.; Vieth, H.-M.

    1991-05-01

    The nuclear spin polarization resulting from optical pumping of molecular triplet states, ONP, has been studied in a time-resolving experiment by synchronized irradiation of light and rf pulses. After laser flash excitation of T 1 triplet states of acridine doped into a fluorene crystal, an rf pulse of variable intensity and duration is applied near the resonance of an electronic spin transition. It leads to partial transfer of optically generated electronic polarization to the nuclear spin reservoir (rf-ONP). For sufficiently high rf-intensity, the polarization transfer shows an oscillatory behaviour when varying the pulse length in the submicrosecond range, which reflects the initial coherence among the spins. Critical tests for the analysis are provided by experiments under different rf excitation conditions and for various isotopic compositions. The transfer process is shown to involve two steps on different time scales, the first of which is closely related to nutations of electron spins about the rotating B1 field.

  7. Applied nuclear physics in support of SBSS

    SciTech Connect

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  8. Nuclear spin polarization of solid deuterium-tritium

    SciTech Connect

    Souers, P.C.; Fearon, E.M.; Mapoles, E.R.; Gaines, J.R.; Sater, J.D.; Fedders, P.A.

    1985-01-01

    It appears that parallel alignment of deuteron and triton magnetic moments increases the cross section of the nuclear reaction T(d,n) He/sup 4/ by 50%, thereby promising a laser driver of perhaps half the original energy. Both ''brute-force'' and dynamic nuclear polarization are considered, and the many potential problems of the latter are considered. High nuclear polarization by the dynamic technique requires a small nucleus-to-unpaired electron ratio, a long longitudinal nuclear relaxation time and a short longitudinal electron relaxation time. Normal D-T is shown to be inadequate, and enriched and possibly very pure molecular DT will be required. The key variable is the nuclear relaxation time, which can either depend on the interaction with rotationally excited impurity molecules or on paramagnetic defects formed by the tritium radiation. Radiation-induced DT decomposition and rotational catalysis will combat one another to affect the DT purity. The expected atom density and fractionation effects are considered. There exists one frequency at which both D and T atoms can be pumped.

  9. Nuclear spin polarization of solid deuterium-tritium. Revision 1

    SciTech Connect

    Souers, P.C.; Fearon, E.M.; Mapoles, E.R.; Gaines, J.R.; Sater, J.D.; Fedders, P.A.

    1985-01-01

    It appears that parallel alignment of deuteron and triton magnetic moments increases the cross section of the nuclear reaction T(d,n) He/sup 4/ by 50%, thereby promising a laser driver of perhaps half the original energy. Both ''brute-force'' and dynamic nuclear polarization are considered, and the many potential problems of the latter are considered. High nuclear polarization by the dynamic technique requires a small nucleus-to-unpaired electron ratio, a long longitudinal nuclear relaxation time and a short longitudinal electron relaxation time. Normal D-T is shown to be inadequate, and enriched and possibly very pure molecular DT will be required. The key variable is the nuclear relaxation time, which can either depend on the interaction with rotationally excited impurity molecules or on paramagnetic defects formed by the tritium radiation. Radiation-induced DT decomposition and rotational catalysis will combat one another to affect the DT purity. The expected atom density and fractionation effects are considered. There exists one frequency at which both D and T atoms can be pumped.

  10. Solid effect in magic angle spinning dynamic nuclear polarization

    PubMed Central

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-01-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements

  11. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    PubMed

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  12. Laser-driven nuclear-polarized hydrogen internal gas target

    NASA Astrophysics Data System (ADS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-06-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1×1018atoms/s , where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells.

  13. Laser-driven nuclear-polarized hydrogen internal gas target

    SciTech Connect

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-06-15

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10{sup 18} atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells.

  14. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  15. Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots

    PubMed Central

    Nichol, John M.; Harvey, Shannon P.; Shulman, Michael D.; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I.; Halperin, Bertrand I.; Yacoby, Amir

    2015-01-01

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin–orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron–nuclear system, despite weak spin–orbit coupling in GaAs. Using Landau–Zener sweeps to measure static and dynamic properties of the electron spin–flip probability, we observe that the size of the spin–orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin–orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin–orbit coupling in central-spin systems. PMID:26184854

  16. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis

    PubMed Central

    Elkouby, Yaniv M.; Jamieson-Lucy, Allison; Mullins, Mary C.

    2016-01-01

    The source of symmetry breaking in vertebrate oocytes is unknown. Animal—vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal—vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic—vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic—vegetal organizing center. These

  17. Applying RFID technology in nuclear materials management.

    SciTech Connect

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  18. Optical nuclear polarization via hyperfine relaxation. Polarization mechanism in anthracene/tetracyanobenzene charge-transfer crystals

    NASA Astrophysics Data System (ADS)

    Allgeier, J.; Macho, V.; Stehlik, D.; Vieth, H. M.; Auch, W.; Von Schütz, J. U.

    1982-03-01

    The large optical nuclear polarization (ONP) found in A/TCNB crystals is due to relaxation caused by the mobility of triplet excitons. The ONP field dependence gives an excitonic hopping rate of 3 × 10 9 s -1 (at 300 K). Exclusion of ONP by static hyperfine interaction (LAC ONP) is based on results of rf ONP experiments which allow an unambiguous distinction between the two processes.

  19. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  20. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    SciTech Connect

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. This is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.

  1. A new measurement of electron transverse polarization in polarized nuclear β-decay

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Akiyama, T.; Hata, M.; Hirayama, Y.; Ikeda, M.; Ikeda, Y.; Ishii, T.; Kameda, D.; Mitsuoka, S.; Miyatake, H.; Nagae, D.; Nakaya, Y.; Ninomiya, K.; Nitta, M.; Ogawa, N.; Onishi, J.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.; Watanabe, Y. X.; Murata, J.

    2017-03-01

    The Mott polarimetry for T-violation (MTV) experiment tests time-reversal symmetry in polarized nuclear β-decay by measuring an electron’s transverse polarization as a form of angular asymmetry in Mott scattering using a thin metal foil. A Mott scattering analyzer system developed using a tracking detector to measure scattering angles offers better event selectivity than conventional counter experiments. In this paper, we describe a pilot experiment conducted at KEK-TRIAC using a prototype system with a polarized 8Li beam. The experiment confirmed the sound performance of our Mott analyzer system to measure T-violating triple correlation (R correlation), and therefore recommends its use in higher-precision experiments at the TRIUMF-ISAC.

  2. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  3. Mechanisms of dynamic nuclear polarization in insulating solids

    NASA Astrophysics Data System (ADS)

    Can, T. V.; Ni, Q. Z.; Griffin, R. G.

    2015-04-01

    Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80-100 K.

  4. Mechanisms of Dynamic Nuclear Polarization in Insulating Solids

    PubMed Central

    Can, T.V.; Ni, Q.Z.; Griffin, R.G.

    2015-01-01

    Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K. PMID:25797002

  5. Dynamic nuclear polarization via thermal mixing: Beyond the high temperature approximation

    NASA Astrophysics Data System (ADS)

    Wenckebach, W. Th.

    2017-04-01

    Dynamic Nuclear Polarization (DNP) via the mechanism of thermal mixing has proven itself most powerful for the orientation of nuclear spins in polarized targets and hyperpolarization for magnetic resonance imaging (MRI). Unfortunately, theoretical descriptions of this mechanism have been limited to using-at least partially-the high temperature approximation, in which Boltzmann factors are expanded linearly. However, the high nuclear spin polarization required and obtained for these applications does not justify such approximations. This article extends the description of thermal mixing beyond the high temperature approximation, so Boltzmann factors are not expanded. It applies for DNP in samples doped with paramagnetic centres, for which the electron spin resonance spectrum is mainly inhomogeneously broadened by g-value anisotropy. It verifies Provotorov's hypothesis that fast spectral diffusion leads to a density matrix containing two inverse spin temperatures: the inverse electron Zeeman temperature and the inverse electron non-Zeeman temperature, while thermal mixing equalizes the nuclear Zeeman temperature and the electron non-Zeeman temperature. Equations are derived for the evolution of these temperatures and the energy flows between the spins and the lattice. Solutions are given for DNP of proton spins in samples doped with the radical TEMPO.

  6. Dynamic nuclear polarization via thermal mixing: Beyond the high temperature approximation.

    PubMed

    Wenckebach, W Th

    2017-04-01

    Dynamic Nuclear Polarization (DNP) via the mechanism of thermal mixing has proven itself most powerful for the orientation of nuclear spins in polarized targets and hyperpolarization for magnetic resonance imaging (MRI). Unfortunately, theoretical descriptions of this mechanism have been limited to using-at least partially-the high temperature approximation, in which Boltzmann factors are expanded linearly. However, the high nuclear spin polarization required and obtained for these applications does not justify such approximations. This article extends the description of thermal mixing beyond the high temperature approximation, so Boltzmann factors are not expanded. It applies for DNP in samples doped with paramagnetic centres, for which the electron spin resonance spectrum is mainly inhomogeneously broadened by g-value anisotropy. It verifies Provotorov's hypothesis that fast spectral diffusion leads to a density matrix containing two inverse spin temperatures: the inverse electron Zeeman temperature and the inverse electron non-Zeeman temperature, while thermal mixing equalizes the nuclear Zeeman temperature and the electron non-Zeeman temperature. Equations are derived for the evolution of these temperatures and the energy flows between the spins and the lattice. Solutions are given for DNP of proton spins in samples doped with the radical TEMPO.

  7. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  8. High-fidelity quantum memory utilizing inhomogeneous nuclear polarization in a quantum dot

    NASA Astrophysics Data System (ADS)

    Ding, Wenkui; Shi, Anqi; You, J. Q.; Zhang, Wenxian

    2014-12-01

    We numerically investigate the encoding and retrieval processes for quantum memory realized in a semiconductor quantum dot by focusing on the effect of inhomogeneously polarized nuclear spins whose polarization depends on the local hyperfine coupling strength. We find that the performance of quantum memory is significantly improved by inhomogeneous nuclear polarization, as compared with homogeneous nuclear polarization. Moreover, the narrower the nuclear polarization distribution is, the better is the performance of the quantum memory. We ascribe the improvement in performance to the full harnessing of the highly polarized and strongly coupled nuclear spins by carefully studying the entropy change of individual nuclear spins during the encoding process. Our results shed light on the implementation of quantum memory in a quantum dot.

  9. Dynamic nuclear-polarization studies of paramagnetic species in solution

    SciTech Connect

    Glad, W.E.

    1982-07-01

    Dynamic Nuclear Polarization (DNP) was used to measure the electron spin lattice relaxation times, T/sub 1/, of transition metal ions in aqueous solution. Saturation which is induced in the electron spin system is transferred to the solvent proton spins by dipole-dipole interactions. The change in the polarization of the proton spins is much larger than it is in the electron spins. The change in proton polarization is easily measured by proton Nuclear Magnetic Resonance (NMR). In one experimental arrangement the sample solution was continuously flowed through a microwave cavity to the NMR coil. The NMR was observed with a continuous wave NMR spectrometer. In a second arrangement the whole sample tube was moved from within the microwave cavity to the NMR coil in less than 40 ms by a blast of compressed air. The NMR was then observed with a pulse-Fourier-transform spectrometer. With the second arrangement a mean-square microwave magnetic field at the sample of more than 10 G/sup 2/ is obtainable with 14 W of microwave power. Measurements of DNP at 9 GHz were made on aqueous solutions of VO/sup 2 +/, Mn/sup 2 +/, Cr(CN)/sub 6//sup 3 -/, Cu/sup 2 +/ and Cu(ethylenediamine)/sub 2/(H/sub 2/0)/sub 2//sup 2 +/ ions from 3 to 60/sup 0/C. It was also possible to observe DNP on resolved proton resonances from mixed water-acetonitrile solutions of VO/sup 2 +/ and Cr(CN)/sub 6//sup 3 -/ ions.

  10. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  11. A 3D-printed high power nuclear spin polarizer.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-01-29

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications.

  12. A 3D-Printed High Power Nuclear Spin Polarizer

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; LaPierre, Cristen D.; Koehnemann, Edward; Barlow, Michael J.; Rosen, Matthew S.; Goodson, Boyd M.; Chekmenev, Eduard Y.

    2015-01-01

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of 129Xe and 1H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of “off-the-shelf” components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity 129Xe polarization values in a 0.5 L optical pumping cell, including ~74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the 129Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10−2 min−1] and in-cell 129Xe spin−lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for 129Xe and Rb (PRb ~ 96%). Hyperpolarization-enhanced 129Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919

  13. Theoretical aspects of dynamic nuclear polarization in the solid state--spin temperature and thermal mixing.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2013-01-07

    Dynamic nuclear polarization is a method which allows for a dramatic increase of the NMR signals due to polarization transfer between electrons and their neighboring nuclei, via microwave irradiation. These experiments have become popular in recent years due to the ability to create hyper-polarized chemically and biologically relevant molecules, in frozen glass forming mixtures containing free radicals. Three mechanisms have been proposed for the polarization transfer between electrons and their surrounding nuclei in such non-conducting samples: the solid effect and cross effect mechanisms, which are based on quantum mechanics and relaxation on small spin systems, and thermal mixing, which originates from the thermodynamic macroscopic notion of spin temperature. We have recently introduced a spin model, which is based on the density matrix formalism and includes relaxation, and applied it to study the solid effect and cross effect mechanisms on small spin systems. In this publication we use the same model to describe the thermal mixing mechanism, and the creation of spin temperature. This is obtained without relying on the spin temperature formalism. Simulations of small model systems are used on systems with homogeneously and inhomogeneously broadened EPR lines. For the case of a homogeneously broadened line we show that the nuclear enhancement results from the thermal mixing and solid effect mechanisms, and that spin temperatures are created in the system. In the inhomogeneous case the enhancements are attributed to the solid effect and cross effect mechanisms, but not thermal mixing.

  14. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  15. Dissolution Dynamic Nuclear Polarization capability study with fluid path.

    PubMed

    Malinowski, Ronja M; Lipsø, Kasper W; Lerche, Mathilde H; Ardenkjær-Larsen, Jan H

    2016-11-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

  16. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    NASA Astrophysics Data System (ADS)

    Malinowski, Ronja M.; Lipsø, Kasper W.; Lerche, Mathilde H.; Ardenkjær-Larsen, Jan H.

    2016-11-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

  17. Overhauser dynamic nuclear polarization amplification of NMR flow imaging.

    PubMed

    Lingwood, Mark D; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F; Han, Songi

    2012-03-01

    We describe the first study comparing the ability of phase shift velocity imaging and Overhauser dynamic nuclear polarization (DNP)-enhanced imaging to generate contrast for visualizing the flow of water. Prepolarization of water by the Overhauser DNP mechanism is performed in the 0.35T fringe field of an unshielded 2.0T non-clinical MRI magnet, followed by the rapid transfer of polarization-enhanced water to the 2.0T imaging location. This technique, previously named remotely enhanced liquids for image contrast (RELIC), produces a continuous flow of hyperpolarized water and gives up to an -8.2-fold enhanced signal within the image with respect to thermally polarized signal at 2.0T. Using flow through a cylindrical expansion phantom as a model system, spin-echo intensity images with DNP are compared to 3D phase shift velocity images to illustrate the complementary information available from the two techniques. The spin-echo intensity images enhanced with DNP show that the levels of enhancement provide an estimate of the transient propagation of flow, while the phase shift velocity images quantitatively measure the velocity of each imaging voxel. Phase shift velocity images acquired with and without DNP show that DNP weights velocity values towards those of the inflowing (DNP-enhanced) water, while velocity images without DNP more accurately reflect the average steady-state velocity of each voxel. We conclude that imaging with DNP prepolarized water better captures the transient path of water shortly after injection, while phase shift velocity imaging is best for quantifying the steady-state flow of water throughout the entire phantom.

  18. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization

    PubMed Central

    Keshari, Kayvan R.; Wilson, David M.

    2014-01-01

    The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-1H nuclei. For 13C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success. PMID:24363044

  19. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    SciTech Connect

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-28

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  20. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  1. Unconventional Coding Technique Applied to Multi-Level Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Rutigliano, G. G.; Betti, S.; Perrone, P.

    2016-05-01

    A new technique is proposed to improve information confidentiality in optical-fiber communications without bandwidth consumption. A pseudorandom vectorial sequence was generated by a dynamic system algorithm and used to codify a multi-level polarization modulation based on the Stokes vector. Optical-fiber birefringence, usually considered as a disturbance, was exploited to obfuscate the signal transmission. At the receiver end, the same pseudorandom sequence was generated and used to decode the multi-level polarization modulated signal. The proposed scheme, working at the physical layer, provides strong information security without introducing complex processing and thus latency.

  2. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    PubMed

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  3. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments

    SciTech Connect

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2013-12-28

    Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.

  4. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2013-12-28

    Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.

  5. Quantitative rate determination by dynamic nuclear polarization enhanced NMR of a Diels-Alder reaction.

    PubMed

    Zeng, Haifeng; Lee, Youngbok; Hilty, Christian

    2010-11-01

    Emerging techniques for hyperpolarization of nuclear spins, foremost dynamic nuclear polarization (DNP), lend unprecedented sensitivity to nuclear magnetic resonance spectroscopy. Sufficient signal can be obtained from a single scan, and reactions even far from equilibrium can be studied in real-time. When following the progress of a reaction by nuclear magnetic resonance, however, spin relaxation occurs concomitantly with the reaction to alter resonance line intensities. Here, we present a model for accounting for spin-relaxation in such reactions studied by hyperpolarized NMR. The model takes into account auto- and cross-relaxation in dipole-dipole coupled spin systems and is therefore applicable to NMR of hyperpolarized protons, the most abundant NMR-active nuclei. Applied to the Diels-Alder reaction of 1,4-dipheneylbutadiene (DPBD) with 4-phenyl-1,2,4-triazole-3,5-dione (PTD), reaction rates could be obtained accurately and reproducibly. Additional parameters available from the same experiment include relaxation rates of the reaction product, which may yield further information about the molecular properties of the product. The method presented is also compatible with an experiment where a single spin in the reactant is labeled in its spin-state by a selective radio frequency pulse for subsequent tracking through the reaction, allowing the unambiguous identification of its position in the product molecule. In this case, the chemical shift specificity of high-resolution NMR can allow for the simultaneous determination of reaction rates and mechanistic information in one experiment.

  6. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  7. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter.

    PubMed

    Engels, Ralf; Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Paetz gen Schieck, Hans

    2014-10-01

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H2(+) (or D2(+)) ions into the Lamb-shift polarimeter.

  8. (2)H-decoupling-accelerated (1)H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons.

    PubMed

    Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M

    2010-10-21

    In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.

  9. Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ţifrea, Ionel; Flatté, Michael E.

    2011-10-01

    We investigate the dynamic nuclear polarization (DNP) caused by hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. We derive the time and position dependence of the resulting hyperfine and dipolar magnetic fields. In GaAs quantum wells the induced nuclear spin polarization greatly exceeds the polarization of the electronic system that causes the DNP. The induced magnetic fields vary between tens of tesla for the electronic hyperfine field acting on nuclei, to hundreds of gauss for the nuclear hyperfine field acting on electrons, to a few gauss for the induced nuclear dipolar fields that act on both nuclei and electrons. The field strengths should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for low-dimensional semiconductor nanostructures.

  10. Dissolution dynamic nuclear polarization of deuterated molecules enhanced by cross-polarization

    NASA Astrophysics Data System (ADS)

    Kurzbach, Dennis; Weber, Emmanuelle M. M.; Jhajharia, Aditya; Cousin, Samuel F.; Sadet, Aude; Marhabaie, Sina; Canet, Estel; Birlirakis, Nicolas; Milani, Jonas; Jannin, Sami; Eshchenko, Dmitry; Hassan, Alia; Melzi, Roberto; Luetolf, Stephan; Sacher, Marco; Rossire, Marc; Kempf, James; Lohman, Joost A. B.; Weller, Matthias; Bodenhausen, Geoffrey; Abergel, Daniel

    2016-11-01

    We present novel means to hyperpolarize deuterium nuclei in 13CD2 groups at cryogenic temperatures. The method is based on cross-polarization from 1H to 13C and does not require any radio-frequency fields applied to the deuterium nuclei. After rapid dissolution, a new class of long-lived spin states can be detected indirectly by 13C NMR in solution. These long-lived states result from a sextet-triplet imbalance (STI) that involves the two equivalent deuterons with spin I = 1. An STI has similar properties as a triplet-singlet imbalance that can occur in systems with two equivalent I = 1/2 spins. Although the lifetimes TSTI are shorter than T1(Cz), they can exceed the life-time T1(Dz) of deuterium Zeeman magnetization by a factor of more than 20.

  11. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  12. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  13. Room-temperature optical manipulation of nuclear spin polarization in GaAsN

    NASA Astrophysics Data System (ADS)

    Sandoval-Santana, C.; Balocchi, A.; Amand, T.; Harmand, J. C.; Kunold, A.; Marie, X.

    2014-09-01

    The effect of hyperfine interaction on the room-temperature defect-enabled spin filtering effect in GaAsN alloys is experimentally investigated and theoretically interpreted through a master equation approach based on the hyperfine and Zeeman interaction between electron and nuclear spin of the Gai2+ interstitial spin filtering defect. We show that the nuclear spin polarization of the gallium defect can be tuned through the optically induced spin polarization of conduction band electrons.

  14. Optically Induced Nuclear Spin Polarization in the Quantum Hall Regime: The Effect of Electron Spin Polarization through Exciton and Trion Excitations.

    PubMed

    Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y

    2015-07-10

    We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions.

  15. Sol-gel coatings for high pressure polarized ^3He nuclear targets

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Cates, Gordon D.; Chaput, Julien; Singh, Jaideep; Tobias, William A.

    2001-11-01

    Sol-gel coated glass cells have been shown to exhibit longitudinal lifetimes T1 in excess of 350 hours for ^3He that is polarized by spin-exchange optical pumping.( Ming F. Hsu shape et al, Appl. Phys. Lett.) series 77 (2000) 2069. The sol-gel technique was designed to minimize spin-relaxation due to wall collisions so that only dipole-dipole interactions between colliding ^3He atoms dominate in the relaxation process. Until now, sol-gel technology has not been applied to high pressure ^3He gas targets used in nuclear scattering experiments. Latest developments on incorporating the sol-gel technique in the production of these ^3He targets will be presented.

  16. Application of Sol-Gel Technology to High Pressure Polarized 3HE Nuclear Targets

    NASA Astrophysics Data System (ADS)

    Tobias, W. A.; Cates, G. D.; Chaput, J.; Deur, A.; Rohrbaugh, S.; Singh, J.

    2003-01-01

    High-purity sol-gel solutions have been developed to coat the interior surface of glass vessels used for polarizing 3He by spin-exchange optical pumping. Such cells have been shown to exhibit 3He longitudinal lifetimes T1 in excess of 350 hours1. The sol-gel technique was designed to minimize spin-relaxation due to wall collisions so that only dipole-dipole interactions between colliding 3He atoms dominate in the relaxation process. Until now, sol-gel technology had not been applied to high pressure 3He gas targets used in nuclear scattering experiments. A description of the sol-gel technique and recent developments on its integration into the production of 3He targets will be presented.

  17. Comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-03-29

    Based on nuclear and mitochondrial DNA, Hailer et al. (Reports, 20 April 2012, p. 344) suggested early divergence of polar bears from a common ancestor with brown bears and subsequent introgression. Our population genetic analysis that traces each of the genealogies in the independent nuclear loci does not support the evolutionary model proposed by the authors.

  18. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  19. Effect of Lanthanide Ions on Dynamic Nuclear Polarization Enhancement and Liquid State T1 Relaxation

    PubMed Central

    Gordon, Jeremy; Fain, Sean B.; Rowland, Ian J

    2012-01-01

    In the dynamic nuclear polarization process, microwave irradiation facilitates exchange of polarization from a radical’s unpaired electron to nuclear spins at cryogenic temperatures, increasing polarization by >10000. Doping samples with Gd3+ ions further increases the achievable solid-state polarization. However, upon dissolution, paramagnetic lanthanide metals can be potent relaxation agents, decreasing liquid-state polarization. Here, the effects of lanthanide metals on the solid and liquid-state magnetic properties of [1-13C]pyruvate are studied. The results show that in addition to gadolinium, holmium not only increases the achievable polarization but also the rate of polarization. Liquid-state relaxation studies found that unlike gadolinium, holmium minimally affects T1. Additionally, results reveal that linear contrast agents dissociate in pyruvic acid, greatly reducing liquid-state T1. While macrocyclic agents do not readily dissociate, they yield lower solid-state polarization. Results indicate that polarization with free lanthanides and subsequent chelation during dissolution produces the highest polarization enhancement while minimizing liquid-state relaxation. PMID:22367680

  20. Theoretical aspects of dynamic nuclear polarization in the solid state - The solid effect

    NASA Astrophysics Data System (ADS)

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2010-12-01

    Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the experimental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polarization transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear polarization enhancements of model systems in the solid state at high magnetic fields. These results were obtained by numerical calculations based on the spin density operator formalism. Here we restrict ourselves to samples with low electron concentrations, where the dipolar electron-electron interactions can be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear dipole-dipole spin interactions, and the relaxation parameters of the system. The largest spin system considered in this study contains one electron and eight nuclei. In particular, we discuss the influence of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin diffusion.

  1. Comparative study of nuclear effects in polarized electron scattering from 3 He

    DOE PAGES

    Ethier, J. J.; Melnitchouk, W.

    2013-11-01

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  2. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  3. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  4. Target with a frozen nuclear polarization for experiments at low energies

    SciTech Connect

    Borisov, N.S.; Matafonov, V.N.; Neganov, A.B.; Plis, Y.A.; Shchevelev, O.N.; Usov, Y.A.; Jansky, I.; Rotter, M.; Sedlak, B.; Wilhelm, I.; Gurevich, G.M.; Lukhanin, A.A.; Jelinek, J.; Srnka, A.; Skrbek, L.

    1995-09-01

    The short history of the development of frozen spin polarized targets at the Laboratory of Nuclear Problems JINR is given. The latest development is the target with a frozen spin polarization of protons in 1,2- propanediol with a paramagnetic Cr{sup {ital V}} impurity, intended for polarization parameter studies in np-scattering at approximately 15 MeV neutron energy. The target of cylindrical shape of 2 cm diameter and 6 cm long with an initial polarization of 95{plus_minus}3{percent} obtainable by the dynamic polarization technique is placed at a temperature about 20 mK in a magnetic field of 0.37 T generated by a magnetic system, which provides a large aperture for scattered particles. The relaxation time for the spin polarization is about 1000 hours. {copyright} {ital 1995 American Institute of Physics.}

  5. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients

    SciTech Connect

    Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon; Schurko, Robert W.

    2016-08-24

    In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H–35Cl broadband adiabatic inversion cross polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H–13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.

  6. Propagation of dynamic nuclear polarization across the xenon cluster boundaries: elucidation of the spin-diffusion bottleneck.

    PubMed

    Pourfathi, M; Kuzma, N N; Kara, H; Ghosh, R K; Shaghaghi, H; Kadlecek, S J; Rizi, R R

    2013-10-01

    Earlier Dynamic Nuclear Polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of (129)Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of (129)Xe signals in the clusters as well as the apparent discontinuity of (129)Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium polarization and the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and (129)Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards the thermal equilibrium after the microwaves were turned off, to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to the data during and after DNP provides consistent estimates of the cluster size.

  7. Precision measurement of the nuclear polarization of laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Craiciu, I.; Gorelov, A.; Smale, S.; Warner, C. L.; Lawrence, L.; Fenker, B.; Behling, R. S.; Mehlman, M.; Melconian, D.; Gwinner, G.; Anholm, M.; McNeil, J.; Ashery, D.; Cohen, I.

    2016-09-01

    We have spin-polarized laser cooled 37K by direct optical pumping and measured the polarization to < 0 . 1 % accuracy [B. Fenker arXiv:1602.04526]. Our polarization method naturally monitors the polarization of the nuclei as they decay. The atoms absorb circularly polarized light directed along the quantization axis near-resonant with the atomic S1 / 2 to P1 / 2 transition. Once the atoms are polarized, they stop absorbing light, so the ratio between the final P1 / 2 population and its initial maximum probes the degree of polarization. We monitor the P1 / 2 population using UV photons energetic enough to photoionize the P1 / 2 state but not the S1 / 2 state. Since the final P1 / 2 population nearly vanishes, 5% precision on the final/maximum ratio determines the polarization to 0.1%. We eliminate a nonclassical effect, coherent population trapping, which could produce poorly polarized unexcited atoms. We show planned upgrades. Our result for the nuclear vector polarization during our Aβ measurement [B. Fenker, this conference] was 99.13(9)%, not the dominant systematic. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  8. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    NASA Astrophysics Data System (ADS)

    Takata, N.

    2001-06-01

    A difference between the surface potential of the charge collecting electrode and that of the guard electrode of an ionization chamber changes the charge collecting volume depending on the applied voltage. If the difference is large, the saturation curve of the signal current shows a maximum at a low applied voltage. Even when there is no electrical or mechanical defect, the signal current from a parallel plate ionization chamber irradiated with 60Co γ-rays increases or decreases with the applied voltage beyond the recombination region depending on the polarity of the applied voltage. The variation in the signal current is explained as a result of the change in the stopping power of air due to the acceleration or deceleration of secondary electrons. These electrons are emitted from the polarizing electrode towards the collector as a result of Compton scattering. In a range of low applied voltages, the signal current from a cylindrical ionization chamber is expected to be smaller for a negative applied voltage than for a positive applied voltage. This is because epithermal electrons are expected to have a higher probability of being lost by back diffusion than positive ions which are originally produced in a thermal equilibrium condition. An experimental result, however, showed no difference in the polarities of the applied voltage. The result may be explained as a consequence of the fact that epithemal electrons do not drift for long distances and maintain their energies.

  9. The MIT Laser-Driven Target of Nuclear Polarized Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2007-04-01

    The laser-driven target at the Massachusetts Institute of Technology (MIT) produced nuclear polarized hydrogen gas in a configuration similar to that used in scattering experiments. The best result achieved was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1 × 1018 atoms/s.

  10. Applying microscopy to the analysis of nuclear structure and function.

    PubMed

    Iborra, Francisco; Cook, Peter R; Jackson, Dean A

    2003-02-01

    One of the ultimate goals of biological research is to understand mechanisms of cell function within living organisms. With this in mind, many sophisticated technologies that allow us to inspect macromolecular structure in exquisite detail have been developed. Although knowledge of structure derived from techniques such as X-ray crystallography and nuclear magnetic resonance is of vital importance, these approaches cannot reveal the remarkable complexity of molecular interactions that exists in vivo. With this in mind, this review focuses on the use of microscopy techniques to analyze cell structure and function. We describe the different basic microscopic methodologies and how the routine techniques are best applied to particular biological problems. We also emphasize the specific capabilities and uses of light and electron microscopy and highlight their individual advantages and disadvantages. For completion, we also comment on the alternative possibilities provided by a variety of advanced imaging technologies. We hope that this brief analysis of the undoubted power of microscopy techniques will be enough to stimulate a wider participation in this rapidly developing area of biological discovery.

  11. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond.

    PubMed

    Abrams, Daniel; Trusheim, Matthew E; Englund, Dirk R; Shattuck, Mark D; Meriles, Carlos A

    2014-05-14

    Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.

  12. Relevance of electron spin dissipative processes to dynamic nuclear polarization via thermal mixing.

    PubMed

    Serra, Sonia Colombo; Filibian, Marta; Carretta, Pietro; Rosso, Alberto; Tedoldi, Fabio

    2014-01-14

    The available theoretical approaches aiming at describing Dynamic Nuclear spin Polarization (DNP) in solutions containing molecules of biomedical interest and paramagnetic centers are not able to model the behaviour observed upon varying the concentration of trityl radicals or the polarization enhancement caused by moderate addition of gadolinium complexes. In this manuscript, we first show experimentally that the nuclear steady state polarization reached in solutions of pyruvic acid with 15 mM trityl radicals is substantially independent on the average internuclear distance. This evidences a leading role of electron (over nuclear) spin relaxation processes in determining the ultimate performances of DNP. Accordingly, we have devised a variant of the Thermal Mixing model for inhomogenously broadened electron resonance lines which includes a relaxation term describing the exchange of magnetic anisotropy energy of the electron spin system with the lattice. Thanks to this additional term, the dependence of the nuclear polarization on the electron concentration can be properly accounted for. Moreover, the model predicts a strong increase of the final polarization upon shortening the electron spin-lattice relaxation time, providing a possible explanation for the effect of gadolinium doping.

  13. Nuclear Structure Observable with Polarized Target and Polarized Real Photon Beam at Mainz Microtron

    NASA Astrophysics Data System (ADS)

    Paudyal, Dilli

    2016-09-01

    The nucleon polarizabilities are fundamental structure observables, like the nucleon mass or charge. While the electric (αE 1) and magnetic (βM 1) scalar polarizabilities of the nucleon have been measured, little effort has been made to extract the spin dependent polarizabilities. These nucleon polarizabilities, γE1E1 ,γM1M1 ,γM1E2 and γE1M2 describe the spin response of a proton to electric and magnetic dipole and quadrupole interactions. We plan to extract them using polarized photon beam and polarized target at the MAMI tagged photon facility in Mainz, Germany. This requires precise measurement of the double polarization observable ∑2 z which is sensitive to these polarizabilities. The ∑2 z is measured via a circularly polarized photon beam on a longitudinally polarized butanol target in the resonance region (E = 250 - 310 MeV). Together with constraints from αE 1 and βM 1, the forward spin polarizability (γ0) , and QCD based models, should allow us to extract all four spin polarizabilities. This presentation will be focused on the preliminary experimental results for the measurement of ∑2 z at different energies and angles. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  14. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  15. Equation of state of hot polarized nuclear matter using the generalized Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Abd-Alla, M.; Hager, S. A.

    2000-04-01

    We used the generalized Skyrme potential to study the equation of state of polarized nuclear matter in the frame of the Thomas-Fermi model. The critical temperature of the liquid-gas phase transition is found to be Tc=16.2 MeV. This critical temperature was found to decease with the asymmetry, spin, and spin-isospin excess parameters. The isothermal compressibility of polarized nuclear matter was also studied. The volume compressibility Kv was found to decrease with temperature. The symmetry compressibility Kx, the spin symmetry compressibility Ky, and the spin-isospin symmetry compressibility Kz were found to have a little increasing behavior with temperature.

  16. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  17. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP

  18. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond.

    PubMed

    Liu, Gang-Qin; Jiang, Qian-Qing; Chang, Yan-Chun; Liu, Dong-Qi; Li, Wu-Xia; Gu, Chang-Zhi; Po, Hoi Chun; Zhang, Wen-Xian; Zhao, Nan; Pan, Xin-Yu

    2014-09-07

    We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.

  19. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  20. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    SciTech Connect

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  1. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGES

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; ...

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  2. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  3. Solid effect in the electron spin dressed state: A new approach for dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Weis, V.; Bennati, M.; Rosay, M.; Griffin, R. G.

    2000-10-01

    We describe a new type of solid effect for dynamic nuclear polarization (DNP) that is based on simultaneous, near resonant microwave (mw) and radio frequency (rf) irradiation of a coupled electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible to obtain nuclear polarization with the dressed state solid effect (DSSE) even in the absence of nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates nuclear polarization in the nuclear laboratory frame on a time scale of tens of μs, depending on the strength of the electron-nuclear coupling, the mw and rf offset and field strength. The experiment employs both pulsed mw and rf irradiation at a repetition rate comparable to T1e-1, where T1e is the electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical in a protonated matrix of polystyrene.

  4. Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.

    2016-04-01

    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.

  5. Topical Developments in High-Field Dynamic Nuclear Polarization

    PubMed Central

    Kiesewetter, Matthew K.; Frantz, Derik K.; Walish, Joseph J.; Ravera, Enrico; Luchinat, Claudio; Swager, Timothy M.; Griffin, Robert G.

    2015-01-01

    We report our recent efforts directed at improving high-field DNP experiments. We investigated a series of thiourea nitroxide radicals and the associated DNP enhancements ranging from ε = 25 to 82 that demonstrate the impact of molecular structure on performance. We directly polarized low-gamma nuclei including 13C, 2H, and 17O using trityl via the cross effect. We discuss a variety of sample preparation techniques for DNP with emphasis on the benefit of methods that do not use a glass-forming cryoprotecting matrix. Lastly, we describe a corrugated waveguide for use in a 700 MHz / 460 GHz DNP system that improves microwave delivery and increases enhancements up to 50%. PMID:25977588

  6. Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd

    2015-03-01

    Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.

  7. Model for optically-induced nuclear spin polarization in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Coles, Patrick Joseph

    New technologies and corresponding research fields have recently emerged that aim to develop solid-state devices based on large polarizations of electron and/or nuclear spins. These include spin-based strategies for parallel information processing through quantum entanglement ("quantum computing") and semi-classical electronic devices controlled via the spin degree of freedom ("spintronics"). A new rule of thumb - polarization has application - makes the optically pumped semiconductor an interesting system, as it exhibits both large electron and nuclear polarizations. However, several aspects of the process by which nuclear polarization is generated through optical pumping were not understood prior to this thesis, even for the most well studied semiconductor, GaAs. These include the dependence of the nuclear polarization on laser power, irradiation time, and especially on photon energy, which exhibits a dramatic peak near 1.5 eV. This thesis presents a quantitative model for optical nuclear polarization in GaAs. The model makes predictions for all quantities observable in a hulk optically pumped NMR (OPNMR) spectrum: the OPNMR signal magnitude, the hyperfine shift of the NMR frequency, and the nuclear spin temperature. The model may help researchers to optimize experimental conditions for maximizing nuclear polarization in spintronics or quantum computing architectures. A clear correlation is shown between the OPNMR signal and the photoconductivity. A photoconductivity model is developed herein that accounts for the varying penetration depth of the light with photon energy and for the presence of band-to-band and band-to-defect recombination of charge carriers. The model's predictions agree well with the photoconductivity data. The photoconductivity model is then combined with a nuclear polarization model. The resulting picture for near-band-gap (1.495 eV ≲ by ≲ 1.6 eV) optical nuclear polarization is as follows. Optical absorption generates free, non

  8. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients

    DOE PAGES

    Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon; ...

    2016-08-24

    In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H–35Cl broadband adiabatic inversion cross polarizationmore » (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H–13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less

  9. Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Neudert, Oliver; Mattea, Carlos; Stapf, Siegfried

    2017-03-01

    In the last decade nuclear spin hyperpolarization methods, especially Dynamic Nuclear Polarization (DNP), have provided unprecedented possibilities for various NMR techniques by increasing the sensitivity by several orders of magnitude. Recently, in-situ DNP-enhanced Fast Field Cycling (FFC) relaxometry was shown to provide appreciable NMR signal enhancements in liquids and viscous systems. In this work, a measurement protocol for DNP-enhanced NMR studies is introduced which enables the selective detection of nuclear spin hyperpolarized by either Overhauser effect or solid effect DNP. Based on field-cycled DNP and relaxation studies it is shown that these methods allow for the independent measurement of polymer and solvent nuclear spins in a concentrated solution of high molecular weight polybutadiene in benzene doped with α,γ-bisdiphenylene-β-phenylallyl radical. Appreciable NMR signal enhancements of about 10-fold were obtained for both constituents. Moreover, qualitative information about the dynamics of the radical and solvent was obtained. Selective DNP-enhanced FFC relaxometry is applied for the measurement of the 1H nuclear magnetic relaxation dispersion of both constituents with improved precision. The introduced method is expected to greatly facilitate NMR studies of complex systems with multiple overlapping signal contributions that cannot be distinguished by standard methods.

  10. Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Stapf, Siegfried

    2017-03-01

    In the last decade nuclear spin hyperpolarization methods, especially Dynamic Nuclear Polarization (DNP), have provided unprecedented possibilities for various NMR techniques by increasing the sensitivity by several orders of magnitude. Recently, in-situ DNP-enhanced Fast Field Cycling (FFC) relaxometry was shown to provide appreciable NMR signal enhancements in liquids and viscous systems. In this work, a measurement protocol for DNP-enhanced NMR studies is introduced which enables the selective detection of nuclear spin hyperpolarized by either Overhauser effect or solid effect DNP. Based on field-cycled DNP and relaxation studies it is shown that these methods allow for the independent measurement of polymer and solvent nuclear spins in a concentrated solution of high molecular weight polybutadiene in benzene doped with α,γ-bisdiphenylene-β-phenylallyl radical. Appreciable NMR signal enhancements of about 10-fold were obtained for both constituents. Moreover, qualitative information about the dynamics of the radical and solvent was obtained. Selective DNP-enhanced FFC relaxometry is applied for the measurement of the (1)H nuclear magnetic relaxation dispersion of both constituents with improved precision. The introduced method is expected to greatly facilitate NMR studies of complex systems with multiple overlapping signal contributions that cannot be distinguished by standard methods.

  11. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  12. Propagation of Dynamic Nuclear Polarization across the Xenon Cluster Boundaries: Elucidation of the Spin-Diffusion Bottleneck

    PubMed Central

    Pourfathi, M.; Kuzma, N. N.; Kara, H.; Ghosh, R. K.; Shaghaghi, H.; Kadlecek, S. J.; Rizi, R. R.

    2013-01-01

    Earlier dynamic nuclear polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of 129Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of 129Xe signals in the clusters as well as the apparent discontinuity of 129Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium along with the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and 129Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards thermal equilibrium after microwaves were turned off to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to data during and after DNP provides estimates of cluster size that are in complete agreement. PMID:23981341

  13. Application of Dipole-dipole, Induced Polarization, and CSAMT Electrical Methods to Detect Evidence of an Underground Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Sweeney, J. J.; Felske, D.

    2013-12-01

    There is little experience with application of electrical methods that can be applied during the continuation period of an on-site inspection (OSI), one of the verification methods of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order add to such experience, we conducted controlled source audiomagnetotelluric (CSAMT), dipole-dipole resistivity, and induced polarization electrical measurements along three survey lines over and near to ground zero of an historic nuclear explosion. The presentation will provide details and results of the surveys, an assessment of application of the method toward the purposes of an OSI, and an assessment of the manpower and time requirements for data collection and processing that will impact OSI inspection team operations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  15. Dynamic Nuclear Polarization in Samarium Doped Lanthanum Magnesium Nitrate. Ph.D. Thesis - Va. Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.

    1971-01-01

    The dynamic nuclear polarization of hydrogen nuclei by the solid effect in single crystals of samarium doped lanthanum magnesium nitrate (Sm:LMN) was studied theoretically and experimentally. The equations of evolution governing the dynamic nuclear polarization by the solid effect were derived in detail using the spin temperature theory and the complete expression for the steady state enhancement of the nuclear polarization was calculated. Experimental enhancements of the proton polarization were obtained for eight crystals at 9.2 GHz and liquid helium temperatures. The samarium concentration ranged from 0.1 percent to 1.1 percent as determined by X-ray fluorescence. A peak enhancement of 181 was measured for a 1.1 percent Sm:LMN crystal at 3.0 K. The maximum enhancements extrapolated with the theory using the experimental data for peak enhancement versus microwave power and correcting for leakage, agree with the ideal enhancement (240 in this experiment) within experimental error for three of the crystals.

  16. Nuclear polarization of /sup 15/N via ion-beam-foil interaction

    SciTech Connect

    Deutch, B.I.; Liu, C.H. II; Lu, F.; Sun, C.; Tan, J.; Tang, G.; Xu, K.; Yang, F.; Ye, H.

    1981-10-01

    The ion beam surface interaction at grazing incidence (IBSIGI) generates highly oriented atomic states, and nuclear spin polarized ions are produced via hf-interactions. Both single and multiple IBSIGI were reported./sup 1/ By single reflection, nuclear polarizations of P/sub I/ = 14% in /sup 14/N(I = 1), and P/sub I/ = 6.8% in /sup 7/Li(I = 3/2) were produced. In this paper, the transmission rather than reflection technique is used. A 600 keV /sup 15/N/sup +/(I = 1/2) beam passed through a foil tilted 60 /sup 0/ with respect to the beam axis, and a perpendicular foil (both made of 20 ..mu..g/cm/sup 2/ thick carbon). After the first foil, highly oriented atomic states are produced, which result in large circular polarization fractions in the fluorescent radiation. By hf-interaction, the orientation can be transferred from the electronic shell to the nucleus, or vice versa. In the second foil, which is perpendicular, and therefore does not produce any polarization, the interaction does not affect the nuclear spin, but attaches a new unoriented electronic shell to the nucleus. Thus the circular polarization in the fluorescence after the second foil must stem from the transfer of orientation from the nucleus to the electronic shell and is therefore a direct measure of the nuclear spin orientation. To determine the degree of circular polarization, the Stokes parameter S/I is measured. For the multiplet exclamation/sup 5/N II 2s/sup 2/2p3s /sup 3/P--2s/sup 2/2p3p /sup 3/D after a tilted foil the S/I is equal to 8.5 +- 0.8%; after double foils (60 /sup 0/ tilted foil+perpendicular foil), S/I = 1.6 +- 0.4%. From the latter values, the nuclear polarization of /sup 15/N is calculated: P/sub I/ = 10.2%.

  17. Ettingshausen Effect around a Landau Level Filling Factor ν=3 Studied by Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Komori, Yosuke; Sakuma, Satoru; Okamoto, Tohru

    2007-10-01

    A spin current perpendicular to the electric current is investigated around a Landau level filling factor ν=3 in a GaAs/AlGaAs two-dimensional electron system. Measurements of dynamic nuclear polarization in the vicinity of the edge of a specially designed Hall bar sample indicate that the direction of the spin current with respect to the Hall electric field reverses its polarity at ν=3, where the dissipative current carried by holes in the spin up Landau level is replaced with that by electrons in the spin down Landau level.

  18. Laser-driven target of high-density nuclear-polarized hydrogen gas

    SciTech Connect

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-15

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1x10{sup 18} atoms/s.

  19. Laser-driven target of high-density nuclear-polarized hydrogen gas

    NASA Astrophysics Data System (ADS)

    Clasie, B.; Crawford, C.; Seely, J.; Xu, W.; Dutta, D.; Gao, H.

    2006-02-01

    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation, and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1×1018atoms/s .

  20. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  1. Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement

    NASA Astrophysics Data System (ADS)

    Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.

    2014-05-01

    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.

  2. Nuclear corrosion monitoring- : NCM-applied to biomaterials.

    PubMed

    Brune, D

    1987-08-01

    Nuclear corrosion technique has been developed for the assay of various heavy metals released through corrosion and abrasion into electrolytes from various biomaterials like amalgams, chromium- cobalt and gold alloys, steel, and titanium. Application of the technique in measurement of selective release rates under static or dynamic conditions, i.e., during cyclic loading, is discussed. The elements chromium, cobalt, copper, gold, iron, mercury, molybdenum, silver, titanium, and zinc have been quantitatively assessed. In vivo corrosion measurements are further included. By combining the present nuclear tracer technique with ESCA technique, knowledge about reaction mechanisms occurring at the interface solid/liquid is obtained. Exposure of humans to various heavy metals from biomaterials, e.g., dental materials, can be estimated using the NCM technique. The technique also has a potential for selective release measurements of several nuclides possessing suitable radioanalytical properties from other types of alloys immersed in various liquid environments.

  3. Dynamic Nuclear Polarization and Relaxation of H and D Atoms in Solid Mixtures of Hydrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Lee, D. M.; Khmelenko, V. V.

    2017-04-01

    We report on a study of dynamic nuclear polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H2, D2, and HD mixtures. The electron and nuclear spin relaxation times (T_{1e} and T_{1N}) were measured within the temperature range 0.15-2.5 K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that T_{1e} is nearly temperature independent in this temperature range, while T_{1N} decreased by two orders of magnitude upon raising temperature. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D2 and D2{:}HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behavior indicates the cross effect mechanism of the DNP and nuclear relaxation, which turns out to be well resolved in the conditions of our experiments. Efficient DNP of H atoms was also observed when pumping the middle D line located in the center of the ESR spectrum. This phenomenon can be explained in terms of clusters or pairs of H atoms with a strong exchange interaction. These clusters have partially allowed transitions in the center of the ESR spectrum, and DNP may be created via the resolved cross effect.

  4. Dealing with a Nuclear Iran: Applying Historical Lessons in Deterrence

    DTIC Science & Technology

    2012-02-15

    Israel is widely considered to have acquired nuclear weapons in the late 1960’ s . Although never acknowledged, the “overall consensus is that Israel...Harvard University Press, 1960), 3-20. 4 Ibid, 6. 5 Ibid, 187. 6 Frank C. Zagare and D. Marc Kilgour, Perfect Deterrence (Cambridge, UK...11 December 2011). Zagare , Frank C., and D. Marc Kilgour. Perfect Deterrence. Cambridge, UK: Cambridge University Press, 2000.

  5. Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface

    NASA Astrophysics Data System (ADS)

    Butscher, R.; Wäckerle, G.; Mehring, M.

    1994-05-01

    We report nuclear magnetic resonance (NMR) experiments on 131Xe (I=3/2) gas-phase atoms which exhibit nuclear quadrupole interaction with the surface of the sample cell. Nuclear quadrupole coupling constants and quadrupole relaxation rates are obtained from the time-domain signal of the freely precessing nuclear magnetization in weak magnetic fields. The nuclear spin species is polarized by spin-exchange collisions with optically pumped ground-state spins of Rb gas atoms. The Rb atoms also present in the sample are used as a magnetometer to probe the free-induction decay of the nuclear-spin ensemble. The temperature dependence of both the effective quadrupole splittings and the relaxation rates are explained by a model for the surface interactions of a Xe atom adsorbed on the glass surface. The desorption is thermally activated with an activation energy of EA=0.12 eV. The surface diffusion of an adsorbed atom is characterized by an activation energy ED for thermally activated hopping between neighboring surface sites. Both energies enter the spectral density function governing wall-induced nuclear quadrupole relaxation. Our experimental results lead to the conclusion that they are on the same order of magnitude.

  6. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

  7. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    SciTech Connect

    De Paul, Susan M.

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  8. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  9. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  10. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization

    NASA Astrophysics Data System (ADS)

    Mamin, H. J.; Budakian, R.; Chui, B. W.; Rugar, D.

    2005-07-01

    We have detected and manipulated the naturally occurring N statistical polarization in nuclear spin ensembles using magnetic resonance force microscopy. Using protocols previously developed for detecting single electron spins, we have measured signals from ensembles of nuclear spins in a volume of roughly (150nm)3 with a sensitivity of roughly 2000 net spins in a 2.5h averaging window. Three systems have been studied, F19 nuclei in CaF2 , and H1 nuclei (protons) in both polymethylmethacrylate and collagen, a naturally occurring protein. By detecting the statistical polarization, we not only can work with relatively small ensembles, but we eliminate any need to wait a longitudinal relaxation time T1 to polarize the spins. We have also made use of the fact that the statistical polarization, which can be considered a form of spin noise, has a finite correlation time. A method similar to one previously proposed by Carlson [Bull. Am. Phys. Soc. 44, 541 (1999)] has been used to suppress the effect of the statistical uncertainty and extract meaningful information from time-averaged measurements. By implementing this method, we have successfully made nutation and transverse spin relaxation time measurements in CaF2 at low temperatures.

  11. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  12. Hyperfine interaction in InAs/GaAs self-assembled quantum dots: dynamical nuclear polarization versus spin relaxation

    NASA Astrophysics Data System (ADS)

    Krebs, Olivier; Eble, Benoît; Lemaître, Aristide; Voisin, Paul; Urbaszek, Bernhard; Amand, Thierry; Marie, Xavier

    2008-10-01

    We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ˜4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Finally, we emphasize the similarities and differences between X and X trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs et al., C. R. Physique 9 (2008).

  13. Nuclear signal simulation applied to gas ionizing chambers

    SciTech Connect

    Coulon, Romain; Dumazert, Jonathan

    2015-07-01

    Particle transport codes used in detector simulation allow the calculation of the energy deposited by charged particles produced following an interaction. The pulses temporal shaping is more and more used in nuclear measurement into pulse shape analysis techniques. A model is proposed in this paper to simulate the pulse temporal shaping and the associated noise level thanks to the output track file PTRAC provides by Monte-Carlo particle transport codes. The model has been dedicated to ion chambers and more especially for High Pressure Xenon chambers HPXe where the pulse shape analysis can resolve some issues regarding with this technology as the ballistic deficit phenomenon. The model is fully described and an example is presented as a validation of such full detector simulation. (authors)

  14. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  15. Fast control of nuclear spin polarization in an optically pumped single quantum dot

    NASA Astrophysics Data System (ADS)

    Makhonin, M. N.; Kavokin, K. V.; Senellart, P.; Lemaître, A.; Ramsay, A. J.; Skolnick, M. S.; Tartakovskii, A. I.

    2011-11-01

    Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 105 optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.

  16. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  17. Nuclear spin hyperpolarization with ansa-aminoboranes: a metal-free perspective for parahydrogen-induced polarization.

    PubMed

    Zhivonitko, Vladimir V; Sorochkina, Kristina; Chernichenko, Konstantin; Kótai, Bianka; Földes, Tamás; Pápai, Imre; Telkki, Ville-Veikko; Repo, Timo; Koptyug, Igor

    2016-10-12

    The parahydrogen-induced polarization (PHIP) phenomenon, observed when parahydrogen is used in H2 addition processes, provides a means for substantial NMR signal enhancements and mechanistic studies of chemical reactions. Commonly, noble metal complexes are used for parahydrogen activation, whereas metal-free activation is rare. Herein, we report a series of unimolecular metal-free frustrated Lewis pairs based on an ansa-aminoborane (AAB) moiety in the context of PHIP. These molecules, which have a "molecular tweezers" structure, differ in their substituents at the boryl site (-H, -Ph, -o-iPr-Ph, and -Mes). PHIP effects were observed for all the AABs after exposing their solutions to parahydrogen in a wide temperature range, and experimental measurements of their kinetic and thermodynamic parameters were performed. A theoretical analysis of their nuclear spin polarization effects is presented, and the roles of chemical exchange, chemical equilibrium and spin dynamics are discussed in terms of the key dimensionless parameters. The analysis allowed us to formulate the prerequisites for achieving strong polarization effects with AAB molecules, which can be applied for further design of efficient metal-free tweezers-like molecules for PHIP. Mechanistic (chemical and physical) aspects of the observed effects are discussed in detail. In addition, we performed quantum chemical calculations, which confirmed that the J-coupling between the parahydrogen-originated protons in AAB-H2 molecules is mediated through dihydrogen bonding.

  18. Overview of the regulatory framework applying to nuclear power stations of France

    SciTech Connect

    Astolfi, J.F.

    1993-12-31

    The achievement of French nuclear power plants, because France has not yet issued a specific nuclear law and is tied to a very complex regulatory structure, is submitted to a large number of prior authorizations, which are issued either at a national level or by local authorities according to their goals and importance. This report will outline the regulatory framework applying to nuclear power stations in France.

  19. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  20. New filter for iodine applied in nuclear medicine services.

    PubMed

    Ramos, V S; Crispim, V R; Brandão, L E B

    2013-12-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system (where doses of radioiodine are handled within fume hoods, and new filters will be installed at their exit), using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon and silver impregnated silica are effective for I2 capture with large or small amounts of substrate but the use of activated carbon is restricted due to its low flash point (423 K). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to use natural activated carbon since it was not absorbed by SiO2+Ag crystals. We concluded that, for an exhaust flow range of (145 ± 2)m(3)/h, a double stage filter using SiO2+Ag in the first stage and natural activated carbon in the second stage is sufficient to meet radiological safety requirements.

  1. Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry.

    PubMed

    Hilty, Christian; Bowen, Sean

    2010-08-07

    Nuclear Magnetic Resonance (NMR) is an important spectroscopic tool for the identification and structural characterization of molecules in chemistry and biochemistry. The most significant limitation of NMR compared to other spectroscopies is its relatively low sensitivity, which thus often requires long measurement times or large amounts of sample. A way of increasing sensitivity of single scan NMR spectra by several orders of magnitude is through hyperpolarization of nuclear spins. Dynamic nuclear polarization allows hyperpolarization of most spins in small molecules encountered in chemistry and biochemistry. NMR spectra of small amounts of samples from natural source, or from chemical synthesis can readily be acquired. Perhaps more interestingly, the availability of the entire hyperpolarized NMR signal in one single scan allows the measurement of transient processes in real time, if applied together with a stopped-flow technique. Through observation of chemical shift, different reactant and product species can be distinguished, and kinetics and mechanisms, for example in enzyme catalyzed reactions, can be elucidated. Real-time hyperpolarization-enhanced NMR is uniquely amenable to correlating atomic positions not only through space, but also over time between reactant and product species. Such correlations carry mechanistic information about a reaction, and can prove reaction pathways. Applications of this technique are emerging in different areas of chemistry concerned with rapid reactions, including not only enzymatic processes, but also chemical catalysis and protein folding.

  2. Microtubule Initiation from the Nuclear Surface Controls Cortical Microtubule Growth Polarity and Orientation in Arabidopsis thaliana

    PubMed Central

    Ambrose, Chris; Wasteneys, Geoffrey O.

    2014-01-01

    The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth. PMID:25008974

  3. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR

    NASA Astrophysics Data System (ADS)

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9 T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U- 13C, 15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as

  4. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  5. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  6. A 129 GHz dynamic nuclear polarizer in a wide-bore superconducting magnet

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Martin, Richard; Jindal, Ashish; Malloy, Craig; Sherry, A. Dean; Conradi, Mark S.; Merritt, Matthew

    2011-03-01

    Dynamic nuclear polarization via fast dissolution method has allowed production of solutions containing highly-polarized nuclei (> 10 , 000 - foldenhancementoftheroom - temperatureliquid - stateNMRsignal) ofbio - moleculesfor invitro and invivo metabolicnuclearmagneticresonancespectroscopy (MRS) andimaging (MRI) . Herewepresenttheconstructionanduseofa 129 GHzdynamicnuclearpolarizerina 4.6 Twide - boresuperconductingmagnet . Therelativelylargebore (150 mm) ofthesuperconductingmagnetallowstheuseofacryostatseparatefromthemagnetandroutingofthemicrowavessuchthatthewaveguidedoesnothavetoberemovedbeforedissolution . A 100 mW microwave source operating at 129 GHz was used to irradiate the samples. The cryostat has a 10- liter liquid Helium capacity which lasts for 10-12 hrs of continuous operation. Base temperature of 1.15 K is achieved with a 450 m 3 / hr roots blower pump. Preliminary results will be discussed. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  7. Dynamic Nuclear Polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces

    PubMed Central

    Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2016-01-01

    We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  8. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.

    PubMed

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  9. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  10. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.

    PubMed

    Blanc, Frédéric; Chong, Samantha Y; McDonald, Tom O; Adams, Dave J; Pawsey, Shane; Caporini, Marc A; Cooper, Andrew I

    2013-10-16

    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.

  11. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals.

    PubMed

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  12. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  13. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  14. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  15. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  16. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2011-12-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  17. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-03-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria.

  18. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  19. Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting

    PubMed Central

    Ge, Jian; Dong, Haobin; Liu, Huan; Yuan, Zhiwen; Dong, He; Zhao, Zhizhuo; Liu, Yonghua; Zhu, Jun; Zhang, Haiyang

    2016-01-01

    Based on the dynamic nuclear polarization (DNP) effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID) signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz1/2@1 Hz, 0.0023 nT and 20–100 μT, respectively. PMID:27258283

  20. Dynamic nuclear polarization system for the SANS-J-II spectrometer at JAEA

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki; Noda, Yohei; Hashimoto, Takeji; Koizumi, Satoshi

    2009-09-01

    We have developed a dynamic nuclear polarization (DNP) system for the SANS-J-II spectrometer at the JRR-3 atomic research reactor of Japan Atomic Energy Agency (JAEA). The DNP system is composed of a split-type horizontal superconducting magnet (3.3 T), a Gunn oscillator as a microwave source (94 GHz), and a cryostat (1.2 K). In particular, a sample cell with ∅40 in inner diameter and the magnet with a field homogeneity of 5×10 -5 in a volume of ∅25 mm×8 mm were employed to polarize samples with a diameter of ∅20 mm for the ultra small-angle scattering experiment using the magnetic lens installed at the SANS-J-II spectrometer [S. Koizumi, H. Iwase, J. Suzuki, T. Oku, R. Motokawa, H. Sasao, H. Tanaka, D. Yamaguchi, H.M. Shimizu, T. Hashimoto, J. Appl. Crystallogr. 40 (2007) s474]. We obtained the proton polarization | P|=32% in the polyethylene doped with 2,2,6,6-tetra-methyl-piperidine-1-oxyl (TEMPO).

  1. Investigation of the Effective NN Interaction in the Nuclear Medium Through SILICON-28(POLARIZED Proton, Polarized PROTON')SILICON-28 Polarization Transfer.

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    1996-08-01

    Reaction cross section and spin polarization observables were measured for a number of transitions in ^{28}Si(vec p,vec p^ '){^{28}Si} using the K600 high-resolution spectrometer located at the Indiana University Cyclotron Facility. This information was used to check and expand on models of the effect of the nuclear medium on the NN interaction, and to examine the distribution of 6^- strength among the excited states of ^{28} Si. The spectrometer's resolution of 50 keV made possible the separation of the excited states needed for this study, and the number of polarization observables available was enhanced by the use of the focal plane polarimeter associated with the spectrometer. Four different experimental results are part of this thesis. Measurements were made of the p+^ {28}Si elastic scattering cross section (dsigma/dOmega) and analyzing power (A_{y}) in order to constrain the wave functions used to describe the projectile-target system. This provided information necessary for a subsequent distorted-wave Born approximation treatment of inelastic scattering transitions. Measurements were made in the angle range from 8^circ to 65^circ, and were well described using complex central and spin-orbit potentials within a Schrodinger-equation framework. A combination of polarization transfer observables (D_{c}) was observed at 19.8^circ and 24.0 ^circ to confirm earlier measurements of the in-medium corrections to the spin-independent, isoscalar central and spin-orbit portions of the effective NN interaction. These checks were performed for a number of low-lying, natural -parity transitions, and showed excellent agreement. To provide information on the spin-orbit and tensor portions of the effective NN interaction (both isoscalar and isovector), a detailed study of the T = 0 and T = 1 6^- states at 11.58 and 14.36 MeV was conducted. Constraints on the transition form factor were taken from electron scattering measurements, and pion scattering confirmed the isospin

  2. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  3. Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.

    PubMed

    Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I

    2014-09-21

    For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (μw) power. At the maximum μw power, oversaturation reduces the electron spin population differential that must be upheld between

  4. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer.

    PubMed

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is (13)C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized (13)C-pyruvate results in appearance of (13)C-lactate, (13)C-alanine and (13)C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced (13)C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized (13)C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated (13)C-lactate/(13)C-pyruvate ratio in regions of

  5. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    PubMed Central

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth; Clemmensen, Andreas Ettrup; Ardenkjær-Larsen, Jan Henrik; Nielsen, Carsten Haagen; Kjær, Andreas

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range. Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is 13C-pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased glycolysis. The use of DNP enhanced 13C-pyruvate has in preclinical studies shown to be a sensitive method for detecting cancer and for assessment of early treatment response in a variety of cancers. Recently, a first-in-man 31-patient study was conducted with the primary objective to assess the safety of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy

  6. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  7. Open problems in applying random-matrix theory to nuclear reactions

    NASA Astrophysics Data System (ADS)

    Weidenmüller, H. A.

    2014-09-01

    Problems in applying random-matrix theory (RMT) to nuclear reactions arise in two domains. To justify the approach, statistical properties of isolated resonances observed experimentally must agree with RMT predictions. That agreement is less striking than would be desirable. In the implementation of the approach, the range of theoretically predicted observables is too narrow.

  8. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems.

    PubMed

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy; Ardenkjær-Larsen, Jan Henrik

    2016-05-01

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.

  9. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    NASA Astrophysics Data System (ADS)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy; Ardenkjær-Larsen, Jan Henrik

    2016-05-01

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.

  10. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    SciTech Connect

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; Schlage, Kai; Wetterskog, Erik; Bergstrom, Lennart; Hermann, Raphael P.

    2016-05-11

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  11. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE PAGES

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; ...

    2016-05-11

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  12. Evaluation of nuclear facility decommissioning projects. Summary report: Three Mile Island Unit 2 polar crane recovery

    SciTech Connect

    Doerge, D.H.; Miller, R.L.

    1984-08-01

    This document summarizes information concerning restoration of the Three Mile Island-Unit 2 Polar Crane to a fully operational condition following the loss of coolant accident experienced on March 28, 1979. The data collected from activity reports, reactor containment entry records, and other sources were placed in a computerized information retrieval/manipulation system which permits extraction/manipulation of specific data which could be utilized in planning for recovery activities should a similar accident occur in a nuclear generating plant. The information is presented in both computer output form and a manually assembled summarization. This report contains only the manpower requirements and radiation exposures actually incurred during recovery operations within the reactor containment and does not include support activities or costs.

  13. Nuclear Polar VALOR: An ASRG-Enabled Venus Balloon Mission Concept

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Baines, K. H.

    2008-12-01

    In situ exploration of Venus is expected to answer high priority science questions about the planet's origin, evolution, chemistry, and dynamics as identified in the NRC Decadal Survey and in the VEXAG White Paper. Furthermore, exploration of the polar regions of Venus is key to understanding its climate and global circulation, as well as providing insight into the circulation, chemistry, and climatological processes on Earth. In this paper we discuss our proposed Nuclear Polar VALOR mission, which would target one of the polar regions of Venus, while building on design heritage from the Discovery class VALOR concept, proposed in 2004 and 2006. Riding the strong zonal winds at 55 km altitude and drifting poleward from mid-latitude this balloon-borne aerial science station (aerostat) would circumnavigate the planet multiple times over its one- month operation, extensively investigating polar dynamics, meteorology, and chemistry. Rising and descending over 1 km altitude in planetary waves - similar to the two VEGA balloons in 1985 - onboard instrumentation would accurately and constantly sample and measure other meteorological and chemical parameters, such as atmospheric temperature and pressure, cloud particle sizes and their local column abundances, the vertical wind component, and the chemical composition of cloud-forming trace gases. As well, when viewed with terrestrial radio telescopes on the Earth-facing side of Venus, both zonal and meridional winds would be measured to high accuracy (better than 10 cm/sec averaged over an hour). Due to three factors: the lack of sunlight near the poles; severe limitations on the floating mass-fraction available for a power source; and the science requirements for intensive and continuous measurements of the balloon's environment and movement, a long-duration polar balloon mission would require a long-lived internal power source in a relatively lightweight package. For our concept we assumed an Advanced Stirling Radioisotope

  14. Cysteine-Specific Labeling of Proteins with a Nitroxide Biradical for Dynamic Nuclear Polarization NMR.

    PubMed

    Voinov, Maxim A; Good, Daryl B; Ward, Meaghan E; Milikisiyants, Sergey; Marek, Antonin; Caporini, Marc A; Rosay, Melanie; Munro, Rachel A; Ljumovic, Milena; Brown, Leonid S; Ladizhansky, Vladimir; Smirnov, Alex I

    2015-08-13

    Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.

  15. A Novel Variable Field System for Field-Cycled Dynamic Nuclear Polarization Spectroscopy

    PubMed Central

    Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.

    2014-01-01

    Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0 - 0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0–100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields. PMID:20570197

  16. (13) C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of (15) N and/or (2) H isotopic labeling of 4-oxo-TEMPO free radical on (13) C DNP of 3 M [1-(13) C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for (13) C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-(15) N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-(15) N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the (13) C DNP efficiency of these (15) N and/or (2) H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with (13) C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the (13) C DNP signals of these samples all doubled in the same manner, and the (13) C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the (13) C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Spin-dependent structure functions in nuclear matter and the polarized EMC effect

    SciTech Connect

    I.C. Cloet; W. Bentz; A.W. Thomas

    2005-04-01

    An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu-Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions, and find that we are readily able to reproduce both nuclear matter saturation and the experimental F{sub 2N}{sup A}/F{sub 2N} ratio, that is, the EMC effect. Applying this framework to determine g{sub 1p}{sup A}, we find that the ratio g{sub 1p}{sup A}/g{sub 1p} differs significantly from 1, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which if confirmed experimentally, will reveal much about the quark structure of nuclear matter.

  18. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-02-23

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR.

  19. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization

    PubMed Central

    Joye, Colin D.; Griffin, Robert G.; Hornstein, Melissa K.; Hu, Kan-Nian; Kreischer, Kenneth E.; Rosay, Melanie; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Woskov, Paul P.

    2006-01-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter. PMID:17431442

  20. The multi-configuration electron-nuclear dynamics method applied to LiH.

    PubMed

    Ulusoy, Inga S; Nest, Mathias

    2012-02-07

    The multi-configuration electron-nuclear dynamics (MCEND) method is a nonadiabatic quantum dynamics approach to the description of molecular processes. MCEND is a combination of the multi-configuration time-dependent Hartree (MCTDH) method for atoms and its antisymmetrized equivalent MCTDHF for electrons. The purpose of this method is to simultaneously describe nuclear and electronic wave packets in a quantum dynamical way, without the need to calculate potential energy surfaces and diabatic coupling functions. In this paper we present first exemplary calculations of MCEND applied to the LiH molecule, and discuss computational and numerical details of our implementation.

  1. Regulatory experience in applying a radiological environmental protection framework for existing and planned nuclear facilities.

    PubMed

    Mihok, S; Thompson, P

    2012-01-01

    Frameworks and methods for the radiological protection of non-human biota have been evolving rapidly at the International Commission on Radiological Protection and through various European initiatives. The International Atomic Energy Agency has incorporated a requirement for environmental protection in the latest revision of its Basic Safety Standards. In Canada, the Canadian Nuclear Safety Commission has been legally obligated to prevent unreasonable risk to the environment since 2000. Licensees have therefore been meeting generic legal requirements to demonstrate adequate control of releases of radioactive substances for the protection of both people and biota for many years. In the USA, in addition to the generic requirements of the Environmental Protection Agency and the Nuclear Regulatory Commission, Department of Energy facilities have also had to comply with specific dose limits after a standard assessment methodology was finalised in 2002. Canadian regulators developed a similar framework for biota dose assessment through a regulatory assessment under the Canadian Environmental Protection Act in the late 1990s. Since then, this framework has been applied extensively to satisfy legal requirements under the Canadian Environmental Assessment Act and the Nuclear Safety and Control Act. After approximately a decade of experience in applying these methods, it is clear that simple methods are fit for purpose, and can be used for making regulatory decisions for existing and planned nuclear facilities.

  2. Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids.

    PubMed

    Corzilius, Björn

    2016-10-21

    Dynamic nuclear polarization (DNP) is a powerful method to enhance sensitivity especially of solid-state magic-angle spinning (MAS) NMR by up to several orders of magnitude. The increased interest both from a practical as well as theoretical viewpoint has spawned several fields of active research such as the development of new polarizing agents with improved or unique properties and description of the underlying DNP mechanisms such as solid effect (SE) and cross effect (CE). Even though a novel class of unique polarizing agents based on high-spin metal ions such as Gd(iii) and Mn(ii) has already been utilized for MAS DNP a theoretical description of the involved DNP mechanism is still incomplete. Here, we review several aspects of DNP-relevant electron-paramagnetic resonance (EPR) properties of the general class of these half-integer high-spin metal ions with isotropic Zeeman interaction but significant zero-field splitting (ZFS). While the SE can be relatively easily described similar to that of a S = 1/2 system and is assumed to be effective only for polarizing agents featuring a narrow central EPR transitions (i.e., mS = -1/2 → +1/2) with respect to the nuclear Larmor frequency, the CE between two high-spin ions requires a more detailed theoretical investigation due to a multitude of possible transitions and matching conditions. This is especially interesting in light of recent understanding of CE being induced by MAS-driven level anti-crossings (LACs) between dipolar-coupled electron spins. We discuss the requirements of such CE-enabling LACs to occur due to anisotropy of ZFS, the expected adiabaticity, and the resulting possibilities of high-spin metal ion pairs to act as polarizing agents for DNP. This theoretical description serves as a framework for a detailed experimental study published directly following this work.

  3. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    SciTech Connect

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  4. Accurate optical measurement of nuclear polarization in optically pumped ^3He gas

    NASA Astrophysics Data System (ADS)

    Bigelow, N. P.; Nacher, P. J.; Leduc, M.

    1992-12-01

    Large nuclear polarizations M (over 80 %) can now be achieved in gaseous ^3He by optical pumping. The gas is excited by an RF discharge and is oriented using a high power LNA laser which is lamp pumped and tuned to the 2 ^3S-2 ^3P transition at 1.08 μm. In this paper we describe an experiment in which we measure M with high absolute precision. Our method is based on a change as a function of M in the ratio of σ or π polarized light absorbed from a weak probe beam by the 2 ^3S metastable atoms. The probe was delivered by a diode pumped LNA laser and propagated perpendicular to the direction of the magnetization. Simultaneous measurement of M was made by monitoring the degree of circular polarization \\cal{P} of the optical line at 668 nm emitted by the discharge. Our measurements show a linear relationship between M and \\cal{P} for all accessible M values and for a wide range of experimental conditions (sample pressure, magnetic field, RF discharge level, etc.). This provides a second method of measurement of the ^3He nuclear polarization which is simple to operate and is calibrated and is calibrated over a pressure range of 0.15 to 6.5 torr. On peut maintenant produire par pompage optique de fortes polarisations nucléaires M (M supérieure à 80 % dans l' ^3He gazeux. Le gaz est excité par une décharge radiofréquence et orienté à l'aide d'un laser LNA de forte intensité qui est pompé par des lampes et accordé sur la transition 2 ^3S-2 ^3P à 1,08 μm. Dans cet article, nous décrivons une expérience où nous mesurons M avec une grande précision absolue. Notre méthode est fondée sur la variation en fonction de M de l'absorption par les atomes métastables d'un faisceau sonde de faible intensité polarisé linéairement. Nous mesurons le rapport des absorptions pour des polarisations π et σ. Le faisceau sonde est un laser LNA pompé par diode qui se propage perpendiculairement à la direction de l'aimantation. Simultanément, nous mesurons M par le

  5. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  6. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  7. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  8. Check-All-That-Apply (CATA), Sorting, and Polarized Sensory Positioning (PSP) with Astringent Stimuli

    PubMed Central

    Fleming, Erin E.; Ziegler, Gregory R.; Hayes, John E.

    2015-01-01

    Multiple rapid sensory profiling techniques have been developed as more efficient alternatives to traditional sensory descriptive analysis. Here, we compare the results of three rapid sensory profiling techniques – check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) – using a diverse range of astringent stimuli. These rapid methods differ in their theoretical basis, implementation, and data analyses, and the relative advantages and limitations are largely unexplored. Additionally, we were interested in using these methods to compare varied astringent stimuli, as these compounds are difficult to characterize using traditional descriptive analysis due to high fatigue and potential carry-over. In the CATA experiment, subjects (n=41) were asked to rate the overall intensity of each stimulus as well as to endorse any relevant terms (from a list of 13) which characterized the sample. In the sorting experiment, subjects (n=30) assigned intensity-matched stimuli into groups 1-on-1 with the experimenter. In the PSP experiment, (n=41) subjects first sampled and took notes on three blind references (‘poles’) before rating each stimulus for its similarity to each of the 3 poles. Two-dimensional perceptual maps from correspondence analysis (CATA), multidimensional scaling (sorting), and multiple factor analysis (PSP) were remarkably similar, with normalized RV coefficients indicating significantly similar plots, regardless of method. Agglomerative hierarchical clustering of all data sets using Ward’s minimum variance as the linkage criteria showed the clusters of astringent stimuli were approximately based on the respective class of astringent agent. Based on the descriptive CATA data, it appears these differences may be due to the presence of side tastes such as bitterness and sourness, rather than astringent sub-qualities per se. Although all three methods are considered ‘rapid,’ our prior experience with sorting suggests it is best

  9. Check-All-That-Apply (CATA), Sorting, and Polarized Sensory Positioning (PSP) with Astringent Stimuli.

    PubMed

    Fleming, Erin E; Ziegler, Gregory R; Hayes, John E

    2015-10-01

    Multiple rapid sensory profiling techniques have been developed as more efficient alternatives to traditional sensory descriptive analysis. Here, we compare the results of three rapid sensory profiling techniques - check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) - using a diverse range of astringent stimuli. These rapid methods differ in their theoretical basis, implementation, and data analyses, and the relative advantages and limitations are largely unexplored. Additionally, we were interested in using these methods to compare varied astringent stimuli, as these compounds are difficult to characterize using traditional descriptive analysis due to high fatigue and potential carry-over. In the CATA experiment, subjects (n=41) were asked to rate the overall intensity of each stimulus as well as to endorse any relevant terms (from a list of 13) which characterized the sample. In the sorting experiment, subjects (n=30) assigned intensity-matched stimuli into groups 1-on-1 with the experimenter. In the PSP experiment, (n=41) subjects first sampled and took notes on three blind references ('poles') before rating each stimulus for its similarity to each of the 3 poles. Two-dimensional perceptual maps from correspondence analysis (CATA), multidimensional scaling (sorting), and multiple factor analysis (PSP) were remarkably similar, with normalized RV coefficients indicating significantly similar plots, regardless of method. Agglomerative hierarchical clustering of all data sets using Ward's minimum variance as the linkage criteria showed the clusters of astringent stimuli were approximately based on the respective class of astringent agent. Based on the descriptive CATA data, it appears these differences may be due to the presence of side tastes such as bitterness and sourness, rather than astringent sub-qualities per se. Although all three methods are considered 'rapid,' our prior experience with sorting suggests it is best performed 1

  10. On The Potential of Dynamic Nuclear Polarization Enhanced Diamonds in Solid-State and Dissolution (13) C NMR Spectroscopy.

    PubMed

    Bretschneider, Christian O; Akbey, Ümit; Aussenac, Fabien; Olsen, Greg L; Feintuch, Akiva; Oschkinat, Hartmut; Frydman, Lucio

    2016-09-05

    Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid-state polarization enhancement at ambient conditions, and the maximization of (13) C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's (13) C behavior in nano- and micro-particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid-state experiments. It was found that (13) C NMR signals could be boosted by orders of magnitude in either low- or room-temperature solid-state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin-lattice relaxation times characteristic of diamond, coupled with a time-independent cross-effect-like polarization transfer mechanism facilitated by a matching of the nitrogen-related hyperfine coupling and the (13) C Zeeman splitting. The efficiency of this solid-state polarization process, however, is harder to exploit in dissolution DNP-enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.

  11. Ferroelectric glass of spheroidal dipoles with impurities: polar nanoregions, response to applied electric field, and ergodicity breakdown

    NASA Astrophysics Data System (ADS)

    Takae, Kyohei; Onuki, Akira

    2017-04-01

    Using molecular dynamics simulation, we study dipolar glass in crystals composed of slightly spheroidal, polar particles and spherical, apolar impurities between metal walls. We present physical pictures of ferroelectric glass, which have been observed in relaxors, mixed crystals (such as KCN x KBr1‑x ), and polymers. Our systems undergo a diffuse transition in a wide temperature range, where we visualize polar nanoregions (PNRs) surrounded by impurities. In our simulation, the impurities form clusters and their space distribution is heterogeneous. The polarization fluctuations are enhanced at relatively high T depending on the size of the dipole moment. They then form frozen PNRs as T is further lowered into the nonergodic regime. As a result, the dielectric permittivity exhibits the characteristic features of relaxor ferroelectrics. We also examine nonlinear response to cyclic applied electric field and nonergodic response to cyclic temperature changes (ZFC/FC), where the polarization and the strain change collectively and heterogeneously. We also study antiferroelectric glass arising from molecular shape asymmetry. We use an Ewald scheme of calculating the dipolar interaction in applied electric field.

  12. Causation's nuclear future: applying proportional liability to the Price-Anderson Act.

    PubMed

    O'Connell, William D

    2014-11-01

    For more than a quarter century, public discourse has pushed the nuclear-power industry in the direction of heavier regulation and greater scrutiny, effectively halting construction of new reactors. By focusing on contemporary fear of significant accidents, such discourse begs the question of what the nation's court system would actually do should a major nuclear incident cause radiation-induced cancers. Congress's attempt to answer that question is the Price-Anderson Act, a broad statute addressing claims by the victims of a major nuclear accident. Lower courts interpreting the Act have repeatedly encountered a major stumbling block: it declares that judges must apply the antediluvian preponderance-of-the-evidence logic of state tort law, even though radiation science insists that the causes of radiation-induced cancers are more complex. After a major nuclear accident, the Act's paradoxically outdated rules for adjudicating "causation" would make post-incident compensation unworkable. This Note urges that nuclear-power-plant liability should not turn on eighteenth-century tort law. Drawing on modern scientific conclusions regarding the invariably "statistical" nature of cancer, this Note suggests a unitary federal standard for the Price-Anderson Act--that a defendant be deemed to have "caused" a plaintiff's injury in direct proportion to the increased risk of harm the defendant has imposed. This "proportional liability" rule would not only fairly evaluate the costs borne by injured plaintiffs and protect a reawakening nuclear industry from the prospect of bank-breaking litigation, but would prove workable with only minor changes to the Price-Anderson Act's standards of "injury" and "fault."

  13. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

  14. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals

    NASA Astrophysics Data System (ADS)

    Ito, Shinji; Hyodo, Fuminori

    2016-02-01

    Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.

  15. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  16. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  17. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals

    PubMed Central

    Ito, Shinji; Hyodo, Fuminori

    2016-01-01

    Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe. PMID:26892591

  18. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  19. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Mak-Jurkauskas, Melody L; Matsuki, Yoh; Bajaj, Vikram S; van der Wel, Patrick C A; Derocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R; Temkin, Richard J; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here-which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole-circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100K which shows 30 Hz linewidths.

  20. A photochemically induced dynamic nuclear polarization study of denatured states of lysozyme

    SciTech Connect

    Broadhurst, R.W.; Dobson, C.M.; Hore, P.J.; Radford, S.E.; Rees, M.L. )

    1991-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) techniques have been used to examine denatured states of lysozyme produced under a variety of conditions. {sup 1}H CIDNP difference spectra of lysozyme denatured thermally, by the addition of 10 M urea, or by the complete reduction of its four disulfide bonds were found to differ substantially not only from the spectrum of the native protein but also from that expected for a completely unstructured polypeptide chain. Specifically, denatured lysozyme showed a much reduced enhancement of tryptophan relative to tyrosine than did a mixture of blocked amino acids with the same composition as the intact protein. By contrast, the CIDNP spectrum of lysozyme denatured in dimethyl sulfoxide solution was found to be similar to that expected for a random coil. It is proposed that nonrandom hydrophobic interactions are present within the denatured states of lysozyme in aqueous solution and that these reduce the reactivity of tryptophan residues relative to tyrosine residues. Characterization of such interactions is likely to be of considerable significance for an understanding of the process of protein folding.

  1. 7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zeghib, Nadir; Grucker, Daniel

    2001-09-01

    Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.

  2. Applying laser speckle images to skin science: skin lesion differentiation by polarization

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.

    2011-09-01

    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  3. Applying laser speckle images to skin science: skin lesion differentiation by polarization

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.

    2012-01-01

    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  4. Introducing Students to Plant Geography: Polar Ordination Applied to Hanging Gardens.

    ERIC Educational Resources Information Center

    Malanson, George P.; And Others

    1993-01-01

    Reports on a research study in which college students used a statistical ordination method to reveal relationships among plant community structures and physical, disturbance, and spatial variables. Concludes that polar ordination helps students understand the methodology of plant geography and encourages further student research. (CFR)

  5. Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; de Paëpe, Gaël

    2017-01-01

    The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.

  6. Interfacial Ca(2+) environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced (43)Ca NMR spectroscopy.

    PubMed

    Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; De Paëpe, Gaël

    2017-01-27

    The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.

  7. Negative magnetoresistance temperature dependence induced by current-pumped nuclear spin polarization at the ν =2/3 quantum Hall state

    NASA Astrophysics Data System (ADS)

    Tsuda, Shibun; Nguyen, Minh-Hai; Terasawa, Daiju; Fukuda, Akira; Sawada, Anju

    2016-03-01

    We investigate the huge longitudinal resistance (HLR) at which the magnetoresistance of the ν =2/3 fractional quantum Hall state (QHS) is increased with dynamic nuclear spin polarization. We measure the magnetoresistance temperature dependence in the resistively saturated HLR by increasing the temperature of the sample rapidly in order to prevent relaxation of the nuclear spin polarization. The obtained results indicate that the magnetoresistance decreases as the temperature increases. The Hall resistance in the HLR is also measured and found to exhibit a plateau close to a quantized value. We discuss the negative magnetoresistance temperature dependence with a stripe-shaped domain state deformed by the nuclear spin polarization.

  8. Conoscopic polarized interference applied in measuring uniaxial axis direction of electro-optic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Jiang, Hongzhen; Zhang, Lin; Li, Dong; Liu, Xu; Zheng, Fanglan

    2016-10-01

    The crystal can be used to be electro-optic switch because of its electro-optic modulation. Generally the uniaxial axis of electro-optic crystal is perpendicular to the light injection surface. Due to the manufacturing precision, the uniaxial axis direction has a little angle with the normal of the light injection surface, which affects the electro-optic modulation ability. In conoscopic polarized inference, due to birefraction the ordinary ray and extraordinary ray from crystal interferes after the polarizer. The interference pattern of crystal component is circle fringes with dark cross. The center of interference pattern has relation to the uniaxial axis direction. Using digital camera to capture the pattern and the center position of interferogram can be determinate by image processing program. In repeatability experiments the rms of center position is around 1 pixel. To measure the uniaxial axis direction, the normal direction of the crystal component should also be accurately determinate. Michelson interference method is introduced to determinate the normal direction. If rotate the crystal component around the normal direction in conoscopic polarized interference, the track of interferogram center is a circle theoretically. The circle center is related to the normal direction of crystal component, and the radii is related to the angle uniaxial axis, which can be determinate by least square fitting method. Experiment result shows that the measuring precision can achieves several tens of microradians.

  9. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  10. Local Water Dynamics in Coacervated Polyelectrolytes Monitored Through Dynamic Nuclear Polarization-Enhanced 1H NMR

    PubMed Central

    Kausik, Ravinath; Srivastava, Aasheesh; Korevaar, Peter A.; Stucky, Galen; Waite, J. Herbert

    2009-01-01

    We present the first study of quantifying the diffusion coefficient of interfacial water on polyelectrolyte surfaces of systems fully dispersed in bulk water under ambient conditions. Such measurements were made possible through the implementation of a recently introduced Dynamic Nuclear Polarization (DNP) technique to selectively amplify the nuclear magnetic resonance (NMR) signal of hydration water that is interacting with specifically located spin labels on polyelectrolyte surfaces. The merit of this novel capability is demonstrated in this report through the measurement of solvent microvisosity on the surface of two types of oppositely charged polyelectrolytes, when freely dissolved versus when complexed to form a liquid-liquid colloidal phase called complex coacervates. These complex coacervates were formed through electrostatic complexation between the imidazole-based cationic homopolymer poly(N-vinylimidazole) (PVIm), and anionic polypeptide polyaspartate (PAsp) in the pH range of 4.5 – 6.0, under which conditions the coacervate droplets are highly fluidic yet densely packed with polyelectrolytes. We also investigated the rotational diffusion coefficients of the spin labels covalently bound to the polyelectrolyte chains for both PVIm and PAsp, showing a 5 fold change in the rotational correlation time as well as anisotropy parameter upon coacervation, which represents a surprisingly small decrease given the high polymer concentration inside the dense microdroplets. For both DNP and ESR experiments, the polymers were covalently tagged with stable nitroxide radical spin labels (∼1 wt %) to probe the local solvent and polymer segment dynamics. We found that the surface water diffusion coefficients near uncomplexed PVIm and PAsp at pH 8 differ, and are around D∼1.3×10−9 m2 / s. In contrast, inside the complex coacervate phase, the water diffusion coefficient in the immediate vicinity of either polyelectrolyte was D∼ 0.25×10−9 m2 / s, which is about

  11. High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis.

    PubMed

    Hu, Kan-Nian; Song, Changsik; Yu, Hsiao-Hua; Swager, Timothy M; Griffin, Robert G

    2008-02-07

    To date, the cross effect (CE) and thermal mixing (TM) mechanisms have consistently provided the largest enhancements in dynamic nuclear polarization (DNP) experiments performed at high magnetic fields. Both involve a three-spin electron-electron-nucleus process whose efficiency depends primarily on two electron-electron interactions--the interelectron distance R and the correct electron paramagnetic resonance (EPR) frequency separation that matches the nuclear Larmor frequency, /omega(e2)-omega(e1)/ = omega(n). Biradicals, for example, two 2,2,6,6-tetramethyl-piperidine-1-oxyls (TEMPOs) tethered with a molecular linker, can in principle constrain both the distance and relative g-tensor orientation between two unpaired electrons, allowing these two spectral parameters to be optimized for the CE and TM. To verify this hypothesis, we synthesized a series of biradicals--bis-TEMPO tethered by n ethylene glycol units (a.k.a. BTnE)--that show an increasing DNP enhancement with a decreasing tether length. Specifically at 90 K and 5 T, the enhancement grew from approximately 40 observed with 10 mM monomeric TEMPO, where the average R approximately 56 A corresponding to electron-electron dipolar coupling constant omega(d)2 pi = 0.3 MHz, to approximately 175 with 5 mM BT2E (10 mM electrons) which has R approximately 13 A with omega(d)2 pi = 24 MHz. In addition, we compared these DNP enhancements with those from three biradicals having shorter and more rigid tethers-bis-TEMPO tethered by oxalyl amide, bis-TEMPO tethered by the urea structure, and 1-(TEMPO-4-oxyl)-3-(TEMPO-4-amino)-propan-2-ol (TOTAPOL) TOTAPOL is of particular interest since it is soluble in aqueous media and compatible with DNP experiments on biological systems such as membrane and amyloid proteins. The interelectron distances and relative g-tensor orientations of all of these biradicals were characterized with an analysis of their 9 and 140 GHz continuous-wave EPR lineshapes. The results show that the

  12. Comparative studies of Coulomb barrier heights for nuclear models applied to sub-barrier fusion

    NASA Astrophysics Data System (ADS)

    Qu, W. W.; Zhang, G. L.; Zhang, H. Q.; Wolski, R.

    2014-12-01

    Coulomb barrier heights provided by different nuclear interaction models including the Bass model, the proximity potential model, and the double folding model have been applied for experimental data of fusion in terms of a recently proposed energy scaling approach. The results show that the proximity potential description of the barrier heights seems to be closest to the values required by the systematics. It is suggested that the proximity potential model is the most suitable model to calculate the barrier height. However, the double folding model gives the lowest barrier heights.

  13. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  14. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  15. EPR detected polarization transfer between Gd3+ and protons at low temperature and 3.3 T: The first step of dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Vijayasarathi; Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon; Goldfarb, Daniella

    2010-06-01

    Electron-electron double resonance pulsed electron paramagnetic resonance (EPR) at 95 GHz (3.3 T) is used to follow the dynamics of the electron spin polarization during the first stages of dynamic nuclear polarization in solids. The experiments were performed on a frozen solution of Gd+3 (S =7/2) in water/glycerol. Focusing on the central |-1/2⟩→|+1/2⟩ transition we measured the polarization transfer from the Gd3+ electron spin to the adjacent H1 protons. The dependence of the echo detected EPR signal on the length of the microwave irradiation at the EPR "forbidden" transition corresponding to an electron and a proton spin flip is measured for different powers, showing dynamics on the microsecond to millisecond time scales. A theoretical model based on the spin density matrix formalism is suggested to account for this dynamics. The central transition of the Gd3+ ion is considered as an effective S =1/2 system and is coupled to H1 (I =1/2) nuclei. Simulations based on a single electron-single nucleus four level system are shown to deviate from the experimental results and an alternative approach taking into account the more realistic multinuclei picture is shown to agree qualitatively with the experiments.

  16. Sensitivity Analysis Applied to the Validation of the 10 B Capture Reaction in Nuclear Fuel Casks

    SciTech Connect

    Goluoglu, S

    2004-03-18

    Boron has commonly been used in nuclear fuel casks to ensure a sufficient margin of subcriticality. The amount of boron used in most casks far exceeds the amount of boron present in any of the available benchmark experiments. Such heavy loadings of boron in the casks may result in considerable spectral differences as compared to the benchmarks, resulting in boron sensitivities that are very different from those of the benchmarks. Before the calculations to determine the nuclear safety margin for various fuel loadings are deemed acceptable, as part of the safety basis, the computer code and cross sections must be validated against experimental benchmarks that cover the area of applicability of the proposed cask design. Therefore, this study was performed to determine if these available benchmarks can be used to validate a criticality code and neutron cross sections for the fuel casks. The sensitivity/uncertainty methodology has been applied to several application cask systems with different boron areal densities. Although, the sensitivities of the nuclear fuel cask applications are not completely covered by the set of benchmarks that were used in this study with regard to the 10B capture cross section, the effect of this lack of coverage on the keff is minimal. Thus, the experimental biases are determined to be appropriate for the cask systems, and no additional bias (penalty) due to high boron loading need be imposed.

  17. Common cause evaluations in applied risk analysis of nuclear power plants. [PWR

    SciTech Connect

    Taniguchi, T.; Ligon, D.; Stamatelatos, M.

    1983-04-01

    Qualitative and quantitative approaches were developed for the evaluation of common cause failures (CCFs) in nuclear power plants and were applied to the analysis of the auxiliary feedwater systems of several pressurized water reactors (PWRs). Key CCF variables were identified through a survey of experts in the field and a review of failure experience in operating PWRs. These variables were classified into categories of high, medium, and low defense against a CCF. Based on the results, a checklist was developed for analyzing CCFs of systems. Several known techniques for quantifying CCFs were also reviewed. The information provided valuable insights in the development of a new model for estimating CCF probabilities, which is an extension of and improvement over the Beta Factor method. As applied to the analysis of the PWR auxiliary feedwater systems, the method yielded much more realistic values than the original Beta Factor method for a one-out-of-three system.

  18. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  19. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  20. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    SciTech Connect

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.; Shul'gina, E. V.; Vesna, V. A.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  1. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    PubMed

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) <1 mM) was observed for l-valyl and l-isoleucyl amino acid prodrugs in competition experiments with [(3)H]Gly-Sar, indicating a 3-6 times higher affinity for PEPT1 compared to valacyclovir, a well-known PEPT1 substrate and >30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and

  2. Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins.

    PubMed

    Kaushik, Monu; Bahrenberg, Thorsten; Can, Thach V; Caporini, Marc A; Silvers, Robert; Heiliger, Jörg; Smith, Albert A; Schwalbe, Harald; Griffin, Robert G; Corzilius, Björn

    2016-10-21

    We investigate complexes of two paramagnetic metal ions Gd(3+) and Mn(2+) to serve as polarizing agents for solid-state dynamic nuclear polarization (DNP) of (1)H, (13)C, and (15)N at magnetic fields of 5, 9.4, and 14.1 T. Both ions are half-integer high-spin systems with a zero-field splitting and therefore exhibit a broadening of the mS = -1/2 ↔ +1/2 central transition which scales inversely with the external field strength. We investigate experimentally the influence of the chelator molecule, strong hyperfine coupling to the metal nucleus, and deuteration of the bulk matrix on DNP properties. At small Gd-DOTA concentrations the narrow central transition allows us to polarize nuclei with small gyromagnetic ratio such as (13)C and even (15)N via the solid effect. We demonstrate that enhancements observed are limited by the available microwave power and that large enhancement factors of >100 (for (1)H) and on the order of 1000 (for (13)C) can be achieved in the saturation limit even at 80 K. At larger Gd(iii) concentrations (≥10 mM) where dipolar couplings between two neighboring Gd(3+) complexes become substantial a transition towards cross effect as dominating DNP mechanism is observed. Furthermore, the slow spin-diffusion between (13)C and (15)N, respectively, allows for temporally resolved observation of enhanced polarization spreading from nuclei close to the paramagnetic ion towards nuclei further removed. Subsequently, we present preliminary DNP experiments on ubiquitin by site-directed spin-labeling with Gd(3+) chelator tags. The results hold promise towards applications of such paramagnetically labeled proteins for DNP applications in biophysical chemistry and/or structural biology.

  3. Focusing Sources on Induced Polarization and Electrical Resistivity Method Applied to Soil Pollution Problems

    NASA Astrophysics Data System (ADS)

    Tejero, A.; Lopez, A.; Induced Polarization Team

    2013-05-01

    In recent years the problems of soil contamination have been increasing and geophysical methods, particularly electrical resistivity tomography (ERT) have struggled to find and monitor cases of contamination. Moreover, Induced Polarization (IP) has shown promise in mapping contaminant plumes, although both techniques (ERT and IP) have problems like noise, inductive coupling, effects of electrodes, etc. limiting the precision and accuracy of the data. To overcome these problems, this paper introduces a novel technique of focusing sources. This technique reduces the effects of adjacent vertical formations and contacts due to the flowing of current in a vertical way at the zone where the electrode potentials have been deployed. This fact allows obtaining cleaner data of ERT and IP. In order to introduce the proposed technique a vertical contact synthetic model is studied and after to a cultivar area in Hidalgo State, México which presents different types of

  4. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    PubMed

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (<1 kDa) and large MW (>10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation.

  5. Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies.

    PubMed

    Horváth, Gábor; Gál, József; Labhart, Thomas; Wehner, Rüdiger

    2002-11-01

    Using imaging polarimetry, we have measured some typical reflection-polarization patterns of plant surfaces (leaves and flowers) under different illuminations. Using a quantitative model to determine photon absorptions in the weakly polarization-sensitive (PS approximately 2) photoreceptors of Papilio butterflies, we have calculated the influence of reflection polarization on the colours of leaves and flowers perceived by PAPILIO: Compared with a retina containing polarization-blind colour receptors, the colour loci of specularly reflecting and, thus, strongly polarizing areas on a plant are slightly shifted, which could cause the perception of false colours. However, the colour of specularly reflecting surfaces is strongly masked by white glare, which may prevent the perception of polarization-induced hue shifts. Although the perception of polarizational false colours by Papilio butterflies was previously demonstrated with artificial, strongly colour-saturated and totally linearly polarized stimuli, we expect that the weak polarization sensitivity of Papilio photoreceptors hardly influences colour perception under natural conditions.

  6. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  7. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  8. Standard-Model Tests with Superallowed {beta} Decay: Nuclear Data Applied to Fundamental Physics

    SciTech Connect

    Hardy, J.C.

    2005-05-24

    The study of superallowed nuclear {beta} decay currently provides the most precise and convincing confirmation of the conservation of the vector current (CVC) and is a key component of the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, a basic pillar of the Electroweak Standard Model. Experimentally, the Q-value, half-life, and branching ratio for superallowed transitions must be determined with a precision better than 0.1%. This demands metrological techniques be applied to short-lived ({approx}1 s) activities and that strict standards be employed in surveying the body of world data. The status of these fundamental studies is summarized and recent work described.

  9. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  10. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  11. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  12. Comparative study of nuclear effects in polarized electron scattering from 3 He

    SciTech Connect

    Ethier, J. J.; Melnitchouk, W.

    2013-11-01

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data on which can be used to constrain the spin-dependent nuclear smearing functions in 3He.

  13. Proceedings of the LAMPF workshop on physics with polarized nuclear targets

    SciTech Connect

    Burleson, G.; Gibbs, W.; Hoffmann, G.; Jarmer, J.J.; Tanaka, N.

    1986-08-01

    Topics of discussion included static and dynamic methods for polarizing nuclei, proton and pion nucleus scattering experiments, and possible future experiments at LAMPF. Separate abstracts were prepared for 11 papers in this report. (DWL)

  14. Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy.

    PubMed

    Ravera, Enrico; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Martelli, Tommaso; Fragai, Marco; Griffin, Robert G; Luchinat, Claudio

    2015-08-12

    Enzymes are used as environmentally friendly catalysts in many industrial applications, and are frequently immobilized in a matrix to improve their chemical stability for long-term storage and reusability. Recently, it was shown that an atomic-level description of proteins immobilized in a biosilica matrix can be attained by examining their magic-angle spinning (MAS) NMR spectra. However, even though MAS NMR is an excellent tool for determining structure, it is severely hampered by sensitivity. In this work we provide the proof of principle that NMR characterization of biosilica-entrapped enzymes could be assisted by high-field dynamic nuclear polarization (DNP).

  15. Enhancement of the Two-Dimensional Conduction Electron Zeeman Energy Near v=1 by Optical Dynamic Nuclear Polarization

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-11-06

    Enhancement of the Zeeman energy of 2D conduction electrons near v = 1 by optical dynamic nuclear polarization (lINP), as observed by the Overhauser shift of the transport detected electron spin resonance, is measured quantitatively for the first time in GaAs/AIGaAs mukiquantum wells. The NMR signal enhancement is obtained under similar conditions in the same sample, allowing the hyperke coupling constant of 3.7T between between the nuclei and 2D conduction electrons to be measured for the first time. The potential to suppress the Zeeman energy by optical DNP is discussed in the context of its potential influence on Skyrmion formation.

  16. 187Re - 187Os Nuclear Geochronometry: A New Dating Method Applied to Old Ores

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2015-04-01

    187Re - 187Os nuclear geochronometry is a newly developed dating method especially (but not only) for PGE hosting magmatic ore deposits. It combines ideas of nuclear astrophysics with geochronology. For this, the concept of sudden nucleosynthesis [1-3] is used to calculate so-called nucleogeochronometric Rhenium-Osmium two-point-isochrone (TPI) ages. Here, the method is applied to the Sudbury Igneous Complex (SIC) and the Stillwater Complex (SC), using a set of two nuclear geochronometers. They are named the BARBERTON ( Re/Os = 0.849, 187Os/186Os = 10.04 ± 0.015 [4]) and the IVREA (Re/Os = 0.951, 187Os/186Os = 1.9360 ± 0.0015 [5]) nuclear geochronometer. Calculated TPI ages are consistent with results from Sm-Nd geochronology, a previously published Re-Os Molybdenum age of 2740 ± 80 Ma for the G-chromitite of the SC [6] and a Re-Os isochrone age of 1689 ± 160 Ma for the Strathcona ores of the SIC [7]. This leads to an alternative explanation of the peculiar and enigmatic 187Os/186Osi isotopic signatures reported from both ore deposits. For example, for a TPI age of 2717 ± 100 Ma the Ultramafic Series of the SC contains both extremely low (subchrondritic) 187Os/186Osi ratios (187Os/186Osi = 0.125 ± 0.067) and extremely radiogenic isotopic signatures (187Os/186Osi = 6.55 ± 1.7, [6]) in mineral separates (chromites) and whole rock samples, respectively. Within the Strathcona ores of the SIC, even more pronounced radiogenic 187Os/186Os initial ratios can be calculated for TPI ages between 1586 ± 63 Ma (187Os/186Osi = 8.998 ± 0.045) and 1733 ± 84 Ma (187Os/186Osi = 8.901 ± 0.059). These results are in line with the recalculated Re-Os isochrone age of 1689 ± 160 Ma (187Os/186Osi = 8.8 ± 2.3 [7]). In the light of nuclear geochronometry, the occurrence of such peculiar isotopic 187Os/186Osi signatures within one and the same lithological horizon are plausible if explained by mingling of the two nucleogeochronometric (BARBERTON and IVREA) reservoirs containing

  17. A combined nuclear magnetic resonance and computational study of monohydroxyflavones applied to product ion mass spectra.

    PubMed

    Burns, Darcy C; Ellis, David A; Li, Hongxia; Lewars, Errol G; March, Raymond E

    2007-01-01

    A method is presented for the estimation of 13C-chemical shifts for carbon atoms in protonated and deprotonated molecules; in principle, this method can be applied to ions in general. Experimental 13C-chemical shifts were found to vary linearly with computed atomic charges using the PM3 method. Pseudo-13C-chemical shifts for atoms in protonated and deprotonated molecules can be estimated from computed atomic charges for such atoms using the above linear relationship. The pseudo-13C-chemical shifts obtained were applied to the rationalization of product ion mass spectra of protonated and deprotonated molecules of flavone and 3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavones, where product ion formation is due to either cross-ring cleavage of the C-ring (retro-Diels-Alder reaction) or to cleavage of a C-ring bond followed by loss of either a small neutral molecule or a radical. The total product ion abundance ratio of C-ring cross cleavage to C-ring bond cleavage, gamma, varied by a factor of 660 for deprotonated monohydroxyflavones, i.e., from 0.014:1 to 9.27:1. The magnitude of gamma, which is dependent on the relative bond orders within the C-ring of the protonated and deprotonated molecules of monohydroxyflavones, can be rationalized on the basis of the magnitudes of the 13C- and 1H-chemical shifts as determined by nuclear magnetic resonance spectroscopy.

  18. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  19. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  20. IAEA advisory group meeting on basic and applied problems of nuclear level densities

    SciTech Connect

    Bhat, M.R.

    1983-06-01

    Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data. (WHK)

  1. Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy

    PubMed Central

    Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; De Paëpe, Gaël

    2017-01-01

    The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general. PMID:28128197

  2. 10 CFR Appendix E to Part 73 - Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... International Transport of Nuclear Material 1 E Appendix E to Part 73 Energy NUCLEAR REGULATORY COMMISSION... Physical Protection To Be Applied in International Transport of Nuclear Material 1 1 See appendix C to part... II is special nuclear material of moderate strategic significance or irradiated fuel; and...

  3. Exchange interaction-driven dynamic nuclear polarization in Mn-doped InGaAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Krebs, O.; Baudin, E.; Lemaître, A.

    2016-11-01

    We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A0 with an effective spin J =1 . We find that the spin of an electron photocreated in such a quantum dot can be efficiently oriented by a quasiresonant circularly polarized excitation. For the electron spin levels which are made quasidegenerate by a magnetic field compensating the exchange interaction Δe with A0, there is however a full depolarization due the anisotropic part of the exchange. Still, in most studied QDs, the spin polarized photoelectrons give rise to a pronounced DNP which grows with a longitudinal magnetic field until a critical field where it abruptly vanishes. For some QDs, several replica of such DNP sequence are observed at different magnetic fields. This striking behavior is qualitatively discussed as a consequence of different exchange interactions experienced by the electron, driving the DNP rate via the energy cost of electron-nucleus spin flip-flops.

  4. Polarization measurement through combination polarizers

    NASA Astrophysics Data System (ADS)

    Bai, Yunfeng; Li, Linjun; He, Zhelong; Liu, Yanwei; Ma, Cheng; Shi, Guang; Liu, Lu

    2014-02-01

    Polarization measurement approaches only using polarizer and grating is present. The combination polarizers consists of two polarizers: one is γ degree with the X axis; the other is along the Y axis. Binary grating is covered by the combination polarizers, and based on Fraunhofer diffraction, the diffraction intensity formula is deduced. The polarization state of incident light can be gotten by fitting the diffraction pattern with the deduced formula. Compared with the traditional polarization measurement method, this measurement only uses polarizer and grating, therefore, it can be applied to measure a wide wavelength range without replacing device in theory.

  5. Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical

    PubMed Central

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kaur, Pavanjeet; Martins, André; Fidelino, Leila; Khemtong, Chalermchai; Song, Likai; Sherry, A. Dean

    2016-01-01

    We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-13C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-13C] sodium acetate sample in 1:1 v/v glycerol:water with 15 mM trityl OX063 improves the DNP-enhanced 13C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd3+ doping effect on 13C DNP, the locations of the positive and negative 13C maximum polarization peaks in the 13C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho3+-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the 13C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state 13C T1, in contrast to Gd3+-doping which drastically reduces the 13C T1. The results here suggest that Ho3+-doping is advantageous over Gd3+ in terms of preservation of hyperpolarized state—an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized 13C liquid. PMID:27424954

  6. Development of temper-bead technique applied to dissimilar welded joints of nuclear pressure vessels

    SciTech Connect

    Higuchi, Makoto; Umemoto, Tadahiro; Matsusita, Akitake; Shiraiwa, Takanori

    1996-06-01

    When nuclear pressure vessels made of low-alloy steel (P-3 Group 3) need repair or modification, technical standards for welding of electrical structures should be applied, and then postweld heat treatment (PWHT) should be done. However, cases in which PWHT is impractical are theoretically possible due to a variety of restrictions. To deal with such a problem, there is a regulation for repair weld technique, without PWHT, in accordance with ASME B and PV Code. This method is called temper-bead technique, which gives the weldments sufficient toughness by tempering the hardened zone of the heat-affected zone on the first layer of the base metal using the heat of the following weld beads. Because there is no regulation in Japan covering this method, a procedure is required to perform it under a special license, after a verification test has been passed. An attempt has been made to develop a method, on the supposition that the temper-bead technique is adopted for replacement of what is called dissimilar welded joints, so that a nickel base alloy is buildup welded at the tip of the nozzle of the low-alloy steel pressure vessel, and a stainless steel pipe is butt welded.

  7. Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; Whiting, Nicholas; Newton, Hayley; Barcus, Scott; Muradyan, Iga; Dabaghyan, Mikayel; Moroz, Gregory D.; Rosen, Matthew S.; Patz, Samuel; Barlow, Michael J.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2013-01-01

    The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (∼1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell PXe values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. PXe values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications. PMID:23946420

  8. Atomic and nuclear polarization of /sup 12/C, /sup 13/C, and /sup 15/N by beam-foil interaction at 300--400 keV

    SciTech Connect

    Lu, F.Q.; Tang, J.Y.; Deutch, B.I.

    1982-03-01

    Induced nuclear spin polarization P by hyperfine interaction following passage of 0.5 ..mu..A 300--keV beams of /sup 12/C/sup +/, /sup 13/C/sup +/, and /sup 15/N/sup +/ through single tilted carbon foils yields Vertical BarPVertical Bar = (0.4 +- 0.8)%, (3.2 +- 0.6)%, and (5.7 +- 0.9)%, respectively. The nuclear polarizations were enhanced by passage through two tilted foils, and the sign of the polarization flipped by a simple flip of the foil direction with respect to the beam direction. From quantum-beat measurements with circularly polarized light, experimental quantum beat frequencies ..omega.. = 6790 +- 570 and 747 +- 62 MHz for the unresolved 6578--6583 A doublet in CII, and ..omega..(5667 A) = 2860 +- 240, ..omega..(5680 A) = 4810 +- 40 MHz in NII are determined.

  9. Applied nuclear science research and development progress report, June 1, 1985-November 30, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1986-04-01

    This six month progress report reviews activities in nuclear reaction research. Specific content includes theory and evaluation of nuclear cross sections for neutron, proton, and deuteron reactions for a number of isotopes; the processing and testing of nuclear cross section data; studies of neutron activation, fission products and actinides; and short notes on applications. Data are included in graphic and tabular form and include experimental, evaluated, and theoretical calculations and spectra. 136 refs., 81 figs., 17 tabs. (DWL)

  10. Overview of the regulatory framework applying to nuclear power plants in France

    SciTech Connect

    Astolfi, J.F.

    1993-12-31

    The achievement of French nuclear power plants, because France has not yet issued a specific nuclear law and is tied to a very complex regulatory structure, is submitted to a large number of prior authorizations, which are issued either at a national level or by local authorities according to their goals and importance. This report will outline the authorizations which overlay nuclear safety and radiation protection.

  11. NMR signal enhancement of >50 000 times in fast dissolution dynamic nuclear polarization.

    PubMed

    Pinto, L F; Marín-Montesinos, I; Lloveras, V; Muñoz-Gómez, J L; Pons, M; Veciana, J; Vidal-Gancedo, J

    2017-03-17

    Herein, we report the synthesis and the study of a novel mixed biradical with BDPA and TEMPO radical units that are covalently bound by an ester group (BDPAesterTEMPO) as a polarizing agent for fast dissolution DNP. The biradical exhibits an extremely high DNP NMR enhancement of >50 000 times, which constitutes one of the largest signal enhancements observed so far, to the best of our knowledge.

  12. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  13. Automated Mobile Infrared Mirror System Applied To Laser Welding Of Nuclear Components

    NASA Astrophysics Data System (ADS)

    Cai, Giulio; Cruciani, Diego; Cantello, Maichi

    1988-07-01

    Oxygen-free copper mirrors are currently used for transmitting, aiming and focusing high power infrared laser beams. When used in automated laser material processing systems, additional requirements are demanded of them. This paper deals with the solution adopted for their design, manufacture, assembly and in-service testing, as applied to laser welding heavy section components in AISI 304 with a 15 kW CW carbon-dioxide laser. The beam handling devices were used to demonstrate the suitability of the laser welding technique for assembling some of the structures of the reactor core in the French Superphenix nuclear plant. Two multiple rotating mirror systems, connected to each other for correct processing, had to be manufactured to perform circular welds to join sleeves to the plates of tne main diagrid, with a welding thickness of up to 15 mm. AISI 304 stainless steel is suitable for defect-free laser welded joints. Each multiple mirror systeid was dedicated to a particular welding technique: the first with the laser impinging uwards on the workpiece, the second downwards. In the latter case, special assist gas nozzles were needed to protect the mirrors from the metal vapour jets. Beam handling on a horizontal plane was also tested using another rotating mirror system for internally welding sleeves to plates. The results demonstrated the feasibility and suitability of the automated process for industrial applications. The accuracy of the results obtained using the multiple mirror system enables it to be adopted for assembling metallic structures similar to the Superphenix main diagrid. The reduction in manufacturing costs using such automated laser beam handling devices is calculated to be 30 - 40% of the total.

  14. Dynamic Nuclear Polarization NMR of Low-γ Nuclei: Structural Insights into Hydrated Yttrium-Doped BaZrO3.

    PubMed

    Blanc, Frédéric; Sperrin, Luke; Lee, Daniel; Dervişoğlu, Rıza; Yamazaki, Yoshihiro; Haile, Sossina M; De Paëpe, Gaël; Grey, Clare P

    2014-07-17

    We demonstrate that solid-state NMR spectra of challenging nuclei with a low gyromagnetic ratio such as yttrium-89 can be acquired quickly with indirect dynamic nuclear polarization (DNP) methods. Proton to (89)Y cross polarization (CP) magic angle spinning (MAS) spectra of Y(3+) in a frozen aqueous solution were acquired in minutes using the AMUPol biradical as a polarizing agent. Subsequently, the detection of the (89)Y and (1)H NMR signals from technologically important hydrated yttrium-doped zirconate ceramics, in combination with DFT calculations, allows the local yttrium and proton environments present in these protonic conductors to be detected and assigned to different hydrogen-bonded environments.

  15. Vanishing electron g factor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ulhaq, A.; Duan, Q.; Zallo, E.; Ding, F.; Schmidt, O. G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.

    2016-04-01

    GaAs/AlGaAs quantum dots grown by in situ droplet etching and nanohole in-filling offer a combination of strong charge confinement, optical efficiency, and high spatial symmetry advantageous for polarization entanglement and spin-photon interface. Here, we study experimentally electron and nuclear spin properties of such dots. We find nearly vanishing electron g factors (ge<0.05 ), providing a potential route for electrically driven spin control schemes. Optical manipulation of the nuclear spin environment is demonstrated with nuclear spin polarization up to 65 % achieved. Nuclear magnetic resonance spectroscopy reveals two distinct types of quantum dots: with tensile and with compressive strain along the growth axis. In both types of dots, the magnitude of strain ɛb<0.02 % is nearly three orders of magnitude smaller than in self-assembled dots: On the one hand, this provides a route for eliminating a major source of electron spin decoherence arising from nuclear quadrupolar interactions, and on the other hand such strain is sufficient to suppress nuclear spin diffusion leading to a stable nuclear spin bath with nuclear spin lifetimes exceeding 500 s. The spin properties revealed in this work make this new type of quantum dot an attractive alternative to self-assembled dots for the applications in quantum information technologies.

  16. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation

    NASA Technical Reports Server (NTRS)

    Wikramanayake, Athula H.; Hong, Melanie; Lee, Patricia N.; Pang, Kevin; Byrum, Christine A.; Bince, Joanna M.; Xu, Ronghui; Martindale, Mark Q.

    2003-01-01

    The human oncogene beta-catenin is a bifunctional protein with critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway. Wnt/beta-catenin signalling has been implicated in developmental processes as diverse as elaboration of embryonic polarity, formation of germ layers, neural patterning, spindle orientation and gap junction communication, but the ancestral function of beta-catenin remains unclear. In many animal embryos, activation of beta-catenin signalling occurs in blastomeres that mark the site of gastrulation and endomesoderm formation, raising the possibility that asymmetric activation of beta-catenin signalling specified embryonic polarity and segregated germ layers in the common ancestor of bilaterally symmetrical animals. To test whether nuclear translocation of beta-catenin is involved in axial identity and/or germ layer formation in 'pre-bilaterians', we examined the in vivo distribution, stability and function of beta-catenin protein in embryos of the sea anemone Nematostella vectensis (Cnidaria, Anthozoa). Here we show that N. vectensis beta-catenin is differentially stabilized along the oral-aboral axis, translocated into nuclei in cells at the site of gastrulation and used to specify entoderm, indicating an evolutionarily ancient role for this protein in early pattern formation.

  17. Dynamic Nuclear Polarization Study of Inhibitor Binding to the M218–60 Proton Transporter from Influenza A

    PubMed Central

    Andreas, Loren B.; Barnes, Alexander B.; Corzilius, Björn; Chou, James J.; Miller, Eric A.; Caporini, Marc; Rosay, Melanie; Griffin, Robert G

    2013-01-01

    We demonstrate the use of dynamic nuclear polarization (DNP) to elucidate ligand binding to a membrane protein using dipolar recoupling magic angle spinning (MAS) NMR. In particular, we detect drug binding in the proton transporter M218–60 from influenza A using recoupling experiments at room temperature and with cryogenic DNP. The results indicate that the pore binding site of rimantadine is correlated with previously reported widespread chemical shift changes, suggesting functional binding in the pore. Futhermore, the 15N labeled ammonium of rimantadine was observed near A30 13Cβ and G34 13Cα suggesting a possible hydrogen bond to A30 Carbonyl. Cryogenic DNP was required to observe the weaker external binding site(s) in a ZF-TEDOR spectrum. This approach is generally applicable, particularly for weakly bound ligands, in which case the application of MAS NMR dipolar recoupling requires the low temperatures to quench dynamic exchange processes. For the fully protonated samples investigated, we observed DNP signal enhancements of ~10 at 400 MHz using only 4–6 mM of the polarizing agent TOTAPOL. At 600 MHz and with DNP, we measured a distance between the drug and the protein to a precision of 0.2 Å. PMID:23480101

  18. Dynamic nuclear polarization study of inhibitor binding to the M2(18-60) proton transporter from influenza A.

    PubMed

    Andreas, Loren B; Barnes, Alexander B; Corzilius, Björn; Chou, James J; Miller, Eric A; Caporini, Marc; Rosay, Melanie; Griffin, Robert G

    2013-04-23

    We demonstrate the use of dynamic nuclear polarization (DNP) to elucidate ligand binding to a membrane protein using dipolar recoupling magic angle spinning (MAS) NMR. In particular, we detect drug binding in the proton transporter M2(18-60) from influenza A using recoupling experiments at room temperature and with cryogenic DNP. The results indicate that the pore binding site of rimantadine is correlated with previously reported widespread chemical shift changes, suggesting functional binding in the pore. Futhermore, the (15)N-labeled ammonium of rimantadine was observed near A30 (13)Cβ and G34 (13)Cα, suggesting a possible hydrogen bond to A30 carbonyl. Cryogenic DNP was required to observe the weaker external binding site(s) in a ZF-TEDOR spectrum. This approach is generally applicable, particularly for weakly bound ligands, in which case the application of MAS NMR dipolar recoupling requires the low temperatures to quench dynamic exchange processes. For the fully protonated samples investigated, we observed DNP signal enhancements of ~10 at 400 MHz using only 4-6 mM of the polarizing agent TOTAPOL. At 600 MHz and with DNP, we measured a distance between the drug and the protein to a precision of 0.2 Å.

  19. Physical protection: threat response and performance goals as applied at the nuclear material inspection and storage (NMIS) building

    SciTech Connect

    Sanford, T.H.

    1982-01-01

    Only one aspect of nuclear security has been discussed here, a disciplined approach to physical protection systems (PPS) design. The best security against a multitude of threats to the nuclear industry is a dynamic and multifaceted safeguards program. It is one that combines PPS design with employee screening, reliability or behavioral observation programs, procedural control, assessment techniques, response capabilities, and security hardware. To be effective, such a program must be supported by management and applied uniformly to all personnel, including the safeguards and security staff.

  20. Solid state 31P cross-polarization/magic angle sample spinning nuclear magnetic resonance studies of crystalline glycogen phosphorylase b

    PubMed Central

    Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.

    1993-01-01

    31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673

  1. Required Assets for a Nuclear Energy Applied R&D Program

    SciTech Connect

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  2. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores.

    PubMed

    Sánchez-Elordi, Elena; Baluška, František; Echevarría, Clara; Vicente, Carlos; Legaz, M Estrella

    2016-08-01

    Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.

  3. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  4. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  5. Quantitation of a spin polarization-induced nuclear Overhauser effect (SPINOE) between a hyperpolarized (13) C-labeled cell metabolite and water protons.

    PubMed

    Marco-Rius, Irene; Bohndiek, Sarah E; Kettunen, Mikko I; Larkin, Timothy J; Basharat, Meer; Seeley, Colm; Brindle, Kevin M

    2014-01-01

    The spin polarization-induced nuclear Overhauser effect (SPINOE) describes the enhancement of spin polarization of solvent nuclei by the hyperpolarized spins of a solute. In this communication we demonstrate that SPINOEs can be observed between [1,4-(13) C2 ]fumarate, hyperpolarized using the dissolution dynamic nuclear polarization technique, and solvent water protons. We derive a theoretical expression for the expected enhancement and demonstrate that this fits well with experimental measurements. Although the magnitude of the effect is relatively small (around 2% measured here), the SPINOE increases at lower field strengths, so that at clinically relevant magnetic fields (1.5-3 T) it may be possible to track the passage through the circulation of a bolus containing a hyperpolarized (13) C-labeled substrate through the increase in solvent water (1) H signal.

  6. Taming the SQUID: How a nuclear physics education (mostly) helped my career in applied physics

    NASA Astrophysics Data System (ADS)

    Espy, Michelle

    2013-10-01

    My degree is in experimental nuclear physics, specifically studying the interaction of pions with nuclei. But after graduation I accepted a post-doctoral research position with a team based on applications of the Superconducting Quantum Interference Device (SQUID) to the study of the human brain. Despite knowing nothing about the brain or SQUIDs to start with, I have gone on to enjoy a career in applications of the SQUID and other sensors to the detection of weak magnetic fields in a variety of problems from brain studies (magnetoencephalography) to ultra-low field nuclear magnetic resonance for detection of explosives and illicit material. In this talk I will present some background on SQUIDs and their application to the detection of ultra-weak magnetic fields of biological and non-biological origin. I will also provide a little insight into what it has been like to use a nuclear physics background to pursue other types of science.

  7. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  8. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future.

  9. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  10. A diagonalization algorithm revisited and applied to the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Bianco, D.; Andreozzi, F.; Lo Iudice, N.; Porrino, A.; Knapp, F.

    2011-02-01

    An importance sampling iterative algorithm for diagonalizing large matrices is upgraded and adopted for large scale nuclear shell model calculations using a spin uncoupled basis. Its numerical implementation shows that the iterative procedure converges rapidly to the exact eigensolutions achieving an effective drastic cut of the sizes of the Hamiltonian matrix. Communicated by Professor A Covello

  11. Applying Image Gently SM and Image Wisely SM in nuclear medicine.

    PubMed

    Jafari, Mary Ellen; Daus, Alan M

    2013-02-01

    Although computed tomography (CT) scan radiation dose has drawn much attention, radiation dose from nuclear medicine procedures should not be overlooked. An estimated 19.7 million nuclear medicine procedures are done annually in the United States, with patient radiation dose comparable to that from CT scans. Nuclear medicine departments should implement Image Gently SM and Image Wisely SM recommendations to reduce nuclear medicine patient radiation dose. Pediatric administered radiopharmaceutical doses should be compared with the North American Consensus Guidelines for Administered Radiopharmaceutical Activities in Children and Adolescents, and adult doses should be compared with national and international standards. In a 2011 patient quality and safety initiative at Gundersen Lutheran Health System, 24 pediatric protocols and 52 adult protocols were compared with standards. Doses not comparable to the recommended values were adjusted accordingly and the resultant image quality evaluated. Additional steps to reduce patient radiation dose include decision support to reduce inappropriate ordering, technique optimization for the CT portion of single-photon emission computed tomography/computed tomography and positron emission tomography/computed tomography scans, use of vendor's dose reduction camera and software technology, use of shorter lived radiopharmaceuticals, and "right sizing" patient doses by weight.

  12. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    SciTech Connect

    BOOMER, K.D.

    2007-01-31

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically.

  13. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    PubMed Central

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  14. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    PubMed

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (PH). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for PH = -35% or PH = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å(-1)) varied as a quadratic function of PH and indicated a minimum value at PH = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å(-1)) decreased with increasing PH, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing PH. At PH = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at PH = 29% and PH = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations

  15. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    SciTech Connect

    He, Yugui; Liu, Chaoyang; Feng, Jiwen; Wang, Dong; Chen, Fang; Liu, Maili; Zhang, Zhi; Wang, Chao

    2015-08-15

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.

  16. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for 1H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo 1H MRI at 0.35 T.

  17. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier

    NASA Astrophysics Data System (ADS)

    Kemp, Thomas F.; Dannatt, Hugh R. W.; Barrow, Nathan S.; Watts, Anthony; Brown, Steven P.; Newton, Mark E.; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to 1H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90 K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90 K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement.

  18. Laboratory characterization of hydraulic properties of sandstones using induced polarization and nuclear magnetic resonance for a joint permeability model

    NASA Astrophysics Data System (ADS)

    Osterman, G. K.; Keating, K.; Binley, A. M.; Slater, L. D.

    2015-12-01

    The permeability of sandstones can be modeled using the Katz and Thompson (KT) model which relates permeability to a characteristic hydraulic length scale, typically measured by mercury injection, and the electrically interconnected porosity. In situ estimation of these hydraulic parameters remains a challenge in hydrogeology; emerging geophysical technologies may help to solve this problem. Induced polarization (IP) and nuclear magnetic resonance (NMR) are two geophysical methods shown to be sensitive to physical properties of the pore space that control fluid flow, such as the pore size distribution. Using laboratory data collected on sandstone cores with a diverse range of properties, we demonstrate that our measured NMR parameters best predict the characteristic hydraulic length scale of the KT model, while the IP data can be used to improve estimates of the true formation factor. We incorporate these estimated hydraulic parameters into a KT model to derive an IP-NMR permeability model that compares favorably to permeability estimates from the KT model using mercury injection measurements. Furthermore, the resulting model uses parameters that are potentially measureable in the field; future work will focus on implementing the model at the field scale.

  19. Polarization effects in the quasielastic ( p, 2 p) reaction with the nuclear S-Shell Protons at 1 GeV

    NASA Astrophysics Data System (ADS)

    Miklukho, O. V.; Kisselev, A. Yu.; Aksenov, D. A.; Amalsky, G. M.; Andreev, V. A.; Evstiukhin, S. V.; Fedorov, O. Ya.; Gavrilov, G. E.; Izotov, A. A.; Kochenda, L. M.; Levchenko, M. P.; Maysuzenko, D. A.; Murzin, V. A.; Novinsky, D. V.; Prokofiev, A. N.; Shvedchikov, A. V.; Trautman, V. Yu.; Trush, S. I.; Zhdanov, A. A.

    2013-07-01

    The polarization of the secondary protons in the ( p, 2 p) reaction with the S-shell protons of nuclei 4He, 6Li, 12C, 28Si, 40Ca was measured at 1 GeV unpolarized proton beam. The spin correlation parameters C ij for the 4He and 12C targets also were for the first time obtained as well. The polarization measurements were performed by means of a two-arm magnetic spectrometer, each arm of which was equipped with the multiwire-proportional chamber polarimeter. This experiment was aimed to study a modification of the proton-proton scattering matrix in the nuclear medium.

  20. High nuclear polarization of 3He at low and high pressure by metastability exchange optical pumping at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Abboud, M.; Sinatra, A.; Maître, X.; Tastevin, G.; Nacher, P.-J.

    2004-11-01

    Metastability exchange optical pumping of helium-3 is performed in a strong magnetic field of 1.5 T. The achieved nuclear polarizations, between 80% at 1.33 mbar and 25% at 67 mbar, show a substantial improvement at high pressures with respect to standard low-field optical pumping. The specific mechanisms of metastability exchange optical pumping at high field are investigated, advantages and intrinsic limitations are discussed. From a practical point of view, these results open the way to alternative technological solutions for polarized helium-3 applications and in particular for magnetic-resonance imaging of human lungs.

  1. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  2. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  3. Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry

    SciTech Connect

    Foltman, A.; Newsom, D.; Lerner, K.

    1988-01-01

    The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

  4. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    SciTech Connect

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  5. Construction and 13C NMR signal-amplification efficiency of a dynamic nuclear polarizer at 6.4 T and 1.4 K

    NASA Astrophysics Data System (ADS)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  6. Detecting anomalous nuclear materials accounting transactions: Applying machine learning to plutonium processing facilities

    SciTech Connect

    Vaccaro, H.S. )

    1989-01-01

    Nuclear materials accountancy is the only safeguards measure that provides direct evidence of the status of nuclear materials. Of the six categories that gives rise to inventory differences, the technical capability is now in place to implement the technical innovations necessary to reduce the human error categories. There are really three main approaches to detecting anomalies in materials control and accountability (MC A) data: (1) Statistical: numeric methods such as the Page's Test, CUSUM, CUMUF, SITMUF, etc., can detect anomalies in metric (numeric) data. (2) Expert systems: Human expert's rules can be encoded into software systems such as ART, KEE, or Prolog. (3) Machine learning: Training data, such as historical MC A records, can be fed to a classifier program or neutral net or other machine learning algorithm. The Wisdom Sense (W S) software is a combination of approaches 2 and 3. The W S program includes full features for adding administrative rules and expert judgment rules to the rule base. if desired, the software can enforce consistency among all rules in the rule base.

  7. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  8. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    PubMed

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors.

  9. Determination of clinical efficacy: nuclear medicine as applied to lung scanning

    SciTech Connect

    Saenger, E.L.; Buncher, C.R.; Specker, B.L.; McDevitt, R.A.

    1985-07-01

    This paper describes a Society of Nuclear Medicine sponsored study of 2023 patients which compares two methods, logistic regression (LR) and entropy minimax pattern detection (EMPD), to evaluate efficacy. Lung scans, used in determining or excluding a diagnosis of pulmonary embolism (PE), were utilized to create the data set. The LR analysis, presented here, shows that lung scan findings have significant influence on the referring physician's diagnostic thinking. Models were developed for the probability of a signout diagnosis of PE, and equal patient groups tested the validity of these regression equations. A comparison of the sensitivity, specificity, and predictive values of EMPD and LR was done. EMPD predicts a signout diagnosis on only 41% of cases before lung scan and 71% after lung scan; LR provides a prediction of the signout diagnosis on 100% of cases. An advantage of EMPD is that it does not require poor probability estimates.

  10. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    PubMed

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  11. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    PubMed Central

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-01-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (~2–90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the “DNP power curve”, i.e. the microwave (MW) power dependence of DNP enhancement, the “DNP spectrum”, i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 – 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the

  12. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    NASA Astrophysics Data System (ADS)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  13. 10 CFR Appendix E to Part 73 - Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1 E Appendix E to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. E Appendix E to Part 73—Levels...

  14. New techniques to apply an optical fiber image guide to harsh radiation environments in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Takada, Eiji; Hosono, Yoneichi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Hayami, Hiroyuki

    1999-01-01

    To apply optical fiber image guide (IG) to harsh radiation environments, we have developed two new techniques. One technique is a visible type IG with a color correcting system and the other technique is an IR type IG. We irradiated the IGs utilizing a 60Co gamma source. Measured Images with the visible type IG became dark and yellowish because of radiation induced loss. By using a color correction system, the original color of the images can be obtained. In the case of IR type IG, because of low radiation induced loss in the IR region, the degree of darkening was less than half of that for the visible type of IG. For a fixed irradiated length of 2.5m, the dose limit for using IG was estimated to be 4.6 X 108 with the visible type IG and 1.2 X 109 with the IR type IG. These radiation resistivities were more than 103 times of that for usual CCD cameras. With these techniques, IG can be applied to harsh radiation environment.

  15. U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes

    NASA Astrophysics Data System (ADS)

    Kotb, M.

    2016-07-01

    In the framework of the interacting boson model (IBM) with intrinsic coherent state, the shape Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) are examined. The Hamiltonian used is composed of a single boson energy term and quadrupole term. The potential energy surfaces (PES' s) corresponding to the U(5)-SU(3) transition are calculated with variation of a scaling and control parameters. The model is applied to 150-162Dy chain of isotopes. In this chain a change from spherical to well deformed nuclei is observed when moving from the lighter to heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters of the model are determined by using a computer simulated search program in order to minimize the deviation between our calculated and some selected experimental energy levels, B(E2) transition rates and the two neutron separation energies S2n. We have also studied the energy ratios and the B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between ground-ground and ground-beta states are examined within IBM and boson intrinsic coherent framework.

  16. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance ¹¹⁹Sn precursors.

    PubMed

    Gunther, William R; Michaelis, Vladimir K; Caporini, Marc A; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-04-30

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with (119)Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ~2 wt % of natural abundance Sn without the need for (119)Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical's unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance (119)Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no (119)Sn resonances were detected after 10 days of continuous analysis.

  17. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced Magnetic Resonance Imaging (OMRI)

    NASA Astrophysics Data System (ADS)

    Kumara Dhas, M.; Utsumi, Hideo; Jawahar, A.; Milton Franklin Benial, A.

    2015-08-01

    The dynamic nuclear polarization (DNP) studies were carried out for 15N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities (1.8 cP, 7 cP and 14 cP). The dependence of DNP parameters was demonstrated over a range of agent concentration, viscosities, RF power levels and ESR irradiation time. DNP spectra were also recorded for 2 mM concentration of 15N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities. The DNP factors were measured as a function of ESR irradiation time, which increases linearly up to 2 mM agent concentration in pure water and pure water/glycerol mixtures of different viscosities. The DNP factor started declining in the higher concentration region (∼3 mM), which is due to the ESR line width broadening. The water proton spin-lattice relaxation time was measured at very low Zeeman field (14.529 mT). The increased DNP factor (35%) was observed for solvent 2 (η = 1.8 cP) compared with solvent 1 (η = 1 cP). The increase in the DNP factor was brought about by the shortening of water proton spin-lattice relaxation time of solvent 2. The decreased DNP factors (30% and 53%) were observed for solvent 3 (η = 7 cP) and solvent 4 (η = 14 cP) compared with solvent 2, which is mainly due to the low value of coupling parameter in high viscous liquid samples. The longitudinal relaxivity, leakage factor and coupling parameter were estimated. The coupling parameter values reveal that the dipolar interaction as the major mechanism. The longitudinal relaxivity increases with the increasing viscosity of pure water/glycerol mixtures. The leakage factor showed an asymptotic increase with the increasing agent concentration. It is envisaged that the results reported here may provide guidelines for the design of new viscosity prone nitroxyl radicals, suited to the biological applications of DNP.

  18. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced Magnetic Resonance Imaging (OMRI).

    PubMed

    Kumara Dhas, M; Utsumi, Hideo; Jawahar, A; Milton Franklin Benial, A

    2015-08-01

    The dynamic nuclear polarization (DNP) studies were carried out for (15)N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities (1.8cP, 7cP and 14cP). The dependence of DNP parameters was demonstrated over a range of agent concentration, viscosities, RF power levels and ESR irradiation time. DNP spectra were also recorded for 2mM concentration of (15)N labeled carbamoyl-PROXYL in pure water and pure water/glycerol mixtures of different viscosities. The DNP factors were measured as a function of ESR irradiation time, which increases linearly up to 2mM agent concentration in pure water and pure water/glycerol mixtures of different viscosities. The DNP factor started declining in the higher concentration region (∼3mM), which is due to the ESR line width broadening. The water proton spin-lattice relaxation time was measured at very low Zeeman field (14.529mT). The increased DNP factor (35%) was observed for solvent 2 (η=1.8cP) compared with solvent 1 (η=1cP). The increase in the DNP factor was brought about by the shortening of water proton spin-lattice relaxation time of solvent 2. The decreased DNP factors (30% and 53%) were observed for solvent 3 (η=7cP) and solvent 4 (η=14cP) compared with solvent 2, which is mainly due to the low value of coupling parameter in high viscous liquid samples. The longitudinal relaxivity, leakage factor and coupling parameter were estimated. The coupling parameter values reveal that the dipolar interaction as the major mechanism. The longitudinal relaxivity increases with the increasing viscosity of pure water/glycerol mixtures. The leakage factor showed an asymptotic increase with the increasing agent concentration. It is envisaged that the results reported here may provide guidelines for the design of new viscosity prone nitroxyl radicals, suited to the biological applications of DNP.

  19. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  20. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures

    NASA Astrophysics Data System (ADS)

    Pâlsson, Lars-Olof; Vaughan, Helen L.; Monkman, Andrew P.

    2006-10-01

    Two related poly(phenylene-vinylene) (PPV) light-emitting polymers have been investigated by means of polarized optical spectroscopy. The purpose of the investigation was to investigate the nature of the interactions in thin films and to examine what impact the difference in side chain structure and molecular weight in poly(2'-methoxy-5-2-ethyl-hexoxy)-1,4-phenylene vinylene (MEH-PPV) and poly(2-(3',7'-dimethyloctyloxy)-5-methoxy-1,4-phenylene-vinylene) (OC1C10-PPV) has on the electronic and optical properties of the two polymers. Aligning the polymers by dispersing them in anisotropic solvents and stretched films shows that the side chains have an impact on the relative orientations of the transition dipole moments. In anisotropic solvents the linear dichroism is larger for MEH-PPV than for the related polymer OC1C10-PPV, while in stretched films the opposite situation prevails. A lower polarization of the luminescence from OC1C10-PPV, relative to MEH-PPV, was also obtained independent of alignment medium used. The data therefore suggest that while mechanical stretching may align the OC1C10-PPV to a greater degree, the emitting species is distinct from the absorbing species. The circular dichroism (CD) spectra of both polymers undergo dramatic changes when the liquid phase and the solid state (film) are compared. The solution CD spectra shows no evidence of interchain interactions; instead the spectra of both systems indicate a helical conformation of the polymers. The CD spectra of films are dramatically different with the strong Cotton effect being observed. This points to the formation of an aggregate in the film, with an associated ground state interaction, an interchain species such as a physical dimer, or a more complex higher aggregate.

  1. A combination of dynamic light scattering and polarized resonance Raman scattering applied in the study of Arenicola Marina extracellular hemoglobin

    NASA Astrophysics Data System (ADS)

    Jernshøj, K. D.; Hassing, S.; Olsen, L. F.

    2013-08-01

    Arenicola Marina extracellular hemoglobin (Hbl Hb) is considered to be a promising candidate as a blood substitute. To entangle some of the properties of extracellular giant hexagonal bilayer hemoglobin (Hbl Hb) of Arenicola Marina, we combined polarized resonance Raman scattering (532 nm excitation) with dynamic light scattering (DLS) (632.8 nm). An analysis of the depolarization ratio of selected a2g skeletal modes of the heme in native Hbl Hb and porcine Hb, shows that the distortion of the heme group away from its ideal fourfold symmetry is much smaller for heme groups bound in the Hbl Hb than for heme groups bound in porcine Hb. Using DLS, the average hydrodynamic diameter (⟨dh⟩) of Hbl Hb was measured at pH = 5, 7, 8, 9, and 10. At pH = 5 to 7, the Hbl Hb was found in its native form with ⟨dh⟩ equal to 24.2 nm, while at pH = 8 and 9, a dissociation process starts to take place resulting in ⟨dh⟩ = 9 nm. At pH = 10, only large aggregates of fragmented Hbl Hb with ⟨dh⟩ larger than 1000 nm was detected, however, a comparison of the DLS results with the polarized resonance Raman scattering (RRS) revealed that the coupling between the fragments did not involve direct interaction between the heme groups, but also that the local heme environment seems to be comparable in the aggregates and in the native Hbl Hb. By comparing the unpolarized RRS results obtained for erythrocytes (RBC) with those for Hbl Hb, led us to the important conclusion that Hbl Hb is much easier photolyzed than porcine RBC.

  2. A combination of dynamic light scattering and polarized resonance Raman scattering applied in the study of Arenicola Marina extracellular hemoglobin.

    PubMed

    Jernshøj, K D; Hassing, S; Olsen, L F

    2013-08-14

    Arenicola Marina extracellular hemoglobin (Hbl Hb) is considered to be a promising candidate as a blood substitute. To entangle some of the properties of extracellular giant hexagonal bilayer hemoglobin (Hbl Hb) of Arenicola Marina, we combined polarized resonance Raman scattering (532 nm excitation) with dynamic light scattering (DLS) (632.8 nm). An analysis of the depolarization ratio of selected a(2g) skeletal modes of the heme in native Hbl Hb and porcine Hb, shows that the distortion of the heme group away from its ideal fourfold symmetry is much smaller for heme groups bound in the Hbl Hb than for heme groups bound in porcine Hb. Using DLS, the average hydrodynamic diameter () of Hbl Hb was measured at pH = 5, 7, 8, 9, and 10. At pH = 5 to 7, the Hbl Hb was found in its native form with equal to 24.2 nm, while at pH = 8 and 9, a dissociation process starts to take place resulting in = 9 nm. At pH = 10, only large aggregates of fragmented Hbl Hb with larger than 1000 nm was detected, however, a comparison of the DLS results with the polarized resonance Raman scattering (RRS) revealed that the coupling between the fragments did not involve direct interaction between the heme groups, but also that the local heme environment seems to be comparable in the aggregates and in the native Hbl Hb. By comparing the unpolarized RRS results obtained for erythrocytes (RBC) with those for Hbl Hb, led us to the important conclusion that Hbl Hb is much easier photolyzed than porcine RBC.

  3. High-Pressure-Hydrogen-Induced Spin Reconfiguration in GdFe2 Observed by 57Fe-Polarized Synchrotron Radiation Mössbauer Spectroscopy with Nuclear Bragg Monochromator

    NASA Astrophysics Data System (ADS)

    Mitsui, Takaya; Imai, Yasuhiko; Hirao, Naohisa; Matsuoka, Takahiro; Nakamura, Yumiko; Sakaki, Kouji; Enoki, Hirotoshi; Ishimatsu, Naoki; Masuda, Ryo; Seto, Makoto

    2016-12-01

    57Fe-polarized synchrotron radiation Mössbauer spectroscopy (PSRMS) with an X-ray phase plate and a nuclear Bragg monochromator was used to study ferrimagnetic GdFe2 in high-pressure hydrogen. The pressure-dependent spectra clearly showed a two-step magnetic transition of GdFe2. 57Fe-PSRMS with circular polarization gave direct evidence that the Fe moment was directed parallel to the net magnetization of the GdFe2 hydride at 20 GPa. This spin configuration was opposite to that of the initial GdFe2, suggesting an extreme weakening of the antiferromagnetic interaction between Fe and Gd. 57Fe-PSRMS enables the characterization of the nonuniform properties of iron-based polycrystalline powder alloys. The excellent applicability of 57Fe-PSRMS covers a wide range of scientific fields.

  4. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  5. Induced polarization imaging applied to exploration for low-sulfidation epithermal Au-Ag deposits, Seongsan mineralized district, South Korea

    NASA Astrophysics Data System (ADS)

    Han, Man-Ho; Shin, Seung Wook; Park, Samgyu; Cho, Seong-Jun; Kim, Jung-Ho

    2016-10-01

    The determination of mineralization boundaries during mineral exploration for undiscovered low-sulfidation epithermal Au-Ag deposits is a significant challenge because of the extensive survey areas required. Induced polarization (IP) imaging is an effective geophysical technique for the detection of sulfides or clay. Thus, this method is considered useful to determine the boundaries of subsurface mineralization and hydrothermal alteration associated with epithermal deposits. We used 2D and 3D IP imaging to define the silicification and mineralization boundaries of the Moisan deposit in the Seongsan mineralized district, which is geologically well-known. The boundaries of the silicification zone were defined by high resistivity values of 600 Ω-m, and those of the mineralization zone were defined by high global chargeability values of 3 mV V-1. The continuity of the high resistivity anomaly corresponded well to the silicification (quartz veins) exposed in outcrop. In addition, it is geologically reasonable that the chargeability anomaly, ⩾3 mV V-1, associated with the mineralization/hydrothermal alteration zone was concentrated at near-surface depths, and extensively surrounding the resistivity anomaly, ⩾600 Ω-m, associated with the silicification zone.

  6. Polarization in Scattering

    DTIC Science & Technology

    2010-09-01

    we refer to the linear polarization as parallel if the polarization vector is in the scattering plane or perpendicular if the polarization vector is...obvious that the different polarization states can all be represented as linear combinations of any of the independent pairs of polarization states...J.C. (1976) “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique, Applied Optics, 6, 321-330

  7. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  8. Tilted foil polarization of radioactive beam nuclei

    NASA Astrophysics Data System (ADS)

    Goldring, Gvirol

    1992-11-01

    Tilted foil polarization has up to now been mostly applied to nuclear reaction products recoiling out of a target traversed by a primary particle beam. Being a universal phenomenon it can be applied equally well to beams of particles, primary or secondary, radioactive or other. There are however some technical considerations arising from the nature of the beam particles. Radioactive beams are associated with ground state nuclei. They usually have low nuclear spin and as a consequence-as will be shown later-low polarization. Secondary beams are usually low in intensity and do not impose any constraints on the foils they traverse; unlike intense primary heavy ion beams which, if they traverse the foils, essentially limit the foil material to carbon. We review here briefly the tilted foil polarization process and then discuss an experiment with an isomer beam. Finally we review experiments with radioactive beams, past, present and planned for the future.

  9. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  10. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  11. The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses.

    PubMed

    Hassanin, Alexandre

    2015-07-01

    In this report, I review recent molecular studies dealing with the origin and evolution of polar bears (Ursus maritimus), with special emphasis on their relationships with brown bears (U. arctos). On the basis of mitochondrial and nuclear data, different hypotheses have been proposed, including rapid morphological differentiation of U. maritimus, genetic introgression from U. arctos into U. maritimus, or inversely from U. maritimus into U. arctos, involving either male- or female-mediated gene flow. In the light of available molecular and eco-ethological data, I suggest, firstly, that all divergences among major clades of large bears can be linked to glacial periods, secondly, that polar bears diverged from brown bears before 530 thousand years ago (ka), during one of the three glacial marine isotope stages (MIS) 14, 15.2 or 16, and, thirdly, that genetic introgression had occurred from female polar bears into brown bear populations during at least two glacial periods, at 340 ± 10 ka (MIS 10) in western Europe, and at 155 ± 5 ka (MIS 6) on the ABC islands of southeastern Alaska, and probably also in Beringia and Ireland based on ancient DNA sequences.

  12. Statistical Polarization Mode Dispersion/Polarization Dependent Loss Emulator for Polarization Division Multiplexing Transmission Testing

    NASA Astrophysics Data System (ADS)

    Perlicki, Krzysztof

    2010-03-01

    A low-cost statistical polarization mode dispersion/polarization dependent loss emulator is presented in this article. The emulator was constructed by concatenating 15 highly birefringence optical-fiber segments and randomly varying the mode coupling between them by rotating the polarization state. The impact of polarization effects on polarization division multiplexing transmission quality was measured. The designed polarization mode dispersion/polarization dependent loss emulator was applied to mimic the polarization effects of real optical-fiber links.

  13. Response to comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2013-03-29

    Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.

  14. Comprehensive analysis of polar and apolar constituents of butter and margarine by nuclear magnetic resonance, reflecting quality and production processes.

    PubMed

    Schripsema, Jan

    2008-04-23

    The separation of butter or margarine into polar (soluble in water) and apolar fractions (soluble in chloroform) and subsequent analysis of these fractions by (1)H NMR permits a comprehensive analysis of its constituents. In the polar fraction the preservatives benzoic and sorbic acid, the organic acids citric, lactic, butyric, acetic, and formic acid, and, furthermore, the carbohydrate lactose were quantified. In the apolar fraction the conjugated linoleic acid (CLA) rumenic acid, diglycerides, and linoleic acid were quantified. Rumenic acid is a characteristic component of ruminant fats and was found in all butter samples. The levels varied between 0.50 and 1.08%. Ten brands of Brazilian butter were investigated as was one brand from Norway. Also, two brands of margarine were investigated for comparison. A large variation in especially polar constituents was found between the butter samples, revealing the presence of preservatives in five brands of butter from Brazil, remarkable because these additives are legally not allowed. Furthermore, the levels of organic acids and lactose permitted conclusions about the production process and quality; for example, the presence of higher levels of free butyric acid indicate lipolysis, leading to a lower quality, and low levels of lactose indicate that after churning the residual milk fluids have been removed by an additional washing step in the production process.

  15. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases.

    PubMed

    Sosnovsky, Denis V; Jeschke, Gunnar; Matysik, Jörg; Vieth, Hans-Martin; Ivanov, Konstantin L

    2016-04-14

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  16. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy

    SciTech Connect

    Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A.; Rosay, Melanie; Johnson, Duane D.; Pruski, Marek; Huang, Wenyu

    2014-10-08

    The host–guest interaction between metal ions (Pt²⁺ and Cu²⁺) and a zirconium metal–organic framework (UiO-66-NH₂) was explored using dynamic nuclear polarization-enhanced ¹⁵N{¹H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt²⁺ coordinates with two NH₂ groups from the MOF and two Cl⁻ from the metal precursor, whereas Cu²⁺ do not form chemical bonds with the NH₂ groups of the MOF framework. Density functional calculations reveal that Pt²⁺ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.

  17. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy

    SciTech Connect

    Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A; Rosay, Melanie; Johnson, Duane D; Pruski, Marek; Huang, Wenyu

    2014-10-08

    The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO-66-NH2) was explored using dynamic nuclear polarization-enhanced 15N{1H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl- from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.

  18. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations

    PubMed Central

    2015-01-01

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively. PMID:26244620

  19. (13)C-labeled biochemical probes for the study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic resonance imaging.

    PubMed

    Salamanca-Cardona, Lucia; Keshari, Kayvan R

    2015-01-01

    In recent years, advances in metabolic imaging have become dependable tools for the diagnosis and treatment assessment in cancer. Dynamic nuclear polarization (DNP) has recently emerged as a promising technology in hyperpolarized (HP) magnetic resonance imaging (MRI) and has reached clinical relevance with the successful visualization of [1-(13)C] pyruvate as a molecular imaging probe in human prostate cancer. This review focuses on introducing representative compounds relevant to metabolism that are characteristic of cancer tissue: aerobic glycolysis and pyruvate metabolism, glutamine addiction and glutamine/glutamate metabolism, and the redox state and ascorbate/dehydroascorbate metabolism. In addition, a brief introduction of probes that can be used to trace necrosis, pH changes, and other pathways relevant to cancer is presented to demonstrate the potential that HP MRI has to revolutionize the use of molecular imaging for diagnosis and assessment of treatments in cancer.

  20. Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature

    PubMed Central

    2015-01-01

    Efficient dynamic nuclear polarization (DNP) in solids, which enables very high sensitivity NMR experiments, is currently limited to temperatures of around 100 K and below. Here we show how by choosing an adequate solvent, 1H cross effect DNP enhancements of over 80 can be obtained at 240 K. To achieve this we use the biradical TEKPol dissolved in a glassy phase of ortho-terphenyl (OTP). We study the solvent DNP enhancement of both TEKPol and BDPA in OTP in the range from 100 to 300 K at 9.4 and 18.8 T. Surprisingly, we find that the DNP enhancement decreases only relatively slowly for temperatures below the glass transition of OTP (Tg = 243 K), and 1H enhancements around 15–20 at ambient temperature can be observed. We use this to monitor molecular dynamic transitions in the pharmaceutically relevant solids Ambroxol and Ibuprofen. PMID:26555676

  1. Direct determination of nuclear polarization produced by beam-foil interaction for the short-lived. beta. emitter /sup 12/B

    SciTech Connect

    Nojiri, Y.; Deutch, B.I.

    1983-07-18

    Nuclear polarization P of the short-lived ..beta.. emitter /sup 12/B was produced by the beam-foil interaction and directly determined via asymmetric ..beta.. decay. For a single tilted foil, at boron energy E/sub B/ = 1.0 MeV, Vertical BarPVertical Bar = 1.82(14)%. This was enhanced to Vertical BarPVertical Bar = 4.69(46)% by stacking four tilted foils. The dependence of P vs E/sub B/ was observed for a single tilted foil in the range of E/sub B/ = 0.6 to 1.3 MeV. The sign of P followed that of the tilt angle and was consistent with predictions from electron-density-gradient models.

  2. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    SciTech Connect

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing; Mosier, Nathan S.; Pruski, Marek; Abu-Omar, Mahdi M.

    2016-12-27

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C–13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determine structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.

  3. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE PAGES

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...

    2016-12-27

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C–13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determine structure–functionmore » relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  4. Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR.

    PubMed

    Perras, Frédéric A; Luo, Hao; Zhang, Ximing; Mosier, Nathan S; Pruski, Marek; Abu-Omar, Mahdi M

    2017-01-26

    Lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear (13)C-(13)C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determine structure-function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.

  5. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  6. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    NASA Astrophysics Data System (ADS)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  7. A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol.

    PubMed

    Gast, P; Mance, D; Zurlo, E; Ivanov, K L; Baldus, M; Huber, M

    2017-02-01

    To understand the dynamic nuclear polarization (DNP) enhancements of biradical polarizing agents, the magnetic resonance parameters need to be known. We describe a tailored EPR approach to accurately determine electron spin-spin coupling parameters using a combination of standard (9 GHz), high (95 GHz) and ultra-high (275 GHz) frequency EPR. Comparing liquid- and frozen-solution continuous-wave EPR spectra provides accurate anisotropic dipolar interaction D and isotropic exchange interaction J parameters of the DNP biradical AMUPol. We found that D was larger by as much as 30% compared to earlier estimates, and that J is 43 MHz, whereas before it was considered to be negligible. With the refined data, quantum mechanical calculations confirm that an increase in dipolar electron-electron couplings leads to higher cross-effect DNP efficiencies. Moreover, the DNP calculations qualitatively reproduce the difference of TOTAPOL and AMUPol DNP efficiencies found experimentally and suggest that AMUPol is particularly effective in improving the DNP efficiency at magnetic fields higher than 500 MHz. The multi-frequency EPR approach will aid in predicting the optimal structures for future DNP agents.

  8. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    SciTech Connect

    Lafon, Olivier; Thankamony, Aany S. Lilly; Kokayashi, Takeshi; Carnevale, Diego; Vitzthum, Veronika; Slowing, Igor I.; Kandel, Kapil; Vezin, Herve; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  9. (1)H and (13)C dynamic nuclear polarization in aqueous solution with a two-field (0.35 T/14 T) shuttle DNP spectrometer.

    PubMed

    Reese, Marcel; Türke, Maria-Teresa; Tkach, Igor; Parigi, Giacomo; Luchinat, Claudio; Marquardsen, Thorsten; Tavernier, Andreas; Höfer, Peter; Engelke, Frank; Griesinger, Christian; Bennati, Marina

    2009-10-28

    Dynamic nuclear polarization (DNP) permits increasing the NMR signal of nuclei by pumping the electronic spin transitions of paramagnetic centers nearby. This method is emerging as a powerful tool to increase the inherent sensitivity of NMR in structural biology aiming at detection of macromolecules. In aqueous solution, additional technical issues associated with the penetration of microwaves in water and heating effects aggravate the performance of the experiment. To examine the feasibility of low-field (9.7 GHz/0.35 T) DNP in high resolution NMR, we have constructed the prototype of a two-field shuttle DNP spectrometer that polarizes nuclei at 9.7 GHz/0.35 T and detects the NMR spectrum at 14 T. We report our first (1)H and (13)C DNP enhancements with this spectrometer. Effective enhancements up to 15 were observed for small molecules at (1)H 600 MHz/14 T as compared to the Boltzmann signal. The results provide a proof of principle for the feasibility of a shuttle DNP experiment and open up perspectives for the application potential of this method in solution NMR.

  10. Redefining Success: Applying Lessons in Nuclear Diplomacy from North Korea to Iran (INSS Strategic Perspectives, Number 1, September 2010)

    DTIC Science & Technology

    2010-09-01

    North Korea and Iran to continue their nuclear programs unrestrained . It also sacrifices more achievable short-term goals of improving transparency and...spent fuel teams. The gap between the rhetoric from Washington regarding North Korea’s dangerous nuclear ambitions and the muted U.S. response to...Tehran’s regional leadership aspirations and the distrust and opposi- tion to Iranian ambitions and the exercise of Iranian power among the majority of

  11. Microwave frequency modulation for improving polarization transfer in DNP experiments

    NASA Astrophysics Data System (ADS)

    Guy, Mallory; Ramanathan, Chandrasekhar

    Dynamic nuclear polarization (DNP) is a driven process that transfers the inherently high electron polarization to surrounding nuclear spins via microwave irradiation at or near the electron Larmor frequency. In a typical DNP experiment, the amplitude and frequency of the applied microwaves are constant. However, by adding time dependence in the form of frequency modulation, the electron excitation bandwidth is increased, thereby increasing the number of electron spins active in the polarization transfer process and improving overall efficiency. Both triangular and sinusoidal modulation show a 3 fold improvement over monochromatic irradiation. In the present study, we compare the nuclear spin polarization after DNP experiments with no modulation of the applied microwaves, triangular and sinusoidal modulation, and modulation schemes derived from the sample's ESR spectrum. We characterize the polarization as a function of the modulation amplitude and frequency and compare the optimal results from each modulation scheme. Working at a field of 3.34 T and at a temperature of 4 K, we show that by using a modulation scheme tailored to the electronic environment of the sample, polarization transfer is improved over other modulation schemes. Small-scale simulations of the spin system are developed to gain further insight into the dynamics of this driven open system. This understanding could enable the design of modulation schemes to achieve even higher polarization transfer efficiencies. With support from NSF (CHE-1410504) and by NIH (U19-A1091173).

  12. The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor β/δ Potentiates Cell Chemotactism, Polarization, and Migration▿ †

    PubMed Central

    Tan, Nguan Soon; Icre, Guillaume; Montagner, Alexandra; Heggeler, Béatrice Bordier-ten; Wahli, Walter; Michalik, Liliane

    2007-01-01

    After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARβ/δ activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARβ/δ−/− mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations. PMID:17682064

  13. Polarization at SLAC

    SciTech Connect

    Woods, M.

    1995-01-01

    A highly polarized electron beam is a key feature. for the Current physics program at SLAC. An electron beam polarization of 80% can now be routinely achieved for typically 5000 hours of machine operation per year. Two main Physics programs utilize the polarized beam. Fixed target experiments in End Station A study the collision of polarized electrons with polarized nuclear targets to elucidate the spin structure of the nucleon and to provide an important test of QCD. Using the SLAC Linear Collider, collisions of polarized electrons with unpolarized positrons allow precise measurements of parity violation in the Z-fermion couplings and provide a very precise measurement of tile weak mixing angle. This paper discusses polarized beam operation at SLAC, and gives an overview of the polarized physics program.

  14. Applying Human-performance Models to Designing and Evaluating Nuclear Power Plants: Review Guidance and Technical Basis

    SciTech Connect

    O'Hara, J.M.

    2009-11-30

    Human performance models (HPMs) are simulations of human behavior with which we can predict human performance. Designers use them to support their human factors engineering (HFE) programs for a wide range of complex systems, including commercial nuclear power plants. Applicants to U.S. Nuclear Regulatory Commission (NRC) can use HPMs for design certifications, operating licenses, and license amendments. In the context of nuclear-plant safety, it is important to assure that HPMs are verified and validated, and their usage is consistent with their intended purpose. Using HPMs improperly may generate misleading or incorrect information, entailing safety concerns. The objective of this research was to develop guidance to support the NRC staff's reviews of an applicant's use of HPMs in an HFE program. The guidance is divided into three topical areas: (1) HPM Verification, (2) HPM Validation, and (3) User Interface Verification. Following this guidance will help ensure the benefits of HPMs are achieved in a technically sound, defensible manner. During the course of developing this guidance, I identified several issues that could not be addressed; they also are discussed.

  15. Efficient composite broadband polarization retarders and polarization filters

    NASA Astrophysics Data System (ADS)

    Dimova, E.; Ivanov, S. S.; Popkirov, G.; Vitanov, N. V.

    2014-12-01

    A new type of broadband polarization half-wave retarder and narrowband polarization filters are described and experimentally tested. Both, the retarders and the filters are designed as composite stacks of standard optical half-wave plates, each of them twisted at specific angles. The theoretical background of the proposed optical devices was obtained by analogy with the method of composite pulses, known from the nuclear and quantum physics. We show that combining two composite filters built from different numbers and types of waveplates, the transmission spectrum is reduced from about 700 nm to about 10 nm width.We experimentally demonstrate that this method can be applied to different types of waveplates (broadband, zero-order, multiple order, etc.).

  16. Climate Drives Polar Bear Origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  17. Noninvasive mapping of the redox status of dimethylnitrosamine-induced hepatic fibrosis using in vivo dynamic nuclear polarization-magnetic resonance imaging

    PubMed Central

    Kawano, Takahito; Murata, Masaharu; Hyodo, Fuminori; Eto, Hinako; Kosem, Nuttavut; Nakata, Ryosuke; Hamano, Nobuhito; Piao, Jing Shu; Narahara, Sayoko; Akahoshi, Tomohiko; Hashizume, Makoto

    2016-01-01

    Hepatic fibrosis is a chronic disorder caused by viral infection and/or metabolic, genetic and cholestatic disorders. A noninvasive procedure that enables the detection of liver fibrosis based on redox status would be useful for disease identification and monitoring, and the development of treatments. However, an appropriate technique has not been reported. This study describes a novel method for assessing the redox status of the liver using in vivo dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) with the nitroxyl radical carbamoyl-PROXYL as a molecular imaging probe, which was tested in dimethylnitrosamine-treated mice as a model of liver fibrosis. Based on the pharmacokinetics of carbamoyl-PROXYL in control livers, reduction rate mapping was performed in fibrotic livers. Reduction rate maps demonstrated a clear difference between the redox status of control and fibrotic livers according to the expression of antioxidants. These findings indicate that in vivo DNP-MRI with a nitroxyl radical probe enables noninvasive detection of changes in liver redox status. PMID:27587186

  18. Developing and applying modern methods of leakage monitoring and state estimation of fuel at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.

    2014-02-01

    The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.

  19. Physical processes in spin polarized plasmas

    SciTech Connect

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained.

  20. Multi-step Monte Carlo calculations applied to nuclear reactor instrumentation - source definition and renormalization to physical values

    SciTech Connect

    Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien; Villard, Jean-Francois; Snoj, Luka; Zerovnik, Gasper; Trkov, Andrej

    2015-07-01

    Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. These data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which

  1. Nuclear cardiology and CVD in the developing world: Are we applying our scarce resources appropriately? Why is our mortality rate so high?

    PubMed

    Vitola, João V

    2016-10-01

    While mortality rates from cardiovascular diseases have progressively decreased in developed nations, this has not been observed to the same extent in the developing world. Nuclear Cardiology utilization remains low or non-existent for most of those living in the low-to-middle-income countries. How much of the decline in mortality observed in the developed world has to do with advanced cardiac imaging? Are we applying our scarce resources appropriately for myocardial perfusion imaging? Are myocardial revascularizations being guided by appropriate use criteria? Is more imaging necessary to reduce the mortality rates further in the developing world?

  2. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  3. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  4. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  5. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  6. A method for the compensation of the effects of surface cloth impressions on polar backscatter applied to porous epoxy and biaxial graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Bridal, S. L.; Holland, Mark R.; Handley, Scott M.; Miller, James G.

    1993-01-01

    The anisotropy of polar backscatter from graphite/epoxy composites is a potentially useful parameter for the characterization of porosity levels. However, the effects of release-cloth impressions on measured integrated polar backscatter levels are sufficient to inhibit the detection of porosity with this method. Recently, we developed a theoretical model to predict the frequency distribution of the backscattered power along the high-symmetry directions of release-cloth impressions. This study investigates experimentally the usefulness of limiting the bandwidth to regions not dominated by the scattering from the surface impressions, hence increasing the probability of detecting flaws such as porosity.

  7. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    SciTech Connect

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  8. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  9. A new combined nuclear magnetic resonance and Raman spectroscopic probe applied to in situ investigations of catalysts and catalytic processes

    NASA Astrophysics Data System (ADS)

    Camp, Jules C. J.; Mantle, Michael D.; York, Andrew P. E.; McGregor, James

    2014-06-01

    Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported. This entailed the design of a new experimental probe capable of recording simultaneous measurements on the same sample and/or system of interest. The individual datasets acquired by each spectroscopic method are compared to their unmodified, stand-alone equivalents on a single sample as a means to benchmark this novel piece of equipment. The application towards monitoring reaction progress is demonstrated through the evolution of the homogeneous catalysed metathesis of 1-hexene, with both experimental techniques able to detect reactant consumption and product evolution. This is extended by inclusion of magic angle spinning (MAS) NMR capabilities with a custom made MAS 7 mm rotor capable of spinning speeds up to 1600 Hz, quantified by analysis of the spinning sidebands of a sample of KBr. The value of this is demonstrated through an application involving heterogeneous catalysis, namely the metathesis of 2-pentene and ethene. This provides the added benefit of being able to monitor both the reaction progress (by NMR spectroscopy) and also the structure of the catalyst (by Raman spectroscopy) on the very same sample, facilitating the development of structure-performance relationships.

  10. Carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance investigation of the interactions between maleic anhydride grafted polypropylene and wood polymers.

    PubMed

    Rude, Erica; Laborie, Marie-Pierre G

    2008-05-01

    The chemical interactions between maleic anhydride grafted polypropylene (MAPP) and wood were studied with solid-state carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance ((13)C CPMAS NMR) spectroscopy. MAPP was synthesized with 100% (13)C enrichment at the C(1) and C(4) carbons to allow detection of the [1,4-(13)C(2)]MAPP functional groups and was melt blended with cellulose, lignin, and maple wood. In the cellulose/MAPP blend, changes in (13)C CPMAS NMR corrected signal intensities for the anhydride and dicarboxylic maleic acid functionalities suggested that esterification may have occurred predominantly from the more numerous diacid carbons. A single proton longitudinal relaxation in the rotating frame, (H)T(1rho), for the MAPP and the cellulose carbons in the blend suggested that they were spin coupled, i.e., homogeneous on a 10-200 Angstrom scale. Esterification was also suggested in the lignin/MAPP blend. Furthermore, the more significant changes in the intensities of the carbonyl signals and (H)T(1rho) values suggested that lignin may be more reactive to MAPP than cellulose. Finally, when maple was melt blended with MAPP, the same trends in the (13)C CP-MAS NMR spectra and (H)T(1rho) behavior were observed as when MAPP was blended with cellulose or lignin. This study therefore clarifies that during melt compounding of wood with MAPP, esterification occurs with wood polymers, preferentially with lignin. Understanding the interactions of MAPP with wood is of significance for the development of natural-fiber-reinforced thermoplastic composites.

  11. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Larsson, Per Tomas; Tibirna, Carmen Mihaela; Vasile, Cornelia

    2010-09-01

    X-ray diffraction, scanning electron microscopy (SEM), and solid-state cross-polarization magic-angle-spinning (CP/MAS) (13)C-NMR spectroscopy were applied to determine changes over time in the morphology and crystallinity of lime wood (Tilia cordata Miller) generated by the soft-rot fungi. Wood samples were inoculated with Trichoderma viride Pers for various durations up to 84 days. Structural and morphological modifications were assessed by comparing the structural features of decayed lime wood samples with references. Significant morphology changes such as defibration or small cavities were clearly observed on the SEM micrographs of lime wood samples exposed to fungi. Following the deconvolution process of the diffraction patterns, the degree of crystallinity, apparent lateral crystallite size, the proportion of crystallite interior chains, and the cellulose fraction have been determined. It was found that all crystallographic data vary with the duration of exposure to fungi. The degree of crystallinity and cellulose fraction tend to decrease, whereas the apparent lateral crystallite size and the proportion of crystallite interior chains increase with prolonged biodegradation processes. The most relevant signals in CP/MAS (13)C-NMR spectra were assigned according to literature data. The differences observed were discussed in terms of lignin and cellulose composition: by fixing the lignin reference signal intensity, the cellulose and hemicelluloses moieties showed a relative decrease compared to the lignin signals in decayed wood.

  12. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells

    PubMed Central

    Kota, Venkatesh; Rodriguez, Reycel; Smith, Charles D.

    2017-01-01

    The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells. PMID:28291789

  13. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells.

    PubMed

    Sommer, Gunhild; Fedarovich, Alena; Kota, Venkatesh; Rodriguez, Reycel; Smith, Charles D; Heise, Tilman

    2017-01-01

    The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.

  14. Spatial image compounding applied to a phase coherence corrected UT-PA technique for inspecting nuclear components of coarse-grained structure

    NASA Astrophysics Data System (ADS)

    Brizuela, Jose; Katchadjian, Pablo; Garcia, Alejandro; Desimone, Carlos

    2016-02-01

    The aim of this work is to obtain a C-Scan view of an austenitic stainless steel weld from a nuclear use pipe. In order to obtain this result Sectorial Scans (S-Scan) from both sides of the weld are obtained by Ultrasonic Phase Array (UT-PA). Then, spatial image compounding is performed to generate a single image from the S-Scans acquired at the same circumferential position of the transducer. These joints have a coarse grain structure which significantly reduce the transmission of the ultrasonic wave due to attenuation characteristics and backscattered noise from microstructures inside the material. For this reason, phase coherence imaging technique has been also applied to reduce the structural noise and improve the image quality. To verify detected defects, and given the impossibility of cutting the component, gammagraphy were performed with Co60.

  15. Polarized cells, polar actions.

    PubMed

    Maddock, J R; Alley, M R; Shapiro, L

    1993-11-01

    The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.

  16. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  17. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. IV. Application to the second solar spectrum of the Na i D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na i D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.

  18. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...

    2017-01-23

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C–27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al2O3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore, this work clearlymore » demonstrates a surprising bimodal coordination of methionine at the Pd–Al2O3 interface.« less

  19. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    SciTech Connect

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows us to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.

  20. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    DOE PAGES

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less

  1. High deuteron polarization in trityl radical doped deuterated polystyrene

    NASA Astrophysics Data System (ADS)

    Wang, Li; Berlin, A.; Doshita, N.; Herick, J.; Hess, C.; Iwata, T.; Kondo, K.; Meyer, W.; Reicherz, G.

    2013-11-01

    Deuterated polystyrene for polarized solid targets has been prepared by chemical doping with the trityl radical ‘Finland D36’ (AH 110 355 deutero acid form). Thin foils doped with various radical densities have been produced using tetrahydrofuran as solvent. Dynamic nuclear polarization technique has been applied to polarize deuterons in the samples (98%-D) at the temperature range of about 1 K and magnetic fields of 2.5 T and 5.0 T. A maximum deuteron polarization of -61.5% with a build-up time of 100 min has been achieved at 5.0 T and about 500 mK at a radical density of 1.16×1019 spins/g.

  2. Proton polarization from π+ absorption in 3He

    NASA Astrophysics Data System (ADS)

    Maytal-Beck, S.; Aclander, J.; Altman, A.; Ashery, D.; Hahn, H.; Moinester, M. A.; Rahav, A.; Feltham, A.; Jones, G.; Pavan, M.; Sevior, M.; Hutcheon, D.; Ottewell, D.; Smith, G. R.; Niskanen, J. A.

    1992-05-01

    We present the first polarization measurements for pion absorption on a nucleus heavier than the deuteron. The polarization of protons resulting from π+ absorption in the 3He was measured at bombarding energies of 120 and 250 MeV. Protons from absorption in a quasideuteron were selected by applying kinematical constraints. A significant discrepancy was observed between the experimental results and theoretical predictions. At 120 MeV the measured polarizations for 3He are consistent with those of the deuteron. At 250 MeV the angular distribution of the polarization is significantly different than for the deuteron, showing sensitivity to the nuclear density, and thus may be sensitive to short range correlations between nucleons.

  3. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e[plus]e[minus] collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  4. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e{plus}e{minus} collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  5. The polarized EMC effect

    SciTech Connect

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  6. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect

    SciTech Connect

    Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.; Reno, John L.

    2000-02-15

    This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c) 2000 The American Physical Society.

  7. Polar Terrains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03577 Polar Terrains

    The region surrounding the South Polar Cap contains many different terrain types. This image shows both etched terrain and a region of 'mounds'.

    Image information: VIS instrument. Latitude 75S, Longitude 286.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model, and we present a generalized formalism for this purpose. Aims: The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering) and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom. Methods: The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a two-level atom. Results: We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation. Conclusions: The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium equations must be solved for each atomic velocity class.

  9. Synthetic and mechanistic studies of metal-free transfer hydrogenations applying polarized olefins as hydrogen acceptors and amine borane adducts as hydrogen donors.

    PubMed

    Yang, Xianghua; Fox, Thomas; Berke, Heinz

    2012-01-28

    Metal-free transfer hydrogenation of polarized olefins (RR'C=CEE': R, R' = H or organyl, E, E' = CN or CO(2)Me) using amine borane adducts RR'NH-BH(3) (R = R' = H, AB; R = Me, R' = H, MAB; R = (t)Bu, R' = H, tBAB; R = R' = Me, DMAB) as hydrogen donors, were studied by means of in situ NMR spectroscopy. Deuterium kinetic isotope effects and the traced hydroboration intermediate revealed that the double H transfer process occurred regio-specifically in two steps with hydride before proton transfer characteristics. Studies on substituent effects and Hammett correlation indicated that the rate determining step of the H(N) transfer is in agreement with a concerted transition state. The very reactive intermediate [NH(2)=BH(2)] generated from AB was trapped by addition of cyclohexene into the reaction mixture forming Cy(2)BNH(2). The final product borazine (BHNH)(3) is assumed to be formed by dehydrocoupling of [NH(2)=BH(2)] or its solvent stabilized derivative [NH(2)=BH(2)]-(solvent), rather than by dehydrogenation of cyclotriborazane (BH(2)NH(2))(3) which is the trimerization product of [NH(2)=BH(2)].

  10. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    SciTech Connect

    Lukashevich, V. V.; Aldushchenkov, A. V.; Dallman, D.

    2011-03-15

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neutron spin rotation angle, depending on the phase of the rf field in the Ramsey cell, allows a cosine-like spectrum to be measured. This spectrum is called a phase spectrum. The phase spectra measured with polarized and unpolarized targets have a phase shift. The measurements of this phase shift with polarized and nonpolarized neutrons at a p-wave resonance enable the ratio D/C to be isolated. We also describe the algorithm for separating the ratio D/C, taking into account the influence of the fringing fields of the Ramsey coil magnet and the target magnet.

  11. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  12. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  13. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  14. EXFOR Library of Experimental Nuclear Reaction Data

    DOE Data Explorer

    The EXFOR library contains an extensive compilation of experimental nuclear reaction data up to 1 GeV. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle(up to carbon) and photon reactions have been covered less extensively. Files contain nuclear reaction data such as cross sections, spectra, angular distributions, polarizations, etc, along with information on experimental technique, error analysis, and applied standards. Numerous search parameters include: target, beam, product, experimental method, and even author and publication names. The library contains data from more than 20,000 experiments. (Specialized Interface)

  15. Time reversal tests in polarized neutron reactions

    SciTech Connect

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized {sup 3}He gas targets. Using the polarized {sup 3}He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a {sup 139}La sample.

  16. THE POLARIZATION PARAMETER IN ELASTIC PROTON-PROTON SCATTERING FROM .75 TO 2.84 GEV.

    DTIC Science & Technology

    PROTON SCATTERING, POLARIZATION), (*NUCLEAR SPINS, POLARIZATION), PROTON REACTIONS, ELASTIC SCATTERING, MEASUREMENT, PARTICLE ACCELERATOR TARGETS, LIQUEFIED GASES, HELIUM, CARBON, ANTIPARTICLES , PROTON CROSS SECTIONS

  17. Research on polarization imaging information parsing method

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwu; Zhou, Pucheng; Wang, Xiaolong

    2016-11-01

    Polarization information parsing plays an important role in polarization imaging detection. This paper focus on the polarization information parsing method: Firstly, the general process of polarization information parsing is given, mainly including polarization image preprocessing, multiple polarization parameters calculation, polarization image fusion and polarization image tracking, etc.; And then the research achievements of the polarization information parsing method are presented, in terms of polarization image preprocessing, the polarization image registration method based on the maximum mutual information is designed. The experiment shows that this method can improve the precision of registration and be satisfied the need of polarization information parsing; In terms of multiple polarization parameters calculation, based on the omnidirectional polarization inversion model is built, a variety of polarization parameter images are obtained and the precision of inversion is to be improve obviously; In terms of polarization image fusion , using fuzzy integral and sparse representation, the multiple polarization parameters adaptive optimal fusion method is given, and the targets detection in complex scene is completed by using the clustering image segmentation algorithm based on fractal characters; In polarization image tracking, the average displacement polarization image characteristics of auxiliary particle filtering fusion tracking algorithm is put forward to achieve the smooth tracking of moving targets. Finally, the polarization information parsing method is applied to the polarization imaging detection of typical targets such as the camouflage target, the fog and latent fingerprints.

  18. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  19. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  20. Dual Species Noble Gas Nuclear Spin Polarizer for a New Search for the Atomic EDM of Xe-129 at FRM-II (Munich Research Reactor)

    NASA Astrophysics Data System (ADS)

    Cohn, Jared; Coulter, Daniel; Frisbie, Dustin; Fromm, Steven; Huneau, Jake; Rabga, Tenzin; Underwood, Walter; Singh, Jaideep; Fierlinger, Peter; Kraegeloh, Eva; Kuchler, Florian; Lins, Tobias; Marino, Mike; Meinel, Jonas; Neissen, Benjamin; Stuiber, Stefan; Fan, Isaac; Kilian, Wolfgang; Knappe-Gruenberg, Silvia; Trahms, Lutz; Chupp, Tim; Degenkolb, Skyler; Sachdeva, Natasha; Gong, Fei; Babcock, Earl; Fierlinger Group Team; Chupp Laboratory Team; Physikalisch-Technische Bundesanstalt Collaboration; Juelich CenterNeutron Science Collaboration

    2015-10-01

    Electric dipole moments are believed to be very sensitive probes of CP violation beyond the Standard Model. A new search for the atomic electric dipole moment of Xe-129 is currently underway at FRM-II in Munich. Our technique takes advantage of a state of the art magnetically shielded room, ultra-sensitive magnetometry using SQUIDs, and control of systematics using a He-3 co-magnetometer. Our goal is an order of magnitude improvement over the previous Xe-129 atomic EDM limit. We will describe the design and construction of a noble gas polarizer using spectrally-narrow diode lasers. Technische Universitaet Muenchen.

  1. Polarization of deuterium molecules

    SciTech Connect

    J. F. J. van den Brand; H. J. Bulten; M. Ferro-Luzzi; Z.-L. Zhou; Ricardo Alarcon; T. Botto; M. Bouwhuis; Rolf Ent; Peter Heimberg; Douglas W. Higinbotham; Kees de Jager; J. Lang; D. J. de Lange; I. Passchier; H. R. Poolman; J. J. M. Steijger; O. Unal; H. de Vries

    1997-08-01

    For molecular systems, spin relaxation is expected to be suppressed compared to the case of atoms, since the paired electrons in a hydrogen or deuterium molecule are chemically stable, and only weakly interact with the spin of the nucleus. Such systems would be largely insensitive to polarization losses due to spin-exchange collisions, to the interaction of the electron spins with external fields (e.g. the RF-field of a bunched charged-particle beam), and/or to the presence of container walls. Here, we discuss the results of a recent experiment where we obtained evidence that nuclear polarization is maintained, when polarized atoms recombine to molecules on a copper surface (in a magnetic field of 23 mT and at a density of about 10{sup 12} molecules {center_dot} cm{sup -3}).

  2. Nuclear-Spin Measurements of Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshiro

    Nuclear magnetic resonance (NMR) is widely used in the physical, chemical, and biological sciences. However, conventional NMR techniques based on induction-detection have drawbacks of low-sensitivity and the need of a relatively large sample. It is not suitable to investigate single or double layers (or their nanostructure), which is essential in studying quantum Hall (QH) effects. In this presentation, I discussed a resistively-detected technique to overcome the low-sensitivity limitation of conventional NMR and its application to QH systems. Resistively-detected nuclear-spin-based measurements rely on enhanced interactions between electron and nuclear spins at the degenerate point of different electron-spin states. For example, at the ν = 2/3 degenerate point in a AlGaAs/GaAs system,1-3 nuclear-spin polarization far beyond the thermal equilibrium is generated using current flow (dynamic nuclear-spin polarization). Moreover, nuclear-spin polarization can be detected as enhanced resistance, which is proportional to the magnetization, Mz, of nuclear spins.2 It should be stressed that the special states of ν = 2/3 are needed for dynamic nuclear-spin polarization and Mz detection, but we can apply NMR spectrum and nuclear-spin relaxation (T1 time) measurements for any state we want to estimate. These nuclear-spin-based measurements were successfully applied to characterize QH systems, especially their electron-spin features, using single and double layer systems where characteristics are controlled electrically by the gate biases. For a single layer, we could clarify skyrmion,2 spin-polarization of composite fermion,4 and enhanced spin-orbit interactions in a strongly asymmetric confinement.5 Exciting phases, like a canted antiferromagnetic phase, were studied in a double layer QH system with a total filling factor of 2 (Refs. 6, 7). The low-frequency mode was sensitively detected by monitoring T1, reflecting correlated electron spin features.7 The clear

  3. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  4. An electromagnetic helical undulator for polarized x-rays

    SciTech Connect

    Gluskin, E.; Vinokurov, N.; Tcheskidov, V.; Medvedko, A.; Evtushenko, Y. Kolomogorov, V.; Vobly, P.; Antokhin, E.; Ivanov, P.; Vasserman, I. B.; Trakhtenberg, E. M.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-10-28

    Linearly and circularly polarized x-rays have been very successfully applied to the study of the properties of materials. Many applications can benefit from the availability of energy-turnable, high-brilliance x-ray beams with adjustable polarization properties. A helical undulator that can generate beams of variable (linear to circular) polarization has been designed and built by the Budker Institute of Nuclear Physics and the Advanced Photon Source. The first harmonic of this 12.8-cm-period device will cover the energy range from 0.4 keV to 3.5 keV. An important feature of this fully electromagnetic device is that it will allow one to generate 100% horizontally (K{sub x}=O)or vertically (K{sub y}=O) plane-polarized radiation, which will enable many experiments otherwise not technically feasible. With symmetric deflection parameters (K{sub x}=K{sub y}), the on-axis radiation will be circularly polarized, with a user-selectable handedness. The polarization can be changed at rates up to 10 Hz.

  5. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  6. Clustering of polarization-encoded images.

    PubMed

    Zallat, Jihad; Collet, Christophe; Takakura, Yoshitate

    2004-01-10

    Polarization-encoded imaging consists of the distributed measurements of polarization parameters for each pixel of an image. We address clustering of multidimensional polarization-encoded images. The spatial coherence of polarization information is considered. Two methods of analysis are proposed: polarization contrast enhancement and a more-sophisticated image-processing algorithm based on a Markovian model. The proposed algorithms are applied and validated with two different Mueller images acquired by a fully polarimetric imaging system.

  7. Macrophage Polarization.

    PubMed

    Murray, Peter J

    2017-02-10

    Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.

  8. Sensitivity of VIIRS Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    2010-01-01

    The design of an optical system typically involves a sensitivity analysis where the various lens parameters, such as lens spacing and curvatures, to name two parameters, are (slightly) varied to see what, if any, effect this has on the performance and to establish manufacturing tolerances. A sinular analysis was performed for the VIIRS instruments polarization measurements to see how real world departures from perfectly linearly polarized light entering VIIRS effects the polarization measurement. The methodology and a few of the results of this polarization sensitivity analysis are presented and applied to the construction of a single polarizer which will cover the VIIRS VIS/NIR spectral range. Keywords: VIIRS, polarization, ray, trace; polarizers, Bolder Vision, MOXTEK

  9. Reverse polarization in conjugated heterocycle polythiophene

    NASA Astrophysics Data System (ADS)

    Wang, Lu-Xia; Liu, De-Sheng; Zhang, Da-Cheng; Xie, Shi-Jie; Han, Sheng-Hao; Mei, Liang-Mo

    2005-01-01

    Reverse polarization in polythiophene under an applied electric field has been studied in the framework of the tight-binding model. It is found that the applied electronic field has a great influence on the excited states of polythiophene. The effect of the heteroatoms on the polarization has been calculated and analysed carefully. It is indicated that a reverse polarization of biexcitons in polythiophene will be observed more easily. The heteroatoms increase this reversed polarization strength apparently.

  10. Transmission of polarized light in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Li, Xin; Yao, Gang

    2011-02-01

    Experiments were conducted to study polarized light transmission in fresh bovine skeletal muscle of varying thicknesses. Two-dimensional polarization-sensitive transmission images were acquired and analyzed using a numerical parametric fitting algorithm. The total transmittance intensity and degree-of-polarization were calculated for both central ballistic and surrounding scattering regions. Full Mueller matrix images were derived from the raw polarization images and the polar decomposition algorithm was applied to extract polarization parameters. The results suggest that polarized light propagation through skeletal muscle is affected by strong birefringence, diattenuation, multiple scattering induced depolarization and the sarcomere diffraction effect.

  11. Polar Glaciology

    NASA Technical Reports Server (NTRS)

    Robin, G. D.

    1984-01-01

    Two fields of research on polar ice sheets are likely to be of dominant interest during the 1990s. These are: the role of polar ice sheets in the hydrological cycle ocean-atmosphere-ice sheets-oceans, especially in relation to climate change; and the study and interpretation of material in deep ice cores to provide improved knowledge of past climates and of the varying levels of atmospheric constituents such as CO2, NOx, SO2, aerosols, etc., over the past 200,000 years. Both topics require a better knowledge of ice dynamics. Many of the studies that should be undertaken in polar regions by Earth Observing System require similar instruments and techniques to those used elsewhere over oceans and inland surfaces. However to study polar regions two special requirements need to be met: Earth Observing System satellite(s) need to be in a sufficiently high inclination orbit to cover most of the polar regions. Instruments must also be adapted, often by relatively limited changes, to give satisfactory data over polar ice. The observational requirements for polar ice sheets in the 1990s are summarized.

  12. Polarized Sources, Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Ciullo, Guiseppe; Contalbrigo, Marco; Lenisa, P.

    2011-01-01

    Remarks on the history of workshops on "spin tools" / E. Steffens -- Polarized proton beams in RHIC / A. Zelenski -- The COSY/Julich polarized H[symbol] and D[symbol] ion source / O. Felden -- The new source of polarized ions for the JINR accelerator complex / V. V. Fimushkin -- Resonance effects in nuclear dichroism - an inexpensive source of tensor-polarized deuterons / H. Seyfarth -- Polarized electrons and positrons at the MESA accelerator / K. Aulenbacher -- Status report of the Darmstadt polarized electron injector / Y. Poltoratska -- The Mott polarimeter at MAMI / V. Tioukine -- Proton polarimetry at the relativistic heavy ion collider / Y. Makdisi -- Polarisation and polarimetry at HERA / B. Sobloher -- Polarisation measurement at the ILC with a Compton polarimeter / C. Bartels -- Time evolution of ground motion-dependent depolarisation at linear colliders / A. Hartin -- Electron beam polarimetry at low energies and its applications / R. Barday -- Polarized solid targets: recent progress and future prospects / C. D. Keith -- HD gas distillation and analysis for HD frozen spin targets / A. D'Angelo -- Electron spin resonance study of hydrogen and alkyl free radicals trapped in solid hydrogen aimed for dynamic nuclear polarization of solid HD / T. Kumada -- Change of ultrafast nuclear-spin polarization upon photoionization by a short laser pulse / T. Nakajima -- Radiation damage and recovery in polarized [symbol]NH[symbol] ammonia targets at Jefferson lab / J. D. Maxwell.Polarized solid proton target in low magnetic field and at high temperature / T. Uesaka -- Pulse structure dependence of the proton spin polarization rate / T. Kawahara -- Proton NMR in the large COMPASS [symbol]NH[symbol] target / J. Koivuniemi -- DNP with TEMPO and trityl radicals in deuterated polystyrene / L. Wang -- The CLIC electron and positron polarized sources / L. Rinolfi -- Status of high intensity polarized electron gun at MIT-Bates / E. Tsentalovich -- Target section for spin

  13. Fundamental Interactions, Nuclear Masses, Astrophysics, and QCD

    SciTech Connect

    Gagliardi, C. A.

    2008-01-24

    During his long and varied career, Robert Tribble has made important contributions in many areas of nuclear physics. He has set new limits on the existence of second-class currents, lepton-flavor violation, and right-handed interactions. He optimized the use of the ({sup 4}He,{sup 8}He) reaction to determine nuclear masses and study charge-dependent effects in nuclei. He has developed a new indirect procedure to determine astrophysical reaction rates and applied it to study important nuclear reactions that occur in our sun, in massive stars, and in novae. He has explored anti-quark distributions in nucleons and nuclei, and the polarization of gluons in the nucleon. A brief overview of Bob Tribble's many accomplishments is presented.

  14. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues.

  15. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  16. Polarization compensator for optical communications

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M. W.; Abshire, J. B. (Inventor)

    1976-01-01

    An optical data communication system is provided whereby two orthogonal polarization states of a light beam carrier correspond to digital states. In such a system, automatic polarization compensation is provided by applying a dither modulating voltage to a cell exhibiting the electro-optic effect. The cell controls the relative phase of electric field components of an input light beam enabling the dither frequency component of the difference of the instantaneous powers in the two polarization states to be coherently detected. A signal derived from the coherent detection process is fed back to the cell via an integrator to form polarization bias compensating servo loop ot Type 1.

  17. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    transmission of intense light enable research into the chirality of nanogratings. Pump-probe techniques allow one to visualize the effects of the nanostructure topology on the surface mode excitation. In quantum optics the coherent control of polarization may lead to new and fascinating applications. Some authors of invited papers at the conference have written review-type introductory sections—they were encouraged to do so—but all contributions are genuine research papers with original results, and were judged according to the normal publication criteria of the journal. It is our pleasure to thank all authors for making this a splendid special issue of Journal of Optics A: Pure and Applied Optics.

  18. Hepatocyte Polarity

    PubMed Central

    Treyer, Aleksandr; Müsch, Anne

    2013-01-01

    Hepatocytes, like other epithelia, are situated at the interface between the organism’s exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes. PMID:23720287

  19. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  20. Technical Letter Report - Analysis of Ultrasonic Data on Piping Cracks at Ignalina Nuclear Power Plant Before and After Applying a Mechanical Stress Improvement Process, JCN-N6319, Task 2

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Crawford, Susan L.

    2008-02-26

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in piping systems previously analyzed for leak-before-break (LBB). Part of this work involves determining whether inspections alone are sufficient or if inspections plus mitigation techniques are needed. The work described in this report addresses the reliability of ultrasonic phased-array (PA) examinations for inspection of cracks that have been subjected to the mitigation method of mechanical stress improvement process (MSIP). It is believed that stresses imparted during MSIP may make ultrasonic crack responses in piping welds more difficult to detect and accurately characterize. To explore this issue, data were acquired, both before and after applying MSIP, and analyzed from cracked areas in piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. This work was performed under NRC Project JCN-N6319, PWSCC in Leak-Before-Break Systems.

  1. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  2. Depolarization in polarizing supermirrors

    NASA Astrophysics Data System (ADS)

    Klauser, Christine; Bigault, Thierry; Böni, Peter; Courtois, Pierre; Devishvili, Anton; Rebrova, Nataliya; Schneider, Michael; Soldner, Torsten

    2016-12-01

    We present data on depolarizing effects in polarizing mirrors. At typical magnetizing field strengths used in polarizing devices, depolarizations rise up to the percent level in the specular region and are shown to be successfully suppressed to 10-4 when increasing the magnetizing field. We show evidence linking a part of this depolarization to lateral correlation of the magnetization fluctuations in the ferromagnetic layers. Effects of the supermirror factor (m), wavelength and incidence angle are studied. The findings are applied to a crossed supermirror geometry and we report a neutron beam polarization of 99.97(1)% for a beam of wavelength λ = 5.3 Å, Δλ/λ = 0.1 (FWHM).

  3. Optical pumping for nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Smale, S.; Craiciu, I.; Vantyghem, A.; Gorelov, A.; Anholm, M.; Behling, R. S.; Fenker, B.; Melconian, D.; Gwinner, G.; Friesen, D.

    2013-05-01

    For nuclear beta decay experiments to test the standard model, we must produce laser-cooled, polarized atoms with vector polarization of at least 99.9%, with knowledge of the polarization from atomic observables at 0.1% accuracy. We cycle on and off an AC MOT, and optically pump 37K atoms for 2 ms with trap off. We use circularly polarized light on the 4S1/2 --> 4P1/2 transition, using RF sidebands on a diode laser to excite transitions from both F=1 and F=2 ground states. We test techniques with stable 41K atoms, which have very similar hyperfine splitting to 37K. Optical pumping techniques include flipping spin state with liquid crystal variable retarders, 0.25 mm thick SiC substrate mirrors in front of the beta detectors, combining 769.9 D1 and 766.5 nm D2 with an angle-tuned narrow bandpass filter, relieving stress from conflat-compatible windows to minimize birefringence, and shifting the frequency of the light with the spin flips to compensate for Zeeman shifts. We must avoid coherent population trapping effects. The polarization is measured by the time dependence of the excited state population after optical pumping light is applied, probed by measuring fluorescence and by nonresonant photoionization. Supported by NSERC, NRC through TRIUMF.

  4. Observables for polarized neutrons transmitted through polarized targets

    SciTech Connect

    Hnizdo, V. )

    1994-11-01

    A general and concise formalism is presented for the identification and evaluation of observables, including those that would indicate parity-conservation and/or time-reversal violation by the neutron-nucleus interaction, of experiments on the transmission of polarized neutrons through polarized nuclear targets. Statistical tensors are used for the description of the polarization states of the projectile and target, and the neutron-nucleus total cross section is decomposed into partial cross sections so that each corresponds to different ranks of the projectile and target statistical tensors and to a specific transfer of the orbital angular momentum. Each such partial cross section is associated with a correlation factor'' of particular parity-conservation and time-reversal symmetries, and is measurable by polarizing the projectile and target in states in which the statistical tensors have specific geometries, suggested by the simple geometric properties of the correlation factors.

  5. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  6. Artificial polarization components

    NASA Astrophysics Data System (ADS)

    Cescato, L.; Gluch, Ekkehard; Stork, Wilhelm; Streibl, Norbert

    1990-07-01

    High frequency surface relief structures are optically anisotropic and show interesting polarisation properties 1 . These properties can be used to produce polarizations components such as wave plates polarizers. polarizing beamsplitters etc. Our experimental results show that even gratings with relatively low spatial frequency ( periods A ) exhibit a strong phase retardation and can be used as quarter-wave plates. k INTRODUC11ON The artificial birefringence exhibited by ultrahigh frequency gratings of dielectric materials can be used to produce various polarization components2 . Such components have applications in integrated optics as well as in free space optics. In order to produce the high spatial frequencies complex processes such as electron-beam lithography and reactive ion etching are needed. We show in this paper that sinusoidal holographic gratings in photoresist exhibit also a strong phase ret even at relatively long periods. L EXPERIMENTAL MEASUREMENTS To obtain the phase retardation of a lower frequency ( period A ) grating a simple setup as used by Enger and 2 can be applied. In our case however there are three measurements necessary to obtain the phase retardation because transmission of the two perpendicularly polarized beams is different from each other. I GRATING PRODUCTION grating 2 3 4 5 6 7 8 9 period (pmj 0. 74 0. 74 0. 61 0. 54 0. 46 0. 32 0. 54 0. 54 0. 54 ne (sec) 60

  7. Polarized Campuses.

    ERIC Educational Resources Information Center

    Parr, Susan Resneck

    1991-01-01

    On college campuses, the climate is polarized because of intolerance and discrimination, censorship, factionalism, and anger among students and faculty. As a result, the campus is in danger of becoming dominated by political issues and discouraging the exchange of ideas characteristic of a true liberal arts education. (MSE)

  8. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    SciTech Connect

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10/sup 15/ atoms/cm/sup 2/) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures.

  9. Continuum Nuclear Structure via

    NASA Astrophysics Data System (ADS)

    Templon, Jeffrey A.

    1993-01-01

    Nuclear spectra are generally well-understood for excitation energies below the particle-emission threshold. Above this threshold, excited states decay preferentially by emission of nucleons or nucleon clusters. These resonant excitations are short-lived, producing continuum spectra of overlapping states accompanied by non-resonant, probe -dependent background processes. The resonant excitations' properties are difficult to deduce from these spectra. Many important advances in nuclear physics require understanding of such excitations. (e,e^' X) coincidence experiments have established the utility of angular correlation measurements of particle (X) emitted by decaying resonances for continuum studies. However, electron-induced reactions excite only a subset of the total nuclear response. Hadronic probes are necessary for a complete study. This dissertation describes a (p,p^' X) coincidence experiment, the first at intermediate energies where microscopic theories apply. The reaction's utility was investigated and applied to ^{12 }C. The experiment was performed using a 156 MeV polarized proton beam. A magnetic spectrometer was used to detect scattered protons. An array of eight silicon-detector telescopes was constructed and used to measure the angular correlation of charged particles (X). Inclusive (p,p ^') and exclusive (p,p ^' X) data were acquired simultaneously. The momentum transfer range (0.6<= q<= 1.2 fm^{-1}) was covered in three spectrometer angle settings. The excitation energy range spanned the region from sharp states to quasifree processes. Analyzing powers and cross sections were measured for both inclusive and exclusive data. A simple reaction model was developed which suggested a Legendre-polynomial series should describe the sigma(theta_{X}) data. The model relates the polynomial coefficients to nuclear structure information. A result of this work is that this series was found to satisfactorily describe the data and provided new information about

  10. Do embryonic polar bodies commit suicide?

    PubMed

    Fabian, Dušan; Čikoš, Štefan; Rehák, Pavol; Koppel, Juraj

    2014-02-01

    The extrusion and elimination of unnecessary gametic/embryonic material is one of the key events that determines the success of further development in all living organisms. Oocytes produce the first polar body to fulfill the maturation process just before ovulation, and release the second polar body immediately after fertilization. The aim of this study was to compile a physiological overview of elimination of polar bodies during early preimplantation development in mice. Our results show that three-quarters of the first polar bodies were lost even at the zygotic stage; the 4-cell stage embryos contained only one (second) polar body, and the elimination of second polar bodies proceeded continuously during later development. Both first and second polar bodies showed several typical features of apoptosis: phosphatidylserine redistribution (observed for the first time in the first polar body), specific DNA degradation, condensed nuclear morphology, and inability to exclude cationic dye from the nucleus during the terminal stage of the apoptotic process. Caspase-3 activity was recorded only in the second polar body. From the morphological point of view, mouse polar bodies acted very similarly to damaged embryonic cells which have lost contact with their neighboring blastomeres. In conclusion, polar bodies possess all the molecular equipment necessary for triggering and executing an active suicide process. Furthermore, similarly as in dying embryonic cells, stressing external conditions (culture in vitro) might accelerate and increase the incidence of apoptotic elimination of the polar bodies in embryos.

  11. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan.

  12. Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids.

    PubMed

    Lacey, M E; Tan, Z J; Webb, A G; Sweedle, J V

    2001-07-13

    This paper describes the first coupling of a commercial capillary HPLC system with a diode array spectrophotometric detector and a custom-built nuclear magnetic resonance (NMR) flow microprobe. The eluent from a 3-microm diameter C18 HPLC column is linked to a 500 MHz 1H-NMR microcoil probe with an observe volume of 1.1 microl. The separation and structurally-rich detection of a mixture of terpenoids under both isocratic and gradient solvent elution conditions is presented. The lowest limits of detection yet reported for capillary HPLC on-line measurement (i.e., 37 ng for alpha-pinene) are achieved with this system. The complementary nature of diode array and NMR detection allows stopped-flow data collection from analytes which would otherwise go unnoticed in continuous-flow NMR. Moreover, stopped-flow NMR data is presented for the detection of a trace (sub-nmol) impurity in the sample mixture. Since NMR signals degrade and shift during solvent gradients, flow injection analysis studies are conducted with injected solvent plugs differing in mobile phase composition. The NMR signal degradation accompanying these injections is largely due to the variance in chemical shift with the solvent composition rather than to changes in magnetic susceptibility of the solvent. Characterization of such effects enables the development of improved NMR probes for the coupling of capillary HPLC and NMR.

  13. Applications of highly spin-polarized xenon in NMR

    SciTech Connect

    Long, Henry W.

    1993-09-01

    The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field 129Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin (~2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized 129Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to 13CO2 in a xenon matrix and to protons on poly(triarylcarbinol).

  14. Polar Diving

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers exposed by erosion in a trough within the north polar residual cap of Mars, diving beneath a younger covering of polar materials. The layers have, since the Mariner 9 mission in 1972, been interpreted to be composed of a combination of dust and ice in unknown proportions. In this scene, a layer of solid carbon dioxide, which was deposited during the previous autumn and winter, blankets the trough as well as the adjacent terrain. Throughout northern spring, the carbon dioxide will be removed; by summer, the layers will be frost-free.

    Location near: 81.4oN, 352.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  15. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  16. Polarized light ions and spectator nucleon tagging at EIC

    SciTech Connect

    Guzey, Vadim; Higinbotham, Dougas W.; Hyde, Charles; Nadel-Turonski, Pawel A.; Park, Kijun; Sargsian, Misak M.; Strikman, Mark; Weiss, Christian

    2014-10-01

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x ll 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p(R) < several 100MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  17. Polarization Filtering of SAR Data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  18. Paired circularly polarized heterodyne ellipsometer

    SciTech Connect

    Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C

    2009-02-01

    We develop a paired circularly polarized heterodyne ellipsometer (PCPHE), in which a heterodyne interferometer based on a two-frequency circularly polarized laser beam is set up. It belongs to an amplitude-sensitive ellipsometer that is able to provide not only a wider dynamic range of polarization modulation frequency but also a higher detection sensitivity than that of a conventional photometric ellipsometer. A real-time and precise measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1 nm on thickness measurement of SiO2 thin film deposited on silicon substrate, can be applied with the PCPHE.

  19. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  20. Effects of biradical deuteration on the performance of DNP: Towards better performing polarizing agents

    DOE PAGES

    Perras, Frédéric A.; Reinig, Regina R.; Slowing, Igor I.; ...

    2015-11-20

    We study the effects of the deuteration of biradical polarizing agents on the efficiency of dynamic nuclear polarization (DNP) via the cross-effect. To this end, we synthesized a series of bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The deuteration increases the radicals' relaxation time, thus contributing to a higher saturation factor and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion barrier. Notably, we report that full or partial deuteration leads to improved DNP enhancement factors in standard samples, but also slows down the build-up of hyperpolarization. Improvements in DNP enhancements factors ofmore » up to 70% and time savings of up to 38% are obtained upon full deuteration. As a result, it is foreseen that this approach may be applied to other DNP polarizing agents thus enabling further sensitivity improvements.« less

  1. Effects of biradical deuteration on the performance of DNP: Towards better performing polarizing agents

    SciTech Connect

    Perras, Frédéric A.; Reinig, Regina R.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-11-20

    We study the effects of the deuteration of biradical polarizing agents on the efficiency of dynamic nuclear polarization (DNP) via the cross-effect. To this end, we synthesized a series of bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The deuteration increases the radicals' relaxation time, thus contributing to a higher saturation factor and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion barrier. Notably, we report that full or partial deuteration leads to improved DNP enhancement factors in standard samples, but also slows down the build-up of hyperpolarization. Improvements in DNP enhancements factors of up to 70% and time savings of up to 38% are obtained upon full deuteration. As a result, it is foreseen that this approach may be applied to other DNP polarizing agents thus enabling further sensitivity improvements.

  2. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    SciTech Connect

    Fahey, F.

    2015-06-15

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normal and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging.

  3. The polarization sensitivity of GRETINA

    NASA Astrophysics Data System (ADS)

    Wiens, Andreas; Gretina Collaboration

    2014-09-01

    , which were normalized with the unpolarized results derived from 60 Co . The a2 and a4 coefficients from the Legendre Polynomial fit of the angular distribution confirmed the high degree of polarization. We will report on the asymmetry in the azimuthal Compton scattering angle distribution which is in good agreement with a cos (2 φ) fit. We will discuss the energy dependance of the polarization sensitivity and compare the results with a GEANT4 simulation. GRETINA was funded by the DOE, Office of Science and is operated under DOE under Grant No. DE-AC02-05CH11231 (LBNL). It is supported by the U.S. DOE, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357 (ANL).

  4. Locking electron spins into resonance by electron-nuclear feedback

    NASA Astrophysics Data System (ADS)

    Nowack, Katja

    2009-03-01

    All basic building blocks for spin-based quantum information processing using electron spins in GaAs quantum dots have recently been realized. Recent experiments have shown single-shot read-out of an individual spin [1], the implementation of the SWAP gate [2] and (magnetically induced) coherent single electron spin rotations [3]. However, the main drawback of using electron spins in a GaAs environment is the short spin coherence time, which is measured to be in the nanosecond range [2,4]. The source of this fast decoherence is the hyperfine interaction of the localized electron spin with the randomly fluctuating nuclear spins of the host lattice. The fluctuations of the nuclear spins have to be reduced to extend the electron spin coherence time. We therefore study the electron-nuclear spin interaction and use magnetically driven spin resonance to control the electron spin and indirectly manipulate the nuclear spins. We apply continuous microwave excitation to the electron spin and observe strong electron-nuclear feedback. One experimental signature of this feedback is the locking of the electron spin system into resonance with the microwaves. Once the electron spin is locked into resonance, this resonance condition remains fullfilled even when the external magnetic field or the microwave frequency is changed. This is due to dynamically build up nuclear polarizations (up to 500 mT) which generally counteract the external magnetic field. Locking of the electron spin system into resonance might indicate that the nuclear polarization exhibits stable configurations where fluctuations of the nuclear distribution are reduced [5]. [4pt] References [0pt] [1] J. M. Elzerman et al. , Nature 430, 431 (2004) [0pt] [2]. J. R. Petta et al., Science 309, 2180 (2005). [0pt] [3] F. H. L. Koppens et al., Nature 442, 766 (2006). [0pt] [4] F. H. L. Koppens et al., Phys. Rev. Lett. 100, 236802 (2008). [0pt] [5] J. Danon and Yu. V. Nazarov, private communication.

  5. Spectral degree of polarization uniformity for polarization-sensitive OCT.

    PubMed

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  6. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  7. Polar Barchans

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, barchan sand dunes of the north polar region of Mars. Barchan dunes are simple, rounded forms with two horns that extend downwind. Inequalities in local wind patterns may result in one horn being extended farther than the other, as is the case for several dunes in this image. The image also shows several barchans may merge to form a long dune ridge. The horns and attendant slip faces on these dunes indicate wind transport of sand from the upper left toward the lower right. The image is located near 77.6oN, 103.6oW. The picture covers an area about 3 km (1.9 mi) wide; sunlight illuminates the scene from the lower left.

  8. Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor.

    PubMed

    Puttisong, Y; Wang, X J; Buyanova, I A; Geelhaar, L; Riechert, H; Ptak, A J; Tu, C W; Chen, W M

    2013-01-01

    Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient spin-dependent recombination and hyperfine coupling can facilitate strong dynamic nuclear polarization of a defect atom in a semiconductor at room temperature. We provide direct evidence that a sizeable nuclear field (~150 Gauss) and nuclear spin polarization (~15%) sensed by conduction electrons in GaNAs originates from dynamic nuclear polarization of a Ga interstitial defect. We further show that the dynamic nuclear polarization process is remarkably fast and is completed in <5 μs at room temperature. The proposed new concept could pave a way to overcome a major obstacle in achieving strong dynamic nuclear polarization at room temperature, desirable for practical device applications.

  9. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    NASA Astrophysics Data System (ADS)

    2006-06-01

    . Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of

  10. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  11. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  12. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information:VIS instrument. Latitude 86.5, longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  13. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  14. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.2, Longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  15. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.3, Longitude 314.4 East (45.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  16. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  17. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  18. Nuclear techniques applied to dementia studies

    SciTech Connect

    Ehmann, W.D.

    1996-12-31

    Trace element imbalances have been implicated in the etiology and/or pathogenesis of several dementing disorders related to aging. Of these diseases, Alzheimer`s disease (AD) is by far the most prevalent. Many elemental imbalances have been reported in AD brain, compared to neurologically normal controls. Using instrumental neutron activation analysis (INAA), we have observed significant increases (p {le} 0.05) in bromine, chlorine, mercury, sodium, and phosphorus and decreased amounts of cesium, nitrogen, and rubidium in AD brain, compared to age-matched control brain. Because INAA is a simultaneous multielement method that does not require tissue dissolution, fewer opportunities for contamination exist than with otherwise powerful analytical methods, such as inductively coupled plasma mass spectrometry or atomic absorption spectrometry. Although INAA is a very important tool in the study of potential trace element involvement in dementia, we have often found it necessary to go beyond conventional INAA methods.

  19. Polarization-dependent transmittance of concentric ring plasmonic lens: a polarizing interference investigation

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Zang, Tianyang; Ren, Yuan; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Lu, Yonghua; Wang, Pei

    2016-10-01

    Plasmonic lenses are widely applied to manipulate optical phase or polarization distribution in the near and far field, but its polarization-dependent optical anisotropy is seldomly reported. Not only the plasmonic mode (excited by transverse magnetic polarization), but also the photonic mode (excited by transverse electric polarization) has an effect on the field distribution. In this paper, polarization-dependent optical anisotropy of concentric ring plasmonic lens has been investigated with polarizing microscope and explained by polarizing interference theoretical model. Moreover, several kinds of plasmonic lenses are mutually compared and dramatic different optical anisotropy is found. Our work bears a fundamental importance in design of micro-nano-devices as well as provides the potential to advance the applications of polarizing interferometry into plasmonic structure characterization.

  20. Polar User’s Manual.

    DTIC Science & Technology

    1985-10-01

    section. The same restrictions then apply: An ooa value for the DIAVETER causes POLAR to automatically move the CENTER by +1j2 a mesh unit in the X, Y and...CSPHERE CENTER 1 -3 5 DIAVETER 7 SICE 3 MATERIAL SILVER ENDCBJ 10.’ *- ..-. J, .. I’X I’L’’’ ’ . ... . , . . ." ’J .,J

  1. The polarization properties of a tilted polarizer.

    PubMed

    Korger, Jan; Kolb, Tobias; Banzer, Peter; Aiello, Andrea; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2013-11-04

    Polarizers are key components in optical science and technology. Thus, understanding the action of a polarizer beyond oversimplifying approximations is crucial. In this work, we study the interaction of a polarizing interface with an obliquely incident wave experimentally. To this end, a set of Mueller matrices is acquired employing a novel procedure robust against experimental imperfections. We connect our observation to a geometric model, useful to predict the effect of polarizers on complex light fields.

  2. Nuclear Warfare Water Contamination.

    DTIC Science & Technology

    1982-05-01

    Products x Applied Health Physics, Inc x Applied Physical Technology, Inc x Aptec Nuclear Inc x The Aston Company x Baird Corp x Berthold-Beta...15, Department of the Army, Washington, D. C., June 1966. 61 26. Private Communication, D. C. Lindsten (USAMERADCOM) to John C.Phillips (SA[-Chicago...Detection and Measurement," John Wiley & Sons, New York, 1919. 29. Lichholz, G. G., "Environmental Aspects of Nuclear Power," Ann Arbor, Science, Ann Arbor

  3. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  4. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  5. Polarization and Myelination in Myelinating Glia

    PubMed Central

    Masaki, Toshihiro

    2012-01-01

    Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed. PMID:23326681

  6. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  7. Broadband graphene polarizer

    NASA Astrophysics Data System (ADS)

    Bao, Qiaoliang; Zhang, Han; Wang, Bing; Ni, Zhenhua; Lim, Candy Haley Yi Xuan; Wang, Yu; Tang, Ding Yuan; Loh, Kian Ping

    2011-07-01

    Conventional polarizers can be classified into three main modes of operation: sheet polarizer using anisotropic absorption media, prism polarizer by refraction and Brewster-angle polarizer by reflection. These polarizing components are not easily integrated with photonic circuits. The in-line fibre polarizer, which relies on polarization-selective coupling between the evanescent field and birefringent crystal or metal, is a promising alternative because of its compatibility with most fibre-optic systems. Here, we demonstrate the operation of a broadband fibre polarizer based on graphene, an ultrathin two-dimensional carbon material. The out-coupled light in the telecommunication band shows a strong s-polarization effect with an extinction ratio of 27 dB. Unlike polarizers made from thin metal film, a graphene polarizer can support transverse-electric-mode surface wave propagation due to its linear dispersion of Dirac electrons.

  8. Polarization properties of non-symmetric retroreflectors

    NASA Technical Reports Server (NTRS)

    An, C.-H.; Morris, John W.

    1990-01-01

    The on- and off-axis polarizing properties of asymmetric retroreflectors are studied in detail for various angles of incidence and for various incident linear polarization states. An analytic model is developed by applying Fresnel law to the incident and reflecting radiation on each facet of the retroreflector. It is shown that the polarization state of retroreflected radiation is a sensitive function of incident angle, incident polarization rate, and retroreflector material. These characteristics may be applicable to the determination of the relative angular position between the retroreflector and the analyzer.

  9. High Intensity Polarized Electron Sources

    SciTech Connect

    Poelker, M.; Adderley, P.; Brittian, J.; Clark, J.; Grames, J.; Hansknecht, J.; McCarter, J.; Stutzman, M. L.; Suleiman, R.; Surles-Law, K.

    2008-02-06

    During the 1990s, at numerous facilities world wide, extensive R and D devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source R and D. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular - Q-weak, a parity violation experiment that will look for physics beyond the Standard Model--requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlated current asymmetry less than 0.1 ppm. Neighboring halls will continue taking beam during Q-weak, pushing the total average beam current from the gun beyond 300 uA. This workshop contribution describes R and D at Jefferson Lab, dedicated toward extending the operating current of polarized electron sources to meet the requirements of high current experiments at CEBAF and to better appreciate the technological challenges of new accelerators, particularly high average current machines like eRHIC that require at least 25 mA at high polarization.

  10. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  11. Quantum interface between light and nuclear spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Schwager, Heike; Cirac, J. Ignacio; Giedke, Géza

    2010-01-01

    The coherent coupling of flying photonic qubits to stationary matter-based qubits is an essential building block for quantum-communication networks. We show how such a quantum interface can be realized between a traveling-wave optical field and the polarized nuclear spins in a singly charged quantum dot strongly coupled to a high-finesse optical cavity. By adiabatically eliminating the electron a direct effective coupling is achieved. Depending on the laser field applied, interactions that enable either write-in or read-out are obtained.

  12. High Intensity Polarized Electron Sources

    SciTech Connect

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-02-01

    During the 1990s, at numerous facilities world wide, extensive R&D devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source R&D. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  13. Salinity effect on the spectral induced polarization porosimetry: theory and experiment

    NASA Astrophysics Data System (ADS)

    Niu, Q.; Revil, A.; Saidian, M.; Prasad, M.

    2015-12-01

    Spectral induced polarization (SIP) porosimetry is a new technique for characterizing the pore size distribution of a porous medium. The induced polarization of porous media under low frequencies is mainly attributed to the relaxation of the mineral/fluid interface, i.e., the electrical double layer (EDL, including both Stern and diffuse layers). Currently, the salinity effect is not considered while applying the SIP porosimetry although a number of experiments have shown the water salinity could affect the relaxation of EDL. In this study, we conducted SIP measurement of a Portland sandstone sample with a broad range of salinities. The relaxation time distributions of the sample at different salinities are obtained by inverting the measured SIP responses using the least-square method with optimized damping parameter. The modal relaxation time shows a non-negligible dependence on the salinity/fluid conductivity. The salinity dependence can be explained by considering the ions exchange between Stern and diffuse layers during polarization, i.e., diffuse layer polarization (DLP). It is also shown that the SIP porosimetry could underestimate the pore size if only Stern layer polarization is considered. It is therefore suggested to include DLP while interpreting the SIP porosimetry data in order to give consistent pore size information with other techniques such as nuclear magnetic resonance and mercury injection capillary porosimetry.

  14. T-Violation experiment using polarized Li-8 at TRIUMF

    NASA Astrophysics Data System (ADS)

    Murata, Jiro; MTV Collaboration

    2014-09-01

    The MTV experiment searching T-Violating electron transverse polarization in polarized nuclear beta decay at TRIUMF is running. The main electron tracking detector as a Mott polarimeter was upgraded from a planer drift chamber to a cylindrical drift chamber (CDC), which has been commissioned and tested. In this talk, preparation status of the next physics production using the CDC will be presented.

  15. Polarized maser growth

    SciTech Connect

    Melrose, D.B.; Judge, A.C.

    2004-11-01

    A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are comparable, the polarization of the growing radiation is different from those of the maser and medium. In particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular polarization that may be relevant to pulsar radio emission.

  16. Classifying lipoproteins based on their polar profiles.

    PubMed

    Polanco, Carlos; Castañón-González, Jorge Alberto; Buhse, Thomas; Uversky, Vladimir N; Amkie, Rafael Zonana

    2016-01-01

    The lipoproteins are an important group of cargo proteins known for their unique capability to transport lipids. By applying the Polarity index algorithm, which has a metric that only considers the polar profile of the linear sequences of the lipoprotein group, we obtained an analytical and structural differentiation of all the lipoproteins found in UniProt Database. Also, the functional groups of lipoproteins, and particularly of the set of lipoproteins relevant to atherosclerosis, were analyzed with the same method to reveal their structural preference, and the results of Polarity index analysis were verified by an alternate test, the Cumulative Distribution Function algorithm, applied to the same groups of lipoproteins.

  17. Dynamic polarization of ZF in a fluorinated alcohol

    SciTech Connect

    Hill, D.; Kasprzyk, T.; Jarmer, J.J.; Penttilae, S.; Krumpolc, M.; Hoffmann, G.W.; Purcell, M.

    1988-01-01

    We have studied microwave dynamic cooling of ZF and H nuclei in mixtures of 1,1,1,3,3,3-hexafluoro-2-propanol and water, doped with Cr(V) complex. Equal spin temperatures of the two nuclei are produced, and the highest spin polarizations (/approximately/80%) are found in mixtures near the eutectic ratio. The high fluorine content and polarization make this a suitable material for polarized nuclear scattering experiments. 11 refs., 3 figs., 1 tab.

  18. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  19. Crossed elliptical polarization undulator

    SciTech Connect

    Sasaki, Shigemi

    1997-05-01

    The first switching of polarization direction is possible by installing two identical helical undulators in series in a same straight section in a storage ring. By setting each undulator in a circular polarization mode in opposite handedness, one can obtain linearly polarized radiation with any required polarization direction depending on the modulator setting between two undulators. This scheme can be used without any major degradation of polarization degree in any low energy low emittance storage ring.

  20. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  1. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  2. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  3. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  4. Applied chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1983-11-01

    A number of novel features of QCD are reviewed, including the consequences of formation zone and color transparency phenomena in hadronic collisions, the use of automatic scale setting for perturbative predictions, null-zone phenomena as a fundamental test of gauge theory, and the relationship of intrinsic heavy colored particle Fock state components to new particle production. We conclude with a review of the applications of QCD to nuclear multiquark systems. 74 references.

  5. Functional Imaging of Tissue Morphology with Polarized Light Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Backman, Vadim

    2001-03-01

    We report a new imaging technique to study the morphology of living epithelial cells in vivo. The method is based on light scattering spectroscopy with polarized light (PLSS) and makes it possible to distinguish between single backscattering from epithelial cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative histological information about the epithelial cells such as the size distribution, refractive index, and chromatin content of the cell nuclei. The measurement of cell nuclear morphology is crucial for detection and diagnosis of cancerous and precancerous conditions in many human tissues. The method was successfully applied to image precancerous regions of several tissues. Clinical studies in five organs (esophagus, colon, bladder, oral cavity, and uterine cervix) showed the generality and efficacy of the technique.

  6. Italian Polar Metadata System

    NASA Astrophysics Data System (ADS)

    Longo, S.; Nativi, S.; Leone, C.; Migliorini, S.; Mazari Villanova, L.

    2012-04-01

    Italian Polar Metadata System C.Leone, S.Longo, S.Migliorini, L.Mazari Villanova, S. Nativi The Italian Antarctic Research Programme (PNRA) is a government initiative funding and coordinating scientific research activities in polar regions. PNRA manages two scientific Stations in Antarctica - Concordia (Dome C), jointly operated with the French Polar Institute "Paul Emile Victor", and Mario Zucchelli (Terra Nova Bay, Southern Victoria Land). In addition National Research Council of Italy (CNR) manages one scientific Station in the Arctic Circle (Ny-Alesund-Svalbard Islands), named Dirigibile Italia. PNRA started in 1985 with the first Italian Expedition in Antarctica. Since then each research group has collected data regarding biology and medicine, geodetic observatory, geophysics, geology, glaciology, physics and atmospheric chemistry, earth-sun relationships and astrophysics, oceanography and marine environment, chemistry contamination, law and geographic science, technology, multi and inter disciplinary researches, autonomously with different formats. In 2010 the Italian Ministry of Research assigned the scientific coordination of the Programme to CNR, which is in charge of the management and sharing of the scientific results carried out in the framework of the PNRA. Therefore, CNR is establishing a new distributed cyber(e)-infrastructure to collect, manage, publish and share polar research results. This is a service-based infrastructure building on Web technologies to implement resources (i.e. data, services and documents) discovery, access and visualization; in addition, semantic-enabled functionalities will be provided. The architecture applies the "System of Systems" principles to build incrementally on the existing systems by supplementing but not supplanting their mandates and governance arrangements. This allows to keep the existing capacities as autonomous as possible. This cyber(e)-infrastructure implements multi-disciplinary interoperability following

  7. Metasurface polarization splitter.

    PubMed

    Slovick, Brian A; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I; Briggs, Dayrl P; Moitra, Parikshit; Krishnamurthy, Srini; Valentine, Jason

    2017-03-28

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.This article is part of the themed issue 'New horizons for nanophotonics'.

  8. Radiative effects in scattering of polarized leptons by polarized nucleons and light nuclei

    SciTech Connect

    Igor Akushevich; A. Ilyichev; N. Shumeiko

    2001-07-01

    Recent developments in the field of radiative effects in polarized lepton-nuclear scattering are reviewed. The processes of inclusive, semi-inclusive, diffractive and elastic scattering are considered. The explicit formulae obtained within the covariant approach are discussed. FORTRAN codes POLRAD, RADGEN, HAPRAD, DIFFRAD and MASCARAD created on the basis of the formulae are briefly described. Applications for data analysis of the current experiments on lepton-nuclear scattering at CERN, DESY, SLAC and TJNAF are illustrated by numerical results.

  9. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    SciTech Connect

    Zhao, Jinkui; Garamus, VM; Mueller, W; Willumeit, R

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8 mm thick and consists of 43.4 wt% water, 54.6 wt% glycerol, and 2 wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was {lambda} = 8.1 {angstrom} with {Delta}{lambda}/{lambda} = 10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission.

  10. POLARIZED PROTON ACCELERATION AT THE BROOKHAVEN AGS - AN UPDATE.

    SciTech Connect

    HUANG,H.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE-WANG,J.; BROWN,K.A.; GLENN,W.; LUCCIO,A.U.; MACKAY,W.W.; MONTAG,C.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; ZELENSKI,A.; ZENO,K.; CADMAN,B.; SPINKA,H.; UNDERWOOD,D.; RANJBAR,V.

    2002-06-02

    The RHIC spin design goal assumes 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, polarized protons have been accelerated at the AGS for years to increase the polarization transmission efficiency. Several novel techniques have been applied in the AGS to overcome the intrinsic and imperfection resonances. The present level of accelerator performance is discussed. Progress on understanding the beam polarization behavior is presented. The outlook and future plan are also discussed.

  11. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices.

    PubMed

    Hayman, Matthew; Thayer, Jeffrey P

    2012-04-01

    Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization's widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retardance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation.

  12. Spent Nuclear Fuel project, project management plan

    SciTech Connect

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  13. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  14. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  15. Local control of light polarization with low-temperature fiber optics.

    PubMed

    Mack, A H; Riordon, J; Dean, C R; Talbot, R; Gervais, G

    2007-06-01

    A fiber-optic-based polarization control system that uses a backreflection measurement scheme at low temperatures has been developed. This provides a stringent test of the light polarization state at the output of the fiber, allowing for determination and control of the degree of circular polarization; i.e., it can generate linear, right, or left circular polarization with cryogenic fibers. This polarization controller is paving the way toward the control and manipulation of nuclear spins in semiconductors via the optical Overhauser effect and could be used, for example, for the purpose of quantum information processing with the large nuclear spins of GaAs.

  16. Applied Stratigraphy

    NASA Astrophysics Data System (ADS)

    Lucas, Spencer G.

    Stratigraphy is a cornerstone of the Earth sciences. The study of layered rocks, especially their age determination and correlation, which are integral parts of stratigraphy, are key to fields as diverse as geoarchaeology and tectonics. In the Anglophile history of geology, in the early 1800s, the untutored English surveyor William Smith was the first practical stratigrapher, constructing a geological map of England based on his own applied stratigraphy. Smith has, thus, been seen as the first “industrial stratigrapher,” and practical applications of stratigraphy have since been essential to most of the extractive industries from mining to petroleum. Indeed, gasoline is in your automobile because of a tremendous use of applied stratigraphy in oil exploration, especially during the latter half of the twentieth century. Applied stratigraphy, thus, is a subject of broad interest to Earth scientists.

  17. Applied antineutrino physics workshop.

    SciTech Connect

    Lund, James C.

    2008-01-01

    This workshop is the fourth one of a series that includes the Neutrino Geophysics Conference at Honolulu, Hawaii, which I attended in 2005. This workshop was organized by the Astro-Particle and Cosmology laboratory in the recently opened Condoret building of the University of Paris. More information, including copies of the presentations, on the workshop is available on the website: www.apc.univ-paris7.fr/AAP2007/. The workshop aims at opening neutrino physics to various fields such that it can be applied in geosciences, nuclear industry (reactor and spent fuel monitoring) and non-proliferation. The workshop was attended by over 60 people from Europe, USA, Asia and Brazil. The meeting was also attended by representatives of the Comprehensive nuclear-Test Ban Treaty (CTBT) and the International Atomic Energy Agency (IAEA). The workshop also included a workshop dinner on board of a river boat sailing the Seine river.

  18. Calculation of polarization effects

    SciTech Connect

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful.

  19. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  20. Playing with Polarizers.

    ERIC Educational Resources Information Center

    Hecht, Jeff

    1991-01-01

    Discussed is how polarized sunglasses block glare, help spot subtle differences in surfaces, and give a clearer view under water. Information on unpolarized and polarized light is provided. The reasons causing glare to occur and how polarizers decrease glare are discussed. (KR)

  1. Silicon Raman polarizer.

    PubMed

    Kozlov, Victor V; Wabnitz, Stefan

    2012-02-15

    We theoretically investigate the polarization properties of Raman amplifiers based on silicon-on-insulator waveguides, and show that it is possible to realize a waveguide Raman polarizer. The Raman polarizer is a special type of Raman amplifier with the property of producing an amplified and highly repolarized beam when it is fed by a relatively weak and unpolarized signal.

  2. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  3. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  4. Polarity at Many Levels

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2004-01-01

    An attempt is made to find how polarity arises and is maintained, which is a central issue in development. It is a fundamental attribute of living things and cellular polarity is also important in the development of multicellular organisms and controversial new work indicates that polarization in mammals may occur much earlier than previously…

  5. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  6. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  7. Magnetic Resonance Imaging with laser polarized {sup 129}Xe

    SciTech Connect

    Swanson, Scott D.; Rosen, Matthew S.; Agranoff, Bernard W.; Coulter, Kevin P.; Welsh, Robert C.; Chupp, Timothy E.

    1998-01-20

    Magnetic Resonance Imaging with laser-polarized {sup 129}Xe can be utilized to trace blood flow and perfusion in tissue for a variety of biomedical applications. Polarized xenon gas introduced in to the lungs dissolves in the blood and is transported to organs such as the brain where it accumulates in the tissue. Spectroscopic studies combined with imaging have been used to produce brain images of {sup 129}Xe in the rat head. This work establishes that nuclear polarization produced in the gas phases survives transport to the brain where it may be imaged. Increases in polarization and delivered volume of {sup 129}Xe will allow clinical measurements of regional blood flow.

  8. Inductive source induced polarization

    NASA Astrophysics Data System (ADS)

    Marchant, David; Haber, Eldad; Oldenburg, Douglas W.

    2013-02-01

    Induced polarization (IP) surveys are commonly performed to map the distribution of electrical chargeability that is a diagnostic physical property in mineral exploration and in many environmental problems. Although these surveys have been successful in the past, the galvanic sources required for traditional IP and magnetic IP (MIP) surveys prevent them from being applied in some geological settings. We develop a new methodology for processing frequency domain EM data to identify the presence of IP effects in observations of the magnetic fields arising from an inductive source. The method makes use of the asymptotic behaviour of the secondary magnetic fields at low frequency. A new quantity, referred to as the ISIP datum, is defined so that it equals zero at low frequencies for any frequency-independent (non-chargeable) conductivity distribution. Thus, any non-zero response in the ISIP data indicates the presence of chargeable material. Numerical simulations demonstrate that the method can be applied even in complicated geological situations. A 3-D inversion algorithm is developed to recover the chargeability from the ISIP data and the inversion is demonstrated on synthetic examples.

  9. Valley polarization assisted spin polarization in two dimensions.

    PubMed

    Renard, V T; Piot, B A; Waintal, X; Fleury, G; Cooper, D; Niida, Y; Tregurtha, D; Fujiwara, A; Hirayama, Y; Takashina, K

    2015-06-01

    Valleytronics is rapidly emerging as an exciting area of basic and applied research. In two-dimensional systems, valley polarization can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena as the fractional quantum Hall effect and the metal-insulator transition. Here, we address the electrons' spin alignment in a magnetic field in silicon-on-insulator quantum wells under valley polarization. In stark contrast to expectations from a non-interacting model, we show experimentally that less magnetic field can be required to fully spin polarize a valley-polarized system than a valley-degenerate one. Furthermore, we show that these observations are quantitatively described by parameter-free ab initio quantum Monte Carlo simulations. We interpret the results as a manifestation of the greater stability of the spin- and valley-degenerate system against ferromagnetic instability and Wigner crystalization, which in turn suggests the existence of a new strongly correlated electron liquid at low electron densities.

  10. Applied oceanography

    SciTech Connect

    Bishop, J.M.

    1984-01-01

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  11. Applied Enzymology.

    ERIC Educational Resources Information Center

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  12. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    SciTech Connect

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; Hyde, C.; Kuhn, S.; Nadel-Turonski, P.; Park, K.; Sargsian, M.; Strikman, M.; Weiss, C.

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  13. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    DOE PAGES

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; ...

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleusmore » rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.« less

  14. Target information enhancement using polarized component of infrared images

    NASA Astrophysics Data System (ADS)

    Qiu, Tiaowen; Zhang, Yan; Li, Jicheng; Yang, Weiping

    2014-11-01

    After a deep study of the principle of infrared polarization imaging detection, the infrared polarization information of target and background is modeled. Considering the partial polarized light can be obtained by the superposition of natural light (unpolarized light) and linearly polarized component while ignoring the component of circularly polarized light, and combing with the degree of polarization (DOLP) and the angle of polarization (AOP), the infrared polarization information is expressed by the multiplying of an intensity factor by a polarization factor. What we have modeled not only can be used to analyze the infrared polarization information visually and profoundly, but also make the extraction of polarized features convenient. Then, faced with different application fields and based on the model, a target information enhancement program is proposed, which is achieved by extracting a linear polarization component in a certain polarized direction. This program greatly improves the contrast between target and background, and can be applied in target detection or identification, especially for camouflage or stealth target. At last, we preliminarily tested the proposed enhancement method exploiting infrared polarization images obtained indoor and outdoor, which demonstrates the effectiveness of the enhancement program.

  15. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  16. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  17. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  18. Study of the fission isomer 240mAm (S. F. ) using laser-induced nuclear polarization. [Cross section of 238U(7Li,5n) at 48 MeV

    SciTech Connect

    Beene, J. R.; Bemis, Jr., C. E.; Young, J. P.; Kramer, S. D.

    1980-01-01

    The optical isomer shift was measured for the spontaneously fissioning isomer /sup 240m/Am. This shift is approximately 27 times greater than the /sup 241/Am-/sup 243/Am isotope shift, and confirms the conventional identification of fission isomers with large deformation. The measured isomer shift is consistent with a nuclear quadrupole moment of 30.4 b, in agreement with theoretical expectations. 2 figures. (RWR)

  19. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. As with yesterday's image, the dunes are still partially frost covered. This region is part of the north polar erg (sand sea), note the complexity and regional coverage of the dunes.

    Image information: VIS instrument. Latitude 81.2, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 81 degrees North latitude during Northern spring. This region of the north polar erg is dominated by a different form of dunes than yesterday's image.

    Image information: VIS instrument. Latitude 81.4, Longitude 121.9 East (238.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.